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ABSTRACT

Using an operator scattering approach, we analyze the quantum dynamics of an ultrasensitive electrometer—a Cooper pair transistor
embedded in a quarter-wave microwave cavity (cCPT). While the cCPT is inherently a tunable, strongly nonlinear system affording a
diverse range of functionalities, we restrict our present analysis to a necessary first investigation of its linear charge sensing capabilities,
limiting to low pump powers corresponding to an average cavity photon number of &1. Assuming realizable cCPT parameters [B. L. Brock
et al., Phys. Rev. Applied 15, 044009 (2021)], and not including noise from the subsequent amplifier chain, we predict the fundamental,
photon shot noise-limited charge sensitivity to be 0:12 μe=

ffiffiffiffiffiffi
Hz
p

when the pumped cavity has an average of one photon and the cCPT is
operated close to charge degeneracy. This is to be compared with a first reported charge sensitivity value of 14 μe=

ffiffiffiffiffiffi
Hz
p

in the single-photon
regime [B. L. Brock et al., arXiv:2102.05362 (2021)].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062421

I. INTRODUCTION

Rapid detection of electrical charge on the scale of an individ-
ual electron has long been an important experimental technique in
areas such as readout of qubits,1,2 detection of individual tunneling
events,3 and motion sensing of nanomechanical resonators.4 The
most common means of performing such measurements consists
of detecting changes in the current flowing through a mesoscopic
charge detector, such as a single electron transistor or quantum
point contact, due to changes in the detector conductance.1,2,4,5

Numerous studies have investigated the limits on the charge sensi-
tivity, which is determined by electronic shot noise in the detector
current, and where the backaction on the measured system often
exceeds the minimum required by quantum mechanics.6–9

An alternative and potentially superior mode of charge detec-
tion instead relies on detecting changes in the capacitive or induc-
tive reactance of a superconducting device such as a Cooper pair
box or Cooper pair transistor that is biased on its supercurrent
branch.10–13 By embedding such a device in a resonant circuit and
measuring changes in the phase of a reflected microwave probe
signal, it is possible to dispersively detect single electronic charges
with a sensitivity that is limited by photon shot noise in the probe

signal and with backaction on the measured charge that may
approach the minimum allowed by quantum mechanics.14

In this paper, we theoretically investigate the cavity-embedded
Cooper pair transistor (cCPT),15–17 which functions as the first
amplifier stage of a dispersive electrometer due to its charge-
dependent superconducting reactance. We show that this device is
in principle capable of achieving charge sensitivities on the order of
0:1 μe=

ffiffiffiffiffiffi
Hz
p

, better than the best predicted values for single Cooper
pair transistors (SCPTs)18 and other mesoscopic charge detectors.
This is despite using many orders of magnitude less power
(attowatts instead of picowatts) than is typical for previous elec-
trometer devices, in particular, corresponding to an average cavity
photon number occupation &1 for our cCPT device,16,17 so that
the cCPT is well suited for applications requiring minimal backac-
tion. While the ideal cCPT can operate as a quantum, photon shot
noise-limited electrometer, the actual device in a realizable mea-
surement setup is prone to charge fluctuations and other reducible
noise sources, to date limiting its linear charge sensitivity to values
two orders of magnitude worse17 than the theoretically attainable
minimum predicted in this paper. Nevertheless, the charge fluctua-
tions can potentially be suppressed using feedback techniques that
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filter out the low frequency noise tampering resonance (up to a
bandwidth of �10 kHz), bringing the linear charge sensitivity of
the cCPT closer to the photon shot noise-limit (not including the
noise of the subsequent amplifier chain).19

We shall utilize a first principles, operator scattering approach
for investigating the cCPT quantum dynamics that overcomes the
limitations of the analyses presented in Refs. 15 and 16. In particu-
lar, the present approach crucially provides the quantitative condi-
tions under which the approximate eigenfunction expansion
analysis of Ref. 15 and lumped element circuit analysis of Ref. 16
are valid. Furthermore, the scattering method provides a systematic
way to derive the expressions for the various parameters of the
effective cavity Hamiltonian. Relevant parameters include not only
those for the effective linear cavity dynamics (e.g., renormalized
resonant frequency), but also the explicit forms of the higher order
nonlinear cavity terms and coupling terms between the cavity and
other systems such as a nanomechanical resonator.15 Most impor-
tantly, the scattering approach yields the versatile quantum
Langevin equation for describing the effective cavity quantum
dynamics, with explicit expressions for the damping and the associ-
ated quantum noise terms that are necessary for establishing the
photon shot noise-limited charge sensitivity.

As a result of its single-photon-level charge sensitivity, the
cCPT is capable of mediating the standard optomechanical interac-
tion in the ultrastrong coupling regime [see Eq. (51) in Sec. V].
The experimental realization of single photon optomechanical
dynamics in this tripartite system (comprising the cavity, CPT, and
mechanical resonator) will depend on the optimized non-linear
charge sensitivity of the cCPT. While the present work does not
take into account such a measured quantum dynamical system and
the effects of backaction, it instead considers a deterministic sinus-
oidal charge modulated signal in the photon shot-noise limit as a
necessary step toward such investigations.

The layout of our paper is as follows. In Sec. II, we give a ped-
agogical introduction to the quantum scattering method (which is
based on the superconducting circuit analysis methods introduced
in Refs. 20 and 21) by applying it to a bare cavity system
(i.e., without the CPT). We next derive the CPT-induced, effective
cavity Hamiltonian in Sec. III. In Sec. IV, we obtain the photon
shot-noise limited charge sensitivity of the device when operated as
a linear electrometer. Section V discusses how we might define a
standard quantum limit of charge sensitivity that accounts for mea-
surement backaction (relevant for coupling the CPT to a mechani-
cal resonator, for example), as well as how device imperfections
and amplifier noise prevent the cCPT from reaching this limit.
Brief concluding remarks are given in Sec. VI. Several appendixes
give further details of our analysis, including the approximate,
lumped element circuit model description for completeness.

II. BARE CAVITY-TRANSMISSION LINE DYNAMICS

The cavity-embedded Cooper pair transistor (cCPT) consists
of a shorted quarter-wave (λ=4) resonator in a co-planar wave
guide geometry and a Cooper pair transistor (CPT) at the voltage
anti-node [Fig. 1(b)]. Since the CPT is designed to weakly interact
with the cavity, its influence on the latter can be treated perturba-
tively within the operator scattering approach described later

below. We shall first consider a bare cavity coupled to the pump/
probe transmission line via the capacitance Cpc in the absence of
the CPT [Fig. 1(a)]. The dynamics of this simpler “warm-up”
model is well-established using the input-output formalism, with
the damping rates due to internal losses and coupling to the trans-
mission line usually considered as phenomenological parameters.22

In the following, we shall instead apply the operator scattering
approach,20,21 where we systematically recover the discrete mode
cavity operators that define the cavity Hamiltonian, together with
the cavity mode renormalized frequencies and external damping
rates due to the coupling to the transmission line. This approach
validates the lumped element circuit analysis given in Appendix A.
Damping due to internal losses will be neglected (i.e., κint ¼ 0), to
be added phenomenologically later in Sec. IV.

It is worthwhile mentioning that the sources of the internal
losses relevant to the scope of this paper originate from the interac-
tions of the cavity with its local environment.23–25 In practice, there
also exist sources of dephasing via microscopic two level system
(TLS) degrees of freedom located in the vicinity of the CPT, for
example, within the underlying substrate and Josephson tunnel
junction oxide layers. These defects couple via their electric and
magnetic dipole moments to the cCPT system charge and flux
coordinates.26–28 Such interactions are manifested as cavity reso-
nance frequency fluctuations in the experiments;16 it is crucial to
take these fluctuations into account when characterizing the experi-
mental device performance since they can be erroneously equated
with additional damping.29

To outline, we begin by writing down the cavity and transmis-
sion line wave equations, along with the capacitive coupling and

FIG. 1. (a) Circuit schematic of a bare quarter-wave (λ=4) cavity coupled to
pump/probe transmission line via a coupling capacitor Cpc. (b) cCPT circuit
schematic.
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shorted-end boundary conditions using Kirchhoff’s laws. The
general solutions to the corresponding quantum Heisenberg wave
equations that are coupled via these boundary conditions are
obtained using the operator scattering approach. Under the condi-
tion of weak coupling, the standard form input-output quantum
Langevin equation for the cavity mode operator is recovered by
approximation, together with explicit expressions for the resonant
frequency and damping rate in terms of the circuit parameters.

