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Abstract

We explore the forces and conservation laws that govern the motion of a hockey puck that slides

without friction on a smooth, rotating, self-gravitating spheroid. The earth’s oblate spheroidal

shape (apart from small-scale surface features) is determined by balancing the gravitational forces

that hold it together against the centrifugal forces that try to tear it apart. The earth achieves

this shape when the apparent gravitational force on the puck, defined as the vector sum of the

gravitational and centrifugal forces, is perpendicular to the earth’s surface at every point on the

surface. Thus the earth’s spheroidal deformations neutralize the centrifugal and gravitational forces

on the puck, leaving only the Coriolis force to govern its motion. Motion on the spheroid therefore

differs profoundly from motion on a rotating sphere, for which the centrifugal force plays a key

role. Kinetic energy conservation reflects this difference: on a stably rotating spheroid, the kinetic

energy is conserved in the rotating frame, whereas on a rotating sphere, it is conserved in the

inertial frame. We derive these results and illustrate them using CorioVis software for visualizing

the motion of a puck on the earth’s spheroidal surface.
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I. INTRODUCTION

In 1679, Sir Isaac Newton and Robert Hooke discussed the possibility that the horizontal

deflection of falling objects could serve as proof of the Earth’s rotation; this possibility was

confirmed in an 1803 measurement that agreed with calculations by Gauss and Laplace.1 In

1835, Gaspard Gustave Coriolis showed that the total inertial force in a rotating frame is

the sum of two forces, the centrifugal force and a “deflective force” that is now known as

the Coriolis force.1,2

Despite its long history of study, the Coriolis force is a continuing source of confusion,

including errors by Richard Feynman and Max Born.3–10 The Coriolis deflection can seem

downright mysterious, as anyone who has played catch with a ball on a merry-go-round

can attest.11 Students of intermediate (upper-division) classical mechanics learn how to

transform Newton’s second law into a uniformly rotating frame mathematically,12 but they

often cannot interpret the mathematics, appreciate the physical origins of the Coriolis and

centrifugal forces, or relate them to motion as seen by an observer in the inertial frame.13,14

Understanding of three-dimensional latitude-dependent inertial forces for motion on a

rotating planet can be particularly difficult to achieve,15 despite the importance of these

forces in meteorology,16,17 oceanography,18 ballistics,19 and sniping.20 Adding to the challenge

is the lack of physical demonstrations of inertial forces for motion on a rotating sphere or

spheroid.15

To explain why the Coriolis force deflects objects to the right in the northern hemisphere

and to the left in the southern hemisphere, authors often rely on Hadley’s principle.7,16,21–25

Hadley’s principle is pervasive because it correctly predicts the direction of the Coriolis

deflection for northbound and southbound motion. But Hadley’s principle accounts for only

half of the Coriolis deflection, includes only one of the two mechanisms responsible for this

deflection, and violates conservation of angular momentum.3

To understand Hadley’s principle, let us consider the motion of a puck that is projected

directly northward from a north latitude as seen by an earthbound observer in the rotating

frame (Fig. 1a). An inertial observer considers the puck to have two components of velocity,

the northward component just discussed and an eastward component that is equal to the

earth’s eastward tangential velocity of rotation at that latitude (Fig. 1d). Hadley’s principle

incorrectly treats this eastward component as constant as the puck moves north, and explains
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Coriolis deflections by comparing the local tangential velocity of the earth’s surface, which

decreases as the puck moves north, with this eastward component, assumed constant.7,21,22

The puck’s eastward velocity therefore outstrips the earth’s local tangential velocity, and

the puck experiences a Coriolis deflection to the right as seen by an observer in the rotating

frame.

The problem is that this eastward component of velocity is not constant; conservation of

axial angular momentum demands that this component, as measured by an inertial observer,

vary inversely with the distance from the earth’s rotation axis. As the puck moves north, its

distance from the earth’s axis decreases and its eastward velocity increases. This increase

accounts for the other half of the Coriolis deflection.

Many authors, some of them apparently unfamiliar with Hadley’s principle, treat this

eastward component of velocity as constant as an object moves toward a pole along the

earth’s surface,23–25 or as an object drops vertically.6,29–31 Such treatments violate conser-

vation of axial angular momentum. The physics and meteorology literatures are riddled

with such errors.3,5,7,8 For both horizontal and vertical motion, conservation of axial angular

momentum is needed to correctly account for Coriolis deflections.32–34

McIntyre15,35 considers the motion of a puck on the surface of a uniform, spherical,

frictionless, rotating earth, and he correctly applies the conservation of angular momentum.

As he explains, such motion is eminently simple as viewed by an observer in the inertial

frame; the puck executes uniform circular motion in a great circle around the center of the

rotating sphere, visiting both the northern and southern hemispheres equally (Fig. 1e). As

seen by an observer in the rotating frame, the puck’s motion is complicated by two inertial

forces, the Coriolis force and the centrifugal force (Fig. 1b).

The earth is not spherical, and motion on its surface differs profoundly from motion on a

sphere. To see why, consider the motion of a puck that is released from rest on the surface

of a frictionless spherical earth by an earthbound observer in the rotating frame. As seen

by this observer, the puck experiences an unbalanced centrifugal force that drives it toward

the equator. As viewed by an inertial observer, this puck has an initial eastward velocity

that matches the local tangential velocity of the surface of the earth. This velocity causes

the puck to drift toward the equator as the puck begins to execute a great circle around the

center of the earth.

