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Abstract

Quantum state manipulation of two-qubits on the local systems by special unitaries
induces special orthogonal rotations on the Bloch spheres. An exact formula is given
for determining the local unitaries for some given rotation on the Bloch sphere. The
solution allows for easy manipulation of two-qubit quantum states with a single defini-
tion that is programmable. With this explicit formula, modifications to the correlation
matrix are made simple. Using our solution, it is possible to diagonalize the correla-
tion matrix without solving for the parameters in SU(2) that define the local unitary
that induces the special orthogonal rotation in SO(3). Since diagonalization of the
correlation matrix is equivalent to diagonalization of the interaction Hamiltonian,
manipulating the correlation matrix is important in time-optimal control of a two-
qubit state. The relationship between orthogonality conditions on SU(2) and SO(3) is
given and manipulating the correlation matrix when only one qubit can be accessed is
discussed.
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1 Introduction

A qubit is the fundamental component of quantum information and its properties allow
us to perform tasks that classical machines are incapable of executing. One strength
of a qubit is tied to the quantum gates that can effectively create superpositions and
thus create entangled states. Entangling qubits gives quantum devices the capability of
teleportation [1], super-dense coding [2], unstructured search [3], prime factorization
[4], and the ability to perform many other quantum algorithms and protocols that are
not possible classically. The ability to use nonlocal correlations in quantum protocols
allow advantages over their classical counter parts [5-7]. Given the various applica-
tions of quantum information processing, it is crucial that we understand the quantum
correlations and the ways we can manipulate them.

It is conventional to apply local unitaries to a two-qubit system without regard
to how the final correlations between the systems will appear. This paper aims to
take a different viewpoint and show how the correlations can be manipulated to have a
particular form using local unitary transformations applied to the sub-systems. If there
is knowledge about how two single-qubit systems are correlated [8, 9], then ideally
one could change those correlations to make them symmelric or eliminate some of the
elements of the correlation matrix.

It turns out that the correlations between two single-qubit systems is all that is
needed in some information tasks such as Bell inequality violations [10] or witnessing
entanglement using projective measurements [11]. By a correct choice of measure-
ments, in two distant labs that share an entangled two-qubit state, nonlocality can be
demonstrated. This is equivalent to rotating the local Bloch vectors first, hence rotating
the correlation matrix, and then making a simple Pauli-Z measurement. By having the
ability to rotate the local states, one can always measure along any axis they choose.
This is demonstrated by realizing that local orthogonal rotations on the correlation
matrix 7, do not change the eigenvalues of the matrix 7, - T‘{,T given in [10]. Since
the optimal violation of the Bell CHSH inequality only depends on the square of the
sum of the two largest eigenvalues of this symmetric matrix, it does not change with
local unitaries.

In addition to the state of a quantum system, the Hamiltonian of two two-state
systems has the same mathematical form as the density operator, excluding the con-
straints of positivity and trace one. When systems interact with each other they can
become entangled and some entangling gates are better at creating entanglement than
others [12]. Furthermore, some gates are time-optimal when considering their ability
to produce correlations when the single particle operations are much faster than the
interaction Hamiltonian [13]. For example, this happens in spin systems. In addition,
such considerations are important in protocols where local unitary transformations are
available and non-local ones are nol. Thus, the non-local part of the operator can be
the most important part whether it is a correlation matrix of a density operator or an
interaction Hamiltonian.

In this paper, we provide explicit formulas for diagonalizing the correlation matrix
of the density operator, or equivalently, diagonalizing the interaction Hamiltonian.
This is done by explicit formulas for the SU(2), (the set of 2 x 2 unitary matrices with
determinant one) given the SO(3) rotation matrices (3 x 3 orthogonal matrices with
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determinant one) in the adjoint representation of SU(2). The special unitaries SU(2)
and the special orthogonal matrices SO(3) have a determinant of 1. In Sect. 2, we
review some material regarding the transformation of SU(2) to SO(3) and also show
the relation between unit quaternions and 2 x 2 complex matrices in SU(2). It will
become evident in Sect. 3 why the scalar and real parts of a quaternion are important
when considering the transformation from SO(3) to SU(2). The final explicit formula
is given with additional details provided in Appendix 2. We provide the necessary
elements that derive the two matrices in SU(2) from a general operator in SO(3).
Afterward, we break the solution into a real and vector part and ensure that the sign is
correct for each element of the derived SU(2). The mapping from SO(3) to SU(2), is
given in Eq. (32) and restated in Eq. (33). This is the major result of the paper.