A. Scattering analysis

Referring to Fig. 1(a), the wave equations for the cavity
phase field fc(x, t) and the transmission line probe phase field
fp(x, t) are

@2fi

@t2
¼ LiCið Þ�1@

2fi

@x2
,

i ¼ c, if 0 , x , l,
i ¼ p, if x , 0,

�
(1)

where the phase field is defined in terms of the magnetic flux field
Φ(x, t) through fi ; 2πΦ=Φ0 with Φ0 ¼ h=(2e) being the flux
quantum; Li and Ci denote, respectively, the inductance and
capacitance per unit length of the cavity (i ¼ c) and transmission
line (i ¼ p); and l is the cavity center conductor length. Current
conservation at x ¼ 0 and the boundary condition at x ¼ l give,
respectively,

1
Lp

@fp

@x

����
x¼0�
¼ 1

Lc

@fc

@x

����
x¼0þ
¼ Cpc

€fc � €fp

� ����
x¼0

, (2)

fc(l, t) ¼ 0: (3)

Working with the Heisenberg equations resulting from for-
mally replacing the coordinates with their associated quantum
operators f̂c(x, t) and f̂p(x, t), the general solution for the wave
equation (1) can be written in terms of photon creation/annihila-
tion operators as follows:

fi(x, t) ¼
2π
Φ0

ð1
0
dω

ffiffiffiffiffiffiffi
�hZi

πω

r
1
2

e�iω(t�t0�x=vi)a!i (ω, t0)
h

þe�iω(t�t0þx=vi)a i (ω, t0)
i
þ h:c:, (4)

where “h.c.” denotes the Hermitian conjugate and we have dropped
the hats on the operators for notational convenience. Note that
there should properly be a regularizing, upper frequency cutoff in
Eq. (4). However, the actual measured quantities involve finite
frequency bandwidths about the pump frequency that are well
below (and independent of) the cutoff. The superscripts “!”
(“ ”) correspond to right (left) propagating modes, with the
photon creation/annihilation operators satisfying the standard com-
mutation relation

[ami (ω, t0), (a
n
i (ω
0, t0))

y] ¼ δmnδ(ω� ω0), (5)

where m, n [ {‘! 0, ‘ 0}. The cavity and transmission line
impedances are given by Zi ¼

ffiffiffiffiffiffiffiffiffiffiffiLi=Ci
p

[note Zi ¼ Z0 in Eq. (A1)],

and vi ¼ (LiCi)�1=2 is the microwave phase field propagation
velocity.

In essence, the operator scattering approach involves substitut-
ing the wave equation solutions (4) into boundary conditions (2)
and (3) in order to express the left propagating (i.e., “reflected” or
“scattered”) probe operator a p in terms of the right propagating
(“incident”) probe operator a!p and cavity operator a!c .

Starting with boundary condition (3), we have
a c (ω, t0) ¼ �e2iωl=vca!c (ω, t0) so that the cavity phase field solu-
tion (4) (with i ¼ c) becomes

fc(x, t) ¼
2π
Φ0

ð1
0
dω

ffiffiffiffiffiffiffi
�hZc

πω

r
1
2
e�iω(t�t0)

� eiωx=vc � e�iω(x�2l)=vc
h i

a!c (ω, t0)þ h:c:, (6)

one may readily verify that solution (6) vanishes at x ¼ l as
required by the boundary condition (3). Using Eq. (4) (for i ¼ p),
Eq. (6), and boundary condition (2), we can now couple the cavity
and probe phase field to arrive at the following respective expres-
sions for fp and a!c :

fp(x, t) ¼
2π
Φ0

ð1
0
dω

ffiffiffiffiffiffiffiffi
�hZp

πω

r
1
2
e�iωt

� eiωx=vp þ 1þ iωZpCpc

1� iωZpCpc

� �
e�iωx=vp

	 

ainp (ω)

� i
2π
Φ0

ð1
0
dω

ffiffiffiffiffiffiffiffi
�hZp

πω

r
1
2
e�iω(t�t0þx=vp) 1� e2iωl=vc

� �

� ω
ffiffiffiffiffiffiffiffiffiffi
ZpZc

p
Cpc

1� iωZpCpc
a!c (ω, t0)þ h:c: (7)

and

cos ωl=vcð Þ � ωZcCpc

1þ ωZpCpc
� �2 sin ωl=vcð Þ

" #
a!c (ω, t0)

� i
ω

ffiffiffiffiffiffiffiffiffiffi
ZcZp

p
Cpc

� �2
1þ ωZpCpc

� �2 sin ωl=vcð Þa!c (ω, t0)

¼ �ie�iω t0þl=vcð Þ ω
ffiffiffiffiffiffiffiffiffiffi
ZpZc

p
Cpc

1� iωZpCpc
ainp (ω), (8)

where ainp (ω) ; eiωt0a!p (ω, t0) may be interpreted classically as the
right propagating component of the pump/probe line field in fre-
quency space that enters the cavity at time t ¼ 0.

Under the condition of weak cavity–probe coupling, Eq. (8)
describes the Fourier transform of the quantum dynamics of
approximately independent harmonic oscillators (i.e., cavity
modes) subject to damping and noise. The resonant mode fre-
quencies are obtained by setting the real, square-bracketed coef-
ficient in the first line to zero and solving for ω, while the mode
linewidths are given by the imaginary coefficient on the second
line of Eq. (8). The term involving ainp (ω) represents the pump
drive and noise. In particular, imposing the condition of weak
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coupling given by the smallness of the dimensionless parameter
ξ ; Cpc=(Ccl)� 1, and expanding to first order in ξ, we obtain
for the mode frequencies

ωn � 2nþ 1ð Þ πvc
2l

1� Cpc

Ccl
� �

, n ¼ 0, 1, 2, � � � , (9)

which coincides with the lumped element expression (A3) for
the cavity mode capacitance, Ccav ¼ Ccl=2. Furthermore, under
the Markovian approximation, the pump/probe damping rate
κext is given by

κext ¼ 2Zp

C2
pc

Ccl ω
2
n, (10)

which matches Eq. (A5) near ωn with the external quality factor
Qext ; ωn=κext.

We can now use these results to derive the standard quantum
Langevin equation in the Fourier domain involving the familiar
closed-system cavity mode Hamiltonian, along with the zero-point
fluctuations of the cavity phase coordinate modes, the details of
which are given in Appendix B.

B. Output power

Experiments on the device performance require measurements
on the steady state response of the cavity, subject to a pump with
frequency ωp typically applied in the vicinity of the fundamental
cavity resonance ω0 given by Eq. (9) for n ¼ 0. In practice, this
involves a classical input pump signal at room temperature, which
is further attenuated at different stages to reach the sample placed
at the cryogenic temperature (&30 mK), for which the scale of
thermal fluctuations kBT � �hω0. In the absence of driving, we con-
sider the continuum of modes in the semi-infinite transmission
line to be in a thermal state given by

ρth ¼
1
Z

X1
{n(ω)}¼0

e�βHp j{n(ω)}iph{n(ω)}jp, (11)

where j{n(ω)}ip is the transmission line Fock state, Z ¼ Tr e�βHp
� �

is the partition function, β ; 1=(kBT), and the transmission line
Hamiltonian takes the form

Hp ¼ �h
ð1
0
dωω ainp (ω)

� �y
ainp (ω), (12)

where we neglect the zero point energy term since it does not con-
tribute to the measured quantities.

