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Abstract

A method is developed for solving bang-bang and singular optimal control problems
using adaptive Legendre—Gauss—Radau collocation. The method is divided into
several parts. First, a structure detection method is developed that identifies switch
times in the control and analyzes the corresponding switching function for segments
where the solution is either bang-bang or singular. Second, after the structure has
been detected, the domain is decomposed into multiple domains such that the mul-
tiple-domain formulation includes additional decision variables that represent the
switch times in the optimal control. In domains classified as bang-bang, the control
is set to either its upper or lower limit. In domains identified as singular, the objec-
tive function is augmented with a regularization term to avoid the singular arc. An
iterative procedure is then developed for singular domains to obtain a control that
lies in close proximity to the singular control. The method is demonstrated on four
examples, three of which have either a bang-bang and/or singular optimal control
while the fourth has a smooth and nonsingular optimal control. The results demon-
strate that the method of this paper provides accurate solutions to problems whose
solutions are either bang-bang or singular when compared against previously devel-
oped mesh refinement methods that are not tailored for solving nonsmooth and/or
singular optimal control problems, and produces results that are equivalent to those
obtained using previously developed mesh refinement methods for optimal control
problems whose solutions are smooth.
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1 Introduction

Optimal control problems arise in many engineering applications due to the need
to optimize the performance of a controlled dynamical system. In general, opti-
mal control problems do not have analytic solutions and must be solved numeri-
cally. A key challenge in solving an optimal control problem numerically arises
due to the fact that most optimal control problems are subject to constraints on
the system. These constraints often take the form of path constraints where limits
are imposed on functions of either the control and/or the state. Constrained opti-
mal control problems often have nonsmooth solutions, where the nonsmoothness
arises in the forms of instantaneous switches in the control or switches between
activity and inactivity in the state path constraints. Moreover, many constrained
optimal control problems have solutions that lie on one or more singular arcs. The
existence of a singular arc makes solving constrained optimal control problems
even more challenging because Pontryagin’s minimum principle (that is, the first
and second-order optimality conditions) fail to yield a complete solution along
the singular arc. As a result, when applying a computational method to a prob-
lem whose solution lies on a singular arc, standard methods produce nonsensical
results. This research is motivated by the importance of solving optimal control
problems whose solutions are nonsmooth and singular.

Numerical methods for optimal control fall into two broad categories: indirect
methods and direct methods. In an indirect method, the first-order variational
optimality conditions are derived, and the optimal control problem is converted
to a Hamiltonian boundary-value problem (HBVP). The HBVP is then solved
numerically using a differential-algebraic equation solver. In a direct method,
the state and control are approximated, and the optimal control problem is tran-
scribed into a finite-dimensional nonlinear programming problem (NLP) [1]. The
NLP is then solved numerically using well-developed software such as SNOPT
[2] or IPOPT [3].

Over the past two decades, a particular class of direct methods, called direct
collocation methods, has been used extensively for solving continuous optimal
control problems. A direct collocation method is an implicit simulation method
where the state and control are parameterized, and the constraints in the continu-
ous optimal control problem are enforced at a specially chosen set of colloca-
tion points. In more recent years, a great deal of research has been carried out
in the area of Gaussian quadrature orthogonal collocation methods [4-7]. In a
Gaussian quadrature collocation method, the state is approximated using a basis
of Lagrange polynomials where the support points of the polynomials are chosen
to be the points associated with a Gaussian quadrature. The most well developed
Gaussian quadrature methods employ either Legendre—Gauss (LG) points [4, 8],
Legendre—Gauss—Radau (LGR) points [5-7, 9, 10], or Legendre—Gauss—Lobatto
(LGL) points [11]. More recently, a convergence theory has been developed to
show that under certain assumptions of smoothness and coercivity, an sp-Gauss-
ian quadrature method employing either LG or LGR collocation points will con-
verge to a local minimizer of the optimal control problem at an exponential rate
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[12—15]. For these reasons, direct methods should be explored in the effort to
develop novel computational methods for singular optimal control.

Computational issues arise when a solution to an optimal control problem is
either nonsmooth or singular. The difficulty with such optimal control problems is
twofold. First, the precise locations of any discontinuities and the structure of the
control must be identified. Static mesh refinement methods that employ Gaussian
quadrature have been developed recently as an initial attempt to locate (approxi-
mately) discontinuities in the solution [16-18]. Even more recently, the idea of
using variable mesh refinement methods and structure detection methods has been
developed [19-23]. Unlike static mesh refinement methods such as those found in
Refs. [10, 24, 25], variable mesh refinement methods work by including parame-
ters in the optimization that define the location of the discontinuities. The methods
in Refs. [19-21] use the Lagrange multipliers to detect the switch point locations
in the control structure and then place variable mesh points to represent the switch
times in the NLP, while Refs. [22, 23] use the switching function and a sensitivity
analysis to place moving finite elements at the switch point locations. Furthermore,
Ref. [26] describes a mesh refinement method for solving bang-bang optimal control
problems based on the switching function associated with the Hamiltonian. More
recently, in Ref. [27] a switch point algorithm was developed for optimizing over the
locations of switch points in a nonsmooth control solution, but a priori knowledge of
the switch points existence is required. Finally, methods that utilize structure detec-
tion on a static mesh are described in Refs. [28, 29].

The second difficulty in solving optimal control problems with nonsmooth or sin-
gular solutions arises when the optimal control is singular. Several approaches have
been developed for solving singular optimal control problems using both indirect
and direct methods. A majority of these methods typically employ either a regulari-
zation approach or use of the optimality conditions with an indirect method to solve
for the singular control (see Refs. [30, 31]). A regularization method transforms
the singular control problem into a series of nonsingular problems by minimizing
the sum of the original objective and a regularization term, where the regulariza-
tion term is a quadratic function of the control. Regularization approaches have been
implemented using dynamic programming, indirect methods, direct methods, and
nested indirect/direct approaches as described in Refs. [32—-35]. More recent imple-
mentations of regularization based techniques include the uniform trigonometriza-
tion method (UTM) developed in [36], the use of a continuation method of a regu-
larized term in [37], and the total variation based regularization approach in [27].
Aside from regularization based approaches, research has also been conducted on
the use of low-order representations of the control including straight line, mono-
tonic, and nonmonotonic function approximations to reduce the oscillations and
numerical challenges observed with singular arcs [38, 39].

Motivated by the prevalence of bang-bang and singular arcs in optimal control
solutions and the need for a general method that can handle such problems, this
paper describes a new method for detecting and solving optimal control problems
whose solutions are bang-bang and singular. The method described in this paper
consists of the following parts. First, a multiple-domain reformulation of the LGR
collocation method is developed that enables partitioning the problem into segments
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that are categorized as either regular, bang-bang, or singular. This multiple-domain
LGR collocation reformulation partitions the time horizon into domains such that
additional decision variables are introduced that correspond to the endpoints of each
newly created domain. Second, a method is developed that detects the structure of
the optimal control (that is, the method detects segments where the solution is either
regular, bang-bang, or singular). Third, a regularization method (inspired by the
approach used in Ref. [32]) is employed to solve for the control in any domain where
the control is categorized as singular. The method presented in [32] implements a
regularization procedure over the entire time domain using differential dynamic pro-
gramming, whereas in this current work a similar regularization procedure is imple-
mented only in the intervals denoted as singular. This difference in implementation
results in a more accurate solution of the control. It is noted that, because bang-bang
and singular optimal control problems frequently have Hamiltonians that are affine
in the control, the structure detection method developed in this paper is designed
to work on those components of the control that appear linearly in the Hamilto-
nian. Moreover, switch times in the control (which then lead to the partitioning into
multiple domains) are identified using the jump function mesh refinement method
described in Ref. [18]. Using the aforementioned structure detection method, the
control in the newly created domains is then either left free (in the case of a regular
domain), set equal to one of its limits (in the case of a bang-bang domain), or is
determined via the aforementioned regularization method (in the case of a singular
domain).

