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Abstract
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I. INTRODUCTION

Dipolar magnetic interactions are often used to approximate the interactions between perma-
nent magnets of various shapes [1-8]. In the case of uniformly magnetized spheres, this approxi-
mation is exact — the energy, force, and torque between uniformly magnetized spheres are identical
to those between point magnetic dipoles, even at short separations. Before this point-sphere equiv-
alence was shown for arbitrary magnet orientations [9], it was shown for magnetizations that are
perpendicular to the line through the sphere centers [10], for parallel magnetizations that make an
arbitrary angle with this line [11], and for one magnetization parallel to this line and the other in an
arbitrary direction [12]. Investigations of the dynamics of pairs of uniformly magnetized spheres

[13-18] and chains of such spheres [19-26] exploit this point-sphere equivalence.

Many of these investigations are motivated by interest in collections of small neodymium mag-
net spheres that are used to build beautiful sculptures, some made from thousands of magnets,
including models of molecules, fractals, and Platonic solids [27]. These spheres have spawned
a learning community dedicated to sharing photos and tutorials of magnetic sculptures, with
YouTube tutorial videos attracting over a hundred million views [28]. These spheres offer engag-
ing hands-on exposure to principles of magnetism, and are used both in and out of the classroom

to teach principles of mathematics, physics, chemistry, biology, and engineering [28, 29].

These neodymium magnet spheres carry protective coatings of nickel, copper, and other ma-
terials of total thickness up to 0.05 mm [30-32]; such coatings occupy up to 12% of the vol-
ume of magnets of diameter 2.5 mm [33]. Coating materials carry lower magnetizations than the
neodymium-iron-boron alloy (NdsFe,,B) that is used for the magnet cores. Thus, coated magnets
are non-uniformly magnetized and the point-sphere equivalence for uniformly magnetized spheres

does not apply to them.

Such coated magnet spheres do have spherically symmetric dipole density distributions, mean-
ing that their magnetization (the magnetic dipole moment per unit volume of material) depends
only on the distance from the magnet center. For these magnets, it is the magnitude of the magne-
tization that depends on the distance from the center, not the direction of the magnetization, which
is the same throughout the sphere. We ignore any changes in the direction of the magnetization in

the magnetically soft coating that might result from interactions with nearby magnets.

In this paper, we generalize the point-sphere equivalence to spherically symmetric multipole

density distributions and show thereby that this equivalence applies to coated spherical magnets.
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(a) Spherically symmetric dipole distribution (b) Equivalent dipole

Figure 1. Panel (a) shows a spherically symmetric dipole distribution, with arrows inside the sphere denoting
the dipole moment density. This distribution is uniform within each of three spherical shells, but varies
radially from shell to shell in magnitude and direction. The arrows outside the sphere represent the field
produced by this distribution. Panel (b) shows a single equivalent dipole that produces the same field.
For coated spherical magnets, there are two shells, the outer shell (the coating) with magnetization in the
same direction as the inner shell (the core), but with smaller magnitude. Although this figure depicts the
special case of a spherically symmetric dipole distribution, our calculations apply generally for spherically

symmetric multipole distributions.

Accordingly, investigations of magnet pair dynamics [13—18] and magnet chain dynamics [19—
26] now pertain to coated spherical magnets. Figure 1 shows a spherically symmetric dipole

distribution.

The multipole expansion has a long history of use to form reduced physical models, to simplify
calculations, and to develop analytical theory. The multipole expansion is often truncated under the
assumption that the associated truncation error is within some tolerable limit. Some symmetries
offer significant, exact simplifications. The multipole expansion is commonly used to represent the
angular dependence of a function. This expansion is often written using either spherical harmonics
in spherical-polar coordinates [34—37] or irreducible tensorial Hermite polynomials in Cartesian

coordinates [38, 39]. Each term in the series describes progressively finer angular features.