Pucks that are released from rest by earthbound observers on frictionless horizontal sur-
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(a) Initial conditions, rotating

frame

(b) Sphere, rotating frame (31-h

cycle)

(c) Spheroid, rotating frame

(19-h cycle)

(d) Initial conditions, inertial

frame

(e) Sphere, inertial frame (31-h

cycle)

(f) Spheroid, inertial frame (19-h

cycle)

FIG. 1. CorioVis snapshots of one cycle of the periodic motion of a puck that slides without

friction on a sphere and a stably rotating spheroid whose volumes, angular speeds of rotation,

and flattening (for the spheroid) match the earth’s. As viewed in the rotating frame, the puck is

projected northward from latitude 40◦ at 50 m/s, a speed that is comparable to the fastest measured

ice hockey slapshot (a).26,27 As viewed in the inertial frame, the puck’s initial velocity is 360 m/s

toward the northeast, including a large eastward component due to the earth’s rotation (d). On

the sphere (CorioVis28 Demo 1), the motion resulting from these initial conditions has period 31 h

and consists of zigzag motion at a variable speed in the rotating frame (b) and motion on a great

circle at a constant speed of 360 m/s in the inertial frame (e). On the spheroid (CorioVis28 Demo

2), the motion resulting from these initial conditions has period 19 h and consists of clockwise

inertial oscillations at a constant speed of 50 m/s in the rotating frame (c) and incomplete orbits

at a variable speed in the inertial frame (f). Blue arrows that point eastward and northward

represent velocity components in these directions, and red arrows that point in the direction of

motion represent velocity vectors.
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faces do not drift toward the equator, but instead remain at rest because the apparent

gravitational force, defined as the vector sum of the gravitational and centrifugal forces,

is everywhere perpendicular to the earth’s spheroidal surface (ignoring small-scale surface

features).3 Thus the earth’s spheroidal deformations neutralize the centrifugal and gravita-

tional forces on objects on its surface, and a puck that is released from rest in the rotating

frame remains at rest. The earth’s stable spheroidal shape is given by balancing the gravi-

tational forces that hold it together against the centrifugal forces that try to tear it apart.36

Now let us consider the motion of a puck on the frictionless surface of this stably rotating

spheroid. As seen by a rotating observer, the Coriolis force alone governs the motion of

the puck, which executes “inertial oscillations” that confine it to the vicinity of its initial

latitude (Fig. 1c).14,37–40 Inertial oscillations have been observed in ocean currents1 and in the

atmosphere.41,42 Unlike the great circles executed on the sphere (Fig. 1e), these oscillations

do not generally visit both hemispheres. Clearly, motion on a stably rotating spheroid

(Figs. 1c, f) is vastly different from motion on a sphere (Figs. 1b, e).

How can the motions on spherical and spheroidal earths be so different when the earth is

so very nearly spherical? The earth’s spheroidal deformations are small enough to be difficult

to see in photographs and scale drawings, yet they are crucial to the understanding of motion

on its surface. In the geodesy literature, the relative difference between the equatorial radius

a and the polar radius b of the earth is called the flattening,

f =
a− b
a

= 0.003353, (1)

with the numerical value corresponding to the reference spheroid that is used in terrestrial

cartography, geodesy, satellite navigation, and the global positioning system (GPS).43–45

This reference flattening is small because of the earth’s long sidereal period of rotation,43–46

τ = 23.93 h. (2)

The study of the effect of rotation on flattening dates back to Sir Isaac Newton, who proposed

the value f = 1/230 = 0.0043 in his Principia.47 The outlines of the earth’s surface in

Figs. 1c, f are ellipses with flattening given by Eq. (1), whereas the outlines in Figs. 1b, e

are circles. The 0.3% difference between these outlines is virtually impossible to see, being

comparable to the line width of these figures.

The earth’s small flattening belies its crucial role for motion on the earth’s surface,

and encourages the conclusion that such motion can be well approximated by motion on a
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rotating sphere. This conclusion is false. Why? Because the centrifugal force plays a role

for motion on a rotating sphere and does not play a role for motion on a stably rotating

spheroid, whose spheroidal deformations neutralize the centrifugal and gravitational forces.

The Coriolis force applies for both shapes, and its influence for motion on the earth’s surface

can be well approximated by treating the earth as a sphere. It is the unbalanced influence of

the centrifugal force for motion on a rotating sphere that is responsible for the vast differences

between this motion and motion on stably rotating spheroid. Kinetic energy conservation

reflects this influence: on a stably rotating spheroid, the kinetic energy is conserved in the

rotating frame, whereas on a rotating sphere, it is conserved in the inertial frame (Sec. VI).

To illustrate, we consider the forces on a 0.16-kg puck just after it is launched northward

from latitude 40◦ at 50 m/s in the rotating frame (Fig. 1). For a rotating sphere, the gravi-

tational and normal forces are vertical and therefore play no role in the puck’s motion, which

is governed in the rotating frame by a 7.5× 10−4 N eastward Coriolis force and a 2.7× 10−3

N southward component of the centrifugal force, which dominates the motion (Fig. 1b).48

For a stably rotating spheroid, the gravitational force is no longer vertical and the puck

experiences the 7.5×10−4 N eastward Coriolis force, the 2.7×10−3 N southward component

of the centrifugal force, and a 2.7× 10−3 N northward component of the gravitational force,

which neutralizes the centrifugal force and leaves only the Coriolis force to govern the mo-

tion (Fig. 1c).48 That the horizontal components of the gravitational and centrifugal forces

cancel is no accident; it is an outcome of the balance achieved between the gravitational and

centrifugal forces on a stably rotating spheroid. The large centrifugal force is unbalanced

for the rotating sphere, and is responsible for the vast differences between the motions on

the two shapes.

Does the motion of a puck on a stably rotating spheroid replicate the motion of a puck on

a non-rotating sphere in the limit of small angular speeds of rotation and small flattening?

Yes, as long as the angular speed and the flattening obey a relationship (Sec. IV) for a stably

rotating planet in hydrostatic equilibrium. This relationship predicts that a non-rotating

planet is spherical. Consider a sequence of planets starting with the earth, with decreasing

angular speeds and decreasing flattening that obey this relationship. At every stage in this

sequence, the spheroidal deformations neutralize the centrifugal and gravitational forces,

and motion on the planet’s surface is governed by the Coriolis force. Being proportional

to the earth’s angular speed of rotation, the Coriolis force weakens with decreasing angular
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speed and vanishes in the limit of a non-rotating spherical planet, for which the inertial and

rotating frames merge. For the 50 m/s northward launch of Fig. 1c, as the earth’s angular

speed and flattening decrease, the clockwise inertial oscillations increase in amplitude until,

for a non-rotating spherical planet, these oscillations are replaced by motion on a great circle

that passes through both poles. Such great circles characterize motion on a sphere.15

Thus, a key to understanding why motion on a stably rotating spheroid differs funda-

mentally from motion on a rotating sphere is the realization that a rotating sphere is not in

hydrostatic equilibrium, whereas a non-rotating sphere is in equilibrium.

