
Potential, field, and interactions of multipole spheres:

Coated spherical magnets

Jeong-Young Ji, Boyd F. Edwards,∗ J. Andrew Spencer,† and Eric D. Held‡

Department of Physics, Utah State University, Logan, UT 84322§

Abstract

We show that the energy, force, and torque between two spherically symmetric multipole density distribu-

tions are identical to those between two point multipoles, and apply this point-sphere equivalence to coated

spherical dipole magnets. We also show that the potential and field of such a distribution are equivalent

to those due to point multipoles located at the center of the distribution. We expand the inverse-distance

potential in terms of harmonic (Hermite irreducible) tensors, whose properties enable us to express the

potential energy, force, and torque for two arbitrary source distributions in a series of point-multipole inter-

actions. This work generalizes recent work on interactions between uniformly magnetized dipole spheres

[B. F. Edwards, D. M. Riffe, J.-Y. Ji, and W. A. Booth, Am. J. Phys. 85, 130 (2017)] to interactions between

spherically-symmetric multipole spheres.
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I. INTRODUCTION

Dipolar magnetic interactions are often used to approximate the interactions between perma-

nent magnets of various shapes [1–8]. In the case of uniformly magnetized spheres, this approxi-

mation is exact – the energy, force, and torque between uniformly magnetized spheres are identical

to those between point magnetic dipoles, even at short separations. Before this point-sphere equiv-

alence was shown for arbitrary magnet orientations [9], it was shown for magnetizations that are

perpendicular to the line through the sphere centers [10], for parallel magnetizations that make an

arbitrary angle with this line [11], and for one magnetization parallel to this line and the other in an

arbitrary direction [12]. Investigations of the dynamics of pairs of uniformly magnetized spheres

[13–18] and chains of such spheres [19–26] exploit this point-sphere equivalence.

Many of these investigations are motivated by interest in collections of small neodymium mag-

net spheres that are used to build beautiful sculptures, some made from thousands of magnets,

including models of molecules, fractals, and Platonic solids [27]. These spheres have spawned

a learning community dedicated to sharing photos and tutorials of magnetic sculptures, with

YouTube tutorial videos attracting over a hundred million views [28]. These spheres offer engag-

ing hands-on exposure to principles of magnetism, and are used both in and out of the classroom

to teach principles of mathematics, physics, chemistry, biology, and engineering [28, 29].

These neodymium magnet spheres carry protective coatings of nickel, copper, and other ma-

terials of total thickness up to 0.05 mm [30–32]; such coatings occupy up to 12% of the vol-

ume of magnets of diameter 2.5 mm [33]. Coating materials carry lower magnetizations than the

neodymium-iron-boron alloy (Nd2Fe14B) that is used for the magnet cores. Thus, coated magnets

are non-uniformly magnetized and the point-sphere equivalence for uniformly magnetized spheres

does not apply to them.

Such coated magnet spheres do have spherically symmetric dipole density distributions, mean-

ing that their magnetization (the magnetic dipole moment per unit volume of material) depends

only on the distance from the magnet center. For these magnets, it is the magnitude of the magne-

tization that depends on the distance from the center, not the direction of the magnetization, which

is the same throughout the sphere. We ignore any changes in the direction of the magnetization in

the magnetically soft coating that might result from interactions with nearby magnets.

In this paper, we generalize the point-sphere equivalence to spherically symmetric multipole

density distributions and show thereby that this equivalence applies to coated spherical magnets.

2



(a) Spherically symmetric dipole distribution (b) Equivalent dipole

Figure 1. Panel (a) shows a spherically symmetric dipole distribution, with arrows inside the sphere denoting

the dipole moment density. This distribution is uniform within each of three spherical shells, but varies

radially from shell to shell in magnitude and direction. The arrows outside the sphere represent the field

produced by this distribution. Panel (b) shows a single equivalent dipole that produces the same field.

For coated spherical magnets, there are two shells, the outer shell (the coating) with magnetization in the

same direction as the inner shell (the core), but with smaller magnitude. Although this figure depicts the

special case of a spherically symmetric dipole distribution, our calculations apply generally for spherically

symmetric multipole distributions.

Accordingly, investigations of magnet pair dynamics [13–18] and magnet chain dynamics [19–

26] now pertain to coated spherical magnets. Figure 1 shows a spherically symmetric dipole

distribution.

