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Abstract. Inopen quantum systems, it is known that if the system and environment
are in a product state, the evolution of the system is given by a linear completely
positive (CP) Hermitian map. CP maps are a subset of general linear Hermitian
maps, which also include non completely positive (NCP) maps. NCP maps can arise
in evolutions such as non-Markovian evolution, where the CP divisibility of the map
(writing the overall evolution as a composition of CP maps) usually fails. Positive
but NCP maps are also useful as entanglement witnesses. In this paper, we focus
on transforming an initial NCP map to a CP map through composition with the
asymmetric depolarizing map. We use separate asymmetric depolarizing maps acting
on the individual subsystems.

Previous work have looked at structural physical approximation (SPA), which
is a CP approximation of a NCP map using a mixture of the NCP map with a
completely depolarizing map. We prove that the composition can always be made
CP without completely depolarizing in any direction. It is possible to depolarize
less in some directions. We give the general proof by using the Choi matrix and an
isomorphism from a maximally entangled two qudit state to a set of qubits. We also
give measures that describe the amount of disturbance the depolarization introduces
to the original map. Given our measures, we show that asymmetric depolarization
has many advantages over SPA in preserving the structure of the original NCP
map. Finally, we give some examples. For some measures and examples, completely
depolarizing (while not necessary) in some directions can give a better approximation
than keeping the depolarizing parameters bounded by the required depolarization if
symmetric depolarization is used.

1. Introduction

Linear Hermitian maps play an important role in many areas of quantum information
science. The evolution of an open quantum system is often clearly non-unitary and
given by a linear Hermitian map [1]. For quantum technologies, knowledge of the error
map allows one to construct efficient quantum error correction codes provided that some
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conditions are met [2]. Linear Hermitian maps can be categorized as completely positive
(CP) or non CP (NCP) (defined below) and the latter can be used as entanglement
witnesses [3,4]. This paper focuses on transforming NCP maps to CP maps via
composition with local asymmetric depolarizing maps. This transformation is important
for research in areas such as entanglement, quantum error correction, and non Markovian
evolution.

When the system and bath are initially uncorrelated, the system is known to evolve
under a completely positive map. This is a map, say ®, that is not only positive
(maps positive operators to positive operators) but is also positive when extended by
an arbitrary identity map Z, i.e., ® — Z ® ® to act on a larger system. However, it can
be quite difficult to prepare the system such that it starts completely uncorrelated from
its environment. For such cases, it is not known generally how to describe the system
evolution with a CP linear Hermitian map [5-9]. Note, that it is possible in specific
cases for the evolution of a system with initial correlations to the environment to be
CP [10-12]. It is also claimed in [13] that for any initial non maximally entangled system
and environment pure state, there are infinitely many nonlocal unitaries that induce CP
evolution on the system. Finally, there is the process tensor formalism [14,15], which
always results in CP linear Hermitian maps, but the process tensor acts on input maps
and not on density matrices. In this paper, we are focused on mappings from density
matrices to density matrices.

There is also disagreement on the physicality of NCP evolution maps [16, 17].
However, in the case of non-Markovian evolution the initial CP map tends to be non CP
divisible (i.e., the map cannot be decomposed into CP maps for all arbitrary intermediate
time steps) [14]. This implies that an intermediate evolution map can be NCP [18]. For
this paper, we focus on transforming a given NCP map to a CP map and leave discussions
of physicality of NCP maps for future work. Still, we require the domain of the NCP
map to be restricted so that the output of the map is positive.

Positive but NCP maps do not preserve the positivity of some entangled states,
but they do for all separable states. Consequently, they can be used as entanglement
witnesses [19]. The most common witness is the negativity of the partial transpose which
is a necessary and sufficient condition for detecting entanglement for 2x 2 or 2 x3 systems
[3,20]. To implement the partial transpose experimentally, Horodecki and Eckert
introduced structural physical approximation (SPA), which is a CP approximation of a
NCP map [21].

In the SPA, the completely depolarizing map is mixed with the NCP map. This
allows us to make the overall map CP. Note that this is equivalent to composing with
a symmetric depolarization map. Symmetric depolarization destroys information by
reducing the magnitude of the Bloch vector, or polarization vector, by reducing it equally
in all directions. This preserves the direction of the vector produced by the original NCP
map. However, if we only focus on getting an approximation to the map that is CP, in
many situations it is often unnecessary and worse to use symmetric depolarization. For
example, if the NCP map only changes the state in one direction, we likely only need
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to depolarize in that direction to get a CP approximation.

In quantum error correction, the goal is to correct for the effects of the error map.
The known necessary and sufficient conditions for quantum error correction require that
the error map is CP [22,23]. In the case of NCP errors, the necessary and sufficient
conditions to correct a CP map can lead to codes that are not in the domain of the
error map, which means that the process, as described, is not physical [24]. Thus, the
results of the present paper may help to enable the correction of NCP error maps by
transforming them via the asymmetric depolarizing map (ADM) into CP maps.

Furthermore, the process of creating a CP composition via the ADM may reduce
the amount of errors effecting the system. For example (see Subsection Appendix D.2), if
the NCP error map causes a re-polarization error, i.e., it extends the Bloch vector of the
input state, the asymmetric depolarizer that creates a CP composition can eliminate the
re-polarization error. In these situations, using the ADM is better than the symmetric
depolarizer because the ADM offers more freedom for minimizing the errors occurring
on the input state.

In this paper, we investigate composing the asymmetric depolarizing map with a
NCP map to get a CP composition. We give a novel proof for the complete positivity
of the composition by using an isomorphism between a bipartite maximally entangled
qudit and its qubit representation. From this isomorphism, the positivity of the Choi
matrix is proven. In Section 3.2, we determine the amount of disturbance the ADM
introduces and compare it with symmetric depolarization. Using the fidelity and our
M, measure (see Eq. (51)), we provide examples that show the advantages of using
asymmetric depolarizer over the symmetric one.

The M, provides a measure of the overall depolarization used to modify a map. In
some scenarios, it is beneficial to use the asymmetric depolarizer to depolarize more in
some directions than is required when using the symmetric depolarizer. This may sound
counter-intuitive, but one may obtain a better fidelity or M; measure in these instances
than would have been attained by restricting depolarization in all directions to be less
than or equal to the amount required by symmetric depolarization. We give an example
of this case in Appendix D.1.

