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Abstract: The strictly conserved ↵Ser162 residue in the Co-type nitrile hydratase from Pseudonocardia
thermophila JCM 3095 (PtNHase), which forms a hydrogen bond to the axial ↵Cys108-S atom, was
mutated into an Ala residue. The ↵Ser162Ala yielded two different protein species: one was the
apoform (↵SerA) that exhibited no observable activity, and the second (↵SerB) contained its full
complement of cobalt ions and was active with a kcat value of 63 ± 3 s�1 towards acrylonitrile at
pH 7.5. The X-ray crystal structure of ↵SerA was determined at 1.85 Å resolution and contained no
detectable cobalt per ↵2�2 heterotetramer. The axial ↵Cys108 ligand itself was also mutated into Ser,
Met, and His ligands. All three of these ↵Cys108 mutant enzymes contained only half of the cobalt
complement of wild-type PtNHase, but were able to hydrate acrylonitrile with kcat values of 120 ± 6,
29 ± 3, and 14 ± 1 s�1 for the ↵Cys108His, Ser, and Met mutant enzymes, respectively. As all three of
these mutant enzymes are catalytically competent, these data provide the first experimental evidence
that transient disulfide bond formation is not catalytically essential for NHases.

Keywords: nitrile hydratase; cobalt; hydration; mutant; X-ray crystallography; UV–vis spectroscopy

1. Introduction
Nitrile hydratases (NHases, EC 4.2.1.84) are metalloenzymes that catalyze the hy-

dration of nitriles to their corresponding amides under ambient conditions and physio-
logical pH [1,2]. Their biological role is not well-understood but likely involves nutrient
metabolism, product biosynthesis, hormone degradation, nitrile detoxification, or nutrient
assimilation [3]. NHases have attracted substantial interest as biocatalysts in preparative
organic chemistry, as they can hydrate a wide range of synthetic nitrile substrates, resulting
in their exploitation for biotechnological purposes as biocatalysts in the production of
acrylamide and nicotinamide [4]. A key advantage of NHases is their stereoselectivity,
which is particularly important in the pharmaceutical arena [5]. NHases are also useful
in the bioremediation of chemical and wastewater runoff, specifically for the hydration of
nitrile-based pesticides such as bromoxynil, and are thus becoming increasingly recognized
as biocatalysts for green chemical processes [6]. Despite the biological, industrial, and
bioremediation importance of NHase enzymes, a deeper understanding of their reaction
mechanism is required to apply and exploit this elegant catalytic chemistry.

NHases contain either a low-spin Fe(III) (Fe-type) or Co(III) (Co-type) ion in their
active site [7]. X-ray crystallographic studies on NHases reveal that they are ↵2�2 het-
erotetramers with an active-site metal ion coordinated by three cysteine residues, two
amide nitrogens, and a water or hydroxyl moiety (Figure 1) [7–9]. The prevailing dogma is
that both the Co- and the Fe-type of ↵2�2 NHase enzymes require the coexpression of an
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activator (") protein to be fully metallated, post-translationally modified, and fully func-
tional [10–12]. Two of the active-site cysteine residues are post-translationally modified into
cysteine-sulfinic acid (–SO2H) and cysteine-sulfenic acid (–SOH), yielding a coordination
geometry termed a “claw setting”; the oxidation of equatorial Cys residues is essential for
catalysis [13]. The catalytic relevance of these moieties is established, but information on
their mechanistic roles is only just starting to evolve.
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Figure 1. Active site of PtNHase (PDB:1IRE). Dashed line, distance between sulfur atom of axial
Cys108 ligand and oxygen atom of OH group of ↵Ser162.

