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An extremely efficient, robust, and fully-automated sensitivity analysis toolbox based on
the discrete adjoint approach is developed in this work. The proposed framework relies on
an in-house automatic differentiation (AD) toolbox, called FDOT, that was originally de-
veloped by the authors. The first-of-its-kind FDOT toolbox uses the operator-overloading
technique to automatically differentiate Fortran codes while utilizing advanced techniques
for computational and memory efficiency without sacrificing the fully-automated features.
The present work aims at extending the AD toolbox using a recursive technique for eval-
uating the partial derivatives. The resulting partial derivatives are required for solving
the equations arising from the application of the discrete adjoint method to the primal
CFD solver. Improving upon the earlier version of the novel Discrete Adjoint based on a
Recursive Technique (DART) toolbox that was originally developed by the authors, this
approach is modified to utilize an Approximate Newton-Krylov (ANK) solution technique.
This modification is shown to significantly increase the computational efficiency of the tool-
box, especially for large-scale complex flow problems involving realistic geometries. At its
core, the DART toolbox combines both the adjoint and tangent modes of automatic dif-
ferentiation resulting in a very efficient discrete adjoint framework. Finally, the computed
adjoint flow field is used for calculating the total derivatives of the quantities of interest
which can be directly used for gradient-based design optimization. It must be noted that
the entire discrete adjoint process is done internally by the DART toolbox with little to
no user intervention. The improved version developed in this work is ultimately used to
improve airfoil and wing designs for minimized drag or maximized efficiency.

I. Introduction

Aerodynamic shape optimization involves the determination of an optimized topology that satisfies cer-
tain objectives subject to a set of aerodynamic and/or structural constraints. In general, there are two
main families of aerodynamic optimization techniques that can be categorized as (1) gradient-based and (2)
non-gradient-based approaches, where in the latter, repeated cost function evaluations are required. Using a
CFD-based design approach, the computational burden of evaluating the objective (cost) function can be very
high even for today’s high performance computing resources. Therefore, gradient-based algorithms continue
to be desirable for aerodynamic design optimization. In this approach, however, derivatives (sensitivities)
of a cost function with respect to all design variables (that can number in the hundreds to thousands) are
required. While “optimum” configurations can be determined after a small number of optimization cycles
using the gradient-based approach, the cost and complexity associated with the gradient evaluations can be
overwhelming. These issues are even more pronounced in high-fidelity CFD solvers and in the framework of
a multidisciplinary design optimization process. Therefore, a fast and efficient sensitivity analysis tool would
be a leap forward to greatly reduce the time and cost of the CFD-based design and topology optimization.

The most important and challenging part of the gradient-based design optimization approach is the
calculation of the gradient information. Traditionally, finite difference (FD) method has been used for
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this purpose although the step-size dilemma associated with this approximative technique have led to the
introduction of the complex-step (CS) method.1 While the step-size is not an issue with the latter approach,
the computational cost for both FD and CS techniques is linearly proportional to the number of design
variables since repeated objective function evaluations are necessary to obtain the entire gradient information.
It must be noted that the FD or CS techniques only provide “approximations” to the desired derivatives. As
an alternative, the algorithmic or automatic differentiation (AD) based on the chain rule result in analytically
evaluated derivative values without any truncation error.

Automatic differentiation has two basic modes of operation known as forward/tangent or reverse/adjoint
corresponding to a top-down or a bottom-up strategy of accumulating partial derivatives, respectively. It
is important to note that the computational cost of the tangent AD is proportional to the number of
independent variables while the computational cost of the adjoint AD is a function of the number of dependent
quantities of interest. An in-depth discussion about the advantages and disadvantages of each approach
is presented in Ref.2 These methods have been extensively used for aerodynamic design optimization in
the past two decades.3–5 The adjoint method can be classified in two categories of (1) discrete6,7 and
(2) continuous8,9 approaches depending on the order with which the adjoint equations are derived and
solved. In the discrete approach, the discretized governing equations are adjoined and solved to obtain
gradient information. As a result, the adjoint equations have the same level of computational complexity
as the governing (primal) equations and the same numerical procedure is followed for both the primal and
adjoint solvers. On the other hand, in the continuous adjoint method, the adjoint method is first applied
to the governing equations to derive the continuous adjoint equations which are then discretized and solved.
Therefore, special boundary conditions and numerical procedures need to be considered to discretize and solve
the continuous adjoint equations10 adding extra complexity and effort to the process. The most important
feature of the adjoint methods is that the computational cost of gradient evaluation is independent of the
number of design variables which makes this class of techniques a prime candidate for aerodynamic design
optimization involving hundreds, if not thousands, of design variables.

On the programming side, the AD approach can be implemented using (1) source code transformation
(SCT)11–14 and (2) operator overloading (OO).15–18 Interested readers are referred to the work of Griewank
and Walther19 for a detailed comparison between the two approaches. As discussed earlier, the devel-
opment of the complementary sensitivity analysis solvers can be substantially simplified using automatic
differentiation which can be carried out in forward or reverse modes based on the direction of the gradient
propagation. Recently, Djeddi and Ekici20 have developed a Fortran-based OO/AD toolbox based on the
discrete adjoint method that uses a fixed-point iteration approach21,22 for adjoint evaluations. The Fast au-
tomatic Differentiation based on Operator-overloading Technique (FDOT) toolbox20 is capable of efficiently
and accurately calculating the sensitivity information of a cost function with respect to any design variable.
While the adjoint mode of AD was the focus of the earlier research involving the FDOT toolbox,2,20,23,24 the
present work focuses on the application of both tangent and adjoint AD modes for developing an efficient and
extremely robust sensitivity analysis tool that directly forms and solves the linearized (adjoint) equations.

In the present work, the novel Discrete Adjoint based on the Recursive Technique (DART) toolbox for
gradient calculation, that was developed previously by the authors,25 is further improved to utilize an iterative
technique based on the Newton-Krylov method while still taking advantage of the robust and “recursive”
approach that was at the core of the proposed method. The enhanced toolbox uses the matrix-free version
of the Generalized Minimal RESidual (GMRES) method26 where the product of the transposed Jacobian
matrix and an arbitrary vector is simply calculated using the adjoint mode of the automatic differentiation
instead of forming the high-order full Jacobian matrix. As the GMRES method focuses on solving the
exact Jacobian of the adjoint system, which typically happens to be very ill-conditioned, a preconditioner
matrix is formed. However, the proposed technique utilizes a direct sparse matrix solver to exactly factorize
the preconditioner matrix. This technique allows us to simply rely on the first-order Jacobian matrix for
the preconditioner which results in an Approximate Newton-Krylov (ANK) solution technique. It must be
noted that the developed toolbox also uses an effective graph coloring technique that significantly reduces
the number of adjoint tape evaluations for evaluating the preconditioner matrix. Additionally, the forward
mode of AD is utilized to calculate the partial derivatives that determine the sensitivity of the residual
vector with respect to the design variables. Ultimately, the proposed technique uses the calculated adjoint
field to evaluate the total derivative of the objective function with respect to the set of design variables to
be used for gradient-based aerodynamic shape optimization. The robustness of the proposed approach is
studied through a few sensitivity analysis and design optimization test cases involving airfoils and wings in
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the transonic flow regime.

II. Governing Equations

This section introduces the governing equations for the primal flow CFD solver along with the numerical
design optimization problem. Additionally, adjoint flow equations based on the discrete adjoint approach
are presented and the conventional automatic differentiation approach using the FDOT toolbox is described.