2. Background

In the case of an uncorrelated system and bath, the evolution of the system is given by
a completely positive (CP) map that can be described by [25]

Eps) = Y FunsEl. (1

We drop subscripts when it is clear from context which subspace we are considering. &
is CP iff £ is a positive map, (it is positive for all positive inputs) and the map & ® Z,
is also positive for all positive integers n [25]. Complete positivity can also be described
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by the Choi matrix. Let £ : C**" — C™*™. Then the map is CP iff its Choi matrix

Og—zs Wil ® |ix] (2)

1j=0

is positive [25]. (See also Sudarshan, Matthews and Rau [1], hereafter referred to as
(SMR).)
If the map is not completely positive map (NCP)

s) =Y mEipsE], (3)

where 7; € {£1} and it is necessary that there 3n; = —1 [5-9,25]. (This may potentially
happen if the system and environment are initially correlated before they evolve.)

The first representation of maps we gave in Eq. (1) and Eq. (3) is called the operator
sum representation (OSR). In SMR, the evolution of the system is given by the A-matrix
A acting on the vectorized form of pg. This vectorization is given by

vec(p,) = vec (Z Cij |ai><5j|> = Z cij |aif3y), (4)

where |a;) and |§;) are basis vectors. Then, the action of A is given by matrix
multiplication

vec(p') = Avec(p), (5)

where we dropped the text vec for simplification of notation. In index notation, this is
given by [1]

p;’sl = Z Ar’s’msprs' (6)

We refer to this as the SMR representation which was introduced in Ref. [1]. To preserve
hermiticity and trace, A also satisfies

As’r’,sr - (A’r’s’,rs)*’ (7)

and
Z Ar’r’,sr = 557"7 (8)

respectively.
There is also a B-matrix B, which is related to A and given by

Br’r,s’s = Ar/s’,rs- (9)
The constraints on the A-matrix imply conditions on B for hermiticity

Br’r,s’s = (Bs’s,r/r)*v (10)
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and trace preservation
§ Br’r,s’r = 57”5’- (11>
”

The B-matrix is often used due to the fact that B is Hermitian, and therefore has an
eigenvector/eigenvalue decomposition

rrs 'sPrs = 27 rrprs )*a (12)

where the C® are the eigenvectors and 7 the eigenvalues of B. One may write the map
as

®(p) =Bp =Y naAapAl, (13)

where A, = /|7(«)|C® so that n, = £1. Thus B is positive iff the map is CP. In
other words, the map is completely positive if and only if all n, = 1. This shows us
the relation between the OSR and SMR representation. It is known that the map is
completely positive if and only if all n, = 1.

2.1. Structural Physical Approximation

The problem of converting a NCP map to a CP map has been studied under structural
physical approximation (SPA), which was first introduced by Horodecki and Ekert, and
expanded upon by several authors [21,26-35]. SPAs are often used to approximate the
partial transpose map and detect entanglement [36-50]. Writing a trace preserving linear
Hermitian map as the affine combination of two completely positive trace preserving
(CPTP) maps, Jiang et. al. [51] introduced the physical implementable measure,
which can be seen as a measure of how well a NCP map can be approximated with
a CP map. The measure is zero if and only if the map is CPTP. Similarly, Regula
et. al. [52] defined measures quantifying the cost of simulating NCP maps with a
mixture of maps. They investigated the relation with the diamond norm and showed
that these measures equal the diamond norm when the map being approximated is
linear and trace preserving. Finally, De Santis and Giovannetti [53] defined a measure
of non-Markovianity based on optimally approximating a non-Markovian map with a
Markovian map. The approximation is performed by mixing the non-Markovian map
with a minimum necessary amount of a Markovian map.
In SPA, the NCP superoperator ® is approximated by

®(p) = pLeomp(p) + (1 = p)@(p), (14)

where Leomp is the completely depolarizing channel, i.e., Leomp(p) = tr(p)l/d, where d
is the dimension of p, and 0 < p < 1. Notice that SPA is equal to the composition

¢ = ‘Cl—p ®) (I), (15)
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where the £;_, is the symmetric depolarization channel which scales the polarization
vector n [54-57] by the factor 1 — p. The symmetric depolarization channel for a single
qubit can be written in OSR as

3p p
L1 ,(p) = (1 - Z) p+ Z(azpax + oypoy + 0.pos). (16)

We study the composition
=L o, (17)

where £ performs asymmetric depolarization on each local state. The asymmetric
depolarization channel for a single qubit can be written in OSR as

(I+a+B+y)p+(1+a—B~7)0.p0, (18)

o

L(p) =
+(1 — Q-+ 6 - ’Y)pro-y + (1 — Q= 6 + V)Uzpo-z] ’ (19>

where «, (3, and v are the amounts of depolarization in the z, y, and z directions,
respectively. The asymmetric depolarizer does not generally preserve the direction of
the Bloch vector of the input state. From the SPA, we immediately see that P’ can
be made CP with appropriate (symmetric) depolarization. However, in the SPA it is
necessary that the systems are depolarized symmetrically and equally. Thus, it is not
immediately clear that depolarizing the individual local systems differently leads to a
CP composition.

Using an isomorphism between a 2" dimensional qudit and n qubits, we prove that
symmetric depolarization is not necessary. We also show that when using asymmetric
depolarization, completely depolarizing is not necessary in any direction for any of the
local systems for Eq. (17) to be CP. However, we also show that there exist NCP maps
that are robust against depolarization and completely depolarizing is almost necessary.
Also keep in mind that extending the A-matrix to higher dimensions is not as straight-
forward as it may seem. For instance, if we wanted wanted to implement a single qubit
channel on the first part of an entangled two-qubit state, the corresponding A-matrix
acting on the quantum state will in general not have the form A ® I(p). In Appendix
A.1, we give the explicit transformation that makes this extension possible and easy to
use. Then we provide a simple example in Appendix B to caution readers so they do
not make the mistake of using the wrong form of the A-matrix for the extension.

3. NCP to CP

Our goal of transforming a NCP map to a CP map is equivalent to going from an initial
B-matrix with at least one negative eigenvalue to a final B-matrix with non-negative
eigenvalues. Equivalently, this is going from Eq. (3) to Eq. (1) in OSR.

Page 6 of 30
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3.1. Composition: Asymmetric Depolarization

We use composition with the asymmetric depolarization map, which is also known
as generalized depolarization. Obviously, if we completely depolarize the composition
would be a CP map because we always end up with the maximally mixed state.
Asymmetric depolarization has been studied in other contexts in the past [58-61], but
here we use it to transform a NCP map to a CP map without completely depolarizing.
Note that the ADM is doubly stochastic, i.e., it preserves the identity matrix and it
is trace preserving. Before proving the general case, we show an isomorphism from
maximally entangled qudits to the basis of tensored Pauli matrices that we will use. We
also show this isomorphism for qutrits. This Theorem 1 will be used to rewrite the Choi
matrix in Pauli matrix form.