The multipole expansion is especially powerful for expressing potentials that exhibit inverse
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distance dependence, where long-range interactions are accurately approximated with only a
few multipole moments. This fact has been exploited by the highly successful fast multipole
method [40, 41]. In kinetic theory, the moment method can be generalized by combining the
multipole expansion with polynomials to represent the velocity dependence of the velocity distri-
bution function. This expansion has been used extensively in the general moment method of the

kinetic theory of plasmas [42—47].

Potentials that exhibit inverse distance dependence are found in a wide variety of physical
interactions such as gravitational [48], Coulomb, and magnetic forces [34, 49]. The multipole
expansion arises from a Taylor expansion of the inverse distance between two points in Cartesian
coordinates. Below, we develop this expansion using harmonic (totally symmetric, traceless) ten-
sors expressed in terms of successive gradients of the inverse distance, and write the potential as a

sum over these tensors with coefficients that are multipole moments of the charge density.

In this work, we consider the interaction between non-overlapping bodies with potentials pro-
duced by isotropic multipole moment densities. We establish that the potential and field outside
these sources are equivalent to those of a single multipole centered at the point of spherical symme-
try. Furthermore, we show that the potential energy of and force and torque between two spherical
bodies are equivalent to those of single point-like multipoles at the center of each source. Such
point sources can be used to model more realistic and complex systems, and these results can be
used to increase pedagogical and computational efficiency. Our derivation is carried out for a gen-
eral inverse-distance potential, and therefore applies for distributions of magnetic charge density,

electric charge density, and mass density.

In Sec. II we write a multipole expansion of the potential and the field outside of an arbitrary
source distribution by defining the harmonic tensor and the corresponding multipoles. In Sec. III
we calculate the potential energy, force, and torque between two arbitrary source distributions.
Defining the multipole density, we calculate the potential and the field outside a spherically sym-
metric multipole sphere and the potential energy, force, and torque between two non-overlapping

spheres. Sec. IV is devoted to discussion.



II. MULTIPOLE EXPANSION FOR THE r~! POTENTIAL

The ! potential (r = |r|) due to a localized source p in a volume V' can be written as

P(r) = k/‘/d3r'M (1)

r—v[
where k£ is the coupling constant. For the electric potential ¢, p is electric charge density and
k = 1/4mey. For a component of the magnetic vector potential, p is the corresponding component
of the electric current and k = 49/47. For the magnetic scalar potential, p is the effective magnetic
charge density, defined by V - M with magnetization M, and k& = p /4. For the Newtonian
gravitational potential, p is the mass density and k£ = G the gravitational constant. In this work,
we consider the potential outside the volume (r > r’).

For r > 77, we use the Taylor expansion

1 1 1 1 1
-1 V-4 -1 : VV=-+4... =
T

= (—1)! 1

{! r

1=0

where the superscript ®[ denotes a tensor-product power, for example V®? = VV which must be
distinguished from V? = V - V. The - between two tensors denotes an [-fold dot product with
[ being a lower rank. The : is commonly used for the 2-fold dot product. We define an [-th rank

tensor P! (called a harmonic tensor) by

1 0,
1+ I pl
Ve = P (@) 3)
with
& = (=12l - 1), 4)

where (20 — 1)!! = (21 — 1)(2l — 3)--- (=1)!! and (—1)!! = 1. Note that T = —V®r~! in Eq.
(3) of Ref. [38]. In component form, Eq. (3) becomes