A. Primal Flow Equations

To motivate the development of the design optimization framework, the three-dimensional Unsteady Reynolds-
Averaged Navier-Stokes (URANS) equations augmented with the Spalart-Allmaras turbulence model27 are
considered. These conservation laws can be written in the differential form as

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= S (1)

where the vector of conservative variables is Q = [ρ, ρu, ρv, ρw, ρE, ρν̃]
T
and the vectors of convective and
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Here, ν̃ is the viscosity-like working variable of the Spalart-Allmaras turbulence model. Additionally, the
source vector, S, has all zero terms except for the last equation where the source term is described by the
Spalart-Allmaras turbulence model.27 The pressure, p, and the total enthalpy, H, are defined in terms of
the conservative variables as

p = (γ − 1)ρ

[

E −
1

2
(u2 + v2 + w2)

]

H =
ρE + p

ρ
=

γ

γ − 1

p

ρ
+

1

2
(u2 + v2 + w2)

Moreover, the viscous fluxes in the 3D URANS equations depend on the gradients of the flow velocities,
specific enthalpy and the working variable of the turbulence model. The governing equations given in Eq. (1)
are discretized using a finite volume method with median-dual, vertex-based control volume approach.2,28,29

Therefore, the semi-discretized form of the governing equations can be written as

d

dt
(VQ) +R(Q) = 0 (2)

where V is the control volume, and R is the numerical residual that represents the discretization of the
spatial terms that include both the convective fluxes and viscous fluxes as well as the turbulence model
source term. Here, the fluxes are defined at the midpoint of an edge. Therefore, the numerical solver loops
over all edges to calculate these fluxes, which then get integrated to evaluate the residual at the center of
each control volume (defined at grid nodes).

The convective terms are discretized using an upwind-biased scheme based on Roe-fluxes.30 Additionally,
limiter functions of Barth and Jespersen31 and Venkatakrishnan32 are used for the convective fluxes in the
case of second-order solution reconstruction at the face center. Additionally, a second-order central averaging
scheme is used for the calculation of the viscous fluxes. The gradients of the flow variables are calculated at the
grid nodes using the Green-Gauss method. Furthermore, the solver is parallelized using the message passing
interface (MPI) tools with a non-overlapping domain decomposition,33 and METIS software package34 is
used for partitioning the computational domain. It must be noted that for the steady cases studied in this
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work, the time-derivative term in Eq. (2) is replaced with a “pseudo-time” derivative in order to march the
governing equations to steady-state. The current primal (CFD) solver uses either an explicit multi-stage RK
scheme or a semi-implicit Lower/Upper Symmetric Gauss Seidel (LU-SGS) technique35 for this purpose.

B. Optimization Problem and Adjoint Flow Equations

Before presenting the adjoint flow equations, let us first consider the minimization problem for an objective
function I (x,Q (x)), defined as

min
x

I(x,Q(x)) (3)

subject to R(x,Q(x)) = 0

where x is the vector of design variables and, as described earlier, Q is the vector of flow solutions (con-
servation variables) with R representing the vector of flow residuals for the primal governing equations. As
an example, in a typical aerodynamic design optimization problem, the objective function can be defined
as an unconstrained or a lift-constrained drag coefficient. Additionally, the vector of design variables may
include the parameters or control points of a shape parameterization technique, i.e., xshape = f(x), to pro-
mote a smooth search in the design space. Here, xshape can be regarded as the vector of coordinates for
the grid points that define the geometry of an airfoil, a wing, or even a wing-body-pylon-nacelle (WBPN)
configuration.

The optimization problem defined here aims at identifying the “optimal” design, xoptimal, that minimizes
the objective function subject to a “fully converged” or feasible, primal CFD solution, i.e., R(x,Q(x)) = 0.
Using the method of Lagrange multipliers, the minimization problem given in Eq. (3) can be reformulated
as a functional such that

L(x,Q,ψ) = I(x,Q(x)) +ψTR(x,Q(x)) (4)

where ψ is the vector of adjoint solutions. The next step is to minimize the Lagrangian functional, L(x,Q,ψ),
which can be accomplished using the Karush-Kuhn-Tucker (KKT) optimality conditions

∂L

∂ψ
= R(x,Q(x)) = 0 (5)

∂L

∂x
=

∂I

∂x
+ψT ∂R

∂x
= 0 (6)

∂L

∂Q
=

∂I

∂Q
+ψT ∂R

∂Q
= 0 (7)

Here, the first KKT condition is the original primal governing equations presented earlier in Eq. (3).
Additionally, the second KKT condition is nothing but the total derivative of the original objective function
with respect to the vector of design variables. This can be proven by writing the total derivative or sensitivity
as

dI

dx
=

∂I

∂x
+

∂I

∂Q

∂Q

∂x
(8)

It must be noted that the last term in Eq. (8) is very expensive to calculate. In the discrete adjoint approach,
the general assumption is that the governing equations for the primal flow are satisfied, which would require
converging the primal CFD solver to machine precision. Therefore, based on the assumption of the converged
primal solution, i.e., R(x,Q(x)) = 0, one can show that

R = 0 →
dR

dx
=

∂R

∂x
+

∂R

∂Q

∂Q

∂x
= 0 →

∂Q

∂x
= −

[
∂R

∂Q

]−1
∂R

∂x
(9)

which is the cornerstone of the discrete adjoint approach. Here, ∂R
∂Q

, is the Jacobian of the primal solver.

By rearranging and inserting Eq. (9) into Eq. (8), we can rewrite the total derivative as
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dI

dx
=

∂I

∂x
−

∂I

∂Q

[
∂R

∂Q

]−1

︸ ︷︷ ︸

Λ

∂R

∂x
(10)

It can be easily shown that the (Λ) term in Eq. (10) is identical to the transposed adjoint solution vector,
ψT , in Eqs. (4) and [(5)-(7)], such that

∂L

∂Q
=

∂I

∂Q
+ψT ∂R

∂Q
= 0 → ψT = −

∂I

∂Q

[
∂R

∂Q

]−1

(11)

Typically, the inverse of the Jacobian matrix, ∂R
∂Q

, is not found explicitly. Instead, we solve the corre-
sponding linear system with the appropriate right-hand-side vector by transposing the Jacobian which yields
the adjoint equations

∂R

∂Q

T

ψ = −
∂I

∂Q

T

(12)

The above equation is also known as the “adjoint” flow equation which is the focus of the present work.
Next, the calculated adjoint vector is substituted into Eq. (10) to compute the total derivative

dI

dx
=

∂I

∂x
+ψT ∂R

∂x
(13)

A very important point to make here is that the design variables x do no appear in Eq. (12) and the linear
system of equations only needs to be solved once for each quantity of interest or objective function (I).
This means that the computational cost of the adjoint method is only proportional to the number of objective
functions and is independent of the number of design variables. This subtle but very important aspect of
the adjoint approach makes it advantageous for large-scale aerodynamic design optimization problems which
typically involve very few quantities of interest but can potentially consider a very large number of design
variables.

C. Automatic Differentiation using the FDOT Toolbox

As described earlier, the aerodynamic design optimization problem described in Eq. (3) requires the calcu-
lation of the total derivative, dI/dx. Therefore, the main goal here is to efficiently and accurately evaluate
all the partial derivatives in Eqs. (8)-(13) in order to find the necessary gradient information for the design
optimization problem. The FDOT toolbox developed by Djeddi and Ekici20 utilizes the concept of discrete
adjoint sensitivity analysis and the object-oriented programming (OOP) capabilities of the modern Fortran
programming language to evaluate the gradient information. By defining a new derived type for real-typed
variables and by overloading all the unary and binary operations and intrinsic functions, the FDOT toolbox
can be coupled with any numerical solver to provide the sensitivities (gradients) of the output (objective)
function(s) with respect to all design variables. Calculating these gradients is done via an “adjoint evalua-
tion” process whose computational cost is only a small multiple of that of the primal solver.36,37 It must be
noted that in the discrete analysis, the derivatives are propagated in the reverse direction, thus require the
complete time history of the primal flow equations to be stored in the memory. Almost all OO/AD tools
achieve this by recording the entire expression tree into a derived type class often called the tape. This tape is
then executed in the reverse order while accumulating the derivatives using the recorded adjoint information.
Additionally, the FDOT toolbox utilizes a fixed-point iteration approach, as originally proposed by Chris-
tianson,21,22 as well as a novel expression-template-based approach24 to efficiently calculate the necessary
gradient information.