The presence of driving may be approximated by a displaced
thermal state for the pump/probe transmission line:
ρα,th ¼ D[α]ρthD[α]

y,30 where D[α] is a displacement operator,
which is defined as follows:

D[α] ¼ exp
ð
dω α(ω) ainp (ω)

� �y�α*(ω)ainp (ω)

	 
� �
, (13)

with

α(ω) ¼
ffiffiffiffiffiffiffiffiffiffiffi
Pin
p T

2
p

�h

s
e�(ω�ωp)

2T2
p =2ffiffiffi

ω
p eiθp : (14)

Here, Pin
p is the average pump power and θp is the pump phase.

The pump coherence time Tp is assumed to be longer than all
other characteristic timescales of the system so that the displace-
ment wavelet is narrowly smeared about ω ¼ ωp in this large Tp

limit.
We can then extract the time averaged output power in the

bandwidth Δω centered at ωp using

Pout
p (ωp, Δω) ¼ Ioutp (x, tjωp, Δω)

h i2
 �
Zp, (15)

where the output probe current is

Ioutp (x, t) ¼ � Φ0

2πLp

@fout
p (x, t)

@x
, (16)

and the output phase field is

fout
p (x, t) ¼ 2π

Φ0

ð1
0
dω

ffiffiffiffiffiffiffiffi
�hZp

4πω

r
e�iω(tþx=vp)aoutp (ω): (17)

Following a similar convention as for ainp (ω) given above [just after
Eq. (8)], we define aoutp (ω) ; eiωt0a p (ω, t0). Within the bandwidth
Δω and to first order in the capacitance ratio ξ ¼ Cpc=(Ccl), we can
deduce aoutp (ω) by identifying the left propagating (i.e., reflected)
terms involving the exponential factor e�iω(t�t0þx=vp) in the coupled
cavity–probe relation (7). In short, we have

aoutp (ω) ¼ ainp (ω)� i
ffiffiffiffiffiffiffiffi
κext
p

an(ω), (18)

the standard input–output relation for the cavity in a reflection
mode measurement, where we have used the explicit expression
(10) for the pump/probe damping rate κext, and where the cavity
mode annihilation operator is defined as follows:

an(ω) ;

ffiffiffiffi
2l
vc

s
eiωt0a!c (ω, t0): (19)

Substituting the quantum Langevin equation (B1) into the
input–output relation (18) and using the definition (15) for Pout

p ,
we obtain

Pout
p (ωp, Δω) ¼ �hωp

4π

ðωpþΔω=2

ωp�Δω=2
dω jr(ω)j2

� 1þ 2h ainp (ω)
� �y

ainp (ω)i
� �

, (20)
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where the cavity reflection coefficient r(ω) is defined as

r(ω) ¼ ω� ωn � iκext=2
ω� ωn þ iκext=2

: (21)

For ωp ¼ ω0 and Δω� ω0, we obtain

Pout
p (ωp, Δω) ¼ Pin

p þ
�hωp

2π

ðωpþΔω=2

ωp�Δω=2
dω np(ω)þ 1

2

� �
, (22)

with the transmission line average thermal occupancy
np(ω) ¼ (eβ�hω � 1)

�1
(which is small in the frequency bandwidth

of interest at T & 30mK). Since we set κint ¼ 0, the pump micro-
waves are reflected without any absorption/emission as expected.

III. cCPT-TRANSMISSION LINE DYNAMICS

Having validated the bare cavity–probe transmission line
dynamics using the operator scattering approach, we can
now extend the same approach to the cCPT system shown in
Fig. 1(b). In this section, we present a first-principles derivation
of the cCPT dynamics. To better account for actual devices, we
allow for asymmetry in the Josephson junctions (JJs), given by
distinct junction capacitances CJ1 and CJ2 and critical currents
IC1 and IC2.

We begin by following the same procedure as in Sec. II; in
particular, we write down the cCPT-transmission line boundary
conditions, which now accommodate the current through the CPT
at x ¼ 0 [Fig. 1(b)]. This leads to two additional phase degrees of
freedom, one for each of the two JJs making up the CPT. The
CPT-cavity coupling accomplished through the flux biased SQUID
loop reduces the number of independent phase coordinates from
three down to two. We then proceed to write down the CPT
Hamiltonian and further use adiabatic elimination of the CPT
dynamics to expand the resulting cavity effective potential about a
stable minimum. The details of the operator scattering-based deri-
vation of these results are given in Appendix C.

A. Formulation of the circuit equations

Referring to Fig. 1(b), the cCPT consists of two JJs in series
located at the voltage anti-node of the cavity, with the electrostatic
energy of the CPT island tuned via a gate voltage Vg . The relevant
coordinates for the cCPT system are the cavity phase field fc(x, t)
and the JJ phase coordinates w1(2). Note that Eqs. (1), (3), and (4)
remain the same, while the boundary condition (2) at x ¼ 0þ gets
modified to

� Φ0

2πLp
f0p(x, t)

���
x¼0�
¼ Cpc

€fc � €fp

� ����
x¼0

¼ � Φ0

2πLc
f0c(x, t)

��
x¼0þþ

Φ0

2π
CJ1 €w1 þ IC1 sinw1

¼ � Φ0

2πLc
f0c(x, t)

��
x¼0þþ

Φ0

2π
CJ2 þ Cg
� �

€w2

þ IC2 sinw2 � Cg _Vg(t), (23)

where f 0(x, t) and _f (x, t) represent the spatial and temporal deriva-
tives, respectively, and recall Φ0 ¼ h=2e is the flux quantum.

The associated SQUID loop constrains the phase coordinates
through the relation

w1(t)þ w2(t)� fc(0, t) � 2πnþ 2π
Φext(t)
Φ0

, (24)

where Φext(t) is the externally applied flux bias and n is an arbitrary
integer (set to zero without loss of generality). For our cCPT
device,16 the magnitude of the supercurrent Icir circulating through
the cCPT loop is such that we can neglect the resulting induced
flux, i.e., (Lcl)Icir � Φ0. Equation (24) allows us to reduce the
number of system coordinates by one since the average CPT coor-
dinate �w ¼ (w1 þ w2)=2 determines the cavity phase fc(x, t); we
will utilize the cavity coordinate fc(x, t) and the half-difference
CPT coordinate δw ¼ (w1 � w2)=2 as the primary, independent
variables. The equation of motion for δw can be obtained using the
modified Eq. (23) together with Eq. (4) (for i ¼ p) and Eq. (6). As
we are primarily interested in deriving the charge sensitivity of the
device in the present work, we only allow a time dependent gate
voltage modulation and neglect any time dependent magnetic flux
modulation. We obtain

Φ0CCPTCΣ

π
€δw ¼ (Cg þ ΔCJ )Cpc

@V̂ in
p (0, t)

@t
� (cCPT terms), (25)

where the junction capacitance asymmetry ΔCJ ¼ CJ2 � CJ1, the
CPT capacitance CCPT ¼ CJ1(CJ2 þ Cg)=CΣ, and the total island
capacitance CΣ ¼ CJ1 þ CJ2 þ Cg .

The “cCPT terms” contribution in Eq. (25) is given by

IC1 Cg þ CJ2
� �� IC2CJ1

� �
sin f=2ð Þ cos δwð Þ

þ IC1 Cg þ CJ2
� �þ IC2CJ1

� �
cos f=2ð Þ sin δwð Þ

þ CgCJ1 _Vg , (26)

where we have introduced a displaced cavity phase f(t) to absorb
the external flux bias as follows:

f(t) ¼ fc(0, t)þ 2πΦext=Φ0: (27)

The first term on the RHS of Eq. (25) represents the CPT’s direct
coupling to the pump/probe line,

V̂ in
p (0, t) ¼ �i

ð1
0
dω

ffiffiffiffiffiffiffiffiffiffiffi
�hωZp

π

r
e�iωt

� 1� iωZpCpc
� ��1

ainp (ω)þ h:c, (28)

to be contrasted with the more familiar indirect CPT coupling to
the probe line via the cavity. As we will see in the next steps, the
former contribution appears as an unwanted gate modulation,
which can however be neglected as long as Cg � CJ .
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We may now similarly proceed as in Sec. II A to employ the
equation of motion for the cavity phase fc(x, t) and further deter-
mine the Lagrangian and Hamiltonian of the cCPT system.
However, as this turns out to be a cumbersome task if no approxi-
mations are made, we will first focus on the half-difference CPT
coordinate δw, utilizing several valid approximations to simplify
the analysis.