In Sect. 4, we illustrate the power of having an explicit transformation from SO(3)
to SU(2) by using our formula to diagonalize the correlation matrix in our example.
The conditions for orthogonality between two elements in SU(2) or two elements in
SO(3) are given in Sect. 5 and then we move on to Sect. 6 to discuss the constraint
of only having access to one qubit of a two-qubit state as given in Eq. (1). In Sect.
7, we provide a link to a Mathematica program that includes our explicit formula for
anyone who would like to download and use for their own purposes. Lastly, in Sect.
8 we summarize our results.

2 Background

A general two-qubit state pA2 can be defined in terms of a3 x 3 correlation matrix with
elements {7,}ij = t;j = r(6; ® 6, - pA8) and two local Bloch vectors d, b that define
the states p?, p® of systems A, B. These vectors are defined as a; = tr(6; ® I - pAB)
and b; = w(I®4; - p#) and the overall state is expressed as

) 3
1 I . -
PP =2 |T8l+a-6@I+1®b-6+ ) 16 ®5; M)

i,j=l

for the vector of Pauli matrices ¢ = (1, 67, 63). A local unitary on sub-system A will
induce a three-dimensional rotation to @ and the left side of the correlation matrix 7,
will get hit by the same transformation. On the other hand, a local unitary acting on
sub-system B will induce a three-dimensional rotation to the b, but the transpose of
that transformation will act on the right side of the correlation matrix 7,.

If two systems, A and B interact, then the Hamiltonian that governs their evolution
is given by the equation

HY? =" 1 + HAQI* +1"@ H® + ) R ® S} )
i

for the operators { H A, Rf‘} that solely act on system A and the operators {H B Sf}
that solely act on system B. The term 2‘-‘ i R;”‘ ® S}B is the interaction Hamiltonian
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that couples the two subsystems. By exponentiation of HA% we see that the identity
part of Eq. (2) only introduces a global phase. In reference [13], it was shown that
diagonalizing the interaction Hamiltonian leads to conditions for the time-optimal
control of a state of two-qubits. This is equivalent to diagonalizing the correlation
matrix in Eq. (1).

For the reverse direction, going from SU(2) to SO(3), it is well known that we can
use the transformation (see for example [14])

0;j = %tr[&,- Us;U™, (3)

where O € SO(3) and U € SU(2). Then O(U) = O(—U), so there are two elements
of SU(2) that map to one element of SO(3). This "double cover" is a two-to-one
mapping from one space to another. In this case, the double cover is a two-lo-one
mapping [rom the special unitaries SU(2) to the orthogonal group SO(3). For the right
unitary, we would simply have O}; since it induces the transpose of O on the right
side of 7,. Specifically, the transformations take the form a—L-a, b— R- 5, and
7, — L-T, - RT from the local unitaries U, ® Ug € SU(2) x SU(2) applied to
p‘“” [15]. Thus, after diagonalizing the correlation matrix 7, with our unitaries Uy,
and Up, we can easily find the special orthogonal rotations Oy, and Og from Eq. (3)
to see how the local Bloch vectors rotate as well.