An important feature of the FDOT toolbox is that it can be used in an almost “black-box” fashion
requiring only minimal changes to an already existing primal solver to obtain the adjoint version of that
solver. One of the modifications that is necessary is the declaration of the flow solution variables, Q, in the
FDOT toolbox while also marking the start and end of the iterative part using a “checkpointing” function.
Details of the FDOT toolbox and the novel techniques used for automatically differentiating a CFD solver
based on the discrete adjoint approach are presented in Refs.20,24 It must be noted that in the original work
of Djeddi and Ekici,20 the actual adjoint flow field is not explicitly calculated since the FDOT toolbox is
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works involving the use of the FDOT toolbox for automatic differentiation and sensitivity analysis, the
fixed-point iteration procedure was followed while the expression tree was recorded with the beginning and
end of the iterative section marked via a “checkpointing” function.20,24 For the DART toolbox, on the other
hand, the adjoint code includes a very simplified version of the numerical procedure where only the total
residual of the CFD solver is automatically differentiated. As can be seen, the design variables as well as
the fully-converged flow solution are used to ultimately determine the residual vector, R(x,Q(x)), and the
objective function, I(x,Q(x)), during the program execution while the expression tree is being recorded into
the OP-Stack.

As discussed before and as depicted in Fig. (1), the execution of the adjoint code involves the calculation
of the residual vector and the objective function in addition to the OP-Stack being recorded in the memory.
With the recorded OP-Stack, it is possible to efficiently and accurately determine all the partial derivatives
involved in calculating the main ingredients of the proposed approach which involve ∂R/∂Q and ∂R/∂x
matrices as well as the ∂I/∂Q and ∂I/∂x vectors. It is also worth noting that the most important step in
the DART toolbox is the calculation of the non-zero entries of the sparse Jacobian matrix, ∂R/∂Q, which is
done via the first AD procedure (as highlighted in Fig. [1]). While the original DART toolbox proved to be
a very robust and efficient tool for discrete adjoint sensitivity analysis, the cost of forming the flow Jacobian
matrix, ∂R/∂Q, as well as the computational overhead for solving the adjoint equations [Eq. (12)] using a
“direct” sparse solver such as MUMPS38,39 can be significantly high, especially for large-scale and complex
flow problems. Therefore, in the present work, the original DART toolbox is further improved by utilizing
an iterative solution technique which will be described next.

B. Approximate Newton-Krylov Solution Approach (DART ver. 2.0)

Unlike the original version of the toolbox, the improved version utilizes an iterative approach based on the
Newton-Krylov method to solve the adjoint equations (Eq. [12]). In this regard, the matrix-free version of
the GMRES26 method is used which relies on an adjoint mode of the automatic differentiation to efficiently
and accurately calculate the matrix-vector products without the need for the exact high-order flow Jacobian
matrix to be formed.25 On the other hand, the Newton-Krylov methods require a preconditioner matrix
whenever the flow Jacobian matrix is ill-conditioned, which happens to be the case for the RANS equations
(Eq. [1]) that are solved for aerodynamics simulations. As a result, while this approach is called matrix-free
or Jacobian-free GMRES, a preconditioner matrix needs to be explicitly formed and stored. Additionally, in
the present work, we rely on the first-order flow Jacobian to be used as a preconditioner, which needs to be
factorized using a direct sparse linear solver. The combination of the first-order flow Jacobian used for the
preconditioner matrix and the second-order matrix-free Jacobian used at the core of the GMRES method
leads to an “Approximate Newton-Krylov” (ANK) approach.40 Therefore, the right-preconditioned adjoint
system solved in the proposed DART toolbox reads




∂R

∂Q

T
[

∂R

∂Q

T

PC

]−1




(

∂R

∂Q

T

PC

ψ

)

= −
∂I

∂Q

T

(14)

where ∂R
∂QPC

is the preconditioner matrix based on the first-order flow Jacobian. While a left preconditioner

can also be used in a very similar fashion, numerical results have shown a slightly better performance achieved
with the right preconditioning. This is mainly due to the fact that the right-preconditioned GMRES aims
at minimizing the original residual vector for the linear system while the left-preconditined GMRES tries
to minimize the “preconditioned” residual. This subtle but important difference can reportedly lead to
significantly different convergence behaviors, and in some cases, stability issues40,41 for the GMRES method.
Therefore, for all cases presented in this work, a right-preconditioned GMRES method is utilized.

The linearization process used in this work is shown in Fig. (2). It is seen that the method involves two
separate steps where in the first one the preconditioner matrix is calculated and formed while the second step
is very similar to the one followed in the original DART toolbox. However, in the current version, instead
of calculating and forming the second-order flow Jacobian matrix (as was done in the earlier work25), the
Jacobian-free GMRES method is used, requiring only the calculation of a matrix-vector product. This
product involves the transposed flow Jacobian and an arbitrary vector (as will be described later) and the
result of this multiplication is obtained using a single adjoint automatic differentiation. The steps required
for the improved version of this toolbox are summarized as follows:
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pattern is taken into account to minimize the number of partial derivative calculations and storage for this
highly sparse preconditioner matrix.

The vertex-based, mixed-element, unstructured/hybrid grid approach utilized in UNPAC relies on first-
order and second-order stencils. In the simplest form used for the first-order accurate Euler solutions, the
stencil only includes direct neighbors or “distance-1” nodes. On the other hand, the second-order Roe
scheme needs solution reconstruction at the face medians which requires gradient information to be available
at all direct neighbors. In UNPAC, a Green-Gauss approach is used for gradient calculation which also
includes direct neighbors for each node to determine the gradient vector at that specific node. Therefore,
the second-order stencil would ultimately involve neighbors-of-neighbors or “distance-2” nodes. It must be
noted that the RANS solutions would also rely on the same nodal structure with distance-2 nodes included
in the stencil.

1. Graph Coloring

Graph coloring (also known as graph labeling or vertex coloring) is a technique used for assigning labels or
colors to specific nodes that meet a certain “distancing” criteria.42 As an example, “distance-1” coloring
leads to a pattern where no two adjacent nodes have the same color. Generally speaking, the adjacency
condition can include distance-k neighbors which will result in a distance-k coloring. It must be noted that
the goal of the graph coloring approach is to find the “minimum” number of graph colors that will meet
the adjacency criteria. As discussed in the previous section, the numerical stencils lead to a known block
structure for the highly sparse Jacobian matrix. Additionally, a graph coloring technique can be used to
identify independent subsets of grid nodes such that nodes of the same color would not share any nodes
in their respective stencils. This technique is particularly important in that it allows the computation of
sensitivities for many variables simultaneously where more than one variable can be perturbed (or “seeded”)
at the same time.

Here, the residual stencil is used to define an adjacency matrix that will be utilized to compute a unique
set of colors that covers the entire domain with non-overlapping residual computations. This is done by
partitioning all rows of a matrix into different structurally orthogonal subgroups (aka colors) such that, in
one structurally orthogonal subgroup, no two rows have a nonzero entry in a shared column. As mentioned
earlier, graph coloring allows simultaneous perturbation of multiple rows of the Jacobian by using the adjoint
mode of AD since no residuals in a given color overlap. Similarly, the column-based graph coloring approach
has been used in conjunction with various forward-mode techniques such as finite-difference,43 complex-
step,44,45 as well as the forward mode of AD.46,47 Interestingly, the use of graph coloring significantly
reduces the number of residual evaluations to a very small number, i.e., Ncolor.