The contributions of this work are as follows. First, using jump function approxima-
tions provide an accurate way to determine the number of discontinuities along with
accurate estimates of the locations of these discontinuities. Second, using the switch-
ing function and the Hamiltonian enables determining those intervals where the con-
trol is either bang-bang or singular. Third, the method automatically partitions the solu-
tion into domains based on the results of the structure detection method. Fourth, the
method does not require any a priori knowledge of the structure in the optimal control
or whether the optimal control is bang-bang or singular. Fifth, in this paper the use
of regularization methods is extended to direct collocation methods. In particular, the
multiple-domain partition of the solution obtained from the structure detection method
enables regularizing only over those domains where the control is singular. Conse-
quently, within a singular domain the regularization leads to a control that lies in close
proximity to the singular control while simultaneously eliminating the need to derive
the singular control conditions (where deriving such conditions may prove to be intrac-
table depending upon the problem). The performance of the method developed in this
paper is demonstrated on four examples. The optimal control for each of the first three
of these examples is either bang-bang and/or singular, while the optimal control for the
fourth example is smooth. The numerical results obtained of the first three examples
demonstrate that the method of this paper produces significantly more accurate results
when compared against mesh refinement methods that are not developed for solv-
ing optimal control problems whose solutions are nonsmooth or singular. Finally, the
numerical results of the fourth example demonstrate the method of this paper correctly
identifies when a solution is smooth and applies only static mesh refinement in order

@ Springer



Method for solving bang-bang and singular optimal control... 861

to obtain a solution. As a result, results comparable to those obtained using previously
developed mesh refinement methods are obtained.

The remainder of the paper is organized as follows. Section 2 introduces the
Bolza optimal control problem and the necessary conditions for optimality. Section 3
describes the multiple-domain Legendre—Gauss—Radau collocation used to transcribe
the multiple-domain Bolza optimal control problem. Section 4 provides a brief over-
view of optimal control problems whose solutions are nonsmooth. Section 5 details
the method for solving bang-bang and singular optimal control problems. Section 6
provides numerical solutions obtained by demonstrating the method on four examples.
Section 7 describes limitations of the method. Finally, Sect. 8 provides conclusions on
this research.

2 Bolza optimal control problem

Without loss of generality, consider the following single-phase optimal control problem
in Bolza form defined on the time horizon 7 € [#,, #;]. Determine the state x(7) € R™,
the control u(s) € R™, and the terminal time 7, € R that minimize the objective
functional

I
)
subject to the dynamic constraints
ax(t .
10 = () = atx(0,u0),, @
the control constraints
Upin < u(t) < Whaxo (3)
and the boundary conditions
b(X(t())’ ty, X(tf)7 tf) =0, @)

where the functions M, £, a, b, and ¢ are defined by the mappings

PR X R XR - R,
PR X R X R —> R,
b R*XRXR%“XR — R™,

M REXRXRE"XR = R,
L
a

The Bolza optimal control problem given in Egs. (1)-(4) gives rise to the following
first-order calculus of variations [40—42] conditions:

%) =[%]T =], )
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. T
At =— [%] = —H], ©)
_IH _
0=2% =7, ™

where A(f) € R™ is the costate and
HX@), (), A1), 1) = L&), (), 1) + AT (Dax(@), u(@), 1), (®)
is the augmented Hamiltonian. Finally, the transversality conditions are given by

oM 1 db oM _ 1 ob

M) == 5 T ey M= ox(t) | ox(ry) ©)
_OM _ rb __OM  _rob
i) = a1, v o1, ) = ot v ot (10)

where v is the Lagrange multiplier associated with the boundary conditions. Equa-
tions (5) and (6) form what is classically known as a Hamiltonian system [40, 41].
The conditions in Egs. (9) and (10) are called transversality conditions [40—42]
on the boundary values of the costate. For some problems, the control cannot be
uniquely determined, either implicitly or explicitly, from the optimality conditions
given in Egs. (5)—(10). In such cases, the weak form of Pontryagin’s minimum prin-
ciple can be used which solves for the permissible control that minimizes the Ham-
iltonian in Eq. (8). If u € [u,,;,, 4,,,] 1S the set of permissible controls, then Pontry-
agin’s minimum principle states that the optimal control, u, satisfies the condition

HE (1), u*, A*(2), 1) < HE (), u, A*(2),1), 0 E [Uyin» Umay - (11)

The Hamiltonian system, together with the original boundary conditions and the
costate transversality conditions, forms a Hamiltonian boundary-value problem
(HBVP) [40-42]. Any solution (x*(z), u*, A*(), v*) to the HBVP is called an extre-
mal solution.

3 Multiple-domain Legendre-Gauss—Radau collocation

In this paper, the previously developed hp-adaptive Legendre—Gauss—Radau (LGR)
collocation method [5-7, 9, 10] is used to approximate the optimal control problem
(where the term LGR collocation will be used from this point onwards to mean hp-
adaptive Legendre—Gauss—Radau collocation). LGR collocation is used because it
has been shown to converge at an exponential rate to a local solution of the optimal
control problem for problems where the solution is smooth [12—15]. The focus of this
paper, however, is on solving optimal control problems whose solutions are nonsmooth
and/or singular. As a result, modifications to the standard LGR formulation are made.

@ Springer



Method for solving bang-bang and singular optimal control... 863

Specifically, a multiple-domain reformulation of LGR collocation is developed as
described in the remainder of this section.

The multiple-domain formulation of LGR collocation divides the domain 7 € [, 7]
into distinct partitions such that the endpoints of each partition are decision variables.
The division into domains is obtained using a structure decomposition method as
described in Sect. 5.1. The continuous-time Bolza optimal control problem described
in Eqgs. (1)—(4) is discretized using collocation at the Legendre—Gauss—Radau (LGR)
points [5-7, 9]. The time horizon t € 29, ;] may be divided into D time domains,
Py =[N, 44 C [4),4,], d € {1,...,D}, such that

D D
UPi=tt1. [(Po=1" 4271, (12)
d=1 d=1

where tgd], de{l,...,D— 1} are the domain interface variables of the problem,

tEO] = 1,, and tED] = 1;. Thus, in the case where D = 1 the phase consists of only a

single domain P, = [£, #;] and {té[,”, ,IKED_”} =0

Adl _ fd=11 [d] 4 fld=1]
t= N 5 T + 5 N ,
2 2
— f-1 (13)
T = 2— 1.
l[d] l[d 1]

The interval = € [—1, +1] for each domain P, is then divided into K mesh intervals,
I, =T, T, ] € [-1,+1], k € {1,...,K} such that

Uzk_ —1,+1] ﬂzk—{Tl,---,TK_l}, (14)

and—1 =T, < T, <...<Tg_; < Ty = +1. For each mesh interval, the LGR points
used for collocation are defined in the domain of [7}_,,T}] for k € {1,...,K}. The
state of the continuous optimal control problem is then approximated in mesh inter-
valZ,, ke {1,...,K}, as

N+1 Nl o B
® ) ~ XPO (1) = k) pk) K\ — l
xT(r) » XT(r) = 2 Xj @, () = H ®©_ _®’ (15)
j=1 =1 Tj Tl
I#

where f(k)(r) for je {1,...,N,+ 1} is a basis of Lagrange polynomials on 7,
(rik), s (k)> are the set of N, Legendre—Gauss—Radau (LGR) collocation points in
the interval [T,_;,T}), 1(\;<)+1 =T, is a non-collocated support point, and

