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Detecting initial system-environment correlations in open systems
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Correlations between a system and its environment lead to errors in an open quantum system. Detecting
those correlations would be valuable for avoiding and/or correcting those errors. Here we show that we can
detect correlations by measuring only the system itself if we know the cause of the interaction between the two,
for example, in the case of a dipole-dipole interaction. We investigate the unitaryU which is associated with the
exchange Hamiltonian and examine the ability to detect initial correlations between a system and its environment
for various types of initial states. The states we select are motivated by realistic experimental conditions, and we
provide bounds for when we can state with certainty that there are initial system-environment correlations given
experimental data.
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I. INTRODUCTION

Entanglement is a uniquely quantum-mechanical property
and is responsible for many of the advantages that quantum
systems have over their classical counterparts. Its detection
and manipulation are therefore of great importance in the
search for the implementation of practical quantum technolo-
gies [1,2]. When there is entanglement in a bipartite quantum
system and one has access to both subsystems, one can per-
form measurements on both to detect its presence.

However, entanglement and, more generally, correlations
can pose a problem when they are unwanted. Unwanted in-
teractions between the system and environment cause noise in
the quantum system that leads to errors in the quantum infor-
mation and/or quantum control of the system. Such errors can
cause irreparable damage to the state of the system and must
be avoided, suppressed, and/or corrected to achieve accurate
control [3]. Like entanglement, more general correlations can
be detected if both parts of a bipartite system can be accessed,
controlled, and measured. But this is often not the case for
errors which are caused by an unwanted interaction with the
environment. The reason is that many environments are not
readily accessible in the sense that they are not controllable or
measurable except, perhaps, for some bulk properties.

In the case that correlations arise between a system and en-
vironment or some other inaccessible quantum system, what
can be done to detect properties of the correlations to aid in er-
ror prevention and control? Fairly recently, important progress
was made toward detecting correlations between a system and
its environment by making measurements only on the system.
For example, if one prepares many different initial states,
one can use the method proposed in [4,5] to find whether
the effective environment state depends on the preparation of
the system [5]. This process requires many preparations and
measurements. Another method uses two differently prepared
states, the state of interest and a second state that is the result
of operating on the original state. Correlations can then be

witnessed by comparing the two with distance measures
[6–11]. This method does not make any assumptions about
the state of the environment or the structure of the system-
environment correlations and has been shown to be experi-
mentally successful at detecting initial correlations [12–14].

Yet another recently discovered method can be used to
find correlations between a system and its environment by
measuring only the system if one makes the experimentally
reasonable assumptions that (i) the system-environment state
can be repeatedly prepared, (ii) the system can be measured,
and (iii) the system-environment interaction is known. It was
found that when the system and environment consist of one
qubit each, a wide range of correlated initial states can be
detected [15]. This method differs from the methods described
in [6–11] since we do not need to prepare different initial
states. Instead, we may use any initial state of the system. It is
similar in the sense that the environment does not need to be
accessed. It also requires many fewer preparations and mea-
surements than the method described in Ref. [4]. We also want
to emphasize that the assumption of the system-environment
interaction is that we know how the system interacts with
the environment. For example, here we assume that the in-
teraction is a Heisenberg-type coupling [16]. It is also worth
emphasizing that we are measuring only the system and do
not assume any access to the environment. Our method is
applicable when a system is prepared in the presence of the
environment and correlations between the two arise during
preparation. It could also be used to detect correlations be-
tween the system and environment after the system has been
stored for some time.

In this work, we develop this theory for practical use and
examine the experimentally relevant Hamiltonian sometimes
called the Heisenberg interaction [16]. This Hamiltonian,
which essentially has the form �S1 · �S2, is relevant for spin-spin
interactions such as those one may find in a system in which
the electron spin is correlated with a nuclear spin. We consider
various initial states of the spin-1/2 system and spin-1/2

2469-9926/2021/104(4)/042406(7) 042406-1 ©2021 American Physical Society

https://orcid.org/0000-0002-6386-6632
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.042406&domain=pdf&date_stamp=2021-10-05
https://doi.org/10.1103/PhysRevA.104.042406


SARAH HAGEN AND MARK BYRD PHYSICAL REVIEW A 104, 042406 (2021)

environment ρSE and ask how correlations between the system
and environment might be detected by letting the system and
environment evolve under this Hamiltonian for some time t .
We then present an analysis of the robustness of our results
showing that it is indeed possible to detect correlations by
measuring only the system.