There is a nice representation of complex matrices in SU(2) in terms of quaternions
[16] which can be spanned by the matrices {I,i 61,i 62,i 63} = {1,1, j, k} which
have the properties i? :j2 =k? = ijk = —1and

ijj=k=—ji jk=i=-Kkj ki=j=—ik. )

Note that the combination

. . ajt+iay Br+ip
= k= . . 5
q=a1t+aitpijt+h (—.81+z,82a1—:a2) (&)
gives an arbitrary element of SU(2) for when the quaternion has norm 1; that is
Vilg=1=>a}+dd + 7+ =1. (6)

We say that the scalar or real part of a quaternion is given by «; and that the vector
or imaginary part is given by a»i + B1j + B2K. In the case that &y = 0, the solution
is quite straight-forward. However, in the case that oy # 0, several cases must be
considered separately. These are specified in the next section.

3 Explicit construction of SU(2) from SO(3)

In this section, we show how a local special unitary acting on a two-qubit state can be
constructed from an orthogonal operator acting on the Bloch sphere. We introduce a
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specific parameterization of general operators in SU(2) and SO(3) and then derive the
steps to go from the latter to the former. This includes defining the correlation matrices
for the Bell operators and the Lie algebra of so(3) since these matrices will help us
derive the elements of SU(2) from a general SO(3). To ensure this explicit form is
correct for a vector quaternion representation of SU(2), we must introduce a second
part to our general solution. The major result of the paper, namely the mapping from
SO(3)toSU(2),is givenin Eq. (32) and restated in Eq. (33). The details of the derivation
that ensures the correct sign of the SU(2) elements is provided in Appendix 2.

Let us assume that the initial local unitary acting on a general two-qubit state is
given by an arbitrary SU(2)

_ art+iay Br+i B
U_:E(—ﬁl-i—iﬁzdl—faz) M

so that the corresponding matrix in SO(3) is given by the Euler-Rodrigues formula
[17]

T 2(p12 +vi2) 2(—x11 + x22)
O =\ 2(—p12+v12) 1) 2(x21 + x12) (8
20x11 + x22) 20621 — x12) T3

for xij = @iBj, wij = aietj, vij = Bipj, and
n=ai-g-fith n=a g+ - u=atg-pi-F O
according to Eq. (3). This operator describes an arbitrary rotation of a three-

dimensional vector given by w’ = O - w. Now we define the maximally entangled
Bell states to be

1 1

ot) = 00) + |11 b)) = 00) — |11
[®7) ﬁﬂ Y1) [PT) ﬁﬂ Y —111))
1 1
Uy = — (|01} + |10 YTy = — (j01) — |10
[w™) ﬁﬂ )+ 10) v \/:EU ) —110))
and we use the basis

0-10 001 00 0
Li=|100],L= 000 }),andL3=1]100—1 (10)

000 —-100 01 0

for the Lie algebra of so(3) [18]. Define the following sign function:

—1 ifft <1
sgn(t) =10 ift=0 (11)
1 ift > 1
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Then notice that

sgn[tr(O - L1)] = sgnlerjaz] = sgnlerp] - sgnfas] (12)

sgn[tr(O - Ly)] = sgnlaB1] = sgnle;] - sgn[pi] (13)

sgn[tr(O - L3)] = sgnle; B2] = sgnler; | - sgn[Ba] (14)

sgn[tr(O - [L1)] = sgn[B1B2] = sgnlpi1] - sgn[B2] (15)

sgn[tr(O - |La|)] = sgnlea o] = sgn[as] - sgn|p] (16)

sgn[tr(O - |L3|)] = sgn[az 1] = sgnlaz] - sgn[B1] (17)

and

1+ tr(0) = 4a? (18)

which implies that if @y = 0, then tr(O) = —1. This means that the corresponding g
must be a vector quaternion if tr((0) = —1. We then make the following calculations

1 / 1 i

E'\/ | —H(O'Tw = (1'2. 5\.-'1 —tr(O‘Tq;I ES a%

1 / 1 /

E\;‘ 1 —tr(O-T¢+ = ﬁz, Eﬂ"] —lr(O-T(D- = ,822' (19)

where 7, is the correlation matrix of the state p (see Eqgs. (44) and (45) in Appendix 1
for the matrices). Now we can put all of these results together to get the exact closed-
form solution for a pair of local special unitaries {U, —U} that will induced a special
orthogonal matrix @ € SO(3) if tr(O) # —1.