X(k) = X(k)(r(k) ). Differentiating X®(z) in Eq. (15) with respect to 7 gives
N+l k)
dX®(@) _ kz x® de; (1) (16)
dr Iodr

j=1

@ Springer



864 E.R. Pager, A.V. Rao

The dynamics are then approximated at the N, LGR points in mesh interval
ke {l,...,K}as

N+l P
Z} DOX® — %a(X;k),ng),t(r(k),to,tf)) =0, le{l,...NJ}, (17
J=
where
)
Dlj :T, lE{1,...,Nk},j€{1,...,Nk+1},

are the elements of the N, X (N, + 1) Legendre—Gauss—Radau differentiation matrix
in mesh interval 7, k € {1,...,K}, and U( ) is the approximation of the control at
the I collocation point in mesh interval Ik The time variables 7, and #; in Eq. (17)
represent the initial and final domain interface variables, 71~ and 7], on the domain
P,. It is noted that continuity in the state and time between mesh intervals Z,f 1 and

I, ke {1,...,K}, is enforced by using the same variables to represent XN 41 and

X(k) while continuity in the state between the domains Pd 1 and P,de(2,...,D},
is achleved by using the same variables to represent X4 , and XEd] Where the

]
superscript [d] is used to denote the d” time domain, Xgf denotes the value of the

state approximation at the j" discretization point in the t1me domain P, and N9 is
the total number of collocation points used in time domain P, computed by

Kl

NI — Z N[d] (18)

The Legendre—Gauss—Radau approximation of the multiple-domain optimal control
problem results in the following nonlinear programming problem (NLP). Minimize
the objective function

D [d] [d—l]
1 D
J=MX 1, X0 )+ Z [wl] "L (19)
subject to the collocated dynamic constraints
Adl _ fld-1]
A =plxd = > > A =0, de(l,..,D}, (20)
the control constraints
u,, < U“” <u,. jef{l,...N" de{l,..,D}, 1)
the boundary conditions
bX 1, X% 1) =0, (22)

and the continuity constraints

@ Springer



Method for solving bang-bang and singular optimal control... 865

Xl =X de2...D}, 23)
noting that Eq. (23) is implicitly satisfied by employing the same variable in the
NLP for XU~11' and XEd]. The matrices in Egs. (19)—(20) are defined as follows

Nld=114]
[ [d yldl ld]
a(X1 ,Ul . )

Al = - e RN X ne (24)

[d] [dl  [d]
_a(XN[d] 4 UNm > tNm )

[ £<X[1d]’ Ui t[d])

17
Ll = : c RN[d] x 1 , (25)
£<X[d1 Ul )

N> ™ Nld]? " Nld]

Dldl ¢ RN X IN+11 jg the LGR differentiation matrix in time domain
P, de{l,...,D}, and wl¥l € RN %1 are the LGR weights at each node in time
domain P,, d € {1, ...,D}. It is noted that a € R! X" and L € R' X! correspond,
respectively, to the vector fields that define the right-hand side of the dynamics
and the integrand of the optimal control problem. Additionally, the state matrix,
X4 ¢ RIV+11xn. and the control matrix, Ul € RV X% in time domain
P, d e {l,...,D}, are formed as

X! Ul
1 1
Xd=| : JandU“=| : [, (26)
[d] [d]
XNV’J +1 UN[‘”

respectively, where n,, is the number of control components and 7, is the number of
state components in the problem.

3.1 Costate estimation

Estimates of the costate may be obtained at each of the discretization points in the time
domain P,,d € {1, ..., D} using the transformation [5-7],

Al — (W[d])—lA[d] ,

[d  _ mld  \TAld
lN[d]+l_(DN[d]+]) AT,

27

where A1 € RN X n js a matrix of the costate estimates at the collocation points in
time domain P,, Wl = diag(w!?!) is a diagonal matrix of the LGR weights at the
collocation points in time domain P,, Al € RV I xn ig a matrix of the NLP mul-
tipliers obtained from the NLP solver corresponding to the defect constraints at the
collocation points in time domain P, , A4 e RIX s a row vector of the costate

Nldl+1

estimates at the non-collocated end point in time domain P,, and Dzl\[/ll]dlﬂ e RV x1

is the last column of the LGR differentiation matrix in time domain P,.
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The aforementioned multiple-domain LGR formulation is summa-
rized as follows. First, a single phase problem on ¢ € (7. ] is divided into
D domains, P, = [t 19] de(1,...,D}. Each of the D domains are
then mapped to the interval 7@ e[—1,41], d€{1,...,D}. The interval
7l e [-1,4+1], d € {1, ..., D} for each domain is then divided into K mesh inter-
vals, T, = [T,_, T,] € [-1,+1], k € {1,...,K}. Finally, the intersection of each
domain is determined by the domain interface variables, '), d € {1, ...,D — 1}.

4 Nonsmooth and singular optimal control

The term nonsmooth is used to denote the optimal control as displaying both non-
smooth and singular behavior. By definition a singular arc occurs when Eq. (11)
fails to uniquely describe an optimal control; for example, the set of minimizers
in Eq. (11) form an interval which contains the optimal control [42]. In this case,
knowledge of the interval does not uniquely describe the optimal control itself. This
phenomena can occur in many situations but is most common when the dynamics
are linear in the control and the control is bounded, or the Hamiltonian is not an
explicit function of time. It should be noted that singular arcs can also occur in other
situations, but in order to provide structure to the method developed in this paper,
only problems that fall into the aforementioned categories will be considered.

For simplicity, in the discussion that follows it is assumed that the control is a
scalar (that is, u(f) € R). Note, however, that without loss of generality the dis-
cussion below can be extended to multiple control components, and the use of the
method developed in this paper on problems with multiple control components is
demonstrated in the examples provided in Sect. 6. Suppose the optimal control prob-
lem described in Eqgs. (1)—(4) is nonsmooth and singular as defined by the assump-
tions mentioned previously. The dynamics can now be rewritten in the affine form as

X(n) = a(x(®), u(1)) = g(x(1) + h(x(®)u(®), (28)

where g(x(¢)) and h(x(¢)) are not functions of the control. The Hamiltonian from
Eq. (8) is redefined as

Hx(2), A1), u(t), 1) = £(x(0), A1) + ¢ (x(t), AD)u(?), (29)

where f(x(7), A(f)) and ¢(x(?), A(f)) are the components of the Hamiltonian that are
not a function of the control, and mixed state and control path constraints are not
considered. If the following holds along an optimal control

oH

i H, = px(@), A(1)) =0, (30)
then the minimizing control in Eq. (11) is the interval [u,;,, i, ]; thus Eq. (11) only
implies that an optimal control is feasible. Note that the control does not appear in
Eq. (30) because the Hamiltonian is linear in the control. A singular arc is charac-
terized as H,, = 0 and 'H,,, is singular everywhere on the arc. When this occurs, the
reduced Hessian matrix associated with the corresponding NLP that arises from the
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direct transcription method of Sect. 3 is ill-conditioned such that the projected Hes-
sian matrix is not positive definite. This leads to poor conditioning in the control
profiles which often presents itself in the form of oscillations, or chattering behavior,
in the control solution.