As mentioned earlier, the first-order stencil includes all distance-1 neighbors while the second-order
stencil relies on the inclusion of all distance-2 neighbors. However, for the nodes of the same colors to be
completely independent (i.e., structurally orthogonal) from each other, it is necessary to avoid having any
overlap between all the nodes in their respective stencil. This means that the first-order stencil would require
a distance-2 graph coloring of the computational grid. Consequently, the second-order stencil would require
a distance-4 graph coloring. The graph coloring in general is an NP-hard problem while distance-k coloring
with k > 2 being an NP-complete problem. In many previous efforts, the use of graph coloring for Jacobian
calculations has been limited mostly to structured grid solvers46,47 where the coloring scheme relies heavily
on the structured and repeating pattern of the node adjacency and connectivity matrix. For unstructured
or hybrid grid cases, however, the only remaining option is to use a “greedy” graph coloring technique45 to
determine distance-4 colors. As an example, the graph coloring is applied to an O-typed structured grid with
4,160 nodes around the NACA 0012 airfoil which results in only 8 colors for the distance-2 graph coloring
but 87 colors for the distance-4 graph coloring technique which are both much smaller than the number of
nodes, 4,160.

A very important feature of the newly proposed or improved version of the DART toolbox is the fact
that only the first-order flow Jacobian is explicitly formed in the calculation of the preconditioner matrix.
This means that we can easily rely on distance-2 graph coloring schemes which happens to provide the most
optimal graph coloring of the computational mesh that can potentially lead to the least number of colors,
thus significantly improving the computational efficiency of the Jacobian calculations. As described for the
structured mesh used with the NACA 0012 airfoil, the distance-2 graph coloring can result in a more than ten-
fold reduction in the number of graph colors compared to the distance-4 approach. Therefore, it is possible
to calculate the preconditioner matrix at a fraction of the cost of calculating the second-order flow Jacobian
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(
AP−1

)
(Px) = b (16)

where P is the preconditioner matrix (right-preconditioning). The procedure utilized for the restarted
GMRES method, also known as the GMRES(k) method,48 is described in Algorithm 1 for the case with m
vectors in the Krylov subspace26 defined as

Km = span{r0,Ar0,A
2r0, . . . ,A

m−1r0} (17)

where r0 = b−Ax0 and x0 is an initial guess for the solution vector.

Algorithm 1: Algorithm for the restarted GMRES(k) method.

Result: Solution vector, x
Size of the Krylov subspace: m;
Choose an “initial” solution vector, x0;
while not converged do

calculate the residual vector, r0 = b−Ax0;
calculate the first Krylov vector, v1 = r0

∥r0∥
;

Step 1: Arnoldi Algorithm:

for j ← 1 to m do
wj = A ·P−1 · vj ;
hj+1,1 = ∥wj∥ ;
vj+1 =

wj

hj+1,1
;

end
Define Vm = [v1,v2, . . . ,vm]
Set the (m+ 1)×m upper Hessenberg matrix, Hm = [hi,j ]

Step 2: Least-Squares Problem:

Solve for the optimal weighting coefficients, ym, in
ym = miny

∥
∥βe−Hmym

∥
∥

where

ei: i-th vector in the standard basis of Rn+1

βi = ∥b−Axi∥

Step 3: Update Solution:

Calculate the new solution via
xm = x0 +P−1 ·Vm · ym

if converged then
stop

else
set x0 = xm

restart GMRES algorithm with the new initial vector, x0

end

end

The GMRES solution algorithm involves the calculation of the P−1v products during the Arnoldi algo-
rithm as well as in solution update procedure. This requires the inversion and, subsequently, the multipli-
cation of the preconditioner matrix by an arbitrary vector, v. Moreover, the GMRES algorithm requires
the calculation of the Aw products with w being an arbitrary vector. In the present work, two extremely
efficient approaches are utilized to calculate these terms which are described next.
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1. Calculating
[
∂R
∂Q

]T

w products

As explained in the previous section, the GMRES algorithm requires the calculation of the Aw products
where A is the linear system matrix and w is an arbitrary vector. In the case of the adjoint equations

(Eq. [12]), the system matrix is defined as the transpose of the flow Jacobian, i.e., A =
[
∂R
∂Q

]T

. As was

shown in the original DART approach,25 explicitly forming the flow Jacobian matrix can become prohibitively
costly for very large-scale problems even with the aid of efficient approaches that rely on a graph coloring
technique. This can be circumvented as the GMRES method does not necessarily require the calculation of
the flow Jacobian itself and it only requires the product of the flow Jacobian and an arbitrary vector. For
the GMRES method used for solving the primal flow equations, the product of the linear system matrix and
the arbitrary vector can be easily calculated using a finite-difference-typed approximation49,50 such that

Ax =
∂R

∂Q
w ≈

R (Q+ ϵw)−R (Q)

ϵ
(18)

where ϵ is a carefully-defined perturbation parameter.40,49 As can be seen, this approximation simply
requires one additional residual calculations with the “perturbed” flow solution vector. However, in the case
of the adjoint equations, the linear system matrix is the transpose of the flow Jacobian matrix which does
not allow us to use a similar approach for approximating the matrix-vector product.

Therefore, in order to perform the matrix-free GMRES iterations for solving the adjoint equations, we
rely on the adjoint mode of the automatic differentiation as was originally proposed by Kenway et al.47 To
motivate this approach, let us examine the adjoint (or reverse) mode of AD applied to an arbitrary vector
function y = y (x) where

x =

[
∂y

∂x

]T

y ⇒









x1

x2

...

xN









=









∂y1

∂x1

∂y1

∂x2
. . . ∂y1

∂xN

∂y2

∂x1

∂y2

∂x2
. . . ∂y2

∂xN

...
...

. . .
...

∂yN

∂x1

∂yN

∂x2
. . . ∂yN

∂xN









T 







y1
y2
...

yN









(19)

In the above equation, the adjoint Jacobian matrix includes the entire partial derivative information
required for linearizing the y = y (x) function while the y is known as the “seed” or “input” vector. In
a standard adjoint-based automatic differentiation, the desired derivatives for the n-th output function are
calculated by setting the input seed vector such that

y = [y1, y2, . . . , yn, . . . , yN ]
T
= [0, 0, . . . , 1, . . . , 0]

T
. (20)

Using the exact same idea, we can show that the matrix-vector product necessary for the GMRES
algorithm in solving the adjoint equations can be evaluated by simply seeding the the adjoint tape evaluation
process with the arbitrary vector w, i.e.

x =

[
∂y

∂x

]T

y : Q =

[
∂R

∂Q

]T

R ⇒ R = w (21)

Using this approach, the desired matrix-vector product,
[
∂R
∂Q

]T

w, can be calculated very efficiently and

accurately (non-approximative) using a single tape evaluation based on the adjoint mode of AD.

2. Calculating
[
∂R
∂Q

T

PC

]−1

v products

In addition to the matrix-vector product involving the transposed flow Jacobian that was described in the
previous section, the right-preconditioned matrix-free GMRES algorithm also requires the P−1v products
to be calculated. As discussed earlier, in the case of the adjoint equations (Eq. [14]), the preconditioner
matrix, P, is defined as the transpose of the first-order flow Jacobian. Therefore, it is necessary to form,
transpose, and invert the preconditioner matrix followed by a matrix-vector multiplication to calculate the
[
∂R
∂Q

T

PC

]−1

v products. In the present work, we rely on a robust procedure for calculating this product using
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a “direct” linear solver called MUMPS38,39 that is capable of efficiently calculating x = A−1b for a typical
linear system, Ax = b, where A is a sparse and non-symmetric matrix. Additionally, the MUMPS solver
can be easily configured to solve for the ATx = b system instead. Therefore, the following steps are taken to

efficiently and accurately (down to machine precision) calculate the
[
∂R
∂Q

T

PC

]−1

v products as required during

the preconditioned GMRES algorithm:

1. Record the expression tree into the operation stack (OP-Stack) only for the residual calculation section
of the flow solver based on a “first-order” scheme (see Fig. [2]).