B. Adiabatic elimination of CPT dynamics

Instead of writing down the open cCPT Hamiltonian that
contains contributions from the cavity, CPT, and the pump/probe
transmission line, we use Eq. (25) to first obtain the CPT contribu-
tion to the Lagrangian, which then yields the following CPT
Hamiltonian:

HCPT ¼ 2π
Φ0

� �2 1
8CCPT

pδw �Φ0

π

CJ1

CΣ
CgVg � Q̂in

p (0, t)

� �� �2

� 2EJ cos f=2ð Þ cos δwð Þ þ 2δEJ sin f=2ð Þ sin δwð Þ, (29)

where pδw is the momentum conjugate to the half-difference CPT
phase coordinate δw, Q̂in

p (0, t) ¼ Cg þ ΔCJ
� �

CpcV̂ in
p (0, t)=CΣ, and

the effective Josephson energy coefficients in the potential energy
term are defined as follows:

EJ ¼ EJ1 þ CJ1

CΣ
ΔEJ

� �
(30)

and

δEJ ¼
Cg þ CJ2
� �

EJ1 � EJ2CJ1
� �

CΣ
, (31)

with the Josephson energies of the junctions defined as
EJ1(2) ¼ IC1(2)Φ0=2π and ΔEJ ¼ EJ2 � EJ1.

The corresponding quantized CPT operators obey the com-
mutation relations [δ̂w, N̂] ¼ i, where N̂ ; p̂δw=�h. In the more
suitable phase coordinate form with unit circle configuration space,
the commutation relations take the form

eiδ̂w, N̂
h i

¼ �eiδw: (32)

Equation (32) has a Hilbert space representation spanned by the
eigenstates jNi of the operator N̂ ,

N̂jNi ¼ NjNi, N ¼ 0, + 1, + 2, � � � , (33)

i.e., N takes discrete, integer values which can be interpreted as the
number of excess Cooper pairs on the CPT island. Similarly, we
can also define the gate polarization number ng in single electron
units as follows:

ng ;
2Φ0CJ1Cg

�hπCΣ
Vg ¼ 2CJ1Cg

eCΣ
Vg : (34)

The CPT Hamiltonian then becomes

HCPT ¼ 4EC
Xþ1

N¼�1
N � 1

2
ng � N̂ in

p

� �	 
2
jNihNj

� EJ cos f=2ð Þ
Xþ1

N¼�1
jN þ 1ihNj þ jN � 1ihNjð Þ

� iδEJ sin f=2ð Þ
Xþ1

N¼�1
jN þ 1ihNj � jN � 1ihNjð Þ, (35)

where f is defined in Eq. (27), the charging energy
EC ¼ e2=(8CCPT), and the effective, polarization charge number
noise operator is given by N̂ in

p (t) ¼ 2Q̂in
p (0, t)=e. Equation (35)

reduces to the familiar form of the CPT Hamiltonian in the limit-
ing case of junction symmetry ΔEJ ¼ ΔCJ ¼ 0 and Cg � CJ (with
CJ ; CJ1 ¼ CJ2),

31

HCPT ¼ 4Ec
Xþ1

N¼�1
N � ng

2

� �2
jNihNj

� EJcos(f=2)
Xþ1

N¼�1
jN þ 1ihNj þ jN � 1ihNjð Þ, (36)

where EC � e2=(2 � 2CJ).
Treating f(t) and N in

p as static, commuting numbers, the
Hamiltonian (35) can be diagonalized assuming an approximate,
finite dimensional Hilbert space truncation to obtain the CPT
energy eigenvalues. Figure 2 shows the CPT ground and first
excited energy eigenvalue characteristics within a gate polarization
range 0 � ng � 2 and a displaced cavity phase range 0 � f � 2π.
Note that the assumed parameter values used in our simulations
take into account a small asymmetry in the JJ energies (see
Table I). As the maximum error of the CPT ground energy as a
function of f is negligible for a five charge state approximation rel-
ative to a ten charge state basis truncation, we employ the five
charge state basis for our simulations.

Assuming small N in
p , we see that the CPT approaches charge

degeneracy as ng !+1 [Fig. 2(a)]. As a result, the system has an
increased probability of transitioning to the first excited energy
eigenstate in this limit. The experimental characterization16 also
observes quasiparticle poisoning close to charge degeneracy, as a
consequence of lower electrostatic energies of odd electron-states as
compared to the CPT charging energy.32,33 Taking into account
both these factors, we further limit our considered gate polarization
range to �0:9 � ng � 0:9. The CPT level splitting between the
ground and excited states over this modified range of bias space
(ng , f) is much larger than the other characteristic frequencies of
the system, namely, the bare cavity fundamental mode frequency
and similar drive frequency (�5:76 GHz), and the gate modulation
frequency ωg (� tens of MHz) [Fig. 2(b)]. We thus impose the
valid and essential approximation going forward to the effect that if
the cavity “dressed” CPT is initially in its lowest energy eigenstate
with energy E(0)

CPT, it will remain in this state for the duration of the
measurement, evolving adiabatically.
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C. Effective cavity Hamiltonian

The adiabatic elimination of the CPT from the total
Hamiltonian dynamics effectively replaces the Hamiltonian (35) by
its ground state energy E(0)

CPT, which can subsequently be used to
obtain the cavity phase equation of motion counterpart to Eq. (25).
Invoking the wave equation (1) and boundary condition (23), we
arrive at

f0c(0
þ, t)� CCPT

Cc f00c (0
þ, t)� Lc

Lp
f0p(0

�, t)

� 2π
Φ0

� �2

Lc
@E(0)

CPT

@fc
¼ � 2πLcCgCJ1

Φ0CΣ

_Vg : (37)

We identify the above expression as the modified boundary condi-
tion at x ¼ 0 coupling the cavity and pump/probe transmission
line and including the dressed CPT contribution as a perturbation

[cf. Eq. (2)]. We may now follow the same operator scattering
method steps as carried out for the bare cavity case in Sec. II to
obtain the renormalized resonant cavity fundamental frequency.
Before deriving this explicitly, we first simplify Eq. (37) by renorm-
alizing the bare cavity Hamiltonian (B3), which now has an effec-
tive potential given by

Veff ¼ Φ0=2πð Þ2f2
0=2L0 þ E(0)

CPT(f0) (38)

restricted to the fundamental phase coordinate mode f0, where
L0 ¼ 8Lcl=π2 is the corresponding fundamental mode inductance
(see Appendix B).

The CPT introduces anharmonicity to varying orders when
expanded about the equilibrium point �f0(ng , Φext) obtained
through the condition

Φ0

2π

� �2f0

L0
þ @E(0)

CPT

@f0

! �����
�f0

¼ 0: (39)

As is evident in Fig. 3(a), this shift in equilibrium is much less than
one in magnitude over the considered (ng , Φext) bias range and can
be neglected. This simplifies the dependence f(fc, Φext) to f(Φext)
in Eq. (27).