Recent theoretical studies suggested that the axial thiolate ligand can form a tran-
sient disulfide bond with a recently identified sulfenic acid cyclic intermediate (Figure 2,
pathway B) [14,15]; however, a more recent theoretical study is self-inconsistent in its
conclusions regarding transient disulfide formation, as the barrier for disulfide formation
is similar to that of cyclic intermediate formation, suggesting that both are viable interme-
diates [14]. All theoretical calculations assume that the ↵Cys ligand is a thiolate, making
it a strong ⇡-donor ligand and a good a nucleophile [14–16]. However, in NHases, the
thiolate character of the ↵Cys ligand, and hence metal ion Lewis acidity, is likely modulated
through hydrogen bonding interaction, influencing the ↵Cys sulfur ligand’s ⇡-donating
ability and nucleophilicity. Sequence analysis of Co- and Fe-type NHase enzymes indicates
that either an ↵Ser or ↵Thr residue is strictly conserved in this position, with the ↵Ser
typically found in Co-type enzymes, and the ↵Thr found in Fe-type NHases.

To gain insight into the role of the axial ↵Cys108 ligand in catalysis, a two-pronged
approach was employed. First, the hydrogen bonding interaction between the axial ↵Cys-S
atom and a strictly conserved ↵Ser162 residue in the Co-type NHase from Pseudonocardia
thermophila JCM 3095 (PtNHase) was investigated in substitution mutation ↵Ser162!Ala.
Thus, the H-bonding interaction, which was hypothesized to influence the ↵Cys-S lig-
and’s ⇡-donating ability and nucleophilicity; hence, active-site Co(III) ion Lewis acidity
was removed. Second, the axial ↵Cys108 ligand in PtNHase was substituted with Ser
(↵Cys108Ser), Met (↵Cys108Met), or His (↵Cys108His), which significantly changes the
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�- and ⇡-donating ability of the active-site axial ligand. Each of these mutant PtNHase
enzymes was analyzed via kinetic and spectrophotometric methods, and interpreted in
light of an X-ray crystal structure for the ↵Ser162Ala mutant.
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Figure 2. Proposed catalytic mechanism for NHase enzymes. Two possible pathways have been proposed and are labeled
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2. Results and Discussion
2.1. PtNHase aSer162Ala Mutant Enzyme: Purification and Kinetic Characterization

Initially, the ↵Ser162Ala PtNHase mutant enzyme was prepared and analyzed. The
OH moiety of ↵Ser162 is 3.6 Å from the axial ↵Cys108 sulfur ligand and is the only group
within 5 Å (Figure 1) [17,18]. Such a hydrogen bonding interaction between ↵Ser162 and
the ↵Cys108 ligand likely influences the ⇡-donating ability and nucleophilicity of the axial
Cys ligand, which is consistent with model complex studies [19,20]. During the isolation
of ↵Ser162Ala, two species with distinct Ni2+ affinity chromatographic elution profiles
were isolated, both of which corresponded to PtNHase by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis(SDS-PAGE) and size-exclusion chromatography. The
earlier-eluting species, termed ↵SerA, which eluted at 150 mM imidazole, was colorless
(Figure 3, vial 2) and exhibited no catalytic activity toward acrylonitrile (Table 1). The
later-eluting fraction, ↵SerB, eluted at 225 mM imidazole and was straw-colored (Figure 3,
vial 3), which is similar to that of wild-type PtNHase (Figure 3, vial 1). In addition, ↵SerB

was catalytically active, displaying a kcat value of around 60 s�1, or around 3% of the native
enzyme (Table 1).
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Figure 3. As purified Samples 1 (198 µM Wt-PtNHase) 2 (1.1 mM PtNHase ↵SerA), and and 3 (247 µM
PtNHase ↵SerB) in 50 mM HEPES pH 7.0 at room temperature.

Table 1. Kinetic constants (kcat and Km) using acrylonitrile as substrate at pH 7.5 for WT PtNHase
and active-site mutants.

kcat (s�1) Km (mM) Co Content

WT PtNHase 1790 ± 50 3.0 ± 0.4 1.8 ± 0.3
PtNHase ↵SerA a ND - <0.1 ± 0.2
PtNHase ↵SerB 63.4 ± 3.2 35.0 ± 4.2 1.8 ± 0.3

PtNHase ↵C108M 14 ± 1 3.1 ± 0.5 0.8 ± 0.2
PtNHase ↵C108S 29 ± 3 1.8 ± 0.7 0.9 ± 0.2
PtNHase ↵C108H 120 ± 6 2.6 ± 0.6 1.0 ± 0.2

a None detected.