Previous studies of motion on the spheroidal earth apply only for small flattening and

assume that the earth rotates at its stable angular speed.38,49–53 We call this the weakly

spheroidal approximation.54 To assist students in visualizing the effects of spheroidal defor-

mations, we consider arbitrary flattening and arbitrary angular speeds of rotation.

Early in its history, the earth had a larger angular speed of rotation and therefore a

larger flattening. Computer models indicate that following the astronomical impact that

is thought to have created the moon, the earth’s period was about 2 h.55 This period has

increased with time because lunar tidal forces convert spin angular momentum of the earth

into orbital angular momentum of the moon.13,56

Faster-rotating planets have larger flattening than the earth. Haumea, discovered in

2004, is the third-largest dwarf planet in the solar system after Eris and Pluto.57,58 It has

flattening f ≈ 0.5 and rotation period τ = 3.9 h, the smallest of any known body in the

solar system larger than 100 km.59–61 Less extreme examples include five trans-Neptunian

objects with rotation periods between 6 and 13 h.62

The purpose of this paper is to demonstrate the importance of the earth’s spheroidal

deformations for the motion of a puck on its surface, assumed smooth and frictionless. We

accomplish this by discussing the applicable forces and conservation laws, illustrated with

puck trajectories on spherical and spheroidal earths. Our approach is accessible to students

of introductory physics and intermediate classical mechanics.

These illustrations rely on CorioVis, our feature-rich web-based interactive visualization

software that enables students to explore the motion of a puck on an earth with arbitrary

spheroidal eccentricity and arbitrary angular speed of rotation, from both the inertial and

rotating frames of reference.28,54 We offer this software freely to the physics and earth science

communities to improve understanding of motion on the earth’s surface.
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Contributions of this paper include: (a) general treatment of motion on the spheroidal

earth, (b) discussion of the role of the centrifugal force in shaping the earth and in motion on

its surface, (c) consideration of conservation principles for planets of arbitrary eccentricity

that rotate at, above, and below their stable angular speeds, (d) proofs that kinetic energy

is conserved in the inertial frame on a sphere and conserved in the rotating frame on a stably

rotating spheroid, and (e) CorioVis illustrations that demonstrate the difference between

motion on spherical and spheroidal earths.

The remainder of this paper is organized as follows: We review the geodetic coordinates

for motion on a spheroid (Sec. II), express the Coriolis and centrifugal forces using these

coordinates (Sec. III), discuss the role of the apparent gravitational force in shaping the

earth (Sec. IV), prove that the axial angular momentum is conserved in the inertial frame

(Sec. V), consider the conservation of kinetic energy in the inertial and rotating frames

(Sec. VI), discuss puck trajectories on spherical and spheroidal earths (Sec. VII), and present

brief conclusions (Sec. VIII) and acknowledgments (Sec. IX).

See supplementary material48 for step-by-step details of mathematical derivations and

numerical calculations in this manuscript. See also the video abstract of this manuscript.63

Elsewhere, we derive coordinate transformations and geodetic unit vectors, model the sta-

ble angular speed of earth-like planets of arbitrary eccentricity, and present details of the

development of CorioVis software.54

II. COORDINATES

We use geodetic coordinates (θ, φ) to describe the motion of a puck on the earth’s

spheroidal surface, with the geodetic latitude θ defined as the angle between the normal

direction and the equatorial plane, with θ measured northward from the equator. The

longitude φ is measured eastward from the prime meridian.45,64 The equatorial radius a is

assumed to be independent of φ, and the shape is an ellipsoid of revolution, called a spheroid.

The geodetic latitude θ is more convenient mathematically than the geocentric latitude θ′,

defined as the angle between the line to the earth’s center and the equatorial plane (Fig. 2).

When used without qualification, the term “latitude” refers to the geodetic latitude θ, which

is used for GPS coordinates and cartography.65

We now summarize a coordinate transformation and unit vectors that are derived
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FIG. 2. Geodetic coordinates used to specify points on the surface of the earth, treated as an

spheroid with equatorial radius a and polar radius b. As viewed by an observer in the rotating

frame, the unit vectors x̂, ŷ, and ẑ are stationary, with x̂ and ŷ marking specific geographical points

on the equator and ẑ marking the north pole. Shown for a point on the surface are its position

vector r, its geodetic latitude θ, its geocentric latitude θ′, its longitude φ, and its distance ρ from

the axis of rotation, with orthogonal unit vectors φ̂, θ̂, and n̂ respectively pointing east, north, and

up, and with ρ̂ pointing away from the axis of rotation. Frame (b) shows the (ρ, z) plane of the

spheroid, with φ̂ directed into the page.

elsewhere.54 Expressed using Cartesian unit vectors x̂, ŷ, and ẑ that rotate with the earth,

the position of the puck obeys

r = ρ cosφ x̂ + ρ sinφ ŷ + zẑ, (3)
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where

ρ =
a cos θ√

1− e2 sin2 θ
(4)

is the puck’s distance from the rotation axis,

z =
a (1− e2) sin θ√

1− e2 sin2 θ
(5)

is its position measured northward from the equatorial plane, and

e =

√
a2 − b2
a

(6)

is the spheroidal eccentricity. Equation (1) yields a relationship between this eccentricity

and the flattening,

e2 = 1− (1− f)2. (7)

For spheres with f = e = 0, geodetic coordinates reduce to spherical coordinates.

As seen by an observer in the rotating frame, the unit vectors x̂, ŷ, and ẑ are stationary

and point toward specific, unchanging geographical locations on the earth’s surface, with x̂

marking the intersection of the prime meridian and the equator, located off the west coast

of Africa, ŷ marking the φ = 90◦ east latitude position on the equator, located in the Indian

Ocean, and ẑ marking the north pole and defining the earth’s rotation axis.

The unit vector

ρ̂ = cosφ x̂ + sinφ ŷ (8a)

points from the rotation axis toward the puck and enables us to define convenient local unit

vectors

φ̂ = − sinφ x̂ + cosφ ŷ (8b)

θ̂ = − sin θ ρ̂+ cos θ ẑ (8c)

n̂ = cos θ ρ̂+ sin θ ẑ. (8d)

These three vectors form a right-handed local geodetic coordinate system and respectively

point horizontally east, horizontally north, and vertically up (Fig. 2).