Theorem 1. For the unnormalized maximally entangled two qudit state with qudit
dimension d = 2", we have the relation

d—1 3
~ . \/x V|
BENE] = Dl = Y Wi (Gia)

i,j=0 i1,i250eyin=0
13
S &
=0

where 1 represents the identity or x,y or z for the Pauli matriz, the subscript on the 1
represents the subspace, i = i1, 12, ..., in, (Giyiy..in)%% = (04, ® 04y @ ... ® 07, )%2, and
Wiy iy...in = { + 1 for an even number of oas in 04y 4y 4,
— 1 for an odd number of o2 in 0y iy, in}- (21)

We refer to the right hand side of Eq. (20) as the Pauli Form. Note that oo =1, 01 = 0y,
oy = 0y, and 03 = 0.

For an unnormalized maximally entangled two qudit state with qudit dimension
d = 3", we have the relation

25 )(%i] = f [ii)j] = iwi<)‘i)®27 (22)

i,j=0
where {\;} are re-scaled 3 x 3 Gell-Mann matrices including identity (the identity is
scaled by a factor of 1/+/3 and the others are scaled by a factor of 1/v/2); 7 = iy, g, ..., in;
and
Wiy iy...in = { + 1 for an even number of complex \’s in A;
— 1 for an odd number of complex \’s in A\;}. (23)

Proof. The proof relies on figuring out the spectral decomposition of the Pauli Form.
The ricochet property gives us the useful relation

> MIi) =Y TeM"|i). (24)
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Acting on the right of the Pauli Form with ’§>3> , we get

1 3 d—1
on Y WirigeinOiniiz i ® Oingia,in) D 1)
=0

11,62,..yin=0

3 d—1
1 ..
T Y Wiiainl ® O i) D i)
111200y =0 =0
| 3 d—1
= > doaen |
111200y =0 i=0
. d—1
= () Y i)
i=0
d—1
= 2" i) (25)
i=0
Note that the + signs in the definition of w comes from the relation 05 = —0y.

Therefore, ‘5j> is an eigenvector of the Pauli form. Also, keep in mind that

O

&)+> = d = 2". Thus, we can write our Pauli form in its spectral decomposition as

3

1 ~ ~
5D Wi O = [FENE[ AL (20)

11,82, yin=0

where ); are real eigenvalues and {|)\;), ’<T>$>} are orthogonal eigenvectors. Next, we

show that the Pauli Form is a pure state and thus the \; are all zero. Taking the square
of both sides of Eq. (26) and then taking the trace, we have

3 2 2
tr [é Z Wiy ig,... in (O'i1,i2 ..... in)®2] =tr [‘E’;><€);’ + Z )\z |>‘z></\z|]

i17i27---7in:0

(27)
Since the Pauli matrices are traceless, Eq. (27) simplifies to
1 < N
= tr [E Y eI =w|y <1>;;><c1>;] IR |)\i>(>\i|]
o L gy >N
4n —
= 4" = 4" + Z A
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Therefore, we must have

1 -\ J
E Z wi17i2 7777 in (O-ilyi2a~--,in)®2 - ®$><®2_‘ ‘ (29>

11,82,eenyin=
The qutrit case follows the same arguments. We refer to the right hand side of Eq.
(22) as the Gell-Mann form. Once again acting on the right hand side of Eq. (22) with
}@:D = Z;.l;é |77) and using the “ricochet” property we get

d—1 -1

8
D7) 1id) ZM@AQ 147)
0

Jj= J

= 3" Z 157) (30)

IS

I
o

N‘Mw

S\
o\

where the second line comes from the fact that Zl o A? = 3I. Therefore, Z?;é |77) is
an eigenvector of the Gell-Mann form. Thus,

iwi(&)@ = “ﬁX‘fﬂ + 2 ol (31)

where ~; are real eigenvalues and {|;) , ‘CT);>} are orthogonal eigenvectors. Finally, we

prove that the Gell-Mann form is a pure state. Squaring both sides of Eq. (31) we get
2

3 2
|| w00 ] | = (\<I>;><<I>;\ +3 |%-><%-|)
i=0 i
8
— tr Z w%()\; & )\;)2 —+ Z w;()\;)@ * w;()\j)@
=0

i#]
=tr [32”

CHE 2. |%;><%-|] : (32)

where on the second line we explicitly separated the cross terms on the left hand side.
Continuing Eq. (32)

— tr 3% Tgon + Z w; (A7) %2 % wr( N+

AN/
i
2
& W@+ Do m-m-\]
=3 =3ty 2

i

=Y =0, (33)

)**

=tr [ |3%
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where we used the fact that the trace of the cross terms on the left hand side is zero and
>, (itlii) = 3%". Thus, the Gell-Mann form is a pure state and the result follows. [

Theorem 1 has an interesting consequence that is shown in Appendix C. We give
the explicit relation between k-pairs of maximally entangled qubits and a maximally
entangled qudit. We can now use the help of Theorem 1 to prove our main theorem.

Theorem 2. Any n qubit trace-preserving NCP map Ancp can be made CP by
composing it with a map that performs asymmetric depolarization on each qubit with
appropriate nonzero values of «, B, and ;, where i represents the i™" qubit being
depolarized. NCP trace preserving qutrit maps can also be made CP through composition
with a map that performs local asymmetric depolarization on each qutrit. Completely
depolarizing in any direction is unnecessary.

Proof. We again make use of the Choi matrix. For a n qubit system, we perform the
ADM on each qubit individually. This action is equivalent to performing

=181, (34)

where i represents the i*" qubit. We can maximally depolarize by letting a; = 3; =
~; = 0. This depolarizing map is completely positive when the following inequalities are
satisfied:

lvi £ i <1=£ B (35)
The action of £; on the Pauli matrices are
Li(oy) = oy, Li(oy) = Bioy, and Li(o,) =0, (36)

The identity matrix is left invariant. 4 is a mapping from n qubits to m qubits (m may
or may not equal n). Thus, A : C*"*?" — C¥*"*2". Let d = 2". The Choi matrix for
the composition is

d—1 3

, N N /
> Lo A(liYi]) @ lii| = pi > Wirisinl 0 AlCirisin) ® Oi i
i=0 i1,02,..0in=0
L3
= =D wil o Aloy) ® 0
-0
. 3
=5 L oA QT+ Z wil! o A(o;) @ o3| (37)

where 0 = 00...0, ¢ = iy, i, ..., i, we used Theorem 1 on the right hand side of the first
line, and we explicitly separated the identity term on the last line. Like before, since A