The Km value observed for the ↵SerB mutant towards acrylonitrile was 35 mM, which
is nearly 43-fold larger than that of WT PtNHase, indicating that the loss of hydrogen
bonding to the axial ↵Cys ligand significantly diminishes the binding affinity of the nitrile
substrate. This is consistent with the expected influence on the ⇡-donating ability and
nucleophilicity of the ↵Cys ligand, and hence the Lewis acidity of the Co(III) ion. Thus,
the observed diminution of substrate binding affinity could have been due to the low-spin
Co(III) ion being more kinetically inert, so the axial water molecule could not dissociate,
due to poorer binding affinity for the acrylonitrile substrate due to a more electron-rich
low-spin Co(III) ion, or a combination of both. The presence of detectable activity in ↵SerB–
↵Ser162Ala indicates that, at least for a population of the ↵SerB–↵Ser162Ala PtNHase
mutant enzyme, active-site Cys residues must be properly oxidized to cysteine sulfinic and
sulfenic acids, as the oxidation of the axial Cys residues to cysteine sulfinic and sulfenic
acids is required for enzymatic activity [21].

2.2. Metal Analysis and Spectral Characterization of aSerA and aSerB Forms of aSer162Ala
Mutant Enzymes

A combination of ICP-MS and UV–vis spectroscopy was used to determine if the
↵SerA and ↵SerB PtNHase mutant enzymes, expressed in the presence of an activator
(") protein, contained their full complement of cobalt. As a control, ICP-MS data were
obtained on WT PtNHase, which revealed ~1.8 cobalt ions per ↵2�2 tetramer, while the
UV–vis spectrum exhibited the characteristic S ! Co(III) ligand-to-metal charge-transfer
(LMCT) band at ~320 nm (" = ~29,000 M�1 cm�1; Figure 4) that is due to the axial thiolate
⇡ to Co(III) d⇡* transition [22], resulting in the observed straw color [23]. ICP-MS data
obtained for the ↵SerA and ↵SerB forms of the ↵Ser162Ala mutant indicated that ↵SerA

contained <0.1 cobalt ions per ↵2�2 tetramer, which is the detection limit, while ↵SerB

contained ~1.8 cobalt ions per ↵2�2, indistinguishable from WT PtNHase (Table 1). The
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UV–vis spectrum of the ↵SerB mutant exhibited the characteristic S ! Co(III) ligand-to-
metal charge-transfer (LMCT) band at ~320 nm (" = ~29,000 M�1 cm�1), identical to WT
PtNHase, whereas the ↵SerA mutant exhibited no visible absorption (Figure 4).
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(dotted line), and 16.2 µM PtNHase ↵SerB (dashed line) in 50 mM HEPES buffer, pH 7.0 at 25 �C.

2.3. Crystal Structure of aSerA (apo-aSer162Ala) PtNHase Mutant Enzyme
Verification that the ↵SerA form of the ↵Ser162Ala PtNHase mutant enzyme was

in the apoform comes from the three-dimensional X-ray crystal structure, determined
to 1.85 Å resolution (Figure 5A). While multiple attempts were made to obtain X-ray
diffraction-quality crystals of the ↵SerB mutant using a wide variety of conditions and
solution/enzyme concentrations, none was successful. Details of data collection and
refinement statistics for ↵SerA are given in Table 2. The overall structure of ↵SerA is nearly
identical to that previously reported for WT PtNHase (PDB code: 1IRE). On the basis of Fo–
Fc difference maps (Figure 5A,B), ↵SerA contained no detectable cobalt, as expected from
ICP-AES data (Table 1). Consistent with the lack of a fully post-translationally matured
metal-containing active site in the inactive ↵SerA, the active site equatorial ↵Cys residues
were found not to be post-translationally modified to cysteine sulfinic and sulfenic acids.