6@' 81 T azl; = r20+1 Pilig-uilv (5)

where 0; = 0/0r; with ry = x, ro = y, and r3 = z in Cartesian coordinates. From Eq. (5), we can

easily see that P! is symmetric and traceless for any pair of indices, that is,
p.. =p. (6)

and

Y P, =0 (7



The harmonic tensor can be explicitly written as

vz ) 21 2m)!
l _ 2m [ .Ql—2m|®@m
Pir) = 21—1 I Z 2lm| = 2my” T ®
where | = Z?:1 e;e; is the unit tensor and {}, denotes symmetrization of vectors. The lowest
orders are
P'(r) =1,
Pi(r) =r,
2
r
P*(r) = rr — —I
(r)=rr 7
3
P3(r) = rrr — gr2{rl}+.
For vectors a, b, c, . .., the symmetrization is defined by
{ab } ! (permutations of ab ) )
abc- - = u apc:--- ).
7 symmetry factor P
For example,
1
{ab}, = (ab + ba), (10)
1
{abc}, = 3 —(abc + bca + cab + acb + bac + cba), (11)

and so on. Note that the symmetry factor for {r®=2™|®™}  in Eq. (8) is

ol /!
™ (1 —2m)12mm)

For example, S} = 3 and

3

1
{rl}, = Z{relelh Z (re;e; + e;re; + ejer),

=1

which also can be obtained from Eq. (11) by setting a = r and b = ¢ = e; with a summation over

1. The harmonic tensors satisfy the following orthogonality relation, Eq. (18) of Ref. [45], for a

symmetric traceless tensor M"(r) which is independent of ¢
[ M) PP ) = amr oM ()5,
with

[!

T )

6
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where t = r/r = e; sin cos ¢ + ey sin 0sin ¢ + e3 cos f and d*# = sin #dAdyp in spherical polar
coordinates.

Since every term in P!(r") — r'®! has at least one | as shown in Eq. (8) and the traceless property
(7) means that | : P!(r) = 0, we find that [P!(r') — r'®!] - P!(r) = 0 and similarly P'(r’) - [P!(r) —

r®] = 0. Therefore we have

r’® . Pl(r) = Pl(¢) - P!(x) = P'(x/) - r®, (14)
and rewrite Eq. (2) as
1 = (-1, 1 == 1 l
|I‘ _ I‘/‘ = Z l‘ P (I’l) : v® ; == Z l' 7’2[+1P (I‘/) -P (I‘) (15)
1=0 1=0

Note that the orthogonal relation implies

/ et ATy, (16)

r—r/| r

which can also be easily obtained by direct integration.

Here we define the /th order multipole moment for distribution p(r) as

m' = M/ a3’ p(r' )P (r'). (17)
- v

The lowest orders are explicitly written as follows:

m’ = / d’r'p(r'),
v
m! = / d®r'p(x')r!
1%
3 1
m? = —/ d®r/p(r") (r’r’ — —r’2|) :
2/, 3
m3_§ ng‘/ / ///_§/2 /
= p(r') | r'r'r r{r'l}, ).
2/, 5

Plugging Eq. (15) into Eq. (1) and using the definition (17), we can write

m! - Pl(r
Z¢l _k m vl _kZ TM : (18)

where ¢!(r) is the potential at r due to the point multipole m' located at the origin. Equation
(18) states that the potential due to an arbitrary source distribution can be expressed in a series of
potentials ¢'(r). The electric field can be obtained by E(r) = —V¢(r) from Eq. (18)
o0 o0 I, pl+1
_ l i1 L m - P (r)
=> E(r) ——k:zélm -V Z2l+1w, (19)
1=0

=0

where Eqgs. (3) and (4) have been used in the last equality.
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III. INTERACTIONS BETWEEN MULTIPOLE SPHERES

In the last section we have obtained expressions for the potential and field due to a point mul-
tipole. Now we consider the potential and field due to a spherically symmetric distribution of
multipoles (see Fig. 1), and the force and torque between two distributions. Here we do not con-
sider self-interactions between multipoles inside the sphere but the external field generated by the

spherical distribution.

A. Potential and field due to a multipole sphere

From the multipole moment (17), the multipole moment density M’ is defined by

Am!