2. Use a distance-2 graph coloring approach to efficiently calculate the non-zero elements of the ∂R
∂QPC

matrix.

3. Run the MUMPS package to only pre-process and factorize the
[
∂R
∂Q

T

PC

]

matrix. Note that the

MUMPS solver is configured to solve for the “transposed” system.

4. For any arbitrary vector v, set the RHS vector of the linear system to b = v and run the MUMPS

solver in the solve mode to calculate the

([
∂R
∂Q

T

PC

]−1

v

)

product

It is very important to note that the proposed approach only requires us to factorize the preconditioner
matrix once. This is very important for the linear adjoint equations as the preconditioner matrix does not
change during the GMRES solution procedure. Therefore, the factorization procedure is only executed once
for the preconditioner matrix with the factorized system stored in the memory for any subsequent calls to
the MUMPS solver. As can be clearly seen, the formation and factorization of the preconditioner matrix will
lead to an added memory footprint for the DART toolbox. However, as will be shown later, the use of the
proposed ANK solution technique can greatly enhance the computational efficiency of the DART toolbox,
especially for large-scale problems.

E. Flow Residual Sensitivity Matrix, ∂R
∂x

, via a Tangent/Forward AD Approach

As described in the previous section, the adjoint mode of the AD is used to evaluate the preconditioner
matrix (based on the first-order flow Jacobian) where rows of the same color are evaluated simultaneously.
Since the Jacobian ∂R/∂Q is a square matrix, it does not necessarily matter whether an adjoint or a
tangent mode of AD is used. However, the flow residual sensitivity matrix, ∂R/∂x, is non-square whose
size is NDOF × Ndv where Ndv refers to the number of design variables used in the optimization problem.
Since in most aerodynamic design optimization problems, the number of design variables is several orders of
magnitude fewer than the number of degrees-of-freedom, i.e., Ndv ≪ NDOF, it would be beneficial to use the
forward mode of AD to evaluate the ∂R/∂x matrix. The numerical procedure that is followed in the DART
toolbox for calculating this matrix will be described next.

The FDOT toolbox developed by Djeddi and Ekici,20 is designed to use the adjoint mode of AD based
on the operator-overloading technique. However, in this work, the capabilities of the FDOT toolbox are
enhanced so that the forward mode of AD could also be handled. Generally, the forward mode of OO/AD
is performed via a repeated execution of the overloaded computer code without the need for recording the
expression tree in the memory. However, in the present work, a novel approach is utilized that can enable
the forward-mode AD without any necessary modifications or user interventions to the flow solver code. The
proposed DART toolbox uses the already recorded OP-Stack to handle forward derivative propagation. The
process starts by “seeding” the OP-Stack for each independent variable, i.e., the design variables, xi, and
evaluating partial derivatives for each unary and binary operation. The tape evaluation process will continue
all the way to the end of the OP-Stack which would result in the desired ∂R/∂xi terms. This process is
also shown in Fig. (4). As can be seen, the entire ∂R/∂x matrix can be evaluated by performing Ndv tape
sweeps in the forward direction based on the tangent mode of AD.

F. Efficient Adjoint-based Sensitivity Analysis using DART

The main objective of the proposed DART approach is to utilize the automatic differentiation capabilities
of the FDOT toolbox within the framework of an efficient discrete adjoint-based sensitivity analysis. As a
result, the automatically differentiated version of the CFD solver, i.e., UNPAC AD, will be redesigned as
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the “geometric optimality,” and “Fritz John (FJ)” conditions.51 Here, the Quadratic Programming (QP)
problem would require the additional gradient information for the equality and inequality constraints with
respect to the design variables. In such cases, the proposed DART approach can be utilized as a very efficient
tool for sensitivity/gradient calculation since only the process described herein for determining the ∂I/∂Q
and ∂I/∂x vectors would need to be repeated for each quantity of interest. As such, the adjoint mode of
AD will be utilized where the objective function or quantity of interest I will be used to “seed” the recorded
OP-Stack. After tape reversal and adjoint evaluations, the partial derivatives necessary for evaluating the
∂I/∂Q and ∂I/∂x vectors will be calculated (AD procedure 3 as shown in Fig. [2]).

2. Total Derivative Calculation

As shown earlier, the adjoint Eq. (14) will be solved to obtain the adjoint flow field where only the right-hand-
side vector, ∂I/∂Q, relies on the quantity of interest or the choice of objective function. This means that,
for a multi-objective design optimization problem, the adjoint equations will be solved for each objective
function by simply substituting the right-hand-side of the linear system. It is important to note that in the
earlier version of the DART toolbox where a “direct” approach was utilized for solving the adjoint equations,
it is possible to perform the factorization on the [∂R/∂Q]

T
matrix only once and then reusing the factorized

transposed Jacobian with different right-hand-side vectors to obtain the corresponding adjoint solutions.
However, this will not be possible in the proposed improved version described in this work. That being said,
the multi-objective optimization problems are not the focus of the present work.

Ultimately, having the adjoint vector, we will perform a matrix-vector multiplication as well as a final
vector addition, according to Eq. (13), to evaluate the final total derivative vector. Once again, this pro-
cess will be repeated for each quantity of interest (objective function and/or the optimization constraints).
Finally, the gradient information will be used in a quadratic programming problem to obtain the new
set of design variables. In the present work, the L-BFGS-B52 and the SLSQP53 optimizers are used for
unconstrained/bound-constrained and PDE-constrained problems, respectively. The design update process
will be repeated until the optimality condition (Eq. [6]) has been satisfied based on a preset tolerance.

IV. Results

In this section, we present our numerical results obtained using the proposed DART approach. First,
the developed toolbox is utilized to perform sensitivity analysis for the NACA0012 airfoil as well as the
ONERA M6 wing - both subject to inviscid transonic flows. These two test cases enable us to study the
performance of the newly proposed DART toolbox in discrete adjoint-based gradient calculations in addition
to conducting a detailed memory footprint and computational effort analysis. Additionally, comparisons are
made between the original DART toolbox and the improved version presented in this work that utilizes the
approximate Newton-Krylov approach for iteratively solving the adjoint system. Finally, the lift-constrained
drag minimization of the RAE 2822 airfoil with turbulent transonic flow is studied.

A. Inviscid Transonic NACA 0012 Airfoil

The first test case presented here involves the discrete adjoint sensitivity analysis for a symmetric NACA0012
airfoil. Here, Euler solutions of the inviscid transonic flow are considered with a free-stream Mach number of
0.8 and an angle of attack of 1.25 degrees. An O-typed structured grid with 256× 257 nodes is considered54

and a Free-Form-Deformation (FFD) box23 with 20 control points is used for shape parameterization. In
order to motivate adjoint solutions, the drag coefficient is considered to be the quantity of interest or the
objective function while the y-coordinates of the FFD box control points are used as the design variables.
The goal here is to study the performance of the DART approach in calculating the adjoint flow field as well
as the total derivative evaluation where both the original and the newly improved versions of the toolbox
are utilized.

First, the primal and adjoint flow fields are presented in Fig. (5) which includes the contours of Mach
number for the primal solution as well as the drag adjoints of the density. The flow reversal, which is the
hallmark of the adjoint method, is evident in Fig. 5(b) with the triangular adjoint shock structure clearly
visible. This reversed shock formation in the adjoint flow field hints the significant sensitivity of the drag
coefficient to the flow field upstream of the shock given the fact that the strong shock forming on the suction
side of the NACA 0012 airfoil acts as the main contributor to the total drag coefficient.
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(a) Absolute Mach number contours (b) Adjoint of density, ρ, contours

Figure 5. Absolute Mach number as well as the adjoint density contour fields obtained from the primal and
adjoint solvers for the inviscid transonic NACA 0012 airfoil case. The quantity of interest for this sensitivity
analysis is the drag coefficient.