The previously reported X-ray crystal structure of apo-WT PtNHase that had been
expressed in the absence of the activator (") protein (PDB code: IUGQ) indicated the
presence of a disulfide bond between the axial Cys residue (↵Cys108) and the equatorial
Cys that becomes the sulfenic acid ligand (↵Cys113) (Figure 5C) with an S–S bond distance
of 2.04 Å [18]. In contrast, the X-ray structure of the ↵SerA PtNHase mutant enzyme,
expressed in the presence of the activator (") protein and 0.25 mM Co(II), exhibited little or
no electron density between ↵Cys108 and ↵Cys113 active-site residues, suggesting weak
disulfide bond formation at best (Figure 5A). In addition, both the equatorial cysteine
residues (↵C111 and ↵C113) crystalized in alternate conformations, labeled A and B, with
a 50:50 ratio (Figure 5B). The distance between the ↵Cys108 and ↵Cys113 sulfur atoms
in the A and B conformations was 3.61 and 2.89 Å, respectively. Both of these distances
are longer than the typical disulfide bond, and the mutual orientations of the residues in
↵SerB are not conducive to a disulfide bond. As the orientation of ↵Cys113 S-atom in the B
conformation is identical to that of the ↵Cys113 S-atom in the apo-WT PtNHase enzyme,
the lack of a disulfide bond between the ↵Cys108 and ↵Cys113 residues in the ↵SerA

is likely a consequence of the lack of a hydrogen bond between ↵Ser162 and ↵Cys108.
This hydrogen-bonding interaction likely helps to preorganize ↵Cys108 and ↵Cys113 for
disulfide bond formation in the immature active site of post-translationally unprocessed
("�) apo-WT NHase.
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Figure 5. X-ray crystal structure of ↵SerA at 1.8 Å resolution. (A) Simulated annealing omit map (2Fo–Fc) shown in gray
mesh at the 1.0 � level, contoured at 2.0 �. Additional electron density (Fo–Fc) omit map shown as green mesh at 3.0 �

level indicating alternate ↵Cys111 and ↵Cys113 conformations; (PDB ID: 7SJZ) (B) simulated annealing omit map (2Fo–Fc)
shown in gray mesh at the 1.0 � level, contoured at 2.0 � of ↵SerA active site fit with both alternate conformations in a 50:50
ratio (PDB ID: 7SJZ); (C) superposition of active site of ↵SerA(wheat tint) and Apo-PtNHase(cyan) (PDB: 1GUQ). All bond
distances shown in angstroms.
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Table 2. Data collection and refinement statistics for the ↵SerA PtNHase mutant enzyme (PDB
ID: 7SJZ).

PDB ID: 7SJZ

Space group P32 2 1
Cell Dimensions

↵, �, � (�) 90.0, 90.0, 120.0
a, b, c (Å) 65.91, 65.91,186.23

Resolution range (Å) 48.66–1.85 (1.92–1.85)
Redundancy 8.55 (6.84)

Completeness (%) 98.3 (98.6)
Unique reflections 40335

Rmerge 0.055 (0.098)
Average I/� 23.9 (12.5)

Refinement:
Resolution range (Å) 42.05–1.85

Rwork 0.164 (0.172)
Rfree 0.211 (0.218)