By performing the above operations, we get the matrix sgn[a]- (£U) = +U since
sgn[x] - Vk? =k for any « and sgn[a] = 1. The reason our solution does not work
for vector quaternions is that if sgn[c ] = 0, then we get the zero matrix. Thus, if an
element @ € SO(3) is associated with a quaternion that contains a real part, then the
exact solutions are given by

a1(0) +i aa(0) B1(O) +i p2(0)

+UR(O) = +sgn(ay) (—,81(0) +i B2(O) a1 (O) —i ar(O)

) e SUQ2) (20)

for
1
a1 (O)] = 5\/1 — (0 - Ty-) (21)
1
sgn(ay) - a2(0) = Esgn[lr(O LDV —=u(O-Tyg4) (22)
1
sgn(ay) - f1(O0) = Esgn[tr(O L)1 —tr(O - Tgt) (23)
1
sgn() - A2(0) = Ssgnlir(© - Ly)lyT— (0 T-). 24)
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Content courtesy of Springer Nature, terms of use apply. Rights reserved.

6of 16 11/28/2022, 6:49 PM



Firefox

7 of 16

Identifying quantum correlations... Page 70f15 343

Now what would the solution be if the quaternion had no real part; that is, how

would the formula change if tr(Q) = —1? A general solution would then be given by
U(0) =+ (Ur(O) + (1 —sgnll +-t(O)]) - Uy (0)) (25)
for the vector part Uy when tr(O) = —1. This will give an exact closed-form solution

for determining the pair of local unitaries in SU(2) that will induce the orthogonal
matrix @ € SO(3) when it acts on one of the local systems of a two-qubit state pAB.
To determine Uy for when certain parameters can be equal to zero, we define the
matrix function

(26)

WO, x.y.2) :( i (0, x) b1(O,y) +i bg(O.Z))

—b1(O,y) +i b2(0,2) —i a2(O, x)

for the values

ar (0, x) = %sgn[lr(@ -0 /1= te(O-Ty+) 27

|
b1 (O, y) = Esgn[tr(@ WY1 — (O - Tgv) (28)
by(0,7) = %Sg“[tr(o “D)Y1 =0 - Ty-) 29)

and let [A| be the absolute value matrix with elements [A;;].
The solution for Uy is proven in Appendix 2 and is given by

Uy(0) = W(O, |L1|, |L2l, IL3) + (1 = yD)yays - WO, IL L, —[Ly])
+ (1 —=w»)ys- WO, —|La|, ILT)
+ rire(1 —y3) - W(O, I, —|L3],T)
+ ninys - WO, -1, -1, -D) (30)

for
vi = 1= sgalt(O - |Li ). 31)
Therefore, the general solution is given by
U(O) = £ (Ur(O) + (1 —sgn[1 + tr(O)]) - Uv(0)) (32)
where Ug (Q) is our solution given in Eq. (20), which in most realistic scenarios is
just equal to Ug(O) since there is a very high probability that tr(Q) # —1 for a two-
qubit state prepared in a lab. Some small perturbation error would almost certainly
cause the real part of the quaternion, associated with the local unitary, to be nonzero.
The gamma functions simply pull out each special case to avoid incorrect solutions

from repetitions. This solution is simple to program and can save much time when
calculating a local unitary in SU(2) that induces some wanted orthogonal rotation in
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SO(3) that rotates the Bloch vector and correlation matrix of a two-qubit quantum
state.
In summary, the general solution is given by

) = [ﬂ:UR(O) if tr(O) £ —1 33

LUy (0) if tr(0) = —1

which can be written compactly as Eq. (32). We see that if ; = O then tr(Q) = —1.
This means that U (O) would be zero according to Eq. (20) and that the coefficient
(1 —sgn[1+ tr(O)]) = 1. Therefore, the solution in Eq. (32) either takes on the form
of Up(Q) or Uy (Q). The matrix Ug(Q) is always the correct solution whenever the
real part of the quaternion is nonzero and the matrix Uy (O) is always the solution
whenever the real part of the quaternion is zero. Our general explicit formula ensures
both cases are mutually exclusive.