Table 1. Peak memory breakdowns for the sensitivity analysis of the transonic NACA 0012 airfoil using
different discrete adjoint tools.

Toolbox FDOT DART (original25) DART (improved)

Total (GB) 4.61 1.29 1.45

MUMPS (MB) - 732 95

Normalized 1.0 0.279 0.314

In the original version of the DART toolbox, the distance-4 greedy graph coloring approach is used to
color the computational mesh which results in 95 distinct colors. This means that the number of tape
reversal and adjoint evaluations necessary for calculating the flow Jacobian matrix would be only a small
fraction of NDOF. As explained earlier, the computational grid for this case has 65,792 nodes with four
conservation variables at each node for this inviscid two-dimensional test case. This means that the total
number of degrees-of-freedom for this case is 263,168 while the total number of tape reversal and adjoint
evaluations would only be NAD = 380 which results in a very significant memory saving of more than 99.8%.
In the present work, however, only the first-order Jacobian is formed to obtain the preconditioner matrix
even though the adjoint solutions are based on the second-order fluxes of the primal flow solver. As a result,
a distance-2 graph coloring is used which leads to only nine colors for the graph of the computational mesh.
Additionally, the memory footprint and CPU time breakdowns for the DART approach are presented in
Tables (1) and (2) for which the size of the Krylov subspace is set to m = 10.

The data shows that both the original and the improved versions of the DART toolbox lead to very
small memory footprints due to much shorter expression trees that are recorded into the OP-Stack as was
depicted in Figs. (1) and (2). Additionally, the compressed sparse storage format for the Jacobian matrix
saves memory by only storing a very small number of non-zero terms. The MUMPS package is also designed
to be memory efficient for small to moderately-sized problems and the total time spent for factorization and
solution of the linear system is only a small fraction of the total time spent in the primal code. Furthermore,
it is important to compare the memory and computational efficiencies of the original and improved versions
of the DART toolbox. Tables (1) and (2) show that the ANK-based version requires a higher memory
footprint as it needs the formation and storage of the preconditioner matrix. On the other hand, the use of
the matrix-free GMRES technique significantly reduces the computational cost of the adjoint solver. Overall,
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Table 2. Breakdowns of the wall-clock time for the sensitivity analysis of the transonic NACA 0012 airfoil
using different discrete adjoint tools.

Toolbox FDOT DART (original25) DART (improved)

Runtime unit unit unit

Total 4.5 (hrs) 3.88 (min) 2.67 (min)

Jacobian, ∂R/∂Q - 3.16 (min) - -

matrix-free GMRES - - - 1.33 (min)

Preconditioner, ∂R/∂QPC - - - 52 (s)

Residual Sensitivity, ∂R/∂x - 21.5 (s) 21.5 (s)

Vectors, ∂I/∂Q and ∂I/∂x - 2.1 (s) 2.1 (s)

MUMPS:

Factorization - 9.29 (s) 3.12 (s)

Solve - 2.32 (s) 1.53 (s)
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Figure 6. Convergence histories of the preconditioned matrix-free GMRES solver for the adjoint equations for
different numbers of Krylov vectors included in the subspace: Inviscid transonic flow past NACA 0012 airfoil.

the most expensive part in the original DART toolbox is the formation of the second-order Jacobian matrix
based on the distance-4 graph coloring. This requires NAD = Ncolor × Neqn evaluations of the tape (OP-
Stack) for the second-order residual calculation. However, in the matrix-free GMRES approach, this tape
only needs to be evaluated k(m+1)+1 times, where k is the number of GMRES restarts and m is the size of
the Krylov subspace. The GMRES iterations are continued until at least 10 orders of magnitude reduction
in the original results has been achieved which, for this inviscid transonic case, can be attained after 11
GMRES restarts with 10 Krylov vectors. Additionally, the convergence history of the GMRES solver is
shown in Fig. (6) for this inviscid transonic case involving the NACA 0012 airfoil. As is commonly done
in the CFD literature, the effect of the Krylov subspace size is studied next by varying number of Krylov
vectors included in the GMRES algorithm. It can be seen that a small number of Krylov vectors can lead to
a significantly slower convergence rate or even stability issues while unnecessarily increasing the size of the
Krylov vector would only increase the memory footprint with little to no effects on the convergence rate.

The accuracy of the gradient evaluations using the original FDOT toolbox has been studied in previous
works.2,20 However, in order to examine the accuracy of total derivative calculations using the new approach,
the sensitivity of the drag coefficient with respect to the free-stream Mach number is considered. As presented
in Table 3, the sensitivity values obtained from the original FDOT toolbox24 and DART toolbox in its
original and improved versions are compared to the finite-difference approximations using a second-order
central difference scheme. The results clearly demonstrate the accuracy of the gradient evaluations.
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Table 3. Comparison of the drag sensitivity calculations w.r.t free-stream Mach number ( ∂CD

∂M∞

) for the NACA

0012 airfoil case.

Finite-Difference FDOT DART Toolbox DART Toolbox

(2nd order) Toolbox (original25) (improved)

0.3278671019 0.327867042969275 0.327867042969271 0.327867042969145
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Figure 7. Drag adjoints of density and y-momentum on the surface of the NACA 0012 airfoil subject to inviscid
transonic flow.

Finally, the distributions of the drag adjoints in terms of density and y-momentum on the surface of the
NACA 0012 airfoil are presented in Fig. (7). Once again, the total drag coefficient is extremely sensitive to
the flow solution upstream of the shocks. In particular, the strong shock formation on the suction side of
the airfoil is the main contributor to the drag coefficient and eliminating this shock would lead to significant
reductions in drag.

B. Transonic Flow Past the ONERA M6 Wing

The second test case focuses on the sensitivity analysis of the transonic flow past the ONERA M6 wing by
utilizing the proposed toolbox. The flow structure over this wing involves a supersonic region with a special
shock formation known as the lambda shock.2,55,56 The geometry of the wing is based on the symmetric
ONERA D airfoil, which has a maximum thickness-to-chord ratio of 10%. The wing has a sweep angle of 30
degrees at the leading edge and an aspect ratio of 3.8 and is tapered with a ratio of 0.562. The flow conditions
are set according to the experiments carried out by Schmitt and Charpin57 with a free-stream Mach number
of 0.8395 and an angle of attack of 3.06◦. Transonic flow past the ONERA M6 wing has been used in the
literature as a standard benchmark test case for validation and verification of many CFD solvers while the
unconstrained or lift-constrained drag minimization of this wing has been investigated extensively58–60 for
optimization studies. The computational grid used for this study consists of a rectangular outer boundary
that extends about 10 mean chord lengths on each side. The fully unstructured grid has 108, 396 nodes and
582, 752 tetrahedral elements with 38, 756 triangular elements on the surface of the wing. Here, a symmetry
boundary condition is used on the root-plane and characteristic boundary conditions are used for far-field
boundaries.

The drag coefficient is used as the objective function for sensitivity analysis. In the original version
of the DART toolbox, the distance-4 greedy graph coloring approach was used to color the computational
mesh which resulted in 1, 374 distinct colors providing significant reduction in the number of tape evaluations
necessary for calculating the second-order flow Jacobian compared to the 108, 396 nodes of the computational
mesh. While this is an impressive reduction in the total number of tape reversal and adjoint evaluations, the
improved version of the DART toolbox only needs to calculate and form the first-order Jacobian which will
be used for preconditioning the GMRES solver even though the adjoint solutions are based on the second-
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order fluxes of the primal flow solver. As a result, a distance-2 graph coloring is used which leads to only 38
colors for the graph of the computational mesh. For comparison purposes, the memory footprint and CPU
time breakdowns for the DART approach are presented in Tables (4) and (5) along with FDOT and original
DART requirements.