III. DYNAMICS

In this section, we transform Newton’s second law into the rotating frame to show the

dynamical origins of the Coriolis and centrifugal forces12 and we express these forces using

geodetic coordinates.
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As seen by an observer in an inertial frame S0, looking down from space upon the rotating

spheroidal earth, a puck of mass m that slides without friction along its surface satisfies

Newton’s second law,

m

(
d2r

dt2

)
S0

= Fg + Fn, (9)

where

Fg = mg (10)

is the gravitational force on the puck, g is the gravitational acceleration,

Fn = −Fnn̂ (11)

is the normal force on the puck, r is its position, and (d2r/dt2)S0 is its acceleration as seen

by an observer in the inertial frame.

We also consider the puck’s motion as seen by an observer in a non-inertial frame S that

rotates relative to the inertial frame with the earth’s angular velocity

Ω = Ωẑ, (12)

where the angular speed

Ω =
2π

τ
(13)

follows from the earth’s sidereal period τ of Eq. (2).

To transform Eq. (9) into the rotating frame, we need12(
dQ

dt

)
S0

=

(
dQ

dt

)
S

+ Ω×Q, (14)

where (dQ/dt)S0 and (dQ/dt)S are the time rates of change of a vector Q as observed in

the inertial and rotating frames. Setting Q = r in Eq. (14) gives a relationship between the

velocities measured by the two observers,(
dr

dt

)
S0

=

(
dr

dt

)
S

+ Ω× r, (15)

where

Ω× r = Ωρφ̂ (16)

is the eastward tangential velocity of the earth’s rotation, obtained from Eqs. (3), (8b) and

(12).48
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Equations (3), (4), (5), and (8) give the puck velocity in the rotating frame (in which x̂,

ŷ, and ẑ are stationary),48 (
dr

dt

)
S

= vφ φ̂+ vθ θ̂, (17)

where

vφ = ρ

(
dφ

dt

)
S

(18a)

vθ = R

(
dθ

dt

)
S

(18b)

are the associated eastward and northward components of velocity, and

R =
(1− e2) a(

1− e2 sin2 θ
)3/2 (19)

is the meridional radius of curvature at latitude θ, measured along a line of longitude.66

Inserting Eqs. (16) and (17) into Eq. (15) gives the velocity in the inertial frame,(
dr

dt

)
S0

= (Ωρ+ vφ) φ̂+ vθθ̂, (20)

which includes the eastward tangential velocity Ωρφ̂ of the earth’s rotation.

Differentiating Eq. (15) and applying Eq. (14) gives a relationship between the accelera-

tions measured by observers in the two frames,(
d2r

dt2

)
S0

=

(
d

dt

)
S0

[(
dr

dt

)
S

+ Ω× r

]
(21a)

=

[(
d

dt

)
S

+ Ω×
] [(

dr

dt

)
S

+ Ω× r

]
(21b)

=

(
d2r

dt2

)
S

+ 2Ω×
(
dr

dt

)
S

+ Ω× (Ω× r). (21c)

Inserting Eq. (21c) into Eq. (9) gives a modified form of Newton’s second law that applies

in the rotating frame,

m

(
d2r

dt2

)
S

= Fg + Fn + Fcor + Fcen, (22)

where the Coriolis force

Fcor = −2mΩ×
(
dr

dt

)
S

(23)

and the centrifugal force

Fcen = −mΩ× (Ω× r) (24)
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are “inertial” forces that apply only in the rotating frame. These inertial forces augment

the normal and gravitational forces that also apply in the inertial frame.

The Coriolis force is perpendicular to the plane formed by the angular velocity Ω of the

earth and the velocity (dr/dt)S of the puck as seen by an observer in the rotating frame,

and applies only to objects that move relative to this observer. This force can be separated

into horizontal and vertical components by combining Eqs. (8c) and (8d) to give48

ρ̂ = − sin θ θ̂ + cos θ n̂ (25)

and by invoking Eqs. (8), (12), (17), and (23):48

Fcor = 2mΩ
(
vθ sin θ φ̂+ vφ ρ̂

)
(26a)

= 2mΩ sin θ
(
vθφ̂− vφθ̂

)
+ 2mΩvφ cos θ n̂ (26b)

= 2mΩ sin θ

(
dr

dt

)
S

× n̂ + 2mΩvφ cos θ n̂. (26c)

The horizontal component of the Coriolis force (tangent to the earth’s surface) is given

by the first term on the right side of Eq. (26c). This component vanishes at the equator

(θ = 0) and increases in magnitude with increasing |θ|. This component is perpendicular to

the velocity, acting to the right in the northern hemisphere (θ > 0) and to the left in the

southern hemisphere (θ < 0). The vertical component of the Coriolis force (perpendicular

to the earth’s surface) is given by the second term on the right side of Eq. (26c), and is

strongest near the equator.

As discussed in Sec. I, for northward motion in the rotating frame, Hadley’s principle

accounts for only half of the Coriolis deflection for a spherical earth.3 To show this for the

spheroidal earth, we consider a puck of mass m that is launched directly northward from a

north latitude θ0 with velocity [Eq. (17)](
dr

dt

)
S

= v0θ̂, (27)

as seen by an observer in the rotating frame. As seen by an observer in the inertial frame, the

puck’s initial velocity has two components, the northward component v0 and an eastward

component Ωρ0 that matches the earth’s local tangential velocity, where ρ0 is the initial

distance from the earth’s rotation axis given by inserting θ = θ0 into Eq. (4).

Hadley’s principle assumes the puck’s eastward velocity Ωρ0 to be constant as it moves

northward, as seen by an observer in the inertial frame, in violation of conservation of angular
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momentum. In the rotating frame, the associated time-dependent eastward velocity is the

difference

vφ = Ωρ0 − Ωρ (28)

between the puck’s eastward velocity Ωρ0 in the inertial frame, assumed constant, and the

earth’s local tangential velocity Ωρ, which decreases as the puck moves northward. As seen

by an observer in the rotating frame, the associated eastward component of force is

Fφ = m

(
dvφ
dt

)
S

(29a)

= m
dvφ
dθ

(
dθ

dt

)
S

. (29b)

Applying Eqs. (4), (18b), (19), and (28) and evaluating Eq. (29b) at the initial time gives48

Fφ0 = mΩv0 sin θ0. (30)

This is half of the associated initial eastward Coriolis force obtained from Eq. (26b),

φ̂ · Fcor0 = 2mΩv0 sin θ0. (31)

Thus, Hadley’s principle accounts for only half of the Coriolis deflection on a spheroid.