The sign and value of ¢(x(7), A(¢)) (where ¢ is called the switching function)
determines if the control is called a bang-bang control or a singular control. The
weak form of PMP [42] is used in the case of nonsmooth control and the minimiza-
tion of the Hamiltonian leads to the following piecewise-continuous control, u, that
is dependent on the switching function as follows

Upins PX(0), 4(1) > 0,
H=qu, ¢xO,A0) =0, (31)
Umaxs PX(D), A1) <0,

u* = *arg min,e [

min-Hmax ]

where the sign of the switching function, ¢(x(¢), A(f)), is determined by the state and
the costate and u, lies in the closed interval [u,;,, U, ]- As the switching function
¢(x(1), A(?)) changes sign, the control coincides with the sign changes by switch-
ing between its maximum and minimum values. Any time interval over which
d(x(1), A(?)) is zero is referred to as a singular arc and any control in the admis-
sible control set will minimize the Hamiltonian. Furthermore, switching between
nonsingular and singular arcs give rise to discontinuities on the state and control
profiles, and the location of these transition points are referred to as switch times.
These discontinuities defined by the switch times create numerical issues, whereas,
the singular control suffers from non-uniqueness issues that occur when the control
is free to lie between its upper and lower bounds and is not defined by the optimality
conditions.

The singular control is obtained implicitly from the switching function. Specifi-
cally, ¢ is differentiated repeatedly until the control u explicitly appears [43]. There-
fore, u* can be solved for by

40
drn

$=0, (r=0,1,2,..), 32)

where 2r is the minimum number of differentiations of ¢ required to obtain the cor-
responding control u,. For u to be optimal over a singular arc, the number of differ-
entiations 2r must be even [42, 43]. Furthermore, the generalized Legendre—Clebsch
condition [42, 44, 45]

1y < dzrqs >0, (r=0,1,2,...)
oulden ™| =7 Y T T (33)

must hold over the duration of a singular arc. While in some problems of interest it
is possible to use Eq. (32) to determine a condition for the singular control, in many
cases it is unable to produce the singular control (for example, if the order of the sin-
gular arc is infinite). Even in cases where the singular control could be determined
from Eq. (32), taking derivatives higher than second-order is not easy to implement
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numerically or analytically. As mentioned previously, the singular control might
be a function of both the state and the costate. If this is the case then a direct col-
location method could not be utilized to determine the optimal trajectory. In this
paper a method is developed that can be fully automated for detecting and accurately
approximating the solution of bang-bang and singular optimal control problems.

5 Method for bang-bang & singular optimal control problems

In this section the method for solving bang-bang and singular optimal control
(BBSOC) problems is developed. The method consists of two stages. The first stage
of the method described in Sect. 5.1 details the detection of the control structure
and the decomposition of the optimal control problem into a multiple-domain opti-
mal control problem dictated by the discontinuities identified that are represented
as domain interface variables. These domain interface variables are then treated as
additional decision variables in the nonlinear programming problem (NLP). The first
stage is only implemented on the first mesh iteration. The second stage described in
Sect. 5.2 describes the new constraints that are added to the NLP depending on the
structure detection’s classification of a domain as being bang-bang or singular in
order to constrain the modified optimal control problem correctly. The constraints
and methods applied in each type of domain are provided in Sect. 5.2. The second
stage initiates the iterative procedures in the proposed method described in Sect. 5.3.

5.1 Structure detection and decomposition

Assume now that the optimal control problem formulated in Sect. 2 under the
assumptions of Sect. 4 has been transcribed into a NLP using multiple-domain
LGR collocation developed in Sect. 3 with D = 1 (that is, a single domain is used).
The solution obtained from the NLP then leads to estimates of the state, the con-
trol, and the costate as given in Egs. (26) and (27), respectively. Assume further that
the mesh refinement accuracy tolerance is not satisfied. As a result, mesh refine-
ment is required which simultaneously enables the decomposition of the problem
into domains that are either bang-bang, singular, or regular. This decomposition is
obtained using structure detection as described now.

Structure detection locates discontinuities identified on the initial mesh and then
uses the locations of the discontinuities to determine the classification of the interval
formed by two adjacent discontinuities. In this work, only control discontinuities are
considered because only problems where the Hamiltonian is linear in control are ana-
lyzed. Their locations are estimated using jump function approximations [18] and then
the intervals formed by each discontinuity are analyzed using the switching function.
Structure detection begins by applying the method of Sect. 5.1.1 to identify and esti-
mate the locations of any control discontinuities. After discontinuity locations have
been estimated, the method of Sect. 5.1.2 takes the estimated discontinuity locations
and determines the classification of the domain as bang-bang or singular. The structure
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detection and decomposition process only occurs once on the initial solution. Detailed
descriptions of the structure detection process are described next.

5.1.1 Identification of control switch times

Discontinuities in each component of the control are identified using jump function
approximations of the control solution as shown in Ref. [18]. In particular, the method
given in Ref. [18] is employed here because it is effective for estimating locations of
nonsmoothness in the optimal control. A brief overview of the process given in Ref.
[18] is provided here for completeness. For further details related to jump function
approximations for detecting nonsmoothness in an optimal control, see Ref. [18].

First, a jump function is defined as follows. Let f : R — R be an arbitrary function
defined on the interval 7 € [, 7;]. The jump function of f{z), denoted [f](2), is defined
as [f1(¢) = f(t*) — f(r7) where f(¢*) and f(¢+7) are the right-hand and left-hand limits
of f1), t € [#y,1,]. The jump function is zero across intervals where f{7) is continuous
and takes on the value of the jump in f{¢) at those locations where f{7) is discontinuous.
According to Refs. [18, 46] the jump function of a function f{¢) is approximated by

1
Lnf(0 = Z; c(Of ) =~ [£100), (34)
where ¢,,(?) is defined by
qm(t) = C‘([)a
HES; ’ 3)
cj(t) is defined by
Cj(t) - m+1 L ’
I G-u (36)
i=1
i#]

and m specifies the order of the approximation. Higher order approximations con-
verge to the jump function faster outside the neighborhood of discontinuities but
have oscillatory behavior in the vicinity of discontinuities. The oscillations are
reduced via the minmod function, defined here as

mi/\r}thf(t), Lfit)y>0VYme M,
me.
MM (L f(0) = max L, f@), L,f(t) <0 Yme M, (37)
me
0 otherwise,
where M C Nt is a finite set of choices of the approximation order m.
Suppose an initial control solution is obtained. The control solution,

U(rj(k)),j ={1,...,N.}; k= {1,...,K}, is normalized to the interval [0, 1) by the
transformation

@ Springer



870 E.R. Pager, A.V. Rao

U™ = uy,
u(r(k) )= ! (38)

k]

1+ Umax — Umin

where u;, and u,,,, are the minimum and maximum values of the control. Together,
)

the normalized control solution and the corresponding collocation points, 7, on
[—1, 1) of the initial mesh, are applied to Egs. (34)—(37) to produce a jump function
approximation for the normalized control. The jump function approximation is then

evaluated at the points r(f = ( (k)+ J(f)l)jz {1,...,N.}; k={1,...,K}. Let the
2

evaluation of the jump function approximation at T(_I:_) be denoted by MM (T(k) ). The
J+

J )2

method detects a discontinuity at the location, o 1 if the following cond1t1on is
+3

satisfied:

'MM(TJFfl) > . (39)
2

The identified discontinuities are referred to as b,, i = {1,...,n,;} where n, is
the total number of identified control discontinuities. It is noted that # € [0, 1) in
Eq. (39) is a user-specified threshold that specifies the relative size of jumps that are
detected (where the likelihood of jumps being detected in the control decreases as
n increases). The default value of # is set to 0.1 for the examples considered in this
paper.