Number of nonsolvent atoms 3447
Number of water molecules 516

Wilson B values (Å2) 17.7
Average B factor 18.7

Protein 17.4
Solvent 28.5

Ramachandran (%)
Favored 98.3
Allowed 1.7

Disallowed 0.0
Outlier (%) 0.0

r m s bond deviations
Bond length (Å) 0.011
Bond angle (�) 1.642

2.4. PtNHase aCys108Ser, aCys108Met, and aCys108His Mutant Enzymes: Purification and
Kinetic Characterization

The expression of PtNHase ↵Cys108Ser, ↵Cys108Met, and ↵Cys108His, in the pres-
ence of Co(II) but in the absence of the (") activator protein, provided colorless species
in each case. In contrast, when expressed in the presence of activator (") protein, the
enzymes exhibited color indicative of cobalt ion complexation (Figure 6). SDS-PAGE
analysis revealed that each mutant enzyme was >95% pure (Figure S1). The ↵Cys108Ser
PtNHase exhibited a faint green color (0.16 mM) at pH 7.5 (Figure 6, Vial 2) in contrast to
the straw-colored WT PtNHase enzyme. ↵Cys108Met PtNHase (0.12 mM) exhibited a lime
green color, whereas ↵Cys108His PtNHase (0.5 mM) exhibited a light pink color. All the
PtNHase ↵Cys108Ser, ↵Cys108Met, and ↵Cys108His enzymes were catalytically active.
↵Cys108His was the most active of the Cys108-substituted variants, with a kcat of 120 s�1,
or ~7% of WT PtNHase, and a Km of ~2.5 mM, a value indistinguishable from that of WT
PtNHase (Table 1). ↵Cys108Ser exhibited a kcat of ~30 s�1 or ~2% of WT PtNHase and a Km
value of ~2 mM while ↵Cys108Met was the least active of the three axial mutants, with a
kcat of ~15 s�1 or ~1% of the activity observed for WT PtNHase with a Km value of ~3 mM
(Table 1). That each of these axial ↵Cys ligand mutants are catalytically active definitively
indicates that the formation of a transient disulfide bond between the axial ↵Cys108 ligand
and the equatorial sulfenic acid ligand, ↵Cys113, is not catalytically required. While such
an interaction may occur in the WT enzyme to facilitate catalysis, it is not an essential
catalytic step for NHase activity.
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Figure 6. PtNHase in 50 mM HEPES pH 7.0 buffer at room temperature; (1) 0.54 mM
PtNHase WT, (2) 0.16 mM PtNHase ↵Cys108Ser, (3) 0.50 mM PtNHase ↵Cys108His, (4) 0.43 mM
PtNHase ↵Cys108Met.

The order of catalytic rates for the WT and each PtNHase axial ↵Cys ligand mutant is
WT >>> His > Ser > Met, which is consistent with the expected �- and ⇡-donating ability
of each ligand. Histidine is a strong �-donor, but unlike the native ↵Cys ligand, it cannot
participate in ⇡-donation. On the other hand, serine and methionine are weak �-donors
and weak ⇡-donor ligands, with Met being the poorer ligand of the two, as it is a softer base.
These data are consistent with NHase biomimetic model complex studies that revealed that
the axial thiolate increases the ligand exchange rate, since substituting the trans-thiolate
with a nitrogen ligand decreased the exchange rate by three orders of magnitude [19,20].
Similar to heme systems [24], it was proposed that the axial thiolate group in NHase
enzymes “pushes” electron density, modulating the Lewis acidity of the active site metal
ion, and assisting the active-site trivalent metal ion to bind and activate nitriles.

2.5. Metal Analysis and Spectrophotometric Characterization of aCys108Ser, aCys108Met, and
aCys108His Mutant Enzymes

A combination of ICP-MS and UV–vis spectroscopy was used to determine if the
↵Cys108Ser, ↵Cys108Met, and ↵Cys108His PtNHase mutant enzymes expressed in the
presence of an activator (") protein contained their full complement of cobalt. ICP-MS
data obtained for the ↵Cys108Ser, ↵Cys108Met, and ↵Cys108His mutants indicated that
each contained ~1 cobalt ion per ↵2�2 tetramer, which is about half of that observed
for WT PtNHase (~1.8 cobalt) per ↵2�2 tetramer (Table 1). The lower activity observed
for each mutant PtNHase enzyme must, therefore, be partially due to the diminished
complement of cobalt in the active site. Moreover, it appears that the electron donating
ability of the axial ligand plays a role in the insertion of the metal ion into the active site.
The UV–vis spectrum of ↵Cys108Ser exhibited red-shifted S ! Co(III) LMCT bands at
~430 (" = ~3000 M�1 cm�1) and ~620 nm (" = ~2000 M�1 cm�1) while ↵Cys108Met, and
↵Cys108His mutant enzymes also exhibited red shifted S ! Co(III) LMCT bands at ~350
(" = ~2000 M�1 cm�1) and ~550 nm (" = ~800 M�1 cm�1) (Figure 7). For WT PtNHase,
the observed S ! Co(III) LMCT bands are observed between 310 and 450 nm and are
characteristic of strong ⇡-electron donation from the axial thiolate ligand to the low-spin
Co(III) ion [25–27]. The red-shifted S ! Co(III) LMCT bands observed for the ↵Cys108Ser,
↵Cys108Met, and ↵Cys108His mutants can be attributed to the poorer electron donating
ability, particularly weak or no ⇡-donating ability of the axial ligand, resulting in an increase
in Lewis acidity of the active site Co(III) ion. These data clearly show that the axial ↵Cys108
plays a significant catalytic role by tuning the Lewis acidity of the active site low-spin
Co(III) ion, which regulates the axial water exchange rate and substrate binding ability.
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3. Material and Methods
3.1. Materials