In the limit where the CPT weakly perturbs the cavity funda-
mental resonance, i.e., CCPT=Ccl and Lcl=LCPT � 1 [Fig. 3(b)], we
obtain for the renormalized resonance frequency of the cCPT
system coupled to the probe transmission line (see Appendix C for
the detailed derivation),

ω0(ng , Φext) � πvc
2l

1� Cpc þ CCPT

Ccl þ 2
π

� �2 Lcl
LCPT

" #
, (40)

FIG. 2. (a) The ground and first excited energy band-structure of the CPT. Note that the adiabatic approximation may break down in the vicinity of charge degeneracy:
ng ¼+1. (b) Energy splitting between the ground and first excited state in the vicinity of charge degeneracy. For j1� ngj � 0:1, the adiabatic approximation holds since
the energy splitting is much greater than the characteristic frequencies of the system. The parameter values used for these simulations are provided in Table I.

TABLE I. Numerical values of the parameters used in the simulations. The parame-
ters are based on the experimental cCPT device.16

Parameter Value

Length of microwave resonator l 5135 μm
Capacitance per unit length Cc 0.17 nF/m
Inductance per unit length Lc 0.41 μH/m
Coupling capacitance Cpc 7.95 fF
Bare cavity resonance ω0 5.76 GHz
CPT capacitance CCPT 90 aF
Gate capacitance Cg 6.27 aF
Charging energy EC/h 53.49 GHz
Josephson energy EJ/h 15.17 GHz

Asymmetry in Josephson energy δEJ 205MHz
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where the CPT inductance LCPT can be defined from the curvature
of ECPT as

L�1CPT ¼
2π
Φ0

� �2@2E(0)
CPT

@f2
c

�����
fc¼0
¼ @2E(0)

CPT

@Φ2
ext

: (41)

The lumped element expression (A6) with Ccav ¼ Ccl=2 and
Lcav ¼ 8Lcl=π2 coincides with Eq. (40).

As mentioned above, the higher terms in the expansion of the
effective potential Veff give rise to anharmonicity in the combined
cCPT system which takes the form

Veff ¼ Φ0

2π

� �2 f2
0

2L0

þ
X1
n¼2

Xn
k¼2

1
n!

n
k

� �
fk
0δn

n�k
g

@nE(0)
CPT

@fk
0@n

n�k
g

�����
ng¼n(0)g ,f0¼0

, (42)

where renormalization and having the minimum potential at
f0 � 0 lead to vanishing terms for k ¼ 0 and 1, respectively.
Expression (42) also involves an expansion in the gate polarization
variation δng in order to account for gate voltage modulations
relevant for electrometry (discussed in Sec. IV). The total
Hamiltonian is

HcCPT ¼ 2π
Φ0

� �2 p20
2C0
þ Veff , (43)

where C0 is renormalized to C0 þ CCPT following the renormalized
frequency expression in Eq. (40). As for the bare cavity case (see
Appendix B), the phase operator of the fundamental cavity mode is
expressed in terms of the photon creation/annihilation operators as

follows: f0 ¼ fzp a0 þ ay0
� �

, with the zero-point fluctuations given

by [cf. Eq. (B4)]

fzp ¼
2π
Φ0

� � ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2C0ω0

s
: (44)

The generalized nonlinear cCPT Hamiltonian thus becomes

HcCPT ¼ �hω0(ng , Φext)a
y
0a0 þ

X1
n¼3

Xn
k¼2

Vn,k a0 þ ay0
� �k

, (45)

where

Vn,k ¼ 1
n!

n
k

� �
fk
zpδn

n�k
g

@nE(0)
CPT

@fk@nn�kg

�����
n(0)g ,2πΦext=Φ0

: (46)

FIG. 3. (a) The shift in the equilibrium point corresponding to the minimum effective potential energy as a function of ng and Φext. (b) The smallness of the ratio of cavity
inductance to the CPT inductance ensures that the CPT weakly perturbs the cavity. (c) Resonance frequency shift of the cavity across the tunable bias range. (d) Plot of
zero-point fluctuations as a function of ng and Φext. The shift from the original value is negligible for our system.
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We now make a few remarks about the Hamiltonian (45).
First, the tunability of the cavity frequency results in the tunability
of the zero-point fluctuations of the cavity phase coordinate itself,
i.e., fzp ¼ fzp(ng , Φext). Typical applications of similar devices gen-
erally operate in the high-photon limit, where the relatively small
variations in the zero-point motion of the cavity do not have a sub-
stantial effect. In the low-photon limit, however, the tunability in
the zero-point fluctuations can become relevant, as this may poten-
tially be utilized to access stronger quantum fluctuation regimes.
For our device, the range of variation of fzp is found to be �5% in
the tunability range of our interest (Fig. 3).

Second, the experimental characterization is typically con-
ducted in the limit of small gate modulation magnitude jδng j � 1.
Additionally, the noise N in

p originating via the probe coupling to
the CPT can also be neglected as long as Cg � CΣ. We may thus
restrict the potential energy expansion in (45) to first order in δng .

Third, we may use a rotating wave approximation (RWA) to
simplify the Hamiltonian to contain only terms leading to an
unchanged photon number in the cavity. The validity of this
approximation becomes explicit when we transform to the rotating
frame of the pump frequency ωp, driven near the fundamental res-
onance ω0; contributions leading to changing photon number
rapidly oscillate in this frame and can thus be neglected.
Consequently, we arrive at the simplified Hamiltonian of the cCPT
device, valid up to O(f2

0),

HcCPT ¼ �h ω0 þ gδng
� �

ay0a0, (47)

where the gate polarization coupling g is given by

g ¼ f2
zp

�h
@3E(0)

CPT

@f2@ng

�����
(n(0)g ,2πΦext=Φ0)

: (48)

The complete experimental characterization of the cCPT device fol-
lowing this theoretical model is given in Ref. 16.

IV. cCPT AS A LINEAR ELECTROMETER

The highly tunable and strongly nonlinear nature of the cCPT
is evident from the analysis in Sec. III. In this section, we narrow
our focus to examine the operation of the cCPT as a linear charge
detector. A comprehensive understanding of the linear response
regime is an essential first step before widening the scope of the
device operation to include nonlinear contributions, for example,
to realize phase-sensitive amplification via squeezing.

In the simplest terms, we see from Eq. (47) how a sinusoidal
modulation in the gate charge appears as a renormalization shift in
the cavity resonance frequency. In particular, this gate modulation
may be induced using a mechanical quantum dynamical system
coupled at the CPT gate,15 thus facilitating sensing of the mechani-
cal system via charge detection. A typical measurement involves
driving the cavity near resonance and detecting the sidebands via
measurements of the output power averaged over some time TM

that is long compared to the characteristic timescales of the
cCPT-mechanical system dynamics.

In line with such a scheme, we will first look into the output
power generation in the presence of an electrically simulated, sinus-
oidal gate modulation “signal” δng(t) ¼ δn(0)g cos ωg t

� �
. This will

enable a determination of the charge sensitivity of the cCPT in the
low-average photon number drive limit, which we will find to
be comparable to previously reported or predicted values for
electrometers.12,14,18,34–37 Most importantly, the behavior of the
cCPT in this low drive power regime is limited by photon shot
noise in the transmission line, which results in an attainable
quantum-limited lower bound for charge sensitivity.

The output power at the sample stage in the presence of a gate
modulated signal can be estimated using the same series of steps as
for the bare cavity in Sec. II. In particular, we proceed to derive a
modified quantum Langevin equation (D1) and then extend the
resulting input-output equation to find the analogous expression
to Eq. (20) that represents the output power (D8). Details of this
derivation are given in Appendix D, where we observe from
Eqs. (D4)–(D7) that the gate modulation introduces sidebands into
the cavity frequency spectrum and is detected by measuring the
output power as expressed in Eq. (15).