! —
M = 3 A

(20)

where Am' is the multipole moment in a volume element AV. The potential due to multipole

density localized in a solid sphere S, centered at the origin is

M!(x’) - Pl (r — 1)
! 3
0 (r) = k / R R 21
where fo denotes a volume integral over S,. Using Eq. (3), we write
oh(r) = Eger. / d*r'M'(r') L (22)
© 51 0 |I‘ — I‘/|
For a spherically symmetric distribution M!(r’) that is independent of ¥, we can write
/dgr’Ml(r’) = /47rr'2d7“’Ml(r') =m’, (23)
and Eq. (16) implies
1 1 !
/dgr/Ml(r’)‘ = /47rr’2dr’Ml(r’)— =T (24)
r—r| rooor
Hence we can simply write Eq. (22) as
k 1 m’ - P!(r)
Uiy — L oo®ll _
¢o(r) - 5_lm ’ V ; - k 7”2l+1 ) (25)

which is equal to ¢'(r) in Eq. (18). Thus we have shown that the potential due to a spherically
symmetric distribution is equal to the potential due to the point multipole at the center. We further
note that, for the dipole moment, not only a uniform dipole density [9] but also any spherically

symmetric density with radial variation yields the potential of a point dipole.
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The field due to the /th multipole sphere can be obtained from Eq. (25),

I oel+l I pltl
El(r) = —Vel(r) = k™YL g™t ()

5! r r2l+3 ’

(26)

which shows that the field due to a multipole sphere is equal to the field due to the corresponding
point multipole. Then the potential and field due to a sphere S, centered at ry are ¢ (r) = @) (r—r})
and E!(r) = E! (r — r}), respectively.

B. Potential energy and force between charge distributions

In the previous section, we have shown that the potential and field due to a spherically sym-
metric multipole sphere are equal to those due to the corresponding point multipole at the center
of the sphere. Now we discuss the energy and force between two spheres.

First we consider a general charge distribution around r, and calculate the potential energy due

to another distribution around ry

Ul(ra,rs) = / B pa(r) ot + 1), @7

a

where the potential is given by Eq. (18). Considering the source at r;, instead of the origin and

using the expansion (15),

=1 1
r,+1r)=%k —m! Vv
¢b( ) lz:(;@ b a |1“ab+l"\
=1 1
= kzglmé v®lz n‘P” VI, . (28)

l

Il
=)

where V,, is the gradient operator with respect to r,, r,, = r, — 1, and 7y, = |rg,|. Plugging the

potential into (27), integrating over r’, and using the definition (17), we have

U(ra, 1) iik

=0 n=0

(m*ml) - v®"+l ZZ U, (29)

0. 1=0 n=0

where U™l is the potential energy of two point multipoles m” at r, and m! at r;, and can also be

written as, by Eq. (3),

(_1)n5n+l

(mimy) - P (rg). (30)



Thus we have expressed the potential energy of two localized sources as the sum of potential

energy of two point multipoles. Here are a few low-order examples:

U%! = kT 31)
7aab
UL = —km,—e Tt (32)
Tab

Uall,)l _ _3ma . rab5mb *Tap + m, z;mb . (33)

Tab Tab

Now the force on the distribution around r, due to another distribution around r
F(r,, 1) = / d*r' po (Y Ey(ry + 1) (34)
can be easily obtained from

F(r,,rp) = —VU(re,m) = > Y F, (35)

where F/ is the force between two point multipoles of order n and [. From Eq. (29), we have

(=1)" Iy oontiel 1
I VAt : 36
5n5l (mamb) a Tab ( )

i = VU~ k

Or using definition (3), we also write

(_ 1>n5n+l+1

nl
Fab =k 5.6 2n-+20+3
n lrab

(mmi) - P" 1 (r,,). (37)

a

C. Energy and force between spheres

Next we consider two multipole spheres S, and .S, centered at r, and r;, with total moments m,
and m; of multipole orders n and [, respectively. Since the potential due to a multipole sphere is
the potential of the point multipole, the potential energy is obtained by integrating the multipole
density over sphere S, in the multipole potential ¢}. From Eq. (29), replacing r, with r, + r’ and

m, with [ d*r'M7 ("), we can write the potential energy of the two spheres as

-1 1
Unl — k?( d3 / M™ / . v@n—‘rl—. 38
S,ab 5715[ /a r [ a(T )mb] a |rab n I,/| ( )
With the help of Eq. (24) for r,, > r’ (two spheres not overlapped),
1 l
/ PrM(r) —— = o, (39)
|rab - I',| Tab
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and Eq. (38) becomes

n (_1)n n n 1 n
US,lab =k 6n6l m, mlb ) VS) —HT_ab = Uabl‘ (40)