Page 10 of 30
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is trace preserving, and Hermitian matrices can be expanded in the basis of tensor of
Pauli matrices including identity,

A =k [T+ (a507)o (38)

J#0
and
3
Aloy) =D (ajop; | . Vi#D, (39)
J#0
where k = 2"/2™ is a positive nonzero constant to preserve the trace (A is trace
preserv and the a;’s are arbitrary constants. Substituting Eq. (36), Eq. (38),

ing
and Eq. (39) into Eq. (37), we have

2m—1

1
> 2o () & 1 = | o AW) BT+ unk o Alo) @01
i#0

k| : 1 3
== £ |1+ ) _(a505)5| @I+ | wil | Y (a507)| © oy

L J#0 i#0 J#0
k
= ]I+Z ~(a507)q] ®]I+kz wfz ~(a505);] ® o3

770 i#0 j#0

k:

where the m;’s are the products of the appropriate «;, 5; and ~; constants from the
local ADMs and J is everything in between the square braces that is not I ® I. The
Choi matrix Eq. (40) becomes positive as J goes to zero. We can arbitrarily shrink .J
asymmetrically by decreasing o, 8;, and ~; independently. Thus, from continuity, with
nonzero values of «;, ;, and ~;, L o A is CP. The result for qutrit trace-preserving NCP

maps follows from the same arguments and using the Gell-Mann form in Theorem 1. [J

A corollary follows directly from Theorem 2 for single qubit maps. First we will
give the explicit construction of the asymmetric depolarizing map for single qubits:
L= @R 4o [ W NWT| 4 B[UTNW| 4+ | @77 (41)
14+~ 0 0 1—7
1 0 a+p a—p 0
== f —1,1]. 42
1—7 0 0 14+~

Corollary 1. Let the single qubit asymmetric depolarization map be given by Eq. (41)
which has the OSR in Eq. (18). Then let A be a single qubit trace preserving NCP map.
The composition L o A is CP for appropriate nonzero values of «, B, and .
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Proof. This depolarizing map is completely positive when the following Fujiwara-Algoet
[62] conditions are satisfied:

[y al <18, (43)

We can maximally depolarize by letting « = = 7 = 0. We use the Choi matrix
representation. The action of £ on the Pauli matrices are

L(o,) = aoy, L(c,) = oy, and L(o,) =0,. (44)

The ADM leaves the identity matrix invariant. Next, note that the unnormalized

maximally entangled 2 qubit state ’EIV>+><ZI;+‘ is given by

el 1

BN — 1@+ 0,80, — 0, @0, + 02 @ 0). (45)
We can now get to the main proof. The Choi matrix for £ o A is given by

S Lo AN @ ] ~LlL0 AW ST+ Lo Al B0

1,7=0

—LoAoy) @0y, + Lo Alo,) ® .. (46)

We then use the fact that A is trace preserving, the Pauli matrices are Hermitian, and a

Hermitian matrix can be expanded in the basis of all possible tensors of Pauli matrices.
We have

AD =T+ (akor)o (47)
and
= Z(ak0k>j7 Vj S {:c,y,z}, (48>

where the a;’s are arbitrary constants. Substituting Eq. (44), Eq. (47), and Eq. (48)
into Eq. (46) we have

3 3
1
ZﬁOA Xil) @ [i)] 5(5 H+Z(ak0k QI+ L Zawk ® 0,
1,7=0 k=1 k=1
3 3
Zakak ®oy+ L Zakak ®02>
k= k=

]I®]I+ka akak)()@]l—i—ka ApOL)z @ Oy

3 3
= mplaor)y @ oy + > mpaor). @ o
k=1 k=1
1
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where my, corresponds to a, 3, or v and J is everything inside the square braces except
the I ® I term. The Choi matrix, Eq. (49), becomes positive as J goes to zero.
We can arbitrarily shrink J asymmetrically by decreasing the values of a, 3, and
independently. Thus, from continuity, with nonzero values of «, 8, and v, £ o A is CP
for some choice of «, 3, and ~. O

It has been shown that the volume of NCP maps is twice the volume as CP maps
for Pauli channels when subjected to a full positivity domain [59]. There may be valid
A-matrices that have an associated B-matrix that is Hermitian and trace 2, such that
there is an intersection between the initial domain and the image space, but the physical
process may be impossible to achieve. In Appendix B.1, we show that such an example
may exist. There is always an intersection between the image space and the initial
domain of the Bloch sphere, but the A-matrix has the extreme property of mapping
the resultant state’s eigenvalues of invalid initial density operators toward +oo. This
suggests that no physical process can accomplish such a task even though it satisfies all
the properties of being a valid NCP mapping.

3.2. Asymmetric Depolarization Map Measures

From this point on, we let £ =11, £; ® Z or the single qubit ADM. When we perform
ADM, we generally change the state’s Bloch vector. Therefore, it is important to
measure how much the state is changed. There are multiple measures we can use.
First, we give our ADM measure M;

My i= 5ol + 18]+ ), (50)

which is basically just an averaging over the absolute values of the depolarizing
parameters. The range of M; is 0 < M; < 1. At the two extremes, we have total
loss of the Bloch vector and the magnitude of the Bloch vector unchanged for the values
of 0 and 1, respectively. For n qubits, this measure generalizes in the obvious way to

1 3n
M, = — ; 1
1 3In (i_l |CZ|> ) (5 )

where the ¢;’s are the depolarization parameters. The M; measure for the symmetric
depolarizing channel is simply given by a single depolarizing parameter that we can call
7 that is between 0 and 1.

For single qubits, we also have the closed form for measures using fidelity and the
diamond norm. We can calculate the fidelity between the initial state and the final state
for the asymmetric depolarizer when it is composed with some error map A. Define the
matrix

(52)

-

I
S o 9
o™ o
2 O O
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We can define two fidelity measures. The first fidelity is

F(p, Lo Ap) = %{H—F-DFHL N D2F’)}, (53)

where 7 is the Bloch vector of the initial state p and 7’ is the Bloch vector of the state
Ap. This fidelity is good for error correction since we could minimize the effect of the
composition while ensuring complete positivity of the composition. For the symmetric
depolarizer, D = 71. If we are interested in approximating the A-matrix while ensuring
a CP composition with the asymmetric depolarizer, then we want to use the calculation

F(Ap, £ o Ap) = %{1 7 DF A =7 )1 =7 D2f/)}. (54)

When comparing the gate fidelity of two Pauli channels, the general equation is
given by the diamond norm [63] and has the analytical form of

1€:(0) = Ex(p)llo = 3 11" — #i?)] (55)

where each channel has the form

Ei(p) = Z/@Ej)@p&i such that Z/@Q) =1forj=1,2. (56)

In the case where & (p) is the asymmetric depolarizing channel and & (p) is the
symmetric depolarizing channel, we have that the diamond norm ||€;(p) — &(p)||o is
equal to

1
Z{|a+5+7—37|+|a—6—7+7|+|04—6+7—T|+|04—|—B—7—T|}. (57)

The parameters «a, 3, and v describe the asymmetric depolarizer and the parameter
T describes the symmetric one. The distance between the asymmetric depolarizer and
symmetric depolarizer gives us a measure of the advantage of the asymmetric depolarizer
because the performance of the asymmetric depolarizer is generally lower bounded by
the symmetric depolarizer.