Internal noise/losses are modeled as a second, internal
thermal bath denoted as ρι, modifying the total input state:
ρin ¼ ρα,p 	 ρι. The thermal occupancies of the pump np and inter-
nal bath nι are usually assumed to be identical, as the temperature
variations at different locations in the device are neglected.
However, in reality, the internal bath may have a different noise
temperature due, for example, to coupling with two-level defects.38

The major motivation behind the theoretical framework
provided in this paper is to identify the potential applicability and
fundamental limitations of the cCPT as a linear charge detector
subject to the laws of quantum mechanics. This essentially implies
disregarding the sources of noise that may arise from any experi-
mental materials complexity and which are not limited in principle
by quantum mechanics. To address this fundamental charge sensi-
tivity limit, we shall therefore neglect the internal bath by setting
κint ¼ 0 and consider the response of the cCPT at absolute zero
temperature for the pump/probe line, i.e., np ¼ 0. The cCPT perfor-
mance under these conditions is determined by its essential coupling
with the pump/probe line at the output and the measured system at
the input. In the absence of a physical system at the input, the noise
feeding the input of the subsequent amplifier stage thus originates
from the vacuum photon shot noise of the transmission line, deter-
mining the lower bound for the charge sensitivity. In reality, addi-
tional noise source channels can prevent achieving this fundamental
charge sensitivity limit, as discussed in detail in Sec. V.

The charge sensitivity δq (e=
ffiffiffiffiffiffi
Hz
p

) of an electrometer is
defined as the rms charge modulation amplitude that corresponds
to a signal-to-noise ratio of one (in a bandwidth of 1Hz) at the
amplifier input.12 We can thus solve for the fundamental charge
sensitivity of the cCPT from the total output power expression
(D8) by setting ωp ¼ ω0, and looking at the output power variation
about ω0 + ωg within a bandwidth of Δω ¼ 2π � 1 Hz to obtain

δq ¼ jgj�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hω0 ω2

g þ (κ=2)2
� �

4Pin
p

vuut
e=

ffiffiffiffiffiffi
Hz
p

, (49)
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where κ now denotes the damping solely due to the coupling to
pump/probe line κext, given by Eq. (10) in terms of the cCPT
renormalized fundamental resonance frequency (40). Equation (49)
may alternatively be expressed in terms of the average photon
number in the cavity ncav as follows:

δq ¼ jgj�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
g þ (κ=2)2

� �
κ ncav

vuut
e=

ffiffiffiffiffiffi
Hz
p

: (50)

The sensitivity may be further improved using a homodyne
detection scheme, where the combined contribution of both the
sidebands leads to values lower by a factor of

ffiffiffi
2
p

.36

The most charge sensitive points can be identified using the
plots in Fig. 4. Regardless of the input drive and signal frequency
ωg , the charge sensitivity in general improves as ng approaches
(but does not equal) one [Fig. 4(b)]. In the case of an average of
one photon in the cavity with ωg=κ ¼ 1, Fig. 4(c) shows the funda-
mental charge sensitivity behavior across the entire bias range for a
single sideband. We obtain δq ¼ 0:39 μe=

ffiffiffiffiffiffi
Hz
p

at (Φext, ng)
¼ (0:5Φ0, 0:9) for the above parameter values, while working well
within the adiabatic approximation limit. Moreover, the efficiency
of the charge detector can be best exploited in the bad-cavity limit
ωg � κ, where the value of δq saturates to 0:17 μe=

ffiffiffiffiffiffi
Hz
p

for an

average of one cavity photon [Fig. 4(d)]. The values used in our
numerical simulations are close to the experimental ones reported
in Ref. 16; however, an optimization of the EC , EJ values may
further improve the charge sensitivity slightly.

It is worthwhile noting that the highly anharmonic, effective
potential (46) of the cCPT leads to non-negligible contributions
from the quartic Kerr potential term even near an average of one
cavity photon. In theory, it is possible to substantially improve the
performance of the cCPT by driving the cavity at the onset of bist-
ability (and where the cCPT still behaves as a linear electrometer)
as long as the signal is within gδn(0)g =ωg � 1.12,39

V. DISCUSSION

One of the key applications of the cCPT is to perform
quantum measurements using phase-preserving amplification of an
observable of another measurable quantum system, such as a qubit
or a mechanical resonator. Of particular interest is such a tripartite
coupling involving the cavity and a mechanical resonator interact-
ing via the CPT, where the resulting, tunable CPT-induced effective
optomechanical interaction may approach the single photon–single
phonon ultrastrong coupling regime.15

Since the device operation is limited by quantum noise, a
natural extension of the present work is to investigate how close the

FIG. 4. (a) Gate polarization coupling in MHz across the tunable bias range. The coupling becomes stronger in the direction of charge degeneracy. (b) The ratio
ffiffiffiffiffi
ω0
p

=jgj
as a function of Φext for different values of ng . The fundamental charge sensitivity δq is proportional to this ratio and the improved values are attained closer to charge
degeneracy. (c) δq for an average of one photon in the cavity, with ωg=κ ¼ 1. The values reported here assume contribution from a single sideband. (d) Comparing δq in
the bad-cavity and good-cavity limit. The bias point is chosen at (Φext ¼ 0:5Φ0, ng ¼ 0:9), which gives δq ¼ 0:17 μe=

ffiffiffiffiffi
Hz
p

for an average of one photon in the cavity in
the bad-cavity limit.
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cCPT detector approaches the standard quantum limit, with the
backaction of the cCPT on the measured system taken into
account. In the conventional case of large photon driving, the cou-
pling term in the opto-mechanical Hamiltonian can be linearized
in the cavity and mechanical oscillator coordinates, and the infor-
mation about the position of the mechanical resonator can be
extracted using a single quadrature measurement.40 As a result, the
uncertainty in the backaction noise SFF(ω) and the imprecision
noise in position Simp

xx (ω) are bounded by the inequality
SFFSimp

xx � �h=2. In the low average cavity photon number limit,
however, we must retain the original form of the opto-mechanical
Hamiltonian,41

H ¼ �hΔayaþ �hΩ bybþ �hGayax, (51)

where a and b denote the cavity and mechanical resonator annihi-
lation operators, respectively, x is the oscillator position,
Δ ¼ ω0 � ωp, Ω is the mechanical oscillator frequency, and G
determines the opto-mechanical coupling. As a result, the radiation
pressure force power spectral density is given by

SFF(ω) ¼ �hG
xzp

� �2

SNN (ω), (52)

where SNN is the cavity photon number noise and xzp is the
mechanical resonator position zero-point uncertainty. Hence, we
expect a quantum-limited inequality with imprecision noise
depending on the phase noise Sθθ(ω). Investigations probing the
standard quantum limits achievable in the combined cCPT-
mechanical oscillator system in the presence of low average photon
number drive thus require considering ways to measure the phase
operator itself. It is worthwhile noting that the typical approxima-
tion for the phase in terms of the quadratures, hθ̂i ¼ hŶi=hX̂i, no
longer holds in this limit;9 further studies at a fundamental level
are required to understand the behavior of the phase operator both
theoretically and experimentally.42–47

Despite the cCPT’s potential as an ultra-sensitive charge
detector, the experimental limitations during fabrication and mea-
surements can hinder its ability to perform at optimum sensitiv-
ity.17 In addition to the noise contributions at the sample stage, the
measurement precision is also limited by the noise added at the
subsequent amplifier stages (where the minimum noise added by a
quantum-limited phase insensitive amplifier is �hω0=2). As we men-
tioned, other transport mechanisms such as quasiparticle poisoning
may dominate the resonance characteristics when we operate closer
to charge degeneracy. The internal damping of the cavity further
limits the charge sensitivity, modifying the fundamental, quantum
limited expression (49) as follows:

δq ¼ jgj�1 κtot

κext

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hω0 ω2

g þ (κtot=2)
2

� �
4Pin

p

vuut
e=

ffiffiffiffiffiffi
Hz
p

: (53)