The multipole expansion has a long history of use to form reduced physical models, to simplify

calculations, and to develop analytical theory. The multipole expansion is often truncated under the

assumption that the associated truncation error is within some tolerable limit. Some symmetries

offer significant, exact simplifications. The multipole expansion is commonly used to represent the

angular dependence of a function. This expansion is often written using either spherical harmonics

in spherical-polar coordinates [34–37] or irreducible tensorial Hermite polynomials in Cartesian

coordinates [38, 39]. Each term in the series describes progressively finer angular features.

The multipole expansion is especially powerful for expressing potentials that exhibit inverse
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distance dependence, where long-range interactions are accurately approximated with only a

few multipole moments. This fact has been exploited by the highly successful fast multipole

method [40, 41]. In kinetic theory, the moment method can be generalized by combining the

multipole expansion with polynomials to represent the velocity dependence of the velocity distri-

bution function. This expansion has been used extensively in the general moment method of the

kinetic theory of plasmas [42–47].

Potentials that exhibit inverse distance dependence are found in a wide variety of physical

interactions such as gravitational [48], Coulomb, and magnetic forces [34, 49]. The multipole

expansion arises from a Taylor expansion of the inverse distance between two points in Cartesian

coordinates. Below, we develop this expansion using harmonic (totally symmetric, traceless) ten-

sors expressed in terms of successive gradients of the inverse distance, and write the potential as a

sum over these tensors with coefficients that are multipole moments of the charge density.

In this work, we consider the interaction between non-overlapping bodies with potentials pro-

duced by isotropic multipole moment densities. We establish that the potential and field outside

these sources are equivalent to those of a single multipole centered at the point of spherical symme-

try. Furthermore, we show that the potential energy of and force and torque between two spherical

bodies are equivalent to those of single point-like multipoles at the center of each source. Such

point sources can be used to model more realistic and complex systems, and these results can be

used to increase pedagogical and computational efficiency. Our derivation is carried out for a gen-

eral inverse-distance potential, and therefore applies for distributions of magnetic charge density,

electric charge density, and mass density.

In Sec. II we write a multipole expansion of the potential and the field outside of an arbitrary

source distribution by defining the harmonic tensor and the corresponding multipoles. In Sec. III

we calculate the potential energy, force, and torque between two arbitrary source distributions.

Defining the multipole density, we calculate the potential and the field outside a spherically sym-

metric multipole sphere and the potential energy, force, and torque between two non-overlapping

spheres. Sec. IV is devoted to discussion.
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II. MULTIPOLE EXPANSION FOR THE r−1 POTENTIAL

The r−1 potential (r = |r|) due to a localized source ρ in a volume V can be written as

φ(r) = k

∫
V

d3r′
ρ(r′)

|r− r′|
, (1)

where k is the coupling constant. For the electric potential φ, ρ is electric charge density and

k = 1/4πε0. For a component of the magnetic vector potential, ρ is the corresponding component

of the electric current and k = µ0/4π. For the magnetic scalar potential, ρ is the effective magnetic

charge density, defined by ∇ ·M with magnetization M, and k = µ0/4π. For the Newtonian

gravitational potential, ρ is the mass density and k = G the gravitational constant. In this work,

we consider the potential outside the volume (r > r′).

For r > r′, we use the Taylor expansion

1

|r− r′|
=

1

r
− r′ · ∇1

r
+

1

2
r′r′ : ∇∇1

r
+ · · · =

∞∑
l=0

(−1)l

l!
r′⊗l · ∇⊗l 1

r
, (2)

where the superscript ⊗l denotes a tensor-product power, for example∇⊗2 = ∇∇ which must be

distinguished from ∇2 = ∇ · ∇. The · between two tensors denotes an l-fold dot product with

l being a lower rank. The : is commonly used for the 2-fold dot product. We define an l-th rank

tensor Pl (called a harmonic tensor) by

∇⊗l 1
r

=
δl

r2l+1
Pl(r) (3)

with

δl = (−1)l(2l − 1)!!, (4)

where (2l − 1)!! = (2l − 1)(2l − 3) · · · (−1)!! and (−1)!! = 1. Note that T(l) = −∇⊗lr−1 in Eq.

(3) of Ref. [38]. In component form, Eq. (3) becomes

∂i1∂i2 · · · ∂il
1

r
=

δl
r2l+1

P l
i1i2···il , (5)

where ∂i = ∂/∂ri with r1 = x, r2 = y, and r3 = z in Cartesian coordinates. From Eq. (5), we can

easily see that Pl is symmetric and traceless for any pair of indices, that is,

P l
···i···j··· = P l

···j···i···, (6)

and
3∑

i=1

P l
···i···i··· = 0. (7)
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The harmonic tensor can be explicitly written as

Pl(r) =
l!