II. DETECTING INITIAL CORRELATIONS

Our general method is described as follows. We assume
that the combined system and environment state ρSE evolves
unitarily. The evolution of ρS = TrE (ρSE ) (where TrE is the
trace over the environmental degrees of freedom) can then be
described by

ρS → ρS
′(t ) = TrE [USE (t )(ρSE )U

†
SE (t )]. (1)

If the combined system that evolves as described above is
initially uncorrelated, then

ρSE = ρS ⊗ ρE . (2)

In either case we describe the initial state of the system by
ρS and the final state of the system by ρ ′

S in Eq. (1). Further-
more, we assume that both ρS and ρ ′

S can be measured using
standard tomographic techniques [17,18]. The presence of ini-
tial correlations between the system and environment in ρSE

would mean that this combined state is not in a product state
ρSE �= ρS ⊗ ρE . Thus, given an initial state ρS = TrE [ρSE ] and
the final state ρ ′

S as described in Eq. (1), the presence of
initial correlations between ρS and ρE can be determined by
checking whether the same ρ ′

S can be obtained by considering
the transformation of an uncorrelated state ρ̃SE = ρS ⊗ ρ̃E . If
it cannot, then correlations must be present. In our examples
below, we take the system to be one qubit and the environment
to be an unknown two-state system. The hypothetical arbitrary
environment state ρ̃E is written as

ρ̃E = 1
2 (I + xX + yY + zZ), (3)

whereX,Y, andZ correspond to the Pauli operators and x, y, z
are real numbers such that x2 + y2 + z2 � 1. In other words,
we want to know whether it is possible to find a valid state ρ̃E

such that Eq. (1) is satisfied. Since we make no assumptions
about the state of the environment, if we are able to obtain the
same ρ ′

S with this uncorrelated ρ̃SE , then it is possible that our
system-environment state of interest ρSE was uncorrelated all
along. Conversely, if we are not able to produce ρ ′

S for any
realistic ρ̃E , then the combined state is shown to possess some
correlations between the system and environment.

We are not necessarily concerned here with how corre-
lations between the system and environment have arisen; it
can be presumed that some previous interaction has produced
these correlations. However, for the purposes of this paper we
choose various ρSE whose system-environment correlations
are rather experimentally realistic. Each of these could de-
scribe a different experimentally prepared initial state that had
some initial strong coupling between the system and environ-
ment or was not accurately prepared.

Consider two two-state systems interacting via the Heisen-
berg exchange Hamiltonian with some coupling constant J

which determines the interaction strength:

Hex = J (XX + YY + ZZ), (4)

which gives rise to the dipole-dipole interaction and is of
particular interest because of the pervasiveness of such in-
teractions in experiment. The time evolution of the state
corresponds to U , which, for simplification, we express in
terms of a parameter α = Jt , with J being the coupling con-
stant and t being time (and letting h̄ = 1):

U (α) = exp(−iHext )

=

⎛
⎜⎜⎝
e−iα 0 0
0 eiα cos 2α −ieiα sin 2α 0
0 −ieiα sin 2α eiα cos 2α 0
0 0 e−iα

⎞
⎟⎟⎠. (5)

Note thatU (π/4) is the SWAP operator (times an overall phase
eiπ/4 which is irrelevant). Since nothing is assumed about the
state of the environment, we can simulate any evolution when
the SWAP operator acts on an initial product state of the form
ρ̃E = ρ ′

S . In other words, if we suppose the final state of S
is ρ ′

S , then the initial state of the system plus environment
ρSE can be taken to be ρS ⊗ ρ ′

S . Also, U (π/2) = iI. So this
evolution can also always be simulated with a product state
since ρ ′

S = ρS .
In this work we will show how to detect initial correlations

between the system and environment undergoing this unitary
transformation for three different states ρSE . For each ρSE ,
we will compare the state ρ̃ ′

S ≡ TrE [UρS ⊗ ρ̃EU †], which is
produced by the transformation on the uncorrelated ρ̃SE , to ρ ′

S ,
which is the result of the transformation of ρSE , which may or
may not be correlated. The difference between these two states
is D ≡ ρ ′

S − ρ̃ ′
S , corresponding to each ρSE . If D = 0, we are

not able to detect the initial correlations between the system
ρS and its environment in ρSE .