This result can be traced to the transformation of Newton’s second law into the rotating

frame. For a northward launch in the rotating frame given by Eq. (27), the initial eastward

component of velocity in the inertial frame is given by the term Ω× r in Eq. (15). Hadley’s

principle ignores the time dependence of this component, which amounts to ignoring the

outer product of the expansion of Eq. (21b). The factors of 2 in Eqs. (21c) and (23)

accordingly disappear, implying that Hadley’s principle accounts for only half of the Coriolis

deflection.

The centrifugal force applies in the rotating frame for both stationary and moving objects.

Equations (8a), (8b), (12), (16), and (24) show that this force is directed away from the

earth’s rotation axis, according to48

Fcen = mΩ2ρρ̂. (32)

Inserting Eq. (25) into Eq. (32) resolves the centrifugal force into horizontal and vertical

components,

Fcen = −mΩ2ρ sin θ θ̂ +mΩ2ρ cos θ n̂. (33)

Thus, except at the poles (ρ = 0) and the equator (θ = 0), the horizontal component of the

centrifugal force drives the puck toward the equator.
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FIG. 3. Free-body diagrams showing the forces acting on a puck that slides without friction

on a rotating spherical earth (a-c) and a stably rotating spheroidal earth (d-f, with exaggerated

flattening), as seen by observers in the inertial (a, d) and rotating (b, c, e, f) frames. Shown are the

gravitational and normal forces Fg and Fn that apply in both frames; the Coriolis and centrifugal

forces Fcor and Fcen that apply only in the rotating frame; and the apparent gravitational force,

F′g = Fg + Fcen, which replaces Fg and Fcen in panels (c, f). The gravitational force Fg is normal

to the surface of the sphere (a, b) and the apparent gravitational force F′g is normal to the surface

of the stably rotating spheroid (f). The dotted line is normal to the spheroid. The Coriolis force

is zero for a stationary puck, and is shown in a direction that corresponds to westward motion of

the puck (directed out of the plane of the figure).

IV. APPARENT GRAVITATIONAL FORCE

The gravitational and centrifugal forces do not depend on velocity, so it is natural to

consider their vector sum,

F′g = Fg + Fcen, (34)
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called the apparent gravitational force. This force plays a key role in the formation of

planets. Planets can be treated as rotating self-gravitating fluid bodies that find their stable

equilibrium shapes by balancing the gravitational forces that hold them together against

the centrifugal forces that try to tear them apart.36 For the hydrostatic equilibrium thus

achieved, F′g is perpendicular to the surface at every point on the surface.3 Otherwise, the

component of this force that is tangential to the surface will redistribute the mass of the body

until this condition is achieved, in the same way that charges redistribute on the surface of

a conductor in response to an applied electric field until the electric field just outside of the

surface is normal to the surface.

Stable hydrostatic equilibrium establishes a relationship between the stable angular speed

Ω = Ω̃ of a rotating self-gravitating fluid body and its eccentricity e. Elsewhere,54 we model

earth-like planets of arbitrary eccentricity e as MacLaurin spheroids of uniform mass density

ρm = 7097 kg/m3 and stable angular speed Ω̃(e) given by67–71

Ω̃2(e)

2πGρm
=

√
1− e2
e3

(
3− 2e2

)
sin−1 e− 3

e2
(
1− e2

)
, (35)

where G is the universal gravitational constant. This model is consistent with the values

e = 0.08182 (36a)

Ω̃(e) = 7.292× 10−5 rad/s (36b)

obtained from Eqs. (1), (2), (7), and (13) for the earth’s reference spheroid.43

We generally consider stably rotating planets with angular speeds Ω = Ω̃(e) that coincide

with their equilibrium eccentricities e. But we also find it helpful to consider Ω 6= Ω̃(e). For

this purpose, we freeze the earth into a rigid undeformable body of eccentricity e and consider

the consequences of changing its angular speed.

On a stably rotating planet, the northward component of the apparent gravitational force

must vanish. Accordingly, Eq. (34) gives

θ̂ · F̃′g = θ̂ ·
(
Fg + F̃cen

)
= 0, (37)

where F̃cen and F̃′g are the centrifugal and apparent gravitational forces on the stably rotating

planet. (The gravitational force Fg does not depend on the rotation rate.) Combining

Eq. (37) with Eqs. (10) and (33) for a stably rotating planet determines the northward

component of the gravitational acceleration,48

θ̂ · g = Ω̃2ρ sin θ, (38)
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which vanishes at the poles and the equator. Accordingly, the gravitational acceleration can

be written as

g = −gon̂ + Ω̃2ρ sin θ θ̂, (39)

where the first term on the right side points downward (perpendicular to the earth’s surface)

and the second term points horizontally toward the nearest pole. The magnitude go of the

downward gravitational acceleration plays no role in the frictionless motion of a puck on the

earth’s surface, and we make no attempt to calculate it.

Inserting Eqs. (10), (33), and (39) into Eq. (34) gives the apparent gravitational force on

a puck that moves on the surface of a planet that rotates at an arbitrary angular speed Ω,48

F′g = m
(
−go + Ω2ρ cos θ

)
n̂ +mρ sin θ

(
Ω̃2 − Ω2

)
θ̂. (40)

This force is perpendicular to the surface for a stably rotating planet with Ω = Ω̃(e).

Let us consider a puck that is released from rest on the smooth frictionless surface of

the rotating earth, as seen by an observer in the rotating frame, with the puck released

anywhere except the equator or the poles. Because the puck’s initial velocity is zero, the

initial Coriolis force on the puck is zero, and it will experience a net force given by [Eqs. (22)

and (34)]

m

(
d2r

dt2

)
S

= F′g + Fn, (41)

with F′g given by Eq. (40) and Fn given by Eq. (11). If the earth rotates at its stable

angular speed Ω = Ω̃(e), the apparent gravitational force F′g is perpendicular to the earth’s

surface at every point on this surface, and the puck remains at rest. If Ω > Ω̃(e), F′g has

a horizontal component that drives the puck toward the equator. If Ω < Ω̃(e), F′g has a

horizontal component that drives the puck toward the nearest pole. Thus, in order for a

puck to remain at rest anywhere on the earth’s surface, the earth must rotate at its stable

angular speed.