3.8. ADM Composition vs SPA: Information Loss

We would like to show that the composition with the asymmetric depolarizer is generally
better than the SPA at retaining information. As was shown in the introduction, the
SPA is equivalent to composition with a symmetric depolarizer. The natural way to
compare the two compositions would be to use mutual information and show that
I(L o A(p); A(p)) > I(Lsymm © A(p); A(p)), where L is the asymmetric depolarizer,
Leymm 1s the symmetric depolarizer, A is the input NCP A-matrix, and I(A; B) is the
mutual information for the systems A and B. However, since this calculates the mutual
information for product states, i.e., A and B are not correlated, these values are zero.
Instead, we bound the linear entropy Sr.(p) = 1 — tr(p?) [64].

Page 14 of 30
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Lemma 1. Let A be a trace preserving NCP map; T be the depolarization parameter for
L symm; ¢i’s be the depolarization parameters for L; and Lo A and Lm0 A be CP with
the minimum depolarization required (minimum depolarization is given by mazimizing
M, with ¢; > 7 Vi). Then, the linear entropy is bounded by

St(Lsymm o A(p)) = Sc(L o Alp)) Vp. (58)

Remark. If the depolarization parameters are not constrained by c; > 7 Vi, the result
does not hold as shown by the counter examples in Subsection Appendixz D.1. Also, note
that the linear entropy is a good measure for qubits but can be a misleading measure for
higher dimensional states due to the possible distribution of the eigenvalues.

Proof. The minimum depolarization for the ADM composition £o.A can be bounded by
going back to the positivity of the Choi matrix of the compositions. Notice that the Choi
matrix for the SPA is equivalent to the Choi matrix for the ADM composition when all
the depolarizing parameters are equal (this must be true because when the depolarizing
parameters are all equal we are symmetrically depolarizing). Then, the composition is
CP for some optimal symmetric depolarization value c¢. At this value, the purity of the
output of the two compositions are the same and the symmetric depolarization used for
the SPA is optimal. Since ¢; > 7 Vi, the purity of the output of the ADM composition
must be greater than or equal to the purity of the output of the SPA and the bound
follows. O]

3.4. Composition with ADM as a Structural Physical Approximation

Can the composition £ o A be considered a structural physical approximation of the
NCP A-matrix? Structural physical approximations should preserve the structure of the
original A-matrix by preserving the direction of the Bloch vector of the output of the
original NCP A-matrix [26]. The ADM does not in general preserve the direction of the
Bloch vector. When the ADM depolarizes symmetrically, the composition is completely
equivalent to the SPA if local depolarizers are also used for the SPA.

4. Examples

We give some examples of NCP maps and their corresponding ADMs that convert them
to CP maps. The first two examples are detailed and for the last two examples we just
give the corresponding ADM. Note that we let £ = L(a, 8,7) and T = T (o, Yo, 20)
(the translation matrix defined in Eq. (B.6)).

4.1. Example 1

This example illustrates the advantage of asymmetric over symmetric depolarization
with regards to making CP maps. In general, a single qubit trace-preserving map has
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the form [1]
a b b d
h
A=| ¢ 1 . (59)
l—a —b —=b* 1—-d
For this example, let us use the NCP translation matrix

0
0
4
0 3

(60)

o O =

T(0.0.1/2) = |
—1

S O Ot
S O B~ O

so that the Bloch sphere gets shifted up from its initial position along the z-axis by
1/2 as seen in Fig. (1). Intuitively, the asymmetric depolarizer that will work best (as
given by our measures in Section 3.2), for making this a valid CP map by composition,
is given by shrinking the z component of the Bloch vector by 2/3. Then, the o and /3
components are \/% Note that we get a CP composition when we depolarize the z
component by 2/3 and a, 8 € [0,+/2/3]. We obviously would choose a = 8 = /2/3
because we would like to depolarize by the least amount possible.

The symmetric depolarizer that will work best, for making this a valid CP map by
composition, is given by shrinking the z component of the Bloch vector by 2/3 which
also shrinks the z and y components by the same proportion. From our M; measure
we can see that the ADM composition performs better than the SPA. M; = 2/3 for the
symmetric depolarizer compared to M; = (2 4 2v/6)/9 ~ 0.767 > 0.667 for the ADM.
In terms of the Bloch sphere, the ADM shrinks the image space of the transpose into
an ellipsoid, while the symmetric depolarizer retains the image shape of a sphere. The
volume of the image space for the ADM composition is always greater than the volume
of the SPA image space. However, the symmetric depolarizer maintains the shape of
the image space of the original NCP map, but the ADM does not.

The eigenvalues of the resultant dynamical B-matrix for

L(\/2/3,4/2/3,2/3) 0 T(0,0,1/2) (61)
are {5/3,1/3,0,0} and for
L(\/2/3,1/2/3,2/3) (62)

are {(1/6)(5 4+ 2v/6),1/6,1/6,(1/6)(5 — 2/6)}. For the SPA, the eigenvalues of the
resultant dynamical B-matrix

£(2/3,2/3,2/3) 0 T(0,0,1/2) (63)
are {(1/6)(5 + v/17),1/3,(1/6)(5 — v/17),0} and for
£(2/3,2/3,2/3) (64)
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Figure 1. The first picture illustrates the action of the NCP translation map on an
arbitrary qubit on the Bloch sphere. The lighter image represents the original Bloch
sphere and the darker sphere is the image of the translation map along the z-axis.
The second image demonstrates how the ellipsoid positivity domain of the final state
becomes completely inscribed inside the original Bloch sphere after the asymmetric
depolarizing map is composed with the translation map. Therefore, we have a final
CP map.

are {(3/2,1/6,1/6,1/6)}.