This equals the energy of two point multipoles in Eq. (29). Therefore the potential energy of a
multipole sphere in a field of another multipole sphere is the same as the potential energy of the
corresponding point multipoles at the center of each sphere.

The force between the two spheres can be obtained from
Fgfab = _VGUg,lab(ra>' (41)

Since UZ!, = U™, it is obvious that

Fiar = Fapy (42)
We can arrive at the same conclusion by starting from Eq. (36). Replacing r, with r, + r’ and m,

with [ d’r'M(r"), we can write the force between two spheres as

1
[Tap + 1| '

—1)"
i = / vk C s wgeeee (43)

571 5l

Using Eq. (39) we have

stab =k 5 m'm, - V¥ HHE’ (44)

Therefore the force between two spherically symmetric multipole spheres is equal to the force

between two point multipoles.

D. Torque between spheres

Similarly, we calculate the torque 7(r,, r;) on a charge distribution around r, due to another

distribution around r,

T(rg,Tp) = / APt pa (r)) (rg + 1) X Ey(r, +1'). (45)

a

The torque can be decomposed into the orbital (orb) and intrinsic (int) parts

’T(I‘a, rb) = 7-orb(raa rb) + Tint (I‘a, I'b), (46)

defining
Torb(Ta, Tp) = Ty X / d®r’ po (v )Ey(rq +1'). 47

a
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and

Tint (Lo, Tp) = / APt/ po (r')r" x Ey(r, +1'). (48)
For the orbital torque, it is obvious from Eqgs. (34) and (35) that
Torb(rm rb) =TrIe X F(rm rb) = Tglfb,ab (49)
=0 n=0
where
Tglfb,ab =r, x F}} (50)

as expected.

For the intrinsic torque, we use Eq. (26) similarly to Eq. (28)

=1 1
Ey(r,+1)=—kY —m. . v¥+__—
b( ) ; 5[ b |rab+r,|
:—kilml AV Y iP"(r’)-vWi (51)
—o (Sl b @ 0 TL' @ Tab

where we also have used Eq. (15). Plugging this into Eq. (48) and rearranging one V, operator

that has a cross product with r’, we can write

— . Ny | 11
Tint(Ta, Tp) = kaa X / d®r’ p, (r')r'P™(x') - V¥ Z 5—mé : V?lmr—.
n=0 Va =0 l ab
Now we use the recurrence relation which can be easily derived from Eq. (3),
+1 r?
p" =rP"(r) — p" 52
the identity (V, x V, = 0)
Vo x V'P(r') - VErr, = Vo x V. VEmr,l =0, (53)
and the definition (17) to derive
Tine (Yo, 1) = Tint.ab: (54)
=0 n=0

where Tﬁ:{}llf is the torque on the (n + 1)st point multipole at r,, due to the /th point multipole at r;,

-1 n+1 1 1
it _p (CD" A DGkt g e L (55)
int,ab a a b @
’ 010n41 T'ab

It can also be written as
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n+1,0 k(—l)”(n + ]')' mn+1 1

T 2 V) X (my - VI —

int,ab 6ln!5n+l Tab
—1)™"(n+1)d, " bl o
B k( (5)5< r2n22l+§l+lma+1mé(x' H)P HH(rab)- (56)
19n+17 g4

where (x-"!) denotes an [-fold dot product with m! and an n-fold dot product with m"** followed
by a cross product with m” 1. Eq. (54) states that the intrinsic torque of two localized sources is the

sum of torques between two point multipoles of the source distributions. Here are the lowest-order

examples:
Tap
0 _ 1 ola
Tint,ab - kma X mbﬁ? (57)
ab
3m! -1, m}
11 _ 1 b abl ab b
Tint,ab - kma X ( r - TT ) (58)
ab ab

which reproduce the torques on a dipole, m! x E(B) for the electro(magneto)static case.