Bounds on the discontinuity locations are now defined. Consider for some
j=1{L,...,N,}and k = {1, ...,K} that Eq. (39) is satisfied, indicating that a dis-
contmulty is present somewhere on the mesh interval 7 € [r(k) (k) 1] To account
for the uncertainty incurred by using the numerical solutlon as a sample for the
jump function approximation, a safety factor, u > 1 is introduced to extend the
bounds estimated for the discontinuity. This safety factor provides a larger
threshold to adequately capture the potential search space of the estimated
switch times. Let [bi‘,blf'], i={l1,...,n,;} be the lower and upper bounds on the
locations of discontinuities in the control (that is, any discontinuity is bounded
to lie on the interval [bl.‘, bi+]). The estimates of these bounds are defined as

b= (e =), | = )

Jt3 Jt3 .
Jj=1{L...,N.}, (40)
+ _ (B (k) (k) —
bi _Tj+%+ﬂ<1+l Tj+%>’ k= {1,,K}

Larger values of y are more desirable as it is more likely that the discontinuity b,
will lie in the interval [bi‘, b:r], i={l1,...,n,}. Furthermore, the default value of u is
set to 1.5 for the examples considered in this paper.
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5.1.2 Identification of bang-bang and singular domains

Identification of the domains is employed to determine the structure of the control
using the discontinuities identified from the jump function approximations. Specifi-
cally, the control solution is inspected to determine if any bang-bang or singular arcs
exist. The first and second derivatives of the Hamiltonian with respect to control are
computed and used to detect if the Hamiltonian is linear in the control by assessing
if the second derivatives are zero. If the Hamiltonian is affine in control, the first
derivatives are computed and represent the switching function of the system. If the
Hamiltonian is not linear in the control the structure detection process is finished
and smooth mesh refinement (see Sect. 5.2.4) can be performed.

Suppose the initial solution contains the following newly identified discontinui-
ties b; and corresponding bounds [bi‘,blff], i={l1,...,n,;}. The solution is divided
into intervals starting with the initial time, the discontinuity locations, and end-
ing with the final time, {[—1,b,],[b,,b,],...,[b;, b1, [biyr, +11}, i = {1, ..., 0y}
Next, the Hamiltonian in Eq. (29) is computed using the initial solution

H =£(X(7), A1) + ¢ (X(1), A(2)U(2). (41)

Note that the costates are also obtained when solving the NLP that results from mul-
tiple-domain LGR collocation (see Sect. 3.1). The first and second derivatives with
respect to the control are computed using the already computed derivatives required
by the NLP solver

oH
7 d(X(7), A7), (7, 1y, 1)), (42)
0*H
m = (I)(X(T), A’(T)s t(T’ tO’ tf)) (43)

First, the values of Eq. (43) must be zero. If this condition is satisfied then Eq. (42)
is analyzed as follows. A bang-bang interval in the control structure will occur
when the switching function ¢ changes sign. The sign of the switching function ¢
is checked in each interval [b;,b;, ], i = {1,...,n,}. If the sign in the interval is
positive, the control is constrained to its minimum value. If the sign in the interval
is negative, the control is constrained to its maximum value. Additional details on
these constraints are discussed in Sect. 5.2.1.

A singular interval in the control structure will occur when the switching function
@ is zero at every point in the interval [b;, b;,]. Assessing if the switching function
¢ is zero over the current interval is nontrivial. Due to the NLP being ill-conditioned
when a singular arc is present, the estimated solution over a singular interval will
suffer from larger numerical error. The user-defined zero threshold becomes critical
in detecting the presence of a singular arc because the switching function will never
be exactly zero. This threshold is heavily influenced by the coarseness of the initial
mesh and the accuracy of the detected discontinuity locations. Once a singular arc
has been detected, a regularization method is employed as described in Sects. 5.2.2
and 5.2.3. If a scenario occurs where the entire control is singular on [#,, tf], then
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no discontinuities will be detected. In this situation, the identification procedure is
applied over the entire time domain so that the singular arc can be identified.

5.1.3 Structure decomposition

Assuming the methods of Sects. 5.1.1 and 5.1.2 have identified discontinuities and
intervals that are bang-bang or singular, the initial mesh is now decomposed into
the multiple-domain structure. Once acquired, the detected structure of the nons-
mooth control is used to introduce the appropriate number of domain interface
variables, tLdJ, d={1,...,D— 1}, to be solved for on subsequent mesh iterations,
where the initial guess for each variable is the estimated discontinuity location
b;, i = {1,...,n,} that was found using the method in Sect. 5.1.1. The domain inter-
face variables are included in the NLP by adding them as additional decision varia-
bles that define the new domains, P, = [~ 41], d = {1, ..., D}. Specifically, the
domain interface variables are employed by dividing the time horizon 7 € [#,, 7] of
the original optimal control problem into D domains as described in Sect. 3.

Next, bounds on the domain interface variables are enforced to prevent the col-
lapse or overlap of domains. The bounds provide an additional constraint on
the domain interface variables. The upper and lower bounds on each domain
interface variable are determined by taking the discontinuity bounds found in
Sect. 5.1.1 and transforming them to the time interval 7 € [#y, ;] using the trans-
formation in Eq. (13). Thus, the bounds [bi‘,b;“], i={l,...,n,} are transformed to
[ A, d = {1,...,D - 1}.

This approach to structure decomposition partitions the entire problem domain
into multiple domains of the form described in Sect. 3 such that the switch
times are represented by the strategically placed domain interface variables
t&‘”, d e {l,...,D—1}. A schematic for the process of decomposing the nonsmooth
control structure into a multiple-domain formulation with domain interface varia-
bles is shown in Fig. 1. Additionally, the form of the control in each domain is clas-
sified as either bang-bang, singular, or regular. In the next section, the constraints
and refinement strategies required by each type of domain are discussed.

5.2 Domain constraints and refinement

Now that structure detection and decomposition has taken place by the methods
of Sect. 5.1, additional constraints are required to properly constrain the multiple-
domain optimal control problem. Recall that there are three types of domain classi-
fications: bang-bang, singular, and regular. Each domain type requires its own set of
constraints and refinement methods that are detailed in the following sections.

5.2.1 Bang-bang domain constraints
Suppose the problem has been partitioned into D domains based on the results of

structure detection, and it has been determined that B domains are bang-bang by
the method of Sect. 5.1.2, where B < D. The value of the switching function ¢
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Fig. 1 Schematic of process for decomposing the nonsmooth optimal control problem into D domains
where the D — 1 domain interface variables are included as optimization variables to determine the opti-
mal switch times in the control

in the current domain of interest P, is used to determine the value of the control
over that domain. Recall, that the switching function assigns the value of the con-
trol according to

W) = Ui, PNX, A 27,10, 1)) > 0,

Nty = u PN(X, A, 1(, 1, 1,)) < 0. “4)

max?

The control is then constrained to its corresponding maximum or minimum value
in the resulting multiple-domain optimal control problem. The bang-bang control is
now appropriately constrained over its domain and the corresponding domain inter-
face variables can be optimized to the optimal switch time locations.

5.2.2 Regularization of a singular domain

Assume now that the entire domain [, ] of the optimal control problem has been
partitioned into D domains using the structure detection method as described
in Sect. 5.1. Assume further that, using the procedure given in Sect. 5.1.2,
S of these D domains are classified as singular (where S <D and S+ B < D)
such that {s,,...,sg} € {1,...,D} are the indices corresponding to the singular
domains. The singular domains are then defined, respectively, on the intervals
[l sy ¢ ltg. 1), d = {1,....,S}.