Table 4. Peak memory breakdowns for the sensitivity analysis of the transonic ONERA M6 wing using different
discrete adjoint tools.

Toolbox FDOT DART (original25) DART (improved)

Total (GB) 69.3 24.6 40.1

MUMPS (GB) - 19.3 4.97

Normalized 1.0 0.355 0.579

It is apparent that the memory footprint is significantly reduced and the total memory requirements of
the original and improved versions of the DART approach are still remarkably less than the memory footprint
of the original FDOT toolbox. However, compared to the two-dimensional case of the NACA 0012 airfoil
studied earlier, the memory reductions are less extreme. This can be associated with the grid pre-processing
and metric calculations for a three-dimensional case that are more demanding compared to a two-dimensional
case. It is, however, important to note that the overall memory footprint for the improved DART approach
is increased since two operation stacks (or tapes) are recorded (one for the first-order and the other for the
second-order flux computations) instead of only one (for the second-order flux computations). As discussed
before, the operation stack based on the first-order flux calculation is used for evaluating and forming the
preconditioner matrix, ∂R/∂QPC, the other tape is used for matrix-free GMRES calculations. This results
in a higher memory footprint for the adjoint evaluation toolbox. However, as was also shown in the previous
test case, the use of the ANK approach for solving the adjoint system, results in a significant reduction
of the computational cost. Detailed wall-clock time breakdowns and comparisons between the original and
improved versions of the DART toolbox are presented in Table (5).

Table 5. Breakdowns of the wall-clock time for the sensitivity analysis of the transonic ONERA M6 wing
using different discrete adjoint tools.

Toolbox FDOT DART (original25) DART (improved)

Runtime unit unit unit

Total 32.5 (hrs) 4.85 (hrs) 23.2 (min)

Jacobian, ∂R/∂Q - 4.72 (hrs) - -

matrix-free GMRES - - - 18.02 (min)

Preconditioner, ∂R/∂QPC - - - 3.64 (min)

Residual Sensitivity, ∂R/∂x - 42.4 (s) 42.4 (s)

Vectors, ∂I/∂Q and ∂I/∂x - 12.3 (s) 12.3 (s)

MUMPS:

Factorization - 2.82 (min) 32.1 (s)

Solve - 12.1 (s) 2.42 (s)

These results once again exhibit the efficiency and robustness of the proposed DART approach compared
to the original FDOT automatic differentiation toolbox, which itself is quite efficient. While the total time
required for the adjoint solver based on the FDOT toolbox is always a factor of 1 to 3 times of that of the
primal code, the original DART approach significantly reduces this computational overhead. The improved
version of the DART approach, presented in this work, however, further increases the computational efficiency
of adjoint calculations to the points that an adjoint run that used to take more than one day is now executed
in less than half an hour. This obviously makes the proposed approach an extremely viable option for
gradient-based aerodynamic design optimization in large-scale applications.

The sensitivity or the gradient of the objective function with respect to the free-stream Mach number has
also been validated against the finite-difference approximations in order to verify the accuracy of the DART
approach in performing the discrete adjoint analysis. These results are presented in Table (6) and they
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Table 6. Comparison of the drag sensitivity calculations w.r.t free-stream Mach number ( ∂CD

∂M∞

) for the ONERA

M6 wing case.

Finite-Difference FDOT DART Toolbox DART Toolbox

(2nd order) Toolbox (original25) (improved)

0.0797812495 0.0797812896873181 0.0797812896873187 0.0797812896898271

show the close agreements of the sensitivity calculations obtained from the original and improved versions of
the DART toolbox compared to the finite-difference approximations using a second-order central difference
scheme and the result obtained from our original FDOT toolbox.20

As explained earlier, the most expensive part in the original DART toolbox is the formation of the
second-order Jacobian matrix based on the distance-4 graph coloring which requires NAD = Ncolor × Neqn

evaluations of the tape (OP-Stack). However, in the matrix-free GMRES approach, the number of tape
evaluations would only depend on the size of the Krylov subspace and the number GMRES restarts. For the
transonic flow past the ONERA M6 wing, the GMRES iterations are continued until 8 orders of magnitude
reduction in the original results has been achieved which occurs after 12 GMRES restarts with 10 Krylov
vectors included in the subspace. Additionally, the convergence history of the GMRES solver is given in
Fig. (8). Also presented is a comparison of convergence histories for the GMRES algorithm with varying
number of Krylov vectors. While there is no specific rule of thumb for the required size of the Krylov
subspace, it is shown that unnecessarily increasing the number of Krylov vectors would only increase the
memory footprint with little to no effects on the convergence rate.
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Figure 8. Convergence histories of the preconditioned matrix-free GMRES solver for the adjoint equations for
different numbers of Krylov vectors included in the subspace: Inviscid transonic flow past ONERA M6 wing.

Finally, the primal and adjoint fields are presented in Fig. (9) which includes the contours of pressure
coefficient on the surface of the wing as well as the drag adjoints of the total energy, ρE. The numerical
results obtained for the inviscid transonic flow past the ONERA M6 wing are also compared against the
experimental data of Schmitt and Charpin.57 These solutions are reported at 2 different sections along
the span of the wing and the distribution of the surface pressure coefficient at each section. As can be
seen in Fig. (10), the primal solutions show a good agreement between the UNPAC solver results and the
experimental data. Additionally, the adjoints of the total energy on the surface of the wing clearly depict
the adjoint lambda shock that forms on the top surface of the ONERA M6 wing as opposed to the actual
lambda shock that can be seen in the primal solution.
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(a) Pressure coefficient contours (b) Adjoint of total energy, ρE, contours

Figure 9. Pressure coefficient as well as the adjoint of total energy contour fields obtained from the primal and
adjoint solvers for the inviscid transonic ONERA M6 wing case. The quantity of interest for this sensitivity
analysis is the drag coefficient.
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Figure 10. Primal and adjoint solutions at the η = 20% and 65% spanwise locations along the ONERA M6 wing
for the inviscid transonic case with the drag coefficient used as the objective function.

C. Lift-Constrained Drag Minimization: RAE 2822 Airfoil

The last test case presented in this work studies the lift-constrained drag minimization of the RAE 2822
airfoil in turbulent transonic flow. The free-stream Mach number for this case is 0.734 at a Reynolds number
of 6.5 million. A hybrid grid with 22, 842 cells and 13, 937 nodes is considered which consists of 4, 800
quadrilateral elements in the near-field region and 18, 042 triangular elements for the rest of the domain that
is extended for 100-chord lengths away from the airfoil surface. The goal of the optimization problem is to
minimize the drag coefficient while maintaining a target lift coefficient. As shown in previous works,24 the
lift-constrained drag minimization problem can be redefined as an unconstrained optimization problem with
the addition of the angle of attack to the list of design variables while also augmenting the objective function
by the “equality” lift coefficient constraint with a target lift coefficient of 0.824. This target lift constraint
would initially require an angle of attack of 2.9209◦ to be satisfied for the current primal solver. Here, once
again a free-form deformation (FFD) box is used to parameterize the airfoil geometry. The FFD box tightly
encloses the RAE 2822 airfoil and the degrees of the Bernstein polynomials in ξ and η directions are taken
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to be 15 and 1, respectively. In order to fix the leading and trailing edges of the airfoil during the shape
optimization cycles, the first and last rows of the FFD box control points are frozen. Also, the control points
of the FFD box are only allowed to move in the y-direction. Therefore, the y coordinates of the remaining
28 control points are considered as the geometrical design variables, x. With the addition of the angle of
attack as an extra variable, the total number of design variables for this constrained optimization problem
would be 29.