We provide a program in Mathematica that we use to define the general solution
and go over a simple example for how to diagonalize the correlation matrix. Access
to the repository is provided in Section 7. We will give some examples in the next
section on how we can use this formula.

4 Diagonalizing the correlation matrix

If we want to diagonalize any correlation matrix of p, we first use the singular value
decomposition (SVD) of 7. To rewrite it with §O(3) on the outsides of the decom-
position, we modily the SVD and put the decomposition in the form LX R, where
L,R € SO(3) and X is a diagonal maltrix with not necessarily positive entries.
We must then apply the local rotations Uy, ® Ug to our state so that the correla-
tion matrix becomes LT LY RRT = ¥. Keep in mind that the local unitary on the
second sub-system induces a right special orthogonal 3 x 3 to the correlation matrix
that is transposed. This solution is not only good for any general two-qubit state p,
but it is also readily adapted to almost any programming language.
Suppose we want to locally rotate the initial entangled state

P = C i1 (34)

so that its correlation matrix

001 100 0 -
LYXR=)1100})-10-10}-]1 0 (35)
010 001 0 0
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is diagonal. Using Eq. (32) for both L7 and R, we get the special unitaries

L 1+i 1+i L 1—i 1+i
U”_E(—Hil—s)’UR_E(—|+£1+5) (36)

that induce the transformation LT (L R)RT — ¥ and we are left with the maximally
entangled Bell state ®* since the local Bloch vectors were initially equal to 0.

What if we wanted to rotate the local Bloch vector of system A about the x—, y—,
or z-axis at some angle 67 The rotations in SO (3) have the form

1 0 0 cos(®) 0 sin(f)
X =1 0cos(f) —sin(@) |,V = 0 1 0 ,
0 sin(8) cos(#) —sin(#) 0 cos(0)
cos(f) —sin(#) 0
and Z = | sin(@) cos(@) 0 (37)
0 0 1

which have an associated SU (2) representation of

_— cos(0/2) —i sin(0/2) — cos(0/2) —sin(6/2)
A=EN isin@/2) cos@/2) )Y T T\ sin@©/2) cos@/2) )

02
and z4 = i( 0 eiwz) (38)

given by the (+) solution of Eq. (32). If # € [0, ), then the solution is the set of
matrices with plus signs. If # € [, 27), then the solution is the set of matrices with
the minus signs. Either rotation will transform the local Bloch vector appropriately
since SU(2) double covers SO(3), as seen in Eq. (3) when switching U with —U.
Since all rotations are explained in terms of these rotations, it is easy to verify Eq. (32).

5 Orthogonality

Let Uy, Uz € SU(2) and O1, O, € Adj(SU(2)) = SO(3), the adjoint representation
of SU(2). Then if tr(U, U,I ) = 0, we say these are orthogonal matrices. One may ask,
what is the condition for the corresponding O and (2 matrices? One way to find the
condition is to rely on representation-theoretic argument as in [19]. The argument is
as follows. The tensor product of two U € SU(2) is a reducible representation and
can be reduced to a three-dimensional and one-dimensional representation. Then, the
following shows the condition:

(U1 ® Un)(U; ® Uj) = (U1UJ) ® (U1U]) (39)
— (01 1)O) a1 (40)

= (0,0 & 1), (41)
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where the second line follows from the decomposition of the tensor product. Taking
the trace of the first and last expressions, and given that Tr(U, U;r) = 0, we get
Tr(010) = —1.

Another way to show this is quite straight-forward given the results above. Exam-
ining Eq. (18):

1+ tr(0) = 4a? (42)

we see that @y = 0 implies tr(O) = —1. As can be seen from Eq. (7), the trace of
the unitary in SU(2) is 2. Therefore, since lr(Uf'Ug) = 0 for Uy, Uy orthogonal,
and Uf'Ug is in the set of unitary 2x2 matrices, this implies that if U/; maps to O
and Uz maps to Oy, then orthogonal U}, U, implies that lr(O{Og) = —1. This is the
equivalent orthogonality condition for the $O(3) matrices. This is useful for affine
maps of the polarization vector, as seen, for example, in ( [19, 20]).