Most importantly, the increased sensitivity to minute varia-
tions in the gate voltage also makes the cCPT prone to gate charge
fluctuations that are potentially due to the two-level fluctuators

arising within the thin oxide layers of the device.26 This incoherent
coupling results in resonant frequency fluctuations during real-time
measurements that are typically manifested as 1=f noise, which
make it challenging to precisely set the pump tone on resonance as
we have assumed. While there exist several detection techniques for
the measurement of such low-frequency noise,29,48,49 methods to
suppress these fluctuations in real time are at present under devel-
opment;19 the suppression of such noise could potentially lead to
major breakthroughs in several areas of research, ranging from
charge detection to applications in qubit metrology.26,50,51

VI. CONCLUSION

In this paper, we have presented a first principles, theoretical
model of a quantum-limited linear electrometer. The model uses
adiabatic elimination of the CPT dynamics such that the cCPT pas-
sively mediates the interactions between the microwave cavity and
the measured system (e.g., mechanical resonator) via linear charge
sensing. For parameters similar to those of the experimental device
described in Ref. 16, we predict the fundamental, quantum noise
limited charge sensitivity of the cCPT linear electrometer to be
0:12 μe/

ffiffiffiffiffiffi
Hz
p

under a homodyne detection scheme. This sensitivity
corresponds to the pumped cavity having an average of one
photon, with the cCPT operated in the gate tunable range
0 � ng � 0:9, where the adiabatic approximation is valid and the
effects of quasiparticle poisoning may be reduced in an experimen-
tal device.
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APPENDIX A: LUMPED ELEMENT CIRCUIT ANALYSIS

As discussed in detail in Sec. III, the CPT leads to a tunable
quantum inductance and can be modeled as a nonlinear inductor
in parallel with the bare cavity, which in turn leads to a tunable res-
onance. Here, we discuss the CPT characteristics employing a
lumped element circuit analysis, which can be used to provide
checkpoints for the first principles, operator scattering analysis,
under appropriate limits.

The frequency response near resonance for a bare cavity
[Fig. 1(a)] depends on the input impedance Zλ=4

in given by

Zλ=4
in (δx) � 4Z0Qint=π

1þ 2iQintδx
, (A1)

where Z0 is the characteristic impedance, Qint is the quality factor
representing internal losses, and δx ¼ (ω� ωλ=4)=ωλ=4. Here,
ωλ=4 ¼ (2nþ 1)πvc=2l, n ¼ 0, 1, 2, are the resonant frequencies
obtained by applying the shorted quarter-wave condition of the
bare cavity, with vc being the phase velocity. For an attenuation
constant α, this input impedance is equivalent to that of a parallel
RLC circuit with resistance Rcav ¼ Z0=αl, cavity mode capacitance
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Ccav ¼ 4Z0ωλ=4=π
� ��1

, and cavity mode inductance

Lcav ¼ ω2
λ=4Ccav

� ��1
.52

The extraction of scattering parameters is achieved using
reflection measurements by means of a pump–probe transmission
line weakly coupled to the cavity via the capacitance Cpc � Ccav.
This coupling capacitance leads to an added impedance and shifted
resonance ωn obtained through the condition

Im Zrjω¼ωn

� �
¼ Im � i

ωnCpc
þ Zλ=4

in (ωn)

� �
¼ 0, (A2)

which gives

ωn � ωλ=4 1� Cpc

2Ccav

� �
, n ¼ 0, 1, 2, , (A3)

where we neglect the second possible solution owing to its high
resulting impedance.

The equivalent lumped element model of the combined
system thus modifies to a series RLC circuit in this configuration of
weak coupling. The input impedance near resonance is53,54

Zr(ω) � Z0
Qext

Qint
1þ 2iQint

Δω

ωn

� �
, (A4)

with parameters Rcav ¼ Z0Qext=Qint, L0cav ¼ Z0Qext=ωn, and
C0cav ¼ ω2

nL
0
cav

� ��1
, where the external probe coupling quality factor

is obtained using

Qext(ω) ¼ ω
Energy stored
Power loss

¼ π

4(ωCpcZ0)
2

ω

ωλ=4
: (A5)

For the parameters of our experimental device, the relative
variation in the external quality factor is small near resonance:
ΔQext(ω)=Qext(ω0)� 1. We, therefore, approximate the external
damping rate to be constant over the frequency region of interest.
This allows us to work under the Markovian approximation, which
considerably simplifies the calculations.

Equation (A3) for the cavity resonant frequency can be
re-expressed in terms of a renormalized total capacitance
Ccav ! Ccav þ Cpc. Hence, the addition of the CPT shifts the reso-
nance via an effective capacitance CcCPT ¼ Ccav þ Cpc þ CCPT and
an effective inductance L�1cCPT ¼ L�1cav þ L�1CPT. Consequently, under
the conditions CCPT=Ccav, Lcav=LCPT � 1, the cCPT resonant fre-
quency is renormalized to

ωcCPT � ωλ=4 1þ Lcav
2LCPT

� Cpc þ CCPT

2Ccav

� �
: (A6)

APPENDIX B: QUANTUM LANGEVIN EQUATION FOR
THE BARE CAVITY

For completeness, here we verify that the standard quantum
Langevin equation in the Fourier domain can be obtained using
the results presented in Sec. II A. Furthermore, we can extract the

familiar closed-system cavity mode Hamiltonian and the zero-point
fluctuations of the cavity phase modes.

Simplifying Eq. (8) by approximation using (9) and restricting
to a narrow bandwidth Δω� ωn, we obtain to first order in the
capacitance ratio ξ ; Cpc=(Ccl)� 1,

ω� ωn þ i
κext

2

� �
an(ω) ¼ ffiffiffiffiffiffiffiffi

κext
p

ainp (ω): (B1)

This expression is the standard, Fourier transformed quantum
Langevin equation, where the nth cavity mode photon annihilation
operator is defined as

an(ω) ;

ffiffiffiffi
2l
vc

s
eiωt0a!c (ω, t0), (B2)

for ω in the vicinity of a given mode frequency ωn [Eq. (9)].
This rescaling ensures that an(t) ¼ 1ffiffiffiffi

2π
p
Ðþ1
�1 dωe�iωtan(ω) satisfies

the usual, discrete mode canonical commutation relation

[an(t), a
y
n (t)] ¼ 1.

The Hamiltonian of the closed system consisting of a shorted
quarter-wave resonator with a coupling capacitance thus comprises
discrete harmonic oscillator modes,

Hcav ¼
X1
n¼0

�hωn aynan þ
1
2

� �

¼
X1
n¼0

2π
Φ0

� �2 p2n
2Cn
þ Φ0

2π

� �2X1
n¼0

f2
n

2Ln

" #
, (B3)

where we use the notation an for the mode “n” cavity operator.
The second line represents the Hamiltonian for the independent
lumped element LC oscillators expressed in terms of the general-
ized mode phase coordinates and conjugate momenta, respectively,

fn ¼ fzp,n an þ a
y
n

� �
and pn ¼ �i Φ0=2πð Þ2ωnfzp,n an � a

y
n

� �
. The

lumped element parameters are given by the mode capacitance
Cn ¼ Ccl=2þ Cpc and the mode inductance
Ln ¼ 8Lcl=(2nþ 1)2π2, and the mode zero-point uncertainty can
be written as

fzp,n ¼
2π
Φ0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Cnωn

s
¼ 2

ffiffiffiffiffiffiZn

RK

r
, (B4)

with Zn ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ln=Cn

p
being the cavity mode impedance and

RK ¼ h=e2 being the von Klitzing constant.