Table 7. Peak memory breakdowns for the lift-constrained drag minimization of the RAE 2822 airfoil.

Toolbox FDOT DART (original25) DART (improved)

Total (MB) 1,722 502 678

MUMPS (MB) - 218 36

Normalized 1.0 0.291 0.394

Table 8. Breakdowns of the wall-clock time for the lift-constrained drag minimization of the RAE 2822 airfoil.

Toolbox FDOT DART (original25) DART (improved)

Runtime unit unit unit

Total 3.87 (hrs) 1.84 (min) 1.23 (min)

Jacobian, ∂R/∂Q - 1.77 (min) - -

matrix-free GMRES - - - 31.9 (s)

Preconditioner, ∂R/∂QPC - - - 31 (s)

Residual Sensitivity, ∂R/∂x - 8.4 (s) 8.4 (s)

Vectors, ∂I/∂Q and ∂I/∂x - 1.2 (s) 1.2 (s)

MUMPS:

Factorization - 2.76 (s) 1.22 (s)

Solve - 0.07 (s) 0.07 (s)
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Figure 11. Convergence histories of the preconditioned matrix-free GMRES solver for the adjoint equations
for m = 15 Krylov vectors included in the subspace: Turbulent transonic flow past RAE 2822 airfoil.

First, the memory footprint and CPU time breakdowns for the DART toolbox in its original and improved
versions are presented in Tables (7) and (8). Once again, the original DART toolbox requires the distance-4
greedy graph coloring for the calculation of the second-order Jacobian which results in 142 distinct colors.
For the RAE 2822 airfoil case, the computational grid consists of 13,937 nodes which means that the graph
coloring algorithm utilized in the original DART toolbox leads to an almost 98.98% reduction in the number of
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tape reversal and adjoint evaluations during the matrix assembly procedures in DART toolbox. However, the
reductions are significantly higher in the improved version since a distance-2 coloring is used for calculating
the preconditioner matrix which relies on only 16 colors. Additionally, for this turbulent transonic case
which involves the solution of the 2D RANS equations, the size of the Krylov subspace had to be increased
to m = 15 and it takes 30 restarts for the GMRES solver to converge. Once again, the wall-clock time
breakdowns presented in Table (8) show that the computational cost of the GMRES solver is significantly
lower compared to the cost of explicitly forming the second-order Jacobian matrix as done in the original
DART toolbox.
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Figure 12. Comparison of RAE 2822 airfoil shape and the surface pressure coefficients for the original and
optimized geometries.

Having presented the performance test results for the proposed DART toolbox, we now focus on the
aerodynamic design optimization results. For this case, the original geometry with the prescribed flow
conditions leads to a drag count of 208 which is reduced to 112 counts (almost 46.1% reduction) after the
shape optimization. Since the target lift coefficient is maintained via the equality constraint incorporated as
the augmented Lagrangian functional,24 the drag minimization achieved here will result in an almost 86%
increase in the airfoil efficiency.

Next, the airfoil shape and the surface pressure coefficient distributions are compared for the original and
optimized geometries. These results are presented in Fig. 12 where the shock is completely eliminated as the
shock-boundary-layer interaction is the main contributing factor to the total drag being minimized for this
airfoil. The elimination of the shock during the design optimization process can be also shown via the Mach
number contour plots for the original and optimized cases presented in Fig. 13. The optimized configuration
exhibits a weaker shock-boundary-layer interaction for the deformed RAE 2822 airfoil which results in a
reduced drag count for this airfoil at the present flow conditions. Additionally, the FFD box deformation as
well as the interior mesh deformation are presented in Fig. 14 demonstrating maximum deformation of the
FFD box around the quarter-chord of the airfoil.

Finally, the adjoint fields are presented in Fig. (15) for density as well as the modified eddy viscosity
(also known as the SA model working variable). Once more, it is interesting to note the flow reversal that is
exhibited in the adjoint field as well as the triangular adjoint shock structure. This adjoint shock formation
is indicative of the region in the flow field where the sensitivities of the drag coefficient with respect to
the flow solution are large. Therefore, variations in the flow field around this region would have the most
significant effects on the total drag count of the RAE 2822 airfoil. Additionally, the adjoints of the modified
eddy viscosity, ρν̃, show that the sensitivities of the drag coefficient with respect to the eddy viscosity are
understandably large inside the boundary layer as well as upstream of the airfoil.
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(a) Original Design (b) Optimized Design

Figure 13. Contour field of Mach number for the turbulent transonic flow past RAE 2822 airfoil.

(a) Original Box (b) Deformed (Optimized) Box

Figure 14. Original and deformed FFD box that parameterizes the RAE 2822 airfoil for the lift-constrained
drag minimization problem.

V. Conclusions

The Discrete Adjoint Recursive Technique (DART) toolbox, that was previously introduced by the au-
thors, is improved in this work that enables a memory efficient and robust sensitivity analysis. The DART
toolbox relies on the in-house automatic differentiation toolbox, FDOT,20 that was originally developed by
the authors for discrete adjoint sensitivity analysis and gradient calculation of CFD solvers written in mod-
ern Fortran programming language based on the operator-overloading technique. The original version of the
proposed DART toolbox utilizes a recursive technique for evaluating the second-order Jacobian matrix of
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(a) Adjoint of density, ρ, contours (b) Adjoint of modified eddy viscosity, ρν̃, contours

Figure 15. Adjoint fields of density and modified eddy viscosity for the lift-constrained drag minimization of
the RAE 2822 airfoil.

the CFD solver. It also relies on a distance-4 greedy graph coloring of the computational grid that can sig-
nificantly reduce the computational cost of tape reversal necessary for calculating and forming the Jacobian
matrix. However, unlike the original version that uses the MUMPS sparse solver package to directly solve the
linear adjoint system, the improved version relies on an iterative Newton-Krylov approach. Therefore, the
matrix-free GMRES technique is utilized to solve the adjoint system where the transposed Jacobian-vector
products are calculated using a reverse or adjoint evaluation of the operation stack. Therefore, it is no
longer necessary to explicitly form the second-order flow Jacobian, thus resulting in an extremely efficient
adjoint calculation. The convergence and stability of the GMRES technique is, however, contingent upon a
suitable preconditioner matrix. In this work, the first-order flow Jacobian matrix is used for preconditioning
the adjoint system, thus resulting in an “Approximate Newton-Krylov (ANK)” solution technique. This
Jacobian matrix is calculated in a very efficient and extremely accurate fashion based on the underlying
automatically-differentiated CFD solver (using the FDOT toolbox) and by utilizing a distance-2 graph col-
oring. Ultimately, the preconditioner matrix is factorized directly using the MUMPS linear solver package.
The factorized preconditioner is then used as part of the right-preconditioned GMRES algorithm to solve
the linear adjoint system. Additionally, the proposed toolbox uses a forward/tangent mode of AD for calcu-
lating the non-square matrix, ∂R/∂x, that is necessary for calculating the total derivatives of the objective
function with respect to the vector of design variables. Finally, the resulting sensitivity information can be
directly used for gradient-based design optimization. The developed DART toolbox is ultimately used for
sensitivity analysis and drag minimization of various airfoil and wing designs. It must be noted that the
computational grids used for cases studied in this work are relatively coarse. However, our numerical results
have shown that the memory requirements of the MUMPS solver, that is used for the factorization of the
preconditioner matrix, grow exponentially with the grid size. This can create barriers for the simulations on
standard servers and clusters that typically have about 200-300 Gbytes of RAM per node. These memory
issues are the subject of an ongoing research and will be addressed in a future work that aims at enhancing
the memory efficiency of the proposed DART toolbox by utilizing alternative approaches for forming and
utilizing preconditioner matrices with a higher computational efficiency and lower memory footprint, while
still providing stability to the preconditioned GMRES solver used in the DART toolbox.
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