In any domain that is classified as singular, the following iterative regulariza-
tion method is employed. First, the objective functional in the singular domain is
augmented with the regularization term
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A
6, = E/ (u(t)—ap(t))zdt, d={1,...,8}, p={1,2,...} 45)

Sd 2 tlsd_u
s

where u(f) is the optimal control to be determined when solving the problem,
ap(t) € R is a known function that changes with each iteration of the regularization
method (see Sect. 5.2.3), and

5 () = a,(0)° (46)

is the integrand of Eq. (45). Furthermore, € is a user-defined weighting parameter
that is chosen based on the particular problem under consideration. Augmenting the
Hamiltonian with the term in Eq. (46) results in a Hamiltonian that is quadratic in
the control. Consequently, the optimal control problem, that would be singular with-
out the inclusion of the term in Eq. (46), becomes regular (nonsingular). While in
principle € can be any positive value, it must be sufficiently large to eliminate the
indeterminacy of determining the optimal control on the singular arc, but it must
be sufficiently small so that the resulting optimal control is in close proximity to the
true singular optimal control.

5.2.3 lterative procedure for determining singular control

Next, it is important to understand the source of the function ,(#). Singular domain
refinement is employed in an iterative fashion where p is the iteration number of the
singular domain refinement procedure. For p = 1, ap(t) is set to zero. Then, for p > 1,
a,(1) is obtained using a continuous piecewise cubic approximation of the control
obtained from the solution of the NLP on iteration p — 1 and the approximation for
a,(1) is obtained by interpolation using a piecewise cubic polynomial with the proper-
ties defined in Ref. [47].

The augmented multiple-domain optimal control problem that is solved by the regu-
larization method is then stated as follows. First, for any iteration p > 1 the objective
functional to be minimized includes the terms 5sd’ {d=1,...,5},and is defined as

S
J,=J+ )8, 47)
d=1

Furthermore, the constraints include the dynamic constraints, the boundary condi-
tions, and the path constraints given, respectively, in Eqs. (2)—(4). The process for
updating the iteration of the regularization method is as follows. First, after solv-
ing the NLP arising from LGR collocation with D = 1, the structure detection and
decomposition method of Sect. 5.1 is employed for one mesh iteration. On the sec-
ond mesh iteration (that is, M = 2) the value of p is set to unity (that is, p = 1)
and the regularization term of Eq. (45) is augmented to the objective functional
in any domain classified as singular with a,(r) =0 and the resulting NLP is then
solved. Then, from the third mesh iteration onwards (that is, M > 2), the value of
p is incremented as p — p+ 1 and the value of a,(?) is determined based on the
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Fig.2 Description of the regularization method during mesh refinement iteration, M

aforementioned continuous piecewise cubic approximation from the discrete con-
trol solution obtained on iteration p. The process of refining the mesh and updating
the function a,,(7) is then repeated until the regularization term 6 lies below a user-
specified tolerance o. The regularization procedure is independent of regular mesh
refinement meaning that refinement of the mesh always occurs on each iteration and
the updates to @, (¢) occur independently from the mesh refinement actions. Figure 2
provides a schematic of the regularization method that is enforced over each mesh
refinement iteration in a singular domain.

5.2.4 Regular domain refinement

Suppose that a particular domain P, has been determined to be regular, that is, the
domain P, is categorized neither as bang-bang nor singular. Although the domain
‘P, is categorized as regular, this domain may still require mesh refinement. In par-
ticular, mesh refinement of the domain P, will be required if the maximum rela-
tive error on the domain P, exceeds the relative error tolerance. Several methods
have been previously developed for smooth mesh refinement [10, 16, 24, 25]. In
this research, domains where the solution is smooth are refined using the method
developed in Ref. [10]. The mesh refinement method of Ref. [10] occurs on every
iteration until the user-specified mesh error tolerance is met and is independent of
the status of the regularization procedure in Section 5.2.2. It is noted that Ref. [10]
also includes a method for the computation of a relative error estimate. The reader
is referred to Ref. [10] for a more detailed explanation of how both smooth mesh
refinement operates and an estimate of the relative error on a mesh.

5.3 Procedure for solving bang-bang and singular optimal control problems

An overview of the proposed method for bang-bang and singular optimal control
problems is shown below. The mesh refinement iteration is denoted by M and is
incremented by one with each loop of the method. The regularization refinement
iteration is denoted by p and is incremented by one on each mesh iteration as
required by the regularization method. This method terminates when two require-
ments are met. First, the regularization term (45) must be within a user specified
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tolerance o from zero, or if Eq. (45) remains identical in value over three consecu-
tive iterations. Second, the mesh error tolerance, e, must be satisfied on each mesh
interval or if M reaches a prescribed limit, M, . The method is executed as follows:

Method for Solving Bang-Bang & Singular Optimal Control Problems I

Step 1: Set M = 0 and specify initial mesh. All mesh intervals form a single domain.

Step 2: Solve NLP of Section 3 on mesh M.

Step 3: Compute relative error e on current mesh M.

Step 4: If M = 1, employ structure detection and decomposition in Section 5.1.

(a): Determine the number of switch times, ng4, using the methods of Section 5.1.1.

(b): Classify the intervals as bang-bang or singular using the method of 5.1.2.

(c): Assign domain interface variables by method of Section 5.1.3.

(d): Partition time horizon into domains by method of Section 5.1.3.

(e): Perform domain refinement according to Section 5.2.
(i): Enforce control constraints in each bang-bang domain as in Section 5.2.1.
(ii): Employ regularization method in singular domains according to Section 5.2.2.

(iii): Apply mesh refinement in regular domains as in Section 5.2.4.

Step 5: If ng =0 or M > 1, apply smooth mesh refinement and proceed to Step 7.

Step 6: If (M > 1,6 <o, and epax <€) or (M > Mpax), then quit. Otherwise:

(a): Apply iterative procedure of Section 5.2.3.

(b): Increment M — M +1, p — p+ 1 and return to Step 2

Step 7: Increment M — M + 1 and return to Step 2.

6 Examples

In this section, the aforementioned BBSOC method described in Sect. 5 is stud-
ied on three nontrivial bang-bang and singular optimal control problems. Each
of the three problems demonstrates the methods abilities to solve different types
of nonsmooth optimal control problems including a purely bang-bang control, a
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bang-singular-bang control with no analytic solution, and a bang-singular control
where the analytic solution exists. A fourth example with a smooth optimal solution
is also solved using the method of Sect. 5 and compared against a previously devel-
oped mesh refinement method. In addition, the following values of design param-
eters in the method are chosen for all examples: # = 0.1 and ¢ = 1.5 while the value
of the regularization parameter ¢ is different for each example and ranges between
unity and 1073 (depending upon the problem being solved).

All results obtained using the BBSOC method are compared with either an analytic
solution (if an analytic solutions exists), a numerical solution obtained without enforc-
ing the known structure of the optimal control, or a highly accurate numerical solu-
tion obtained by enforcing the known structure of the optimal control. Any numerical
solution obtained by enforcing the known structure of the optimal control is referred
to as a baseline solution. All numerical solutions, other than those obtained using
the BBSOC method, are obtained using the MATLAB® optimal control software
GPOPS — [l as described in Ref. [48], and GPOPS — [l is referred to from this point
forth as the Ap-LGR method. For any results obtained where the known structure of
the optimal control is not enforced, the problem is formulated as a single-phase opti-
mal control problem for use with the 4p-LGR method. For any results obtained where
the known structure of the optimal control is enforced, the problem is formulated as a
multiple-phase optimal control problem for use with 4p-LGR method, and the control
in each phase is either free (if the control is regular), is set to either its known lower
or upper limit (if the control is bang-bang), or is determined by enforcing the singular
arc optimality conditions (if the control is singular), and the switch times (which are
the endpoints of each phase) are determined as part of the optimization. Finally, for all
numerical results obtained, the accuracy of the solution is improved using the mesh
refinement method of Ref. [10] where an error analysis is performed using the error
estimate described in Ref. [10]. For completeness, Table 1 provides a table with the
nomenclature that identifies the various methods being compared in this section.