APPENDIX C: EFFECTIVE CAVITY QUANTUM
DYNAMICS

In this appendix, we provide details of the derivation for the
tunable resonance of the cCPT, following the same operator scatter-
ing method steps as utilized for the bare cavity case (Sec. II A), but
now with the boundary condition (37) replacing the simpler, bare
cavity boundary condition (2).
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For sinusoidal gate modulation frequency ωg � ω0 and ampli-
tude δn(0)g � 1, the term in the RHS of Eq. (37) can be neglected.
Under these assumptions, we proceed by Taylor expanding the
term @E(0)

CPT=@fc in Eq. (37) to obtain

f0c(0, t)�
CCPT

Cc f00c (0, t)�
Lc

Lp
f0p(0, t)

� 2π
Φ0

� �2

Lc

X1
n¼1

Xn
k¼0

1
n!

n
k

� �
fc(0, t)

k

� @nþ1E(0)
CPT

@fkþ1
c @nn�kg

�����
ng¼n(0)g ,fc¼0

δnn�kg ¼ 0, (C1)

where n
k

� �
is the binomial coefficient, ng(t) ¼ n(0)g þ δng(t), and the

gate modulation δng(t) ¼ δn(0)g cos ωg t
� �� N in

p (t).
Utilizing the operator scattering solutions in Eq. (6) for the

cavity phase field and in Eq. (7) for the pump phase field, we arrive
at the following modified pump–cavity coupled equation in fre-
quency space:

cos ωl=vcð Þ � ωZc
Cpc

1þ ωZpCpc
� �2 þ CCPT

"(

�ω�2
2π
Φ0

� �2@2E(0)
CPT

@f2
c

�����
fc¼0

3
5 sin ωl=vcð Þ

9=
;a!c (ω, t0)

� i
ω

ffiffiffiffiffiffiffiffiffiffi
ZcZp

p
Cpc

� �2
1þ ωZpCpc

� �2 sin ωl=vcð Þa!c (ω, t0)

¼ �ie�iω t0þl=vcð Þ ω
ffiffiffiffiffiffiffiffiffiffi
ZpZc

p
Cpc

1� iωZpCpc
ainp (ω)

� Zc
2π
Φ0

� �2X1
n¼2

1
(n� 1)!

@(nþ1)E(0)
CPT

@f2
c@n

(n�1)
g

�����
ng¼n(0)g ,fc¼0

� 1
2π

ðþ1
�1

dt
ð1
0

dω0ffiffiffiffiffiffiffi
ωω0
p ei ω�ω

0ð Þ t�t0�l=vcð Þ

� δng(t)
n�1 sin ω0l=vcð Þa!c (ω0, t0)þO(f2

c ), (C2)

where we have limited the expansion to first order in fc, leaving
out anharmonic terms. As for the bare cavity case [Eq. (8)], the
renormalized frequency due to the CPT and transmission line cou-
pling can be obtained by equating the terms in curly brackets to
zero. The third line corresponds to the cavity damping rate due to
coupling to the transmission line, the fourth line describes the
transmission line noise, and the remaining term gives the gate
voltage and noise modulations of the cavity frequency.

Defining the dimensionless frequency as ~ω ; ωl=vc and the
small dimensionless CPT-transmission line coupling parameter
ξ ¼ vcCpcZc=l ¼ Cpc=Ccl � 1, we can express the term in curly
brackets as

cos ~ω� ~ωξ

1þ ~ωξð Þ2 þ ~ω
CCPT

Ccl � ~ω�1
Lcl
LCPT

" #
sin ~ω, (C3)

with the CPT inductance LCPT defined as

L�1CPT ¼
2π
Φ0

� �2@2E(0)
CPT

@f2
c

�����
fc¼0
¼ @2E(0)

CPT

@Φ2
ext

, (C4)

utilizing Eq. (27). Setting expression (C3) to zero, and in the limit
where the CPT weakly perturbs the cavity fundamental resonance,
i.e., CCPT=Ccl and Lcl=LCPT � 1 [Fig. 3(b)], we obtain the following
expression for the tunable resonance:

ω0(ng , Φext) � πvc
2l

1� Cpc þ CCPT

Ccl þ 2
π

� �2 Lcl
LCPT

" #
: (C5)

APPENDIX D: OUTPUT POWER FOR A
GATE-MODULATED SIGNAL

This appendix details how a sinusoidal modulated signal at
the CPT’s gate introduces sidebands into the frequency spectrum
of the output power, measured via the pump/probe transmission
line.

Limiting the relevant frequency space to the region of the fun-
damental cavity mode frequency: jω� ω0j � ω0, we obtain from
Eq. (C2) the following, approximate modified quantum Langevin
equation to first order in ξ ¼ Cpc=(Ccl)� 1:

ω� ω0 þ i
κext

2

� �
a0(ω) ¼ ffiffiffiffiffiffiffiffi

κext
p

ainp (ω)

þ g
ð1
0
dω0F(ω, ω0), (D1)

where a0 is given by Eq. (B2) for ω in the vicinity of the cCPT
renormalized, fundamental mode frequency ω0 [Eq. (40)] and κext

is given by Eq. (10) similarly in terms of the cCPT renormalized
fundamental resonance frequency. Note that the gate modulation
introduces higher order corrections to a0(ω) via the term

F(ω, ω0) ¼ 1ffiffiffiffiffi
2π
p ω0ffiffiffiffiffiffiffi

ωω0
p e�i ω�ω

0ð Þl=vc

� {

ffiffiffi
π

2

r
δn(0)g δ ω� ω0 þ ωg

� �þ δ ω� ω0 � ωg
� �� �

� N in
p (ω� ω0)} sin ω0l=vcð Þa0(ω0): (D2)

We may further simplify Eq. (D1) by neglecting N in
p (ω� ω0)

in Eq. (D2) owing to the smallness of its noise contribution and
noting also that the ω, ω0 dependent terms multiplying a0(ω0) in
Eq. (D2) can be approximately evaluated at ω0 since we assume
ωg , κext, Δω� ω0, where Δω is the measured output power band-
width centered at the pump frequency ωp. Introducing internal
effective cavity losses using a phenomenological constant damping
rate κint, channeled via an additional non-measurable input port
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ainι (ω), we obtain:

ω� ω0 þ i
κtot

2

� �
a0(ω) ¼ ffiffiffiffiffiffiffiffi

κext
p

ainp (ω)þ
ffiffiffiffiffiffiffi
κint
p

ainι (ω)

þ g
ð1
0
dω0A(ω� ω0)a0(ω0), (D3)

where

A(ω) ¼ 1
2
δn(0)g δ ωþ ωg

� �þ δ ω� ωg
� �� �

: (D4)

Solving Eq. (D3) perturbatively in the limit of small g, we
have

a0(ω) ¼
X
n¼0

gn In(ω), (D5)

where the zeroth order term in (D5) is

I 0(ω) ¼
ffiffiffiffiffiffiffiffi
κext
p

ainp (ω)þ
ffiffiffiffiffiffiffi
κint
p

ainι (ω)

ω� ω0 þ i κtot
2

� � , (D6)

and the iterative solution relation for In(ω) is given by

In(ω) ¼
ð1
0
dω0

In�1(ω0)A(ω� ω0)
ω� ω0 þ i κtot

2

: (D7)

Considering the time-domain expression for a0(t) using
Eq. (D3), we obtain the following necessary condition for linear
charge detection: gδn(0)g =ωg � 1. In this linear detection regime,
the output power reaching the first-stage amplifier is given by

Pout(ω0, Δω) ¼ Pin
p

ðω0þΔω=2

ω0�Δω=2
dω

� δω2 þ κext�κint
2

� �2
δω2 þ κtot

2

� �2 δ(ω� ωp)þ
κextgδn(0)g =2
� �2
δω2 þ κtot

2

� �2
8><
>:
� 1

δωþ ωg
� �2þ κtot

2

� �2 δ(ωþ ωg � ωp)

"

þ 1

δω� ωg
� �2þ κtot

2

� �2 δ(ω� ωg � ωp)

#)

þ �hω0

2π

ðω0þΔω=2

ω0�Δω=2
dω np(ω)þ 1

2

	

þ κextκint nι(ω)� np(ω)
� �

(ω� ωp)
2 þ κtot

2

� �2
#
: (D8)

Since gδn(0)g =ωg � 1, we neglect the noise floor contribution of g2

order. We also neglect the order g2 signal contribution at ω ¼ ωp,
which is dominated by the reflected pump tone; the actual signal is
obtained from either (or both) of the sidebands at ωp + ωg .
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