All reagents were commercially purchased and were of the highest available pu-
rity. Isopropyl-�-D-1-thiogalactopyranoside (IPTG), tris(2-carboxyethyl)phosphine (TCEP),
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES), acrylonitrile, methacry-
lonitrile, acetonitrile, Luria-Bertani (LB) powder, sodium chloride (NaCl), and butyric
acid were purchased from either Sigma-Aldrich or Fisher scientific. NEB and BL21(DE3)
competent cells were obtained from Agilent Technologies, and plasmid purification kits
were purchased from Promega.

3.2. Mutagenesis
The gene sequence encoding the �- and ↵-subunits of PtNHase was inserted into

a pET-28a+ vector between HindIII and NcoI cloning sites with a six-histidine tag on
the ↵-subunit. The nucleic acid sequence of the pET28a+ plasmid carrying the wild-type
PtNHase ↵- and �-subunits was used for mutagenic primer design (1) using ApE software,
and oligonucleotides were obtained from Integrated DNA Technologies Inc. The forward
primer sequences used for mutagenesis are listed below, and the reverse primers had
complementary sequences to those of their corresponding forward primer.

• 50GGAGATCAAGGTCTGGGACgccAGCTCCGAGATCC30 PtNHase ↵S162A
• 50CCACGTCGTCGTGatgACGCTCTGCTCCTGC 30 PtNHase ↵C108M
• 50CGTCGTCGTGcaCACGCTCTGCTCCTGC 30 PtNHase ↵C108H
• 50CCACGTCGTCGTGaGCACGCTCTGCTC-30 PtNHase ↵C108S

The changed bases are in lower case, and reverse primers were of a similar base length.
Polymerase chain reaction was performed, and the resulting mutant genes were inserted
into the pET28a+ plasmid. Each mutant plasmid was prepared using a QuickChange site-
directed mutagenesis kit (Agilent) via the polymerase chain reaction (PCR). Two PCR half
reaction mixtures were separately prepared with forward and reverse PCR primers. Mutant
plasmids were transformed into XL10-Gold Ultracompetent cells to produce multiple copies
and these cells were grown overnight in LB media. Plasmids were purified using a Promega
Wizard SV genomic DNA purification kit according to the manufacturer’s protocol, and
the mutation was confirmed by sequencing (Functional Biosciences, Madison, WI, USA).
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3.3. Transformation, Growth, Harvesting, and Storage
The plasmid containing the � and ↵ subunits (pET-28a+ vector), and that of the