Notice how both the composition map and also the £ map must have non-negative
eigenvalues to have a valid implementable protocol. In general, the minimum degree
of depolarization can be obtained in a numerical optimization program that maximizes
the M; measure in Eq. (50) while leaving both sets of eigenvalues non-negative. A
calculation of the fidelity in Eq. (53) between initial pure states and final states for the
ADM composition and the SPA are given by

Fapm(p, LoT(p)) = 1—12 (8 + 6 + 2 cos(0) + (2 — V6) cos(2¢9)> , (65)
and
Faralp,£0 7)) = 5 (5+ cos(t)) (66)

which are only dependent on the polar angle #. The difference of the ADM composition
and SPA fidelity measures is given by (1/6)(v/6 — 2)sin(6)? which is always greater than
or equal to zero. Thus, the ADM is better at state preservation than the symmetric
depolarizer as illustrated in Figure (2). The gate fidelity in Eq. (57) between the two
depolarizers is (1/3)(v/6 — 2) ~ .15. Interesting enough, this value is double the maxi-
mum difference of the fidelity of the best ADM composition and SPA set-ups.
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Fidelity

- 0.5 1.0 15 2.0 25 3.0

Figure 2. The solid line gives the fidelity, with respect to the parameter 6, between
the output of the ADM composition with the initial state, when the initial states are
pure. The dashed line represents the fidelity for the SPA with the initial state. The
lowest achievable fidelity in each case is 2/3 which occurs at 6 = 7, but for any other
value of 6 corresponding to non-unit fidelity, we see that the ADM composition has a
higher fidelity than the SPA.

5. Conclusion

In this paper, we studied transforming a NCP map to a CP map through composition
with the asymmetric depolarizing map (ADM). The ADM acts as a super-superoperator
that maps the input NCP map to a CP map. This problem is similar to structural
physical approximation. However, in SPA, symmetric depolarization is required. We
found that a trace preserving NCP map on qubits can always be made CP by acting
on the individual qubits with local ADMs. The proof uses an isomorphism between a
maximally entangled 2 qudit state and n qubits. Furthermore, we prove that these local
ADMs never have to completely depolarize in any direction and are not required to be
symmetric.

Note that a global ADM can preserve the structure of the input NCP map better
than local ADMs on the individual qubits. This is due to the fact that the depolarization
factors from the multiple local depolarizers multiply on the correlation matrix. Thus, the
correlation matrix shrinks more rapidly than the local Bloch, or polarization, vectors.
However, experimentally implementing a global ADM is very difficult for a large number
of qubits. Next, we defined measures of the ADM, which tells us how much the input
state into the ADM is disturbed. Under these measures, the ADM composition has
advantages over SPA in preserving the structure of the original map.

Next, we gave examples. One interesting example (in Eq. (B.5)), shows that there
exist valid A-matrices that are robust against asymmetric depolarization and completely
depolarizing becomes almost necessary. We also showed with another example (in Eq.
(D.1)) that, under the measure we called M; and also the fidelity, sometimes completely
depolarizing in one direction (while not necessary) results in a better approximation.
For qutrit maps, the task of transforming a NCP map to a CP map via local ADMs is
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unproven. Also, we did not consider the positivity domain since our method did not rely
on it. In general, an induced NCP map will have a valid domain in which the subsystem
can be contained in [65-67]. We leave these topics for future work.

Finally, note that in some cases, the composition of the initial NCP map with
an asymmetric depolarizing map may or may not be CP divisible depending on the
strength of the depolarizer. This can be seen from the extremes. With no depolarizing,
the composition is equal to the initial NCP map, which is trivially not CP divisible.
For NCP maps that commute with the ADM, when we depolarize completely, the
composition is equivalent to the completely depolarizing map, which is CP divisible.
From continuity, there must be some depolarization values that cause the transition
from not CP divisible to CP divisible. This transition may be useful as a measure
of non-Markovianity. This is similar to the measure of non-Markovianity defined by
De Santis and Giovannetti [53], but their measure is based on a mixture of an initial
non-Markovian map with a Markovian map. We leave this for future work.
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Appendix A.

Appendiz A.1. Extending the A-matriz to Higher Dimensions

One might think that a valid A-matrix A is trivially extensible to higher dimensions in
the SMR representation by A ® Z. However, this is not true as we show by a simple
counter example below. If we want the tensor product of two A-matrices A; ®.A; to have
the correct action when operating on a two-qubit density operator, we need to focus our
attention to the operator-sum representation. By definition, when an A-matrix acts on
the vectorized form of a single qubit density operator, the resultant state is the same
thing we would have gotten by sending the qubit through a channel expressed in OSR;
that is,

(Apy)a = Z EipE; = E(p), (A1)

where the subscripts d and v represent density and vector forms of an operator,
respectively. An arbitrary two-qubit state has the form

3
1 . - R .
pAB:Z{H®]I+F-a®H+H®s-a+§ tijai®aj}, (A.2)

i,j=1

which when acted upon by A; ® A, becomes

P = (A8 A D08 D0t (73, 0 (D, + (0,0 6-9)+ Y 1 s (09,

(A.3)

= —{(]I)U R (Dy + A1 (7 0)p @ (I)y + (I)y ® A(5- F)y + Z tij A1(0:)0 ® Ag(&j)v}.

ij=1

The reason we vectorized all of the 2 x 2 sub-matrices in this state is that it
simulates Eq. (A.1) exactly on the subsystems. Thus, it is the same as if we derived
the operator-sum decomposition for A; and A, and then acted upon the state psp with
E1(.) ® &(.). A really nice structure occurs when calculating the resultant vectorized
state for a two-qubit system. It turns out that if our state initially has the representation

pM:(§§>, (A1)

then the correct vectorized form of it is given by
A,
B
AB v
- ) A5
Py o (A.5)
D,

<
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Therefore, we can use the normal extension A; ® A, if we vectorize our two-qubit state
locally.