6 What if we had access to only one qubit

With only having access to one qubit of a two-qubit system, we can apply either a
left or a right special orthogonal rotation @ € SO(3) on the correlation matrix 7,
which prevents us from always being able to diagonalize it. On the other hand, the QR
decomposition (see Chapter 2 of [21] for a general discussion) allows us to write

T, = OR, 43)

where Q is orthonormal and R is upper triangular. The QR decomposition for the cor-
relation matrix Eq. (43) allows us to perform the Gram-Schmidt process. We can apply
one orthogonal rotation to put it into upper or lower triangular form. The orthogonal
rotation that needs to be applied on the left side will have the form QT and the orthog-
onal rotation that needs to be applied on the right side will have the form Q. Thus, for
a given correlation matrix 7, we can determine Q and use the results of Eq. (32) to
determine the local unitary rotation to rotate the correlation matrix to upper or lower
triangular.

We can also design the correlation matrix to be symmetric from only having
access to one of the qubits. For instance, if the correlation matrix 7, has the form
LYR € SO(3) ® D ® SO(3) for a diagonal matrix X, then we would simply want
to induce RT LT using local unitaries on either one of the systems so that we obtain
RTSRor LXLT, respectively. Symmetric correlation matrices have the property that
measurements of expectation values of local observables w ® o (local to the first
(second) system) are identical to the expectation values of o ® w. Thus, an outside
observer cannot distinguish which of these two scenarios was performed.

An intermediate resource that falls between entanglement and Bell nonlocality
is called quantum steering [22—-26]. Similar to a local hidden variable model for Bell
inequalities, there may exist a local hidden state model that can describe Bob’s marginal
distribution after Alice has performed measurements on a distant qubit that is entangled
to Bob’s qubit. States that have a local hidden state model that describes Bob’s marginal
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distribution after Alice’s measurement are unsteerable. Quantum steering inequalities
can be used to detect entanglement [25].

7 Data availability

The python and Mathematica codes used to analyze our explicit formula during the
current study are available in the SO-3-to-SU2- repository on github, https://github.
com/quantumdilley/SO-3-to-SU-2-_git.

8 Conclusion

In this paper, we have given an explicit mapping that takes any element of SO(3) as
its input and gives the associated elements of SU(2). This gives the form of a unitary
transformation on a two-qubit transformation that would be required to produce a given
SO(3) operator. This allows us to determine the correct local unitaries that diagonalize
the correlation matrix of a two-level quantum state without having to solve for the
parameters in SO(3) explicitly. There is already a well-known exact solution for the
reverse direction, but we provide a closed-form solution that gives us the capability of
guiding the state when given an SO(3) action. This transformation is more complex
since there is a double cover of SO(3) by SU(2) and also due to the isomorphism
between SU(2) and unit quaternions. When the unit quaternions contained a real part,
the solution was simple and given explicitly by the Ug(Q) part in Eq. (32). When
the unit quaternions turn solely into vector quaternions, we needed to solve for each
individual case directly as we have shown in Appendix 2.

We were able to determine the orthogonality conditions on both the local special
unitary operators and the corresponding special orthogonal matrices that can be useful
for the affine maps of the polarization vector [19]. Furthermore, we discussed the
implications when access to only one qubit of a correlated two-qubit state is available.
In this case, the correlation matrix cannot be diagonalized. Albeit the circumstance,
if we have access to any SO(3) rotation on our local system, then we have the ability
to make the correlation matrix symmetric with knowledge of the other local system.
We can also perform the QR-decomposition to make the correlation matrix upper or
lower triangular; depending on which system is controllable. There are many instances
where one lab has only partial access to a quantum state. This work provides the details
of how that control can be accomplished.