corresponding activator genes in pET-21a+ were cotransformed into BL21(DE3) E. coli cells
for the expression. Cells for these separate expressions systems were grown on an LB
agar plate containing kanamycin (50 µg/mL) and ampicillin (100 µg/mL), and incubated
overnight at 37 �C. A single colony was used to inoculate separate 50 mL flasks of LB Miller
culture containing kanamycin (50 µg/mL) and ampicillin (100 µg/mL), and allowed to
grow overnight at 37 �C with constant shaking. These cultures were used to inoculate 6 L
of LB Miller culture containing kanamycin (50 µg/mL) and ampicillin (100 µg/mL). Cells
were grown at 37 �C with constant shaking until an optical density of ~0.8–1.0 at 600 nm
had been reached. The culture was cooled to 20 �C and induced with 0.1 mM isopropyl-�-
D-1-thiogalactopyranoside (IPTG). The culture was supplemented with 0.25 mM cobalt
chloride and shaken for an additional 16 h at 18 �C. Cells expressing the mutant enzymes
were pelleted by centrifugation at 5000⇥ g for 10 min and resuspended in 50 mM HEPES
at pH 7.5. The cell paste was stored at �80 �C until needed.

3.4. Purification of WT/Mutant PtNHase
A series of buffers were prepared for the purification of each PtNHase mutant enzyme.

Components and pH values of buffers were (A) 50 mM NaH2PO4, 500 mM NaCl and
10 mM imidazole, pH 7.5; (B) 50 mM NaH2PO4, 500 mM NaCl and 500 mM imidazole,
pH 7.5; and (C) 50 mM HEPES, 300 mM NaCl, pH 7.5. Cells expressing each mutant enzyme
were lysed by ultrasonication (Misonix Sonicator 3000) in 30 s increments for 12 min at
21 W on ice. The cell lysate was separated from cell debris by centrifugation for 40 min
at 10,000⇥ g. The supernatant was loaded onto a pre-equilibrated IMAC Ni-NTA column
and washed with 20 column volumes of buffer A with 3% buffer B. Each mutant enzyme
was eluted using a buffer B gradient. The fractions for each enzyme sample were pooled
together, concentrated, and loaded on HiLoad 16/600 Superdex 200 pg size exclusion
column and eluted using buffer C. The fractions of the enzymes were pooled together,
concentrated, and buffer-exchanged into 50 mM HEPES at pH 7.0. The purity of each
enzyme was characterized by SDS-PAGE (Figure S1).

3.5. Steady-State Kinetic Assays
The enzymatic activity of the PtNHase mutant enzymes towards the substrate acryloni-

trile (acrylamide; D"225 = 2.9 mM�1 cm�1) was measured by following product formation
using a Shimadzu UV-2450 spectrophotometer equipped with a TCC temperature controller
(Tables 1 and 2). A 1 mL reaction mixture was prepared in 50 mM Tris-HCl pH 7.5 at 25 �C.
The assay concentrations of acrylonitrile were 1–100 mM with enzyme concentrations
ranging from 100 to 200 nM. Kinetic constants Vmax and Km were calculated by fitting
the data to the Michaelis and Menten equation using OriginPro 9.0 software (OriginLab,
Northampton, MA, USA) (Figure S2). One unit of enzyme activity was defined as the
amount of enzyme that catalyzed the production of 1 µmol of product per minute at 25 �C.

3.6. Metal Analysis and UV–Vis Spectroscopy
The metal content of each PtNHase mutant enzyme and wild-type PtNHase was

obtained using inductively coupled plasma mass spectrometry (ICP-MS) at the Water
Quality Center in the College of Engineering at Marquette University (Milwaukee, WI,
USA). Each enzyme sample was denatured using 2 mL of 8 M urea, followed by the
addition of a 0.2% nitric acid and 5% hydrochloric acid v/v mixture to a final volume of
10 mL. These samples were incubated for 3 h at room temperature to ensure complete acid
digestion. Digested protein samples were centrifuged to remove precipitated protein and
filtered using 0.2 µm filter. UV–vis spectra of WT and each mutant PtNHase enzyme were
obtained in 50 mM HEPES buffer, pH 7.0 at 25 �C in a 1 cm quartz cuvette on a Shimadzu
UV-2600 spectrophotometer equipped with a TCC-240A temperature-controlled cell holder.
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3.7. Crystallization and Data Collection of apo-PtNHase aSer162Ala
Crystallization of the nearly colorless PtNHase ↵Ser162Ala mutant enzyme was