All results are obtained using MATLAB® and the nonlinear program developed
in Sect. 3 is solved using IPOPT [3] in full-Newton mode. The NLP solver tolerance
is set to 10~ and the mesh refinement tolerance for smooth mesh refinement [10] is
1076, All first and second derivatives are supplied to IPOPT using the automatic dif-
ferentiation software ADiGator [49]. In each example, the initial mesh consists of
ten uniformly spaced mesh intervals and four collocation points per mesh interval,
and the initial guess for all examples is a straight line for variables with boundary

Table 1 Nomenclature of Method Name Meaning
the various methods being
compared in Sect. 6 BBSOC Method Developed in This Paper
hp-LGR One-Phase Implementation of
GPOPS — Il Without Enforce-
ment of Control Structure
Baseline Multiple-Phase Implementation

of GPOPS - [1 With Enforce-
ment of Control Structure
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conditions at both endpoints and is a constant for variables with boundary conditions
at only one endpoint. Finally, all computations were performed on a 2.9 GHz 6-Core
Intel Core 19 MacBook Pro running Mac OS Big Sur Version 11.3 with 32 GB 2400
MHz DDR4 of RAM, using MATLAB version R2019b (build 9.7.0.1190202) and all
computation (CPU) times are in reference to this aforementioned machine.

6.1 Example 1: Robot arm problem

Consider the following problem where the goal is to reorient a robotic arm in
minimum time [50]:

minimize J= I,

[ ¥,() = y,(2), y1(0)=9/2, y,(t;) =9/2,
Yo() = u (/L. »0)=0,  y@) =0,
Y3(1) = y,(0), y3(0) =0,  ys;(tp) =27/3,
subjectto 3 ¥, (1) = uy(0)/1,, y40) =0,  y(@) =0,
Ys(t) = ye(), y5(0) = /4, ys(t;) = m/4,
Yo(1) = u3(0) /19, ¥6(0) =0,  ys(ty) =0,
\_lsui(t)sls (l=152»3)9

(48)
where 1, is free, I, = (L = y,(1))* + y3(1)), Iy = Isin*(y5(1)), and L = 5. The robot
arm problem has a bang-bang structure for all three components of the control and
contains a total of five switch points in the control. A baseline solution is obtained
for comparison and the results are provided in Table 2.

The control solution obtained from solving this problem using the BBSOC and the
hp-LGR method are shown in Fig. 3. Observing the controls in Fig. 3a—c, it is seen
that the five switch times are identified and the controls are constrained to their corre-
sponding boundaries after just one iteration of the BBSOC method. In contrast, the Ap-
LGR method does not correctly identify all five discontinuities and as a result obtains
incorrect approximations of the controls. In particular, the 4p-LGR method attempts to
place more collocation points in the neighborhood of the switch times (thus increas-
ing the size of the NLP) while still not correctly identifying the exact locations of
the switches in the control. Table 2 shows the numerical values of the switch times
obtained from the BBSOC method, /#p-LGR method, and the baseline solutions. It is
seen that the BBSOC method produces highly accurate approximations of both the
switch times and objective and is in excellent agreement with the baseline solution.
On the other hand, the 4p-LGR method (which is not designed specifically for solving

Table 2 Comparison of computational results for Example 1

Al /2 31 a4 51 N CPU [s]

s s

BBSOC 2.285228 2.796043 4.570456 6.344869 6.855684 9.140912 0.63
hp-LGR 2.249813 2.795031 4.518293 6.330691 6.820305 9.140984 3.25
Baseline 2.285228 2.796043 4.570456 6.344869 6.855684 9.140912 1.59
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Fig.3 Control component solutions for Example 1 illustrate the discrepancies between the solutions
obtained by the BBSOC and Ap-LGR methods

problems with nonsmooth solutions) attains a less accurate solution when compared
with the BBSOC method. In addition to accuracy, Table 2 provides a comparison of
the CPU time required for each approach. In particular, it is seen from Table 2 that
the BBSOC method converges to the optimal solution more efficiently compared with
either the Ap-LGR method or the baseline solution.

6.2 Example 2: Goddard rocket problem

Consider the following optimal control problem [42]:

minimize  J = —h(ty),

h(t) = v(@), h(0) = 0, h(t;) = Free,
. T(H)-D
H)=——-—g, 0) =0, v(t,) = Free,
subject to V) . g VO V) (49)
() = ===, m(0) =3, m(t;) = 1,
0<T({t) <T,..
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Table 3 Comparison of computational results for Example 2

Al 2 t T 5 e p CPUJs|

BBSOC 13.751266 21.987362 42.887912 —18550.87185 7.86x10™% 10°® 3 2.86
hp-LGR  13.541287 22.213037 42.887750 —18550.87039 - - - 224
Baseline 13.751270 21.987363 42.887912 —18550.87186 — - - 257

where £ is the altitude, v is the velocity, m is the mass, T is the thrust (and is the
control), D = Dyv*(¢) exp(—h(t)/H), and the final time is free. Further details on the
model and the parameters can be found in Ref. [42]. In particular, the control T has a
bang-singular-bang structure and differentiating H, twice with respect to time leads
to the following singular control law [1]:

v(1)
(1 + Tt) L 2% m(t)g

H (1) a2 |
§ L+ v(t) + v2(1)

Tyne(t) = D + m(1)g + (50)

The singular arc condition in Eq. (50)is used to obtain a baseline solution and the
results are included in Table 3 for comparison.

The problem in Eq. (49) is solved using the BBSOC and /p-LGR methods. Both
of these control solutions are compared in Fig. 4a and parameters related to the reg-
ularization method are provided in Table 3. Figure 4a demonstrates that the regu-
larization method has converged to the correct singular control while also correctly
identifying the switch times. In contrast, the #p-LGR method obtains a solution that
exhibits oscillations at the switch times defining the singular arc. These oscillations
are also seen in the initial iterations of the regularization method, but are removed
by the third iteration as seen in Fig. 4b.
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T T T
o BBSOC —o—Initi
180 T 180 L Initial ]
—— Baseline ——p=1
160 160 - p=2
—4—-p=3
140 140 P q
120 120
=100 100}
&~ &~
80 80
60 60
40 40+
20 20+
0 > 0
0 10 30 40 50

t

(b)

Fig.4 Control solution for Example 2 in Fig. 4a illustrates the numerical discrepancies between the solu-
tions obtained by the BBSOC method, #p-LGR method, and the baseline method. Figure 4b shows the
control history of the regularization procedure for obtaining the singular control
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Next, Table 3 compares the solution obtained using the BBSOC method, #p-LGR
method, and the baseline solution. These results further validate the BBSOC meth-
ods ability to identify the optimal switch times, final time, and cost. The BBSOC
results are also in close agreement with the baseline solution while the Ap-LGR
results are not. The computation times for all three methods are also compared in
Table 3 and all three methods have very similar CPU times with the BBSOC method
taking the longest; however, it produces a far more accurate solution and achieves
the same accuracy as the baseline solution without any a priori knowledge of the
singular problem.

It is well known that the singular surface in the optimal control problem of
Eq. (49) can be reduced to lie in the state space (that is, the singular surface is a
three-dimensional surface in the space defined by £, v, and m). In particular, the sin-
gular surface is defined as

Dyv? exp(—h/H)(1 +v/c)
m= .
8

(D

Figure 5 shows the singular surface defined by Eq. (51) and the state solution
obtained using the BBSOC method, i#p-LGR method, and baseline solution. It is
observed in Fig. 5b that the segment of the 4p-LGR solution that corresponds to the
singular interval does not lie in close proximity to the singular surface. On the other
hand, the portion of the trajectory corresponding to the singular interval using either
the BBSOC or the baseline solution does lie on the singular surface.