Acknowledgements Funding for this research was provided by the NSF, MPS under award number PHY S-
1820870.
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Appendix
A.1 Correlation matrices for the Bell states.
To determine the correlation matrix of any two-qubit density operator, simply perform

the calculations tr(6; ®Jj - p) = {7,}i;. Using this formula, we can directly determine
the correlation matrices for the maximally entangled Bell operators:

100 ~100

Tor= [0-10) Ty-=| 010 (44)
001 001
100 ~10 0

Tor =010 )] Ty-=( 010 |. (45)
00 -1 0 0 —1

A.2 Proof of equation (30)

Let us now calculate each part of Eq. (30) case by case. Note that for all these cases
a1 = 0 as seen from Eq. (18).
Case 1: sgn(ag)sgn(pBy)sgn(pa) #£ 0

W(O, L], ILal, IL3) = (—ﬁ:afiﬁz ﬁl_fojfz) (46)

where n1 = sgn(a2)sgn(B1)sgn(B2).
Case 2: sgn(ap) = 0 and sgn(B)sgn(Bz) # 0

_ —ilazlny B +ifa

where 12 = —sgn(f;). Since sgn(a2) = 0 implies that oy = 0, this form is correct.
The 7 only adds a £ global phase. We also see that

(1 —yDyays = (1 — sgn(@aB)®)(1 — sgn(ezf2)?)sgn(B1 B2)? (48)

which can be expressed in cases as

0 oy — { (1} if sgn(e) = 0 and sgn(Bsgn(B) £0 o
otherwise
Case 3: sgn(f1) = 0 & sgn(ag)sgn(fz) #0
W(O, —|Lal, I, 1) = n3 (|ﬂ.|?;fiiﬂz _'ﬁllﬂzj‘ﬁz) (50)
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where n3 = —sgn(fB2). Since sgn(B;) = 0 implies that g; = 0, this form is correct.
The n3 only adds a + global phase. We also see that

yi(1—y)ys = (1 — sgn(@aBi)®)(1 — sgn(B1 B2)*)sgn(e2B2)’ 1)

which can be expressed in cases as

1 ifsgn = 0 and sgn(a2)sgn 0
r(l =)y = { g (ﬁ}} gn(az)sgn(Bz) # 0 (52)
0 otherwise
Case 4: sgn(p2) = 0 & sgn(aa)sgn(By) # 0
iay B1 —i|Bz2lna
w - = ; . 53
where n4 = —sgn(oz). Since sgn(f2) = 0 implies that > = 0, this form is correct.

The n4 only adds a + global phase. We also see that

yiva(l — p3) = (1 — sgn(eaB)*)(1 — sgn(B1B2)?)sgn(azB1)? (54)

which can be expressed in cases as

1 if =0& 0
1=} ORI L0
Case 5: sgn(orp) # 0 & sgn(py), sgn(f2) =0
Case 6: sgn(f1) # 0 & sgn(az), sgn(fz) =0
Case 7: sgn(f») # 0 & sgn(a), sgn(f;) =0 (56)
B il [B1] + il B2l
WO, LD = (—|ﬁ1| Filal il ) ' GD

Since only one of the elements of {«2, 81, B2} are nonzero, this form is correct. The
missing sign is only a & global phase. We also see that

yivays = (1 — sgn(eaf)?) (1 — sgn(@af2)?) (1 — sgn(B1 £2)?) (58)
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which can be expressed in cases as

1 ifsgn(a), sgn(B1), sgn(B2) =0
if sgn(erp), sgn(B1) = 0 & sgn(Bz) # 0
Viy2ys = if sgn(ar2), sgn(f2) = 0 & sgn(pB1) £ 0, (59)
if sgn(p1), sgn(f2) = 0 & sgn(az) # 0
0 otherwise

which completes the rest of the cases involved when tr(Q) = —1. The y functions
ensure that there are no repeats of any solutions in Eq. (30). Now we can safely say
that all of the 8 possible cases described by Eq. (32) have been proven. Case 8 is when
tr(Q) # —1 and it has been proven in Eq. (20).
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