Generally, we can simply perform a rotation on some general A-matrix W so that
its rows act on p, the same way A; ® Ay does. This equates to the exchange of the rows
345,44 6,11 <> 13,and 12 <> 14, which is essentially a permutation matrix of the
following form:

(A.6)

S O OO DO OO OO oo oo oo
S O OO O O OO oo o0 oo oo
O O O O OO O O o oo+ oOoO o oo
S O O OO O OO oo+, O oo oo
S O O O O O OO oo o oo+ o o
[ eleleleoBoBeoBEeEeololRelell el el
O O DD DD DO OO OO0 oo oo
O O DD DD DD DO OO +H OO oo o oo
O DD DD DD OO R OO OO oo oo
S O OO OO OO o oo oo oo
S O O H O O O OO o oo oo oo
S O R O O O O O O o o o oo oo
O O OO O OO OO oo oo o oo
SO O OO H O OO o oo oo ooo
S P O O O OO OO oo oo oooo
_— O O O O O OO oo oo oo oo

Therefore, if we want to use the same vectorization, specifically the one given in
Eq. (A.5), for p, when acted on by W, we simply apply the rotation R such that
W — RWRT. By doing this, we can always use the vectorization in Eq. (A.5) to obtain
the correct result. For any amount of qubits d, there exists a permutation matrix that
will always lead to the same vectorization method for any A4; ® A, ® --- ® A,. Hence,
the two-qubit A-matrix of A; ® A, is given by RA; ® Ay R. Note that for this particular
permutation matrix R = R and R? =1.

The following example extends a single qubit A-matrix with identity to act on a
two-qubit state.

Appendix B. Some Cautionary Examples

Let our initial two qubit state be the maximally mixed state

1

pap = Jlap. (B.1)
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Let us perform the maximal depolarization on system A and leave the system B alone.
We might naturally assume that the global A-matrix can be calculated directly as

1
A = Ecomp ® I == 5 ® ]I (BQ)

_ O O =
o O O O
o O O O
_ o O =

Then straight-forward calculation gives

Avec(pap) = ivec (®%).

1
This result is obviously wrong. The correct output state is —I. To find the

correct A-matrix for the extension to higher dimensions, we can use the OSR. Let
Eclp) =, EZ',OEZT correspond to the OSR of Lcomp. Then, the extended map is given
by

Ec@T(p) =) (Bi@Dp(El o). (B.3)

2

Using Eq. (13) we can return to the SMR representation and get the B-matrix and the
A-matrix. The correct B and A-matrices are

B=1/4 Z vec(o; ® I)vec(o; @ I)T

)

=
/2 0 00 0 0O 00O0O0OT1/2 0 00 O 0
0 1/2 0 0 0 0O 0000 O 1/2 00 O 0
0 0O 00 O 0O 00O0O0 O 0 00 O 0
0 0O 00 O 0O 00O0O0 O 0 00 O 0
0 o 0012 0 00O0O0 O 0 00 1/2 0
0 0O 00 O 1/2 0000 O 0 00 0 1/2
0 0O 00 O 0O 00O0O0 O 0 00 O 0
A— 0 0 00 O 0O 00O0O0 O 0 00 O 0 (B.4)
0 0O 00 O 0O 00 O0O0 O 0 00 O 0
0 0O 00 O 0O 00 O0O0 O 0 00 O 0
/2 0 00 0 0O 00O0O0T1/2 0 00 O 0
0 1/2 00 O O 000O0O O 1/2 00 O 0
0 0O 00 O 0O 00O0O0 O 0 00 O 0
0 0O 00 O 0O 00O0O0 O 0 00 O 0
0 o 0012 0 00O0O0 O 0 00 1/2 0
0 0O 00 O 1/2 0000 O 0 00 0 1/2
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Appendix B.1. Some Valid A-matrices May Not Exist Physically

Keep in mind that there exist NCP maps that are robust to asymmetric and symmetric
depolarizers. This means that the parameters «a, 5, and v must be extremely close to
zero in order to obtain a CP composition with the NCP A-matrix. For instance, if we
define a NCP map to be

K kK K
K 0 K 0

_ B.5

A K k0 0 ’ (B.5)

11—k —k —Kk 1—k

where k > 1/2(3 — v/5), we see that the parameters of the asymmetric depolarizer
must be less than or equal to 1/k to get a CP composition £ o A. To see this,
we completely depolarize in two directions and determine the constraint on the third
direction. The eigenvalues of the composition with £(1/x,0,0) and £(0,0,1/x) contain
one negative value and the composition with £(0,5,0) requires 5 = 1/k for a CP
composition, which gives the eigenvalues of {1,1,0,0} for the composition. Therefore,
maps where xk becomes increasingly large certainly do not capture any advantages over
the symmetric depolarizer. We can look at the individual directions separately because
we are depolarizing asymmetrically.

Since there exists initial states outside the domain whose eigenvalues of their
resultant states blow up to oo as k — oo, we need to check the validity of this
map. Just like the asymmetric depolarizer, we can define a translation of the original
state’s Bloch vector with the A-matrix

2+ 20 0 0 20
1 — iy 2 —
7L w0 0 o Wo (B.6)
21 zo+1iyo 0 2 x4 1y
% 00 2—2z
to perform the action
{z,y,2} — {z+ 20,y + 0,2 + 20} (B.7)

on the initial Bloch vector [68]. This transformation will obviously be NCP for any non-
zero translation vector {xo, 3o, 20} since the image Bloch sphere is not fully contained
in the initial Bloch Sphere. This translation matrix only has a valid physical domain
when the translation vector has a magnitude less than or equal to 2, even though it is a
valid A-matrix for values outside of this interval. This begs the question of whether or
not (B.5) represents a valid mapping of our qubit. The answer to this question is yes,
it is valid. Figure B1 illustrates the action of this map when x = 1.
When k — 0o, we see that the state

p=2(I-0,) — Alp) =

5 (I-o0.) (B.8)

N | —
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always leads to a valid state. The domain for the output state increases as k decreases. In
the limit as K — 00, the only valid output is the |1)-state given by the transformation in
(B.8). So this valid A-matrix can have an operator-sum decomposition with eigenvalues,
in the limit, that blow up to oo while illustrating true robustness to the asymmetric
depolarizing map. It is very interesting how there exists a mapping that is so resistant
to heavy noise in all directions, yet the magnitude of the Bloch vector for the |—)-state is
left invariant at the end of that mapping. Future research can look into the physicality
of this map such as the global evolution on some correlated state that would induce
such a transformation on one of the subsystems.

Figure B1. On top left, the length of the initial Bloch vector is r = 1/6 and it
increases in length by intervals of 1/6 from left to right. So the bottom right Bloch
sphere has a radius of 1. We fix k = 1. We see that as the length of the initial Bloch
vector increases, there is more intersection between the Bloch sphere and its image.
Thus, we only need to consider when r = 1 to determine that the transformation is
always possible with increasing «.