6.3 Example 3: Jacobson’s problem

Consider the following problem posed in [32]:

—e—BBSOC
1.5} —A—hp-LGR
—— Baseline

[ Singular Surface
—e—BBSOC

—a— hp-LGR
—— Baseline

09

ps
10

20
h x 1000 =200

< —~ X
600 800 1000

= 0.8 L L L L L )
400 720 740 760 780 800 820 840

— —
0 200
v

(a) (b)

Fig.5 The singular surface for Example 2 is presented with the corresponding trajectory obtained using
the BBSOC method, /p-LGR method, and the baseline solution. The numerical error accrued by the Ap-
LGR solution is shown in a zoomed in 2D plot of the trajectory in Fig. 5b
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Table 4 Comparison of computational results for Example 3

A T 5 € p CPU [s]
BBSOC 1.41376404 0.37699193 6.31x 10714 1078 4 2.02
hp-LGR 1.41194167 0.37699503 - - - 2.13
Analytic 1.41376409 - - - - -

1 [
minimize J= E/ () + x3(0) dt,
0

X% @ =x0), x(0)=0, x,(t) = Free, (52)
subject to X, (1) = u(t), x0) =1, xz(tf) = Free,
-1 <u@® <1,

where #; = 5. The optimal control problem of Eq. (52) has an analytic solution. Con-
sequently, the analytic solution can be used to assess the accuracy of the BBSOC
method. Further details on the derivation of the analytic solution to the example in
Eq. (52) can be found in [27]. The singular control is u:ing(t) =x,(1), t 2~ 1.41376409
and the analytic switch time 7I') = 1.41376409 is shown in Table 4.

Figure 6 shows the control solutions obtained when solving the optimal control
problem of Eq. (52) using both the BBSOC and 4p-LGR methods. Using the BBSOC
method, it is seen that a high-accuracy approximation of both the switch time and the
singular control are obtained after two iterations of the BBSOC method. In contrast, the
hp-LGR solution exhibits fluctuations in the neighborhood of the switch time. Next,
Fig. 6b shows the history of the control obtained on each iteration of the regularization
method that is part of the BBSOC method. As already indicated in Fig. 6 and further
emphasized by Fig. 6b, these fluctuations present in the Ap-LGR solution are elimi-
nated because of the inclusion of the regularization term in the objective functional.

Next, Table 4 provides a comparison of the switch time and objective values
obtained using both the BBSOC and /#p-LGR methods alongside the analytic solution

0.5
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0.6
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0.4}
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u(t)
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-0.5F 4
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Fig.6 Control solution for Example 3 illustrating the numerical discrepancies between the solutions
obtained by the BBSOC and /p-LGR methods. Figure 6b shows the control history of the regularization
procedure for obtaining the singular control
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(where it is noted that Table 4 also provides the parameter € used in the regularization
term of Eq. (45) along with the value 6 obtained for the regularization term itself). It
is seen that the value of the analytic switch time is in close agreement with the switch
time obtained from the BBSOC method. Next, the computation times for both methods
are also compared in Table 4. It is observed that the BBSOC method is more com-
putationally efficient when compared with the p-LGR method while simultaneously
producing a more accurate solution.

6.4 Example 4: Entry vehicle crossrange maximization (smooth solution)

Consider now the crossrange maximization of an entry vehicle problem given in
Ref. [1] and whose formulation is taken from Ref. [48]. It is known that the solution
to this optimal control problem is smooth. For problems whose solutions are smooth,
the BBSOC method should not identify any discontinuities or singular intervals. Con-
sequently, the method should not divide the entire domain into multiple domains nor
should it apply regularization. In this section the entry vehicle problem is solved using
the BBSOC method. While the details of this problem are omitted here for brevity,
further details of the maximum crossrange entry vehicle problem can be found in Refs.
[1,48].

The results of applying the BBSOC method to the aforementioned maximum cross-
range entry vehicle problem are provided in Table 5, where M denotes the number of
mesh refinement iterations and K denotes the total number of collocation points. In par-
ticular, it is seen from Table 5 that the BBSOC method obtains the same solution as the
optimal control software in Ref. [48] while taking an average of 0.6 s more CPU time
to solve the problem. In particular, the BBSOC method does not identify any disconti-
nuities nor does it identify any intervals as singular. The results obtained for this exam-
ple demonstrate the ability of the BBSOC method to identify correctly the fact that the
optimal control for the maximum crossrange entry vehicle problem is smooth and that
the BBSOC method applies only static mesh refinement (see Sect. 5.2.4) as necessary.

7 Limitations of the BBSOC method

As with any computational method, the method of this paper has limitations. The
first limitation is that the approach depends upon the quality of the initial mesh that
is supplied. In particular, the solution on the initial mesh is used to ascertain the
structure of the solution to the optimal control problem. As a result, if the solution
structure determined by the structure decomposition method described in Sect. 5.1.3

Table 5 Comparison of T M K CPU [s]
computational results for
Example 4 BBSOC ~0.5963 4 105 1.81

hp-LGR —0.5963 4 105 1.17
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is not representative of the optimal solution structure, the method may not produce a
sufficiently accurate solution.

Next, the regularization method described in Sect. 5.2.2 is dependent upon the
value of the regularization parameter € as shown in Eq. (45). If € is chosen to be
too large, then the control obtained in a domain categorized as singular may not be
a sufficiently accurate approximation of the singular control. On the other hand, if
€ is chosen to be too small, then the approximation of the singular control may be
noisy (which would be as if no regularization was performed). Next, if the structure
detection method produces initial estimates of the switch times that do not lie within
a reasonable proximity of the actual switch times or incorrectly identifies the actual
switch times, then the structure obtained may be quite different from the optimal
control structure. The detection of the control structure can be adjusted by chang-
ing the values of the parameters # and u, as discussed in Sect. 5.1. While the default
values of the parameters given in Sect. 5.1 worked for the problems discussed in this
paper, more complex problems may require more testing from a user standpoint.

Finally, it is noted that the method of this paper is limited to problems where
the control appears linearly in the Hamiltonian, that is, this paper does not consider
problems where the solution is bang-bang and/or singular and the Hamiltonian is
not linear in the control. Furthermore, this method does not consider the inclusion of
state or mixed state-input constraints.

8 Conclusions

A method has been described for solving bang-bang and singular optimal control
problems using adaptive Legendre—Gauss—Radau (LGR) collocation. First, the
standard single-domain LGR collocation method is modified to be formulated as a
multiple-domain method where the endpoints of each domain are variables in the
optimal control problem. Next, a structure detection method is developed that identi-
fies intervals of the original domain as either regular, bang-bang, or singular. This
structure detection method is developed based on the sign of the switching function
for problems where the control appears linearly in the optimal control Hamiltonian.
Based on the results of the structure detection, the original domain is partitioned
into multiple-domains in a manner consistent with the aforementioned multiple-
domain formulation. For any domain that is categorized as regular, the control is set
equal to either its lower or upper limit (based on the sign of the switching function).
For any domain that is categorized as singular (that is, the sign of the switching
function in such a domain is indeterminate), a regularization method is employed
to determine an accurate approximation of the singular control. The various parts
of the method, that is, the multiple-domain formulation, the structure detection,
and the categorization of the various intervals, are combined into a unified method
that solves bang-bang and singular optimal control problems. It is also noted that,
for problems where the solution contains no bang-bang or singular intervals, the
method reverts to a standard single-domain LGR collocation method. The method
is demonstrated on four examples. Three of the examples have either a bang-bang
and/or singular solution while the fourth example contains no bang-bang or singular
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intervals. It is found that the method efficiently produces accurate solutions to bang-
bang and singular optimal control problems.
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