As seen by an observer in the inertial frame, Fg and Fn are the only two forces acting

on a puck that slides without friction on its surface. On a spherical earth with e = 0, both

forces are perpendicular to this surface and neither does any work on the puck (Fig. 3a), so

the puck moves in uniform circular motion in a great circle around the earth’s center.15 The

earth spins underneath the puck but has no effect whatsoever on its motion.

A puck that is released from rest by an observer in the rotating frame on this spherical

earth experiences no initial Coriolis force, but does experience a centrifugal force that drives

17



it toward the equator (Fig. 3b). This force tilts the apparent gravitational force away from

the normal direction (Fig. 3c) and causes the puck to oscillate around the equator. As seen

by an observer in the inertial frame, the puck has initial eastward velocity that matches the

earth’s local tangential velocity, and executes uniform circular motion in a great circle.

As seen by an observer in the rotating frame, a puck that is released from rest on the

frictionless surface of a stably rotating spheroidal planet remains at rest. This is because the

gravitational and centrifugal forces conspire to distribute the mass in such a way that the

apparent gravitational force is perpendicular to its spheroidal surface (Fig. 3f). As seen by

this rotating observer, the motion of a puck on the surface of such a planet is governed solely

by the Coriolis force, which does no work on the puck because it is always perpendicular to

its motion (Fig. 3f). The Coriolis force vanishes for a puck that is released from rest on this

surface in the rotating frame, so this puck remains at rest.

V. ANGULAR MOMENTUM

In this section, we show that the axial angular momentum of a puck sliding along the

frictionless surface of a smooth spheroidal earth is conserved in the inertial frame of reference,

whether or not the earth rotates at its stable angular speed. This principle is crucial to the

understanding of motion on the earth’s surface, yet many treatments of such motion violate

it (Sec. I).

In the inertial frame, the angular momentum of a particle of mass m is defined as

(L)S0
= mr×

(
dr

dt

)
S0

. (42)

The axial (ẑ) component of this angular momentum is

(Lz)S0
= mẑ ·

[
r×

(
dr

dt

)
S0

]
. (43)

As seen by an inertial observer, its time rate of change is48

d

dt
(Lz)S0

= mẑ ·

[
r×

(
d2r

dt2

)
S0

]
(44a)

=

(
m
d2r

dt2

)
S0

· (ẑ× r) , (44b)

= (Fg + Fn) · ρφ̂, (44c)
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where we have permuted the triple product in the second equality and we have used Eqs. (3),

(8b), and (9) in the third. According to Eqs. (10), (11), and (39), Fg and Fn are in the (ρ, z)

plane and are therefore perpendicular to φ̂. Hence both scalar products vanish in Eq. (44c),

and48

d

dt
(Lz)S0

= 0. (45)

Thus, axial angular momentum is conserved in the inertial frame for motion on a friction-

less spheroid, regardless of whether its angular speed of rotation matches its stable angular

speed. This result follows from Newton’s second law for rotations [Eqs. (44)] and the fact

that the torques exerted on the puck by the gravitational and normal forces have no com-

ponents in the axial direction. The only requirement for this conservation principle is that

the earth’s mass be distributed symmetrically throughout the volume of a spheroid, with

the normal and gravitational forces perpendicular to the eastward direction everywhere on

its surface. Permuting the triple product in Eq. (43) and invoking Eqs. (3), (8a), and (20)

yield a convenient form for this conserved quantity,48

(Lz)S0
= mρ (Ωρ+ vφ) = constant, (46)

where the quantity in parentheses is the eastward component of the puck velocity as seen

by an observer in the inertial frame [Eq. (20)]. This eastward component is not constant,

as assumed in Hadley’s principle, but varies inversely with the distance ρ from the earth’s

rotation axis.

VI. KINETIC ENERGY

In this section, we consider the kinetic energy of a puck sliding on the frictionless surface

of the spheroidal earth, as seen by an observer in the rotating frame. This kinetic energy is

given by

(T )S =
1

2
m

(
dr

dt

)2

S

, (47)

and its time rate of change by

d

dt
(T )S = m

(
dr

dt

)
S

·
(
d2r

dt2

)
S

(48a)

=
(
F′g + Fn + Fcor

)
·
(
dr

dt

)
S

, (48b)
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where we have used Eqs. (22) and (34).

We now consider the three scalar products on the right side of Eq. (48b). The first can

be rewritten using Eqs. (17) and (40);48

F′g ·
(
dr

dt

)
S

= m
(

Ω̃2 − Ω2
)
ρvθ sin θ. (49)

The second vanishes through Eqs. (11) and (17) because the vectors are perpendicular;48

Fn ·
(
dr

dt

)
S

= 0. (50)

The third satisfies48

Fcor ·
(
dr

dt

)
S

= −2m

[
Ω×

(
dr

dt

)
S

]
·
(
dr

dt

)
S

(51a)

= −2m

[(
dr

dt

)
S

×
(
dr

dt

)
S

]
·Ω (51b)

= 0, (51c)

where we have inserted Eq. (23) and we have permuted the triple product.

Combining these results with Eq. (48b) gives the time rate of change of the kinetic energy

of a puck that moves without friction on the surface of a spheroidal earth, as seen by an

observer in the rotating frame;

d

dt
(T )S = m

(
Ω̃2 − Ω2

)
ρvθ sin θ, (52)

Consequently, for spheroidal earths that rotate at the stable angular speed Ω = Ω̃, the puck’s

kinetic energy is conserved in the rotating frame. This result follows from the work-energy

theorem written in the rotating frame [Eq. (48b)]: At the stable angular speed, the apparent

gravitational force, the normal force, and the Coriolis force are all perpendicular to the

puck’s velocity, hence none of these forces does work on the puck, and its kinetic energy is

conserved. Equations (17) and (47) allow us to write this conserved quantity as48

(T )S =
1

2
m
(
v2φ + v2θ

)
. (53)

In summary, as viewed by an observer in the rotating frame, four forces act on a puck

that slides without friction on the surface of a rotating planet: the gravitational force, the

normal force, the Coriolis force, and the centrifugal force. If the planet is perfectly spheroidal

and is rotating at its stable angular speed, then the vector sum of the gravitational and
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centrifugal forces, called the apparent gravitational force, is perpendicular to the planet’s

surface. Defining the apparent gravitational force reduces the number of forces acting on

the puck to three: the apparent gravitational force, the normal force, and the Coriolis force.