performed following the previously reported protocol with slight modifications in the
precipitant concentration [23]. A 1.2 M sodium citrate tribasic in 0.1 M HEPES buffer
at pH 7.0 was used instead of the standard 1.4 M sodium citrate tribasic concentration.
Diffraction quality crystals grew within two weeks and belonged to the space group P3221
with one copy of heterodimer in the asymmetric unit. Crystallographic data were collected
at 100 K using a home source rotating anode Rigaku MicroMax-007 HF X-ray diffractometer
at a wavelength of 1.54 Å. All data were indexed, integrated, merged and scaled using
HKL2000.4 [28]. Crystal parameters, data collection, and processing statistics are given in
Table 3. Phasing was carried out with molecular replacement using the Phaser program
from the CCP4 software suite. The structure of wild-type PtNHase (PDB code 1IRE) [17]
without any water molecules and ligands except for the cobalt ion was used as the starting
search model. Initial R and Rfree and were 0.183 and 0.228, respectively. Rigid body
refinement was followed by restrained refinement with Refmac55 [29], and further manual
model inspection and adjustments with Coot.6 [30]. When converged refinement, solvent
molecules were added over several rounds, providing R and Rfree values of 0.162 and
0.207, respectively.

Table 3. Selected bond distances.

Crystal ID Atom1 Atom2 Length (Å)

PtNHaseWT (PDB: 1IRE) ↵CSY108(SG) ↵CSD111(SG) 3.28
↵CSO113(SG) ↵CSD111(SG) 3.16
↵CSY108(SG) ↵CSO113(SG) 3.09

Apo-PtNHaseWT (PDB: 1UGQ) ↵CYS108(SG) ↵CYS111(SG) 3.27
↵CYS113(SG) ↵CYS111(SG) 4.28
↵CYS108(SG) ↵CYS113(SG) 2.03

PtNHase ↵SerA ↵CYS108(SG) ↵CSD111(SG)A 3.68
↵CSO113(SG) ↵CSD111(SG)A 3.81
↵CSO113(SG) ↵CYS108(SG) 3.61
↵CYS108(SG) ↵CSO113(SG)B 3.89
↵CYS108(SG) ↵CSD111(SG)B 5.05

4. Conclusions
Four PtNHase mutant enzymes, namely, Ser162Ala, ↵Cys108Ser, ↵Cys108Met, and

↵Cys108His, which target the axial ↵Cys108 ligand were reported. As each of these mutants
are catalytically active, these data provide the first experimental evidence that transient
disulfide bond formation is not catalytically essential for NHases (Figure 2, pathway B), a
key mechanistic piece of information. While the formation of a transient disulfide bond
in the transition state of catalysis is clearly not required, it is certainly possible in the WT
enzyme. However, theoretical studies showed that the diminution of activity in these
NHase variants that lack the ability to form a disulfide bridge may correspond to only a
few (2–3) kCal/mol, a value that is close even to the 1.7 kCal/mol available from thermal
excitation at 25 �C [14,15]. Given the inherent uncertainty in such calculations, the role of a
disulfide in the native reaction is still essentially a matter of speculation until definitive
experimental evidence becomes available.

The data here are consistent with NHase model complex data, insofar as they re-
vealed that an axial thiolate residue increases the ligand exchange rate. Substitution of the
trans-thiolate with a nitrogen ligand decreases the exchange rate by three orders of magni-
tude [19,20]. Similar to heme systems [24], the axial thiolate group in NHase enzymes may
“push” electrons, assisting the active-site trivalent metal ion to bind and activate nitriles. As
such, the cysteinate trans effect appears to play a role in substrate binding and activation
of the CN triple bond, and aid in the dissociation of the amide product. Combinations
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of these data indicate that the axial ↵Cys108 ligand’s primary catalytic role is to provide
electron density to the active-site metal ion to tune its Lewis acidity, thus decreasing the
ligand exchange rate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11111381/s1, Figure S1: SDS-PAGE for the purified PtNHase wildtype and mutants,
Figure S2: Michaelis-Menten graphs for PtNHase protein samples.
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