Appendix C. Interesting Relation

We can find a unitary relation between k pairs of maximally entangled qubits (ebits)

~ \ ®Fk -
’(I>Z+> and a maximally entangled bipartite qudit state ‘@:{>. Specifically,
A\ ®k |~
U ‘q);> - ’cb;;>, (C.1)
where U is a SWAP operator and d = 2¥. We only need to consider k& > 2. Notice
that ‘§$> = Y%7 i) is isomorphic to the identity S>% ) [iXi]. When there is an even
number of ebits, Eq. (C.1) implies

Ueven E |i1,2'1,i2,i27‘" 2, T2 Yk 2415 Thj2 s Toj22, Thj242s - 7ik;ik’ =1 (C2)
ie{0,1}
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and when there is an odd number of ebits,

Usda Z ‘ibibiz,im“' Vi0s2) 41 XElky2) 110 G k20420 G lkj2) 42, s ik =1, (C.3)
1€{0,1}

where the subscript k represents the k" ebit pair and the two situations require a

different form of SWAP. Keep in mind that U is done before applying the isomorphism
®k

to the state ’ZIV>+> so we can swap any of the systems. The idea is to make the string
in the ket and the bra equal. Let n = 2k be the number of qubits and the qubits in the
outer product be labeled as

172’.‘.72
2

><2+1,-~,n—1,n. (C4)
For an even number of ebits,
Ueven = SWAP (1, /9) - 1ISWAP (5,2~ n—3 - - - SWAP 1(,2)+31SWAP 1, /2)11). (C.5)
For an odd number of ebits, we first perform
Ur = SWAP(n/2) 41][(n/2)+2,(n/2) 43, ] (C.6)
This leads to
’il,il,iz,lé, e A y2) s k2 Tk 2 41 K Lk2) 420 Dk2 2, 7ik,ikaiLk/2J+1‘ : (C.7)
Note that the qubit labels reset after U;. Then perform
Uy = SWAP|(,/9)-1,n—2SWAP[(n/2)—3] n—a - - - SWAP [(r,2)43)SWAPg [(n2)11]-  (C.8)
Thus, for an odd number of ebits

Uodd - U2U1. (Cg)

Appendix D. Additional Examples

Appendiz D.1. Example 3

If we allow the asymmetric depolarizer to depolarize more in some directions than the
symmetric depolarizer, we can get even higher values for the M; measure in some cases.
Take for example the following valid NCP map given by

~1/v2 0 0 1-1/V2
—1/vV2 -1 0 —1/V2
—1/vV2 0 -1 —1/v2 |’
1+1//2 0 0 1/V2

A=
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which has an associated B-matrix with eigenvalues 2, —v/2,v/2, and 0. The optimal
symmetric depolarizer that makes the composition CP is given by the parameter

k=1/(142V?2). (D.2)

It turns out that for any «, 3,7 > k for the asymmetric depolarizer, and not all equal to
k, we cannot make the composition CP. An optimization shows that we can completely
depolarize in the x and z direction, while leaving the y direction unchanged; that is,

a=0=~and f=1. (D.3)

The M; measure is optimal and higher for the asymmetric depolarizer, even though we
depolarized more than the symmetric depolarizer in two of the directions. To maintain
complete positivity of the composition map while the magnitude of the depolarizing
is less than or equal to the symmetric depolarizer in each direction, we must include
negative values for one or two of the asymmetric depolarizing parameters. Depending
on what measure you choose to use, M; measure or fidelity, you may want to depolarize
more in some directions and less in others over the symmetric depolarizer.

In this next example, our M; measure can only be optimized when we depolarize
more than the symmetric depolarizer in two of the directions. Define the NCP map
with the evolutionary operator

1-1/v/2 0
-1/vV/2 1
—1/v2 0
1/v2 0

which has an associated B-matrix with the eigenvalues {1 4 v/2,+1}. This map will
translate the original Bloch sphere in the negative z and z directions by —v/2 so that

0 —1/v2
0 —1/v2
1
0

A= (D.4)

~1/v2
1+1/v2

the original and image spheres touch at one point, i.e., there is only a single state in the
domain defined by the state

p=(1/2)[[+ (1/V2)(3, +5.)] (D.5)
on the domain and 6,07 6, on the image. If we symmetrically depolarize with parameter
Kk=1/3, (D.6)

then the SPA becomes completely positive. The M; measure is equal to 1/3 in this case,
but we can obtain a value of (1/3) % 1.309 when we use an asymmetric depolarizer with
parameters

a=v=49/200 < k and = 819/1000 > x. (D.7)

It turns out that we can only achieve an M; measure of up to 1/3 when |a, | 8], |7 >
1/3. You can see this by slightly bumping the absolute value of each parameter
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consecutively by a small value above 1/3 and noticing that the composition map becomes
NCP. Therefore, it is necessary to depolarize more than the symmetric depolarizer in
two of the directions in order to achieve an advantage for the ADM. We also achieve a
higher fidelity of Eq. (53) in this case (151/400 = 0.3775) than we do in the symmetric
one (1/3).

Appendiz D.2. Example 4

Let
(0 0 0 1 000 0
00 =z O 01 = O
_ _ D.
-ANCP 0z 00 ) BNCP 0z 1 0 ) ( 8)
_1 0 0 O 0O 0 00
where x > 1. Then, the composition £(1/z,—1/z,—1) o Axcp is CP, where
0 0 o0 1 0 0 0 0
0 0 1/z 0 0 1 1/z 0
L(1 -1 —-1) = B, = D.9
(e, =Lz = =15 1,0 o ol =00 1z 10 (D-9)
_1 0 0 0 0 0 0 0

Notice how the initial and final states are left invariant after this transformation due to
the fact that £ o A =1® I. This will always be true if A is invertible and its inversion
has a positive dynamical B-matrix. This leads to the open question of which full-rank
invertible A-matrices have non-negative dynamical B-matrices for the inverse? In the
case of asymmetric depolarization, the initial parameters «, 8,y must be greater than 1
or less than —1. The translation NCP map will always have a negative inversion. There
exists other A maps that cannot be expressed in terms of translations and asymmetric
depolarization. Generally, it is unknown for these maps which will have CP inversions.

Appendiz D.3. Example 5

Let
1/2 0 0 3/2 12 0 0 2
0 z 0 0 0 3/2 0 0
- Brop = D.10
Ancr 0 0z 0 |’ ner 0o 0 1/2 0 |’ (D-10)
1/2 0 0 —1/2 x 0 0 —1/2
where z € (—2,2). Then, the composition £(1/x?,1/z% 0) o Axcp is CP, where
/2 0 0 1/2 /2 0 0 1/a2
0 1/22 0 0 0 1/2 0 0
L(1/2*1/2%0) = B, =
(Wb /00 = o 7y e o | £ 0 0 1/2 0
/2 0 0 1/2 1/z2 0 0 1/2
(D.11)
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