The apparent gravitational force and the normal force do no work on the puck, and do not

change its speed, because they are directed perpendicular to its velocity. These forces do not

deflect the puck because they are directed perpendicular to the planet’s surface, on which

the puck is constrained to move. The Coriolis force does no work on the puck, and does not

change its speed, because this force is directed perpendicular to the puck’s velocity. But the

horizontal component of the Coriolis force does deflect the puck. The gravitational force

and the centrifugal force each do work on the puck as it moves about on the earth’s surface,

but the work done by the one exactly cancels the work done by the other, and the vector

sum of these forces plays no role in the motion of the puck.

A similar argument shows that kinetic energy is conserved in the inertial frame for motion

on a frictionless rotating spherical earth, regardless of its angular speed. The corresponding

conserved quantity48

(T )S0
=

1

2
m
[
(Ωρ+ vφ)2 + v2θ

]
(54)

involves the square of the velocity in the inertial frame, given by Eq. (20). Evaluating the

time derivative of this quantity in the inertial frame and applying Newton’s second law in

the inertial frame [Eq. (9)] yields two scalar products with the puck velocity in the inertial

frame, both of which are zero because the normal and gravitational forces are perpendicular

to the surface, hence this energy is conserved. In contrast with Eq. (53), Eq. (54) includes

the earth’s large tangential speed Ωρ.

The kinetic energy in the inertial frame must be conserved for frictionless motion on a

spherical earth. This is because regardless of the initial position of the puck, regardless of

the initial horizontal velocity of the puck (as long as it’s not large enough to send the puck

into orbit), and regardless of the angular speed of rotation of the earth, the puck executes

uniform circular motion in great circles around the center of the earth as seen by an inertial

observer, and the puck’s kinetic energy in the inertial frame is therefore conserved.

This result can be confirmed using Eqs. (53) and (54),

(T )S0
= (T )S +

m

2

(
Ω2ρ2 + 2Ωρvφ

)
, (55)
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taking the time derivative of this result,

d

dt
(T )S0 =

d

dt
(T )S +

m

2

d

dt

(
Ω2ρ2 + 2Ωρvφ

)
, (56)

inserting Eq. (52), setting e = Ω̃ = 0, and comparing with the time derivative of Eq. (46)

with e = 0, giving48

d

dt
(T )S0 = Ω

d

dt
(Lz)S0

= 0. (57)

Because (Lz)S0 is a constant of the motion, (T )S0 is a constant of the motion, and the

kinetic energy of a puck on the surface of a spherical earth is conserved in the inertial frame,

regardless of the earth’s angular speed.

This confirmation emphasizes the generality of Eqs. (46), (52), and (53), which govern

motion on the frictionless surfaces of both spheroidal and spherical earths, whether or not

they rotate at their stable angular speeds. These equations are used for our CorioVis

software28 because they reduce the system of coupled second-order differential equations

resulting from Newton’s second law to a system of coupled first-order differential equations,

which are simpler to solve. CorioVis software is client-side and written in JavaScript, so

it is available publicly for inspection.28 Details of CorioVis design, implementation, and

validation are discussed elsewhere.54

VII. TRAJECTORIES

In this section, we use CorioVis visualization software to illustrate the importance of

the earth’s spheroidal deformations for motion on its surface,28,54 for two sets of initial

conditions. For illustrations on the spheroidal earth, we use flattening given by Eq. (1).

For all illustrations, we use the earth’s sidereal period of rotation given by Eq. (2) and the

earth’s reference equatorial radius of43–45

a = 6378.137 km. (58)

.

A. Launch from the northern hemisphere

Figure 1 describes the motion of a puck launched off the coast of Portugal at latitude

θ = 40◦ and longitude φ = −10◦, with initial northward velocity of magnitude 50 m/s as
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seen by an observer in the rotating frame (Fig. 1a). In the inertial frame, the puck’s initial

velocity includes a 356 m/s eastward component that matches the earth’s local tangential

velocity, giving the puck an initial velocity of 359 m/s toward the northeast (Fig. 1d). We

now consider the subsequent motion of the puck on spherical and spheroidal earths, as seen

in CorioVis28 Demos 1 and 2.

Figure 1b shows the first 31-h cycle of motion of the puck on a spherical earth, as

seen by an observer in the rotating frame. The puck travels from its initial latitude to its

northernmost latitude of θ = 40.7◦, proceeds to its southernmost latitude of θ = −40.7◦ in

Argentina, and completes its first cycle in western United States, 9000 km to the west of

its initial position. The centrifugal force drives the puck toward the equator, producing a

maximum puck speed of 303 m/s at equatorial crossings and a minimum speed of 7 m/s at

the latitude extremes. The Coriolis force produces deflections to the right in the northern

hemisphere and to the left in the southern hemisphere, which account for the puck’s westward

motion.

Figure 1e shows the first 31-h cycle of motion of the puck on a spherical earth, as seen

by an observer in the inertial frame. The puck travels in a great circle around the center

of the earth at a constant speed of 359 m/s, reflecting conservation of kinetic energy in the

inertial frame (Sec. VI). During this time, the frictionless earth completes 1.3 rotations that

have no effect on the motion of the puck.

Figure 1c shows the first 19-h cycle of motion of the puck on a stably rotating spheroidal

earth, as seen by an observer in the rotating frame. The puck executes clockwise inertial

circles between latitudes 44◦ and 35◦ at a constant speed of v = 50 m/s, reflecting con-

servation of kinetic energy in the rotating frame (Sec. VI). The puck completes its first

cycle, a clockwise tour of Spain and Portugal, 170 km to the west of its initial position.

Because spheroidal deformations neutralize the centrifugal and gravitational forces, the only

pertinent force is the Coriolis force. According to Eq. (26c), the horizontal component of

this force is perpendicular to the velocity, and has magnitude 2mΩv sin |θ|. Setting this

component equal to the product of the mass m and the centripetal acceleration v2/rc gives

the latitude-dependent radius of curvature,14

rc =
v

2Ω sin |θ|
. (59)

As can be seen in the Fig. 1c inset, rc is smallest at θ = 44◦, where the puck moves east,

23



and largest at θ = 35◦, where the puck moves west. The puck therefore spends more time

moving west than moving east, which accounts for its westward drift.38

Figure 1f shows the first 19-h cycle of motion of the puck on a stably rotating spheroidal

earth, as seen by an observer in the inertial frame. The puck makes an incomplete orbit

around the earth at a speed that varies between 330 m/s and 380 m/s, while the earth makes

0.8 rotations.