Now we consider the intrinsic torque between two multipole spheres. Since the force between
two multipole spheres is the same as that of the corresponding point multipoles, it follows from
Eq. (50) that the orbital torque between two multipole spheres is equal to the orbital torque between
two point multipoles

nl nl

_ nl nl __
Torb,S,ab =Ty X FS,ab =Tg X Fab - Torb,ab'

The intrinsic torque between two multipole spheres is, from Eq. (55),

1

n+1,l 7k(_1)n(”+1)!
|rab+r,|

T. =
t,5,ab
e 5ln!5n+1

[ M) v () v
and again with the help of Eq. (24), we can easily see that

n+1,l  _ _n+1)l
Tint,S,ab - Tint,ab'

Therefore we have shown that the torque between two spherically symmetric multipole spheres is

equal to the torque between the corresponding point multipoles located at each center.

IV. DISCUSSION

We have established an equivalency between a spherically symmetric multipole distribution and

a single point multipole for any order of multipole, which generalizes the equivalency between a
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spherical dipole distribution and a point dipole. First, the potential and field produced outside of an
isotropic multipole distribution are equivalent to those produced by a single multipole at the center
of the distribution. Second, the potential energies of isotropic multipole distribution in the field
of others are the same as those of corresponding point multipoles at the center of each isotropic
distribution. Finally, the force and torque of one isotropic multipole distribution acting on another
is equivalent to those of one point multipole acting on another point multipole.

While the multipole expansion is used to write multipole distributions as the superposition of
single point-like multipoles, such as is done in the fast multipole method, we emphasize that this
work shows that spherically symmetric multipole moment density distributions can be written as
one single corresponding point-like multipole. Moreover, the interaction between spherically sym-
metric multipole density distributions is the same as the interaction between point-like multipoles.
Furthermore, this is not an approximation that is valid only for long-range interactions, but is an
exact result for non-overlapping distributions.

The equivalence relationships presented here generalize and relate previously established ones.
For example, the subclass of isotropic monopole density distributions provides a familiar special
case, often taught to introductory physics students, where Gauss’ law can be used to show that the
electric field and potential outside an isotropic distribution of electric charge is equivalent to those
of a point charge with a charge equal to the net charge of the distribution. Another familiar special
case is the equivalence of the magnetic field produced by a uniformly magnetized sphere (hard
ferromagnet) and that of a single point magnetic dipole [9, 34]. This work generalizes these cases
to any multipole distribution with spherical symmetry.

Jansen made use of the multipole expansion to study the Coulomb interaction between molecules
with a high degree of rotational symmetry [38], where the asymptotic properties of such molecules
are approximated by values averaged over the azimuthal angle. He established an equivalence the-
orem between rotationally symmetric charge distributions and an assembly of point charges lying
on axis. A special case of his work is an equivalence between isotropic charge distributions and a
point charge monopole. Our work extends this special case to isotropic multipole distributions.

This work achieves a significant reduction in the description of interacting isotropic multipole
spheres, which may be useful in teaching and research. For example, Edwards, et. al. reduced the
interactions between uniformly magnetized spheres to those of single point dipoles [9]. One can
construct more complex arrangements of isotropic multipole spheres than uniformly magnetized

spheres, such as coated spherical magnets (see introduction), nested magnetized spheres, hollow
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magnets, complex materials, magnetically interacting astrophysical bodies, etc., where descrip-

tions and numerical simulations of such interacting bodies would be greatly simplified by making

use of this reduction.
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