Let us emphasize that the difference is between the output
of the experiment ρ ′

S and the possible states ρ̃ ′
S that arise from

ρ̃SE and account for all ρ̃E making up a possible initial product
state for the combined system and environment. Thus, D can
be used to construct a distance d between the state ρ ′

S and the
set of possible final states generated by TrE [U ρ̃SEU †]:

d ≡ min
n2�1

[∑
i j

|Di j |2
]1/2

,

where n2 = x2 + y2 + z2.

A. Maximally entangled ρSE

For the first and motivational example of how initial corre-
lations can be detected, we consider

ρSE = |�〉 〈�| , (6)

where |�〉 = 1√
2
(|01〉 + i |10〉). |�〉 is a maximally entan-

gled state that is locally equivalent to the Bell state |�+〉.
Clearly, ρSE contains correlations (since maximal entangle-
ment produces the strongest correlations) between the system
and environment.

Here ρS = I/2, and we suppose the state ρSE evolves
according to Eq. (5). The final state is ρ ′

S = 1
2 [1 −
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sin (4α)] |0〉 〈0| + 1
2 [1 + sin (4α)] |1〉 〈1|. In matrix form,

ρ ′
S =

(
1
2 [1 − sin (4α)] 0

0 1
2 [1 + sin (4α)]

)
. (7)

Choosing α will determine ρ ′
S; we can easily see that ρ ′

S =
|0〉 〈0| when α = 3π

8 . In order to detect initial correlations
(which we know to be present in a maximally entangled state),
we must see whether an uncorrelated ρ̃SE can create the same
evolution. D comparing the state

ρ̃ ′
S = TrE [U (α)ρ̃SEU

†(α)]

= 1

4

(
2 + z − z cos 4α 2(x − iy) sin2 2α
2(x + iy) sin2 2α 2 − z + z cos 4α

)
(8)

and the original ρ ′
S is

D = 1

4

(
A00 A−
A+ −A00

)
, (9)

where A00 = z[−1 + cos (4α)] + 2 sin 4α) and A± =
−2(x±iy) sin2 (2α). Note that D is sometimes, but not
always, equal to 0, depending on the values of α, x, y, and z.

Recall that x, y, z are parameters that determine the arbi-
trary environment state in Eq. (3). If, for a value of α, x, y, z
can be chosen such that ρ̃SE can model the transformation and
ρ ′
S is obtained, the result will give D = 0. It is thus evident

that for us to be able to detect the initial correlations in ρSE

for a given value of α, there must not be any choice of x, y, z
such that x2 + y2 + z2 � 1 and D = 0. If there is such a set
of x, y, and z that will allow the uncorrelated ρ̃SE to undergo
the same transformation ρS → ρ ′

S , then we cannot state that
there were initial correlations. If we cannot find such x, y, z,
we know that there are initial correlations in ρSE . This means
we can distinguish between ρ ′

S and ρ̃ ′
S (i.e., D will not be 0).

Therefore, the task is to try to find ρ̃ ′
S with a valid ρ̃E such

that D = 0. For example, if α = 3π
8 , then ρ ′

S is a pure state
(as noted previously) while ρ̃ ′

S remains mixed. Recall that
α depends on both the coupling constant and the time over
which the interaction occurs; these two parameters may be
ascertained or varied to obtain a particular α.

For this example, if α = 3π
8 , then D is

D =
( 1

4 (−2 − z) 1
4 (−x + iy)

1
4 (−x − iy) 1

4 (2 + z)

)
. (10)

The only possible combination of x, y, and z for which D = 0
is x = y = 0, z = −2, but this solution does not satisfy the
necessary condition that x2 + y2 + z2 � 1 (ρ̃E must be a valid
density matrix); therefore, we know that the unitary is effec-
tive in detecting initial correlations for α = 3π

8 .
Varying α changes the evolution undertaken by the state,

and we can find which values of α will not enable us to detect
initial correlations. By considering all possible values of α and
the associated solution for x, y, z such that D (which is π

2 pe-
riodic) equals 0, we can determine the efficacy of our method
for those values. Consideration of D in Eq. (9) shows that
the solution will always require x = y = 0 unless sin(2α) = 0
(i.e.,U = iI), and thus, for those α such that sin(2α) �= 0, we
need to consider only z. The relationship between z and α can
be seen graphically in Fig. 1.

FIG. 1. The blue (vertical) function shows the relationship be-
tween α and the solution for z (x = y = 0) at which D = 0 for ρSE

as in Eq. (6). Both of these quantities are dimensionless. The orange
(upper horizontal) and green (lower horizontal) lines represent the re-
striction on z because x2 + y2 + z2 � 1. Note the periodic behavior.

Numerically, we can say that if D = 0, then

z = −2 sin 4α

cos 4α − 1
. (11)

By considering the restriction on z, i.e., −1 � z � 1 (because
x = y = 0 and x2 + y2 + z2 � 1), we can calculate bounds on
α for which D �= 0:

1

2
arctan(−2) + nπ

2
� α � 1

2
arctan(2) + nπ

2
(12)

for any positive or negative integer n, except α = π
2 ± nπ

2 ,
for which D is always 0. Thus, if we hope to describe the
dynamics using an initial product state, α must be between
these values so that we may possibly find a z that would
make D = 0. As expected, α = 3π

8 lies within the range of
acceptable values.

B. Pure state mixed with a maximally entangled state

We now consider a mixture of a pure state with a max-
imally entangled state. This ρSE is of particular interest
because of its connection to an experiment in which there
is an attempt to create a pure state, but there are some in-
teractions between the system and environment that produce
correlations. Here, too, we will show that evolution by the
same unitaryU [Eq. (5)] will result in detectable correlations.
Thus, we take

ρSE = p |01〉 〈01| + (1 − p)

2
(|01〉 + i |10〉)(〈01| − i 〈10|).

(13)
Here ρSE may or may not be correlated depending on the
value of p, where 0 � p � 1. If we choose p = 0, we obtain
the entangled state in Eq. (6). The entanglement of this state
is dependent on p and can be calculated as described in Ap-
pendix A and is graphically depicted in Fig. 2.

One can easily determine that

ρS = p |0〉 〈0| + 1 − p

2
(|0〉 〈0| + |1〉 〈1|) (14)

and

ρ ′
S = 1

2

(
ρ+ 0
0 ρ−

)
, (15)
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FIG. 2. The entanglement of formation contained in the state ρSE

[Eq. (13)] as a function of p (both quantities dimensionless). When
p = 0, the maximum amount of entanglement is present.

where ρ± = 1±p cos (4α) ± (−1 + p) sin (4α). D between
this state and an initially uncorrelated state obtained by the
evolution of ρ̃SE = ρS ⊗ ρ̃E is now

D = 1

2

(−B00 B−
B+ B00

)
, (16)

where B00 = (p+ z)S22 + 2(p− 1)S2C2 and B± =
2(x±iy)(−1 +C4±ipS4). Here Si = sin (iα) and Ci =
cos (iα). It is clear that for this matrix to be 0, x and y
will once again be 0, and the value of z depends on both α (as
before) and p.

For example, if α = 3π
8 , a value that enabled the detection

of initial correlations for ρSE in Eq. (6),

D = 1

4

(
(−2 + p− z) (ix + y)(i + p)

(−ix + y)(−i + p) (2 − p+ z)

)
. (17)

For this value of α, it can easily be seen that D = 0 when
x = y = 0 and z = p− 2 and, because p ranges between 0 and
1, −2 � z � −1. z depends linearly on p. However, z = −1
is the only physically possible value for z in this range, and
thus, D can be made 0 only when p = 1, which represents
a completely uncorrelated ρSE [see Eq. (13)]. Therefore, this
value of α is effective for the detection of initial correlations
present in the initial state for a ρSE of this form.

However, it is ultimately the measurement of the initial
and final system states that indicates the presence of initial
correlations to the experimenter; therefore, ρ ′

S and ρ̃ ′
S must

be distinguishable. This may be more difficult when there
are errors and/or uncertainty in the measurements. Note that
when α = 3π

8 is used in Eq. (15), we find that

ρ ′
S = 1

2

(
2 − p 0
0 p

)
. (18)

This in turn shows that large correlations (p ≈ 0) are easily
distinguishable—as Eq. (18) will be close to a pure state—
while small correlations will be more difficult to detect: the
mixed state obtained when p ≈ 1 is close to the maximally
mixed state that presents the possibility of no correlations, as
shown in the expression for D.

Generally (i.e., for all values of α), the dependence of z on
α and p for which D = 0 can be described by the following [a

FIG. 3. The orange (curved) surface shows the relationship be-
tween p, α, and z (dimensionless) between the bounds z = −1 and
z = 1 (lower and upper horizontal planes, respectively) in the range
of 0 � α � π when x = y = 0. Note the discontinuity at p = 1.

simplification of the diagonal terms of Eq. (16)]:

z = −2(p− 1)T2 − p = 2T2 − p(2T2 + 1), (19)

where T2 = cot (2α). This relationship is represented graph-
ically in Fig. 3. Figure 1 is easily derived from the graph in
Fig. 3 when p = 0.

We once again find the range of values of α for which all
correlations between the system and environment of this state
can be detected, that is to say, no values of x, y, z can be found
such that D = 0 unless p = 1:

arccot
(−1

2

)
2

+ nπ

2
� α �

arccot
( p+1
1−p

)
2

+ nπ

2
, (20)

for any positive or negative integer n except (see the discus-
sion concerningU at α = π

4 , π
2 )

α = π

4
± nπ

4
.

The behavior at p = 1 is best determined by reasoning
opposite to the analysis of parameter z in the discussion sur-
rounding Eq. (16): The uncorrelated state is always modeled
by the product state with z = −1.

Our previously analyzed choice of α = 3π
8 works perfectly

fine at detecting all initial correlations, and since, for this
state, entanglement is presented for 0 � p < 1 (see Fig. 2),
the evolution caused byU also indicates the presence of entan-
glement here. Of course, the bounds imply that there are other
α which indicate initial correlations. However, values that lie
closer to α = π

2 for which D is always 0 [see the restriction on
Eq. (20)] may be less favorable due to the potential for error.

C. Maximally mixed state

We now turn our attention to performing the protocol with
the following initial state:

ρSE = p
1

4
I + 1 − p

2
(|01〉 + i |10〉)(〈01| − i 〈10|). (21)

The amount of entanglement present in this state is once
again dependent on p, as can be seen in Fig. 4, and is 0
for p � 2/3. It would therefore be useful for our protocol
to be able to detect correlations within the range of p where
entanglement is present but also beyond this range, all the way
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FIG. 4. The graph above shows the entanglement of formation
(EOF) vs p (both dimensionless) for the state in Eq. (21). The EOF
goes to zero at p = 2

3 .

to (but excepting) p = 1, as the state is correlated for all values
0 � p < 1.

Conducting an analysis similar to the previous two exam-
ples, the final state is

ρ ′
S = 1

2

(
1 + (−1 + p)S4 0

0 1 − (−1 + p)S4

)
, (22)

where S4 = sin (4α) once again, and

D = 1

2

( −C00 −(x − iy)S22

−(x + iy)S22 C00

)
, (23)

where C00 = S2[2(−1 + p)C2 + zS2], S2 = sin (2α), and
C2 = cos (2α). The off-diagonal of Eq. (23) implies that all
solutions for D = 0 must have x = y = 0. The diagonal terms
indicate the relation between z, p, and α:

z = −2(−1 + p) cot(2α), (24)

which is very similar to the corresponding relation in Sec. II B,
Eq. (13) (the latter includes an additional component). Equa-
tion (24) is graphically represented by Fig. 5.

We are once again tasked with finding a value of α for
which we are unable to find a z satisfying D = 0, indi-
cating the ability to distinguish between uncorrelated and
correlated ρSE .

FIG. 5. The orange curved surface shows the relationship be-
tween parameters z, p, and α (dimensionless) for D corresponding to
the state in Eq. (21) for x = y = 0 in the range 0 � α � π between
the bounds of z = −1 and z = 1 (lower and upper horizontal planes,
respectively). Note the behavior at α = π

2 (U = iI).

The value of α that was successful in distinguishing the
states in Secs. II A and II B, 3π

8 , is no longer successful at
detecting correlations here for all values of p. This is evident
upon considering D when α = 3π

8 :

D =
( 1

4 (−2 + 2p− z) 1
4 (−x + iy)

1
4 (−x − iy) 1

4 (2 − 2p+ z)

)
. (25)

When p � 0.5, i.e., when only weak correlations are present,
a z value can be found which models the transformation with
an uncorrelated initial state (D = 0, and thus, the protocol
fails at detecting the correlations in states where p � 0.5).
Can this restriction on p for which correlations are detected
be relieved?

By considering the p and z relations for various α, we
verify their periodicity and at the same time find that our
ability to detect correlations increases as α approaches, but
does not reach, π

2 . For example, when α = 13π
32 , the limitation

on p becomes p � 2
3 , and for α = 15π

32 , it is approximately
p � 0.90 for the protocol to detect the correlations.

Approaching α = π
2 even more, we have p < 0.95075

when α = 31π
64 and p < 0.9754 for α = 63π

128 . These latter val-
ues would, in theory, allow us to detect even the smallest
system-environment correlations present in ρSE .

Realistically, detecting slight correlations, however, is dif-
ficult because when α = π

2 , no correlations can be detected.
Therefore, the protocol for detecting most to all correlations
for this state is not very fault tolerant; choosing α close to, but
not equal to, π

2 is difficult to achieve in experiment without
error.

It is interesting, however, that for α = 13π
32 ± nπ

2 (for any
positive or negative integer n), the range for which cor-
relations can be detected is nearly p < 2

3 . As mentioned
previously and depicted in Fig. 4, this is also the bound on
p for which entanglement is present. Performing the protocol
with α = 13π

32 could therefore be used as a way to detect
entanglement in the state. This choice of α is also more fault
tolerant; a small error in this value, likely to occur in an exper-
iment, would not make it equal to π

2 , for which D is always 0
and therefore no correlations at all would be detected.

III. ROBUSTNESS OF RESULTS

In order to examine the robustness of the results described
in the previous section, we follow the technique described
in [19]. We let an uncorrelated state τS ⊗ ρE evolve unitarily
according to Eq. (1), and we obtain the final state τ ′

S . τS and
ρE are both arbitrary states, where

τS = 1
2 (I + �n · �σ ) (26)

and

ρE = 1
2 (I + �m · �σ ). (27)

After the state has evolved, we can compare the final and
initial states τS and τ ′

S to their respective counterparts, ρS and
ρ ′
S , by varying values for n1, n2, and n3 (m1,m2,m3). If we

cannot equate both pairs using one set of values for ni and mi,
the example is robust to errors.
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Evolving τS ⊗ ρE with the unitary in Eq. (5) and tracing
out the environment gives us

τ ′
S = 1

4

(
τ ′
S00+ τ ′

S01−
τ ′
S01+ τ ′

S00−

)
, (28)

where

τ ′
S00± = 2±[m3 + n3 + (−m3 + n3) cos (4α)

+ (−m2n1 + m1n2) sin (4α)]

and

τ ′
S01± = m1±im2 + n1±in2

+ [(−m1∓im2 + n1±in2) cos (4α)

+ (im3n1∓m3n2 − im1n3±m2n3) sin (4α)].

Let us consider the first example, i.e., Eq. (6). Comparing
the initial state ρS = I

2 to Eq. (26), we find that to equate the
two, |�n| must be zero. Here we consider that small experi-
mental errors may be present so that the measurement gives
a magnitude of �n that is small, but nonzero. Then, comparing
Eq. (28) to Eq. (7), we find that m2n1 = 1. If |�n| is small, we
can take n1 = ε, where ε is some small value. Then, m2 = 1

ε
,

which is greater than 1. Since wemust have | �m| � 1 for a valid
environment state, this is not an acceptable value form2. Thus,
the evolution cannot be produced by a product initial state, and
the result is robust to small measurement errors which would
give a small, but nonzero, value for the magnitude of �n.

By equating Eqs. (14) and (26) in the second example,
we find that n3 = p, while n1, n2 approach 0 and thus can be
considered to have some small value ε as long as |�n| � 1 holds
true. From our comparison of ρ ′

S and τ ′
S [Eqs. (15) and (28)],

we see that m3 = −p. Finally, to completely equate the two
final states, we must satisfy the following condition:

−m2n1 + m1n2
2

= −1 + p. (29)

Since both n1 and n2 approach 0 and we have already seen that
neither m2 nor m1 is able to have a value of 1

ε
for some small

value ε in the first example, the equation (29) is satisfied only
when p = 1. This value of p is the completely uncorrelated
state, and thus, the only value for which we expect to be able
to equate ρS and τS . This example is also robust.

Finally, for the initial third state, we must equate the partial
trace over the environment of Eq. (21) with Eq. (26). Once
again, we derive that |�n| must be small. As for the final state,
so that Eq. (22) equals Eq. (28), we know that m3 must also
be small. Then we are left to satisfy the same condition as
in Eq. (29). Even though our value for m3 is different, the
same reasoning as in the previous case applies, and we are
not able to find m1,m2 such that | �m| � 1 unless p = 1, the
uncorrelated case, proving that the final example is also robust
to errors in the initial and final states.

IV. CONCLUSION

We have described a method which enables the detec-
tion of correlations between a system and environment using
measurements only on the system. It was shown to be
effective for systems which evolve under a Heisenberg in-
teraction Hamiltonian [Eq. (5)]. When a two-state system

evolves from an initial state ρS into a final state ρ ′
S , cor-

relations present between the system and environment can
be detected. This depends, of course, on the time that they
evolve, which we described by the parameter α. This may
be exemplified experimentally by a dipole-dipole interaction.
By varying α, we can tune our protocol for detecting initial
correlations.

We have shown how our method detects correlations using
three different initial states ρSE [Eqs. (6), (13), and (21)].
These different initial states describe models for a system
interacting with its environment to produce correlations which
we were able to vary using a parameter p. For the ρSE de-
scribed in Eq. (6) and in Eq. (13), choosing α = 3π

8 enables
us to state with certainty when correlations are present, al-
though this is not the only value of α that enables this. For
ρSE as described in Eq. (21), choosing α to be close to, but
not equal to, π

2 enables the detection of large, as well as
small, correlations. Finally, a choice of α = 13π

32 for this state
enables the detection of entanglement. We have also shown
that these results are robust to experimental error for properly
chosen α.

Our work is different from earlier methods described in the
Introduction in which initial correlations in an open system
are detected without assumptions of its evolution but use
multiple initial states. While we assume a particular form
for the interaction undergone by the system, it is compatible
with experimental reality as the experimenter is likely to have
knowledge about the type of interactions the system under-
goes and, using this method, is able to detect correlations by
considering only the state of interest.

Future work is required to describe the distinguishabil-
ity of outcomes ρ ′

S for correlated and uncorrelated initial
ρSE , as experimental measurement error can result in a lack
of accuracy in the determination of the system’s state. We
also have plans to use higher-dimensional environments to
show that the methods here are generally applicable. There
is a justification for believing this since any state of a two-
state system can be taken to any other by using only one
two-state ancilla and a joint unitary transformation. As dis-
cussed previously, this method can be used for other types
of interactions that define the state evolution, although we
appreciate our choice of unitary because of its connection to
experiment [16].
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APPENDIX: MEASURING ENTANGLEMENT

There are various so-called entanglement measures that
can be used to quantify the amount of entanglement present
in state ρ. One of these is the entanglement of formation E ,
which is closely related to the concurrenceC of a pure state 	

as follows:

E (	) = E (C(	)), (A1)
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where E is defined by

E (C) = h

(
1 + √

1 −C2

2

)
, (A2)

h(a) = −a log2 a − (1 − a) log2(1 − a). (A3)

The more general case involves a mixed state ρ, where
E = E (ρ), C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, and {λi} are

the square roots of the eigenvalues of ρ̄, which is, in turn,
defined by

ρ̄ = ρρ̃, (A4)

ρ̃ = (σy ⊗ σy)ρ ∗ (σy ⊗ σy), (A5)

where the asterisk (*) indicates taking the complex conjugate
in the standard basis [20].
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