B. Launch from the equator

Figure 4 describes the motion of a puck launched from the equator off the west coast of

Africa at latitude θ = 0◦ and longitude φ = −15◦, with initial velocity components 40 m/s

westward and 30 m/s northward, giving the puck an initial velocity of 50 m/s toward the

northwest, as seen in the rotating frame (Fig. 4a). In the inertial frame, the puck’s initial

velocity includes a 465 m/s eastward component that matches the earth’s local tangential

velocity, giving the puck an initial velocity of 426 m/s toward the northeast (Fig. 4d). We

now consider the subsequent motion of the puck on spherical and spheroidal earths, as seen

in CorioVis28 Demos 3 and 4.

Figure 4b shows the first 26-h cycle of motion of the puck on a spherical earth, as seen

in the rotating frame. The puck oscillates sinusoidally between latitudes ±4◦ at a variable

speed , and completes its first cycle off the coast of Brazil, 3700 km to the west of its initial

position. Throughout the cycle, the centrifugal and Coriolis forces oppose each other, with

the centrifugal force driving the puck toward the equator and the Coriolis force driving it

away, and with the centrifugal force dominating.

Figure 4e shows the first 26-h cycle of motion of the puck on a spherical earth, as seen

in the inertial frame. The puck travels in a great circle at a constant speed of 426 m/s,

reflecting conservation of kinetic energy in this frame (Sec. VI), while the frictionless earth

completes 1.1 rotations.

Figure 4c shows the first 85-h cycle of motion of the puck on a stably rotating spheroidal

earth, as seen in the rotating frame. The puck executes inertial loops between latitudes

±25◦ at a constant speed of 50 m/s, reflecting conservation of kinetic energy in this frame

(Sec. VI). The puck completes its first cycle 2100 km to the west of its initial position. The

only pertinent force in the rotating frame is the Coriolis force, which drives clockwise loops
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(a) Initial conditions, rotating

frame

(b) Sphere, rotating frame (26-h

cycle)

(c) Spheroid, rotating frame

(85-h cycle)

(d) Initial conditions, inertial

frame

(e) Sphere, inertial frame (26-h

cycle)

(f) Spheroid, inertial frame (85-h

cycle)

FIG. 4. CorioVis snapshots of one cycle of the periodic motion on spherical and stably rotating

spheroidal earths for a puck projected northwest from the equator at 50 m/s in the rotating frame

(a). As seen by an observer in the inertial frame, the puck’s initial velocity is 426 m/s toward

the northeast, and includes a large eastward component due to the earth’s rotation (d). On the

sphere (CorioVis28 Demo 3), the motion resulting from these initial conditions has period 26 h

and consists of sinusoidal motion at a variable speed in the rotating frame (b) and motion on a

great circle at a constant speed of 426 m/s in the inertial frame (e). On the spheroid (CorioVis28

Demo 4), the motion resulting from these initial conditions has period 85 h and consists of inertial

loops at a constant speed of 50 m/s in the rotating frame (c) and multiple orbits at a variable

speed in the inertial frame (f). Blue arrows that point eastward and northward represent velocity

components in these directions, and red arrows that point in the direction of motion represent

velocity vectors.
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in the northern hemisphere and counterclockwise loops in the southern hemisphere. The

small horizontal components of the Coriolis force near the equator are responsible for the

puck’s large excursions from the equator and its long period of motion [Eq. (26c)].

Figure 4f shows the first 85-h cycle of motion of the puck on a stably rotating spheroidal

earth, as seen in the inertial frame. The puck makes multiple orbits at a variable speed

while the earth makes 3.5 rotations (Fig. 4f).

VIII. CONCLUSIONS

When viewed in the rotating frame, a puck that moves on the surface of a rotating sphere

is subject to the centrifugal force. The spheroidal deformations of a stable rotating spheroid

neutralize the centrifugal and gravitational forces, so that motion on its surface bears little

resemblance to motion on a sphere. Despite the basic nature of these facts and their well-

known roles in meteorology and oceanography, these facts seem to be less appreciated in the

physics community. This paper is designed to increase this appreciation.

Figures 1 and 4 demonstrate the importance of the earth’s spheroidal deformations for

two sets of initial conditions. These illustrations constitute a small subset of the wide range

of possible trajectories for motion on the earth’s spheroidal surface.38,49–53

The axial angular momentum of a puck that moves on the surface of a smooth spheroidal

planet is conserved in the inertial frame (Sec. V), and its kinetic energy is conserved in the

rotating frame as long as the planet rotates at its stable angular speed (Sec. VI). These

conservation principles form the mathematical basis for CorioVis, our robust simulation

and visualization software, which we offer freely to the earth science and physical science

communities.28

We plan to use CorioVis to develop instructional materials to improve understanding

of the origins of the earth’s spheroidal deformations and the role of these deformations for

motion on its surface. For this purpose, instead of using the earth’s eccentricity (Figs. 1 and

4), we plan to use exaggerated eccentricities e ≈ 0.5 to enable students to see the earth’s

spheroidal deformations and to appreciate their role in the motion. CorioVis displays the

spheroidal shape of the earth for any eccentricity (mapping the continents and graticule onto

this spheroid), and is well suited for this educational purpose, especially since it also enables

explorations for angular rotation speeds that are greater than, equal to, and less than the
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stable angular speed. We expect CorioVis to be useful in educating a broad spectrum of

students and in dispelling long-held misconceptions about motion on the earth’s surface.

Motion on planets whose angular speeds do not match their stable angular speeds, that

is, motion on planets that are not in hydrostatic equilibrium, may be of interest to planetary

scientists.54 Following large collisional events, some dwarf planets may lack sufficient heat to

recover hydrostatic equilibrium.62 The moon’s shape departs from hydrostatic equilibrium

thanks in part to its gravitational interactions with the earth.72 CorioVis may offer insights

on the motion of dust or fluids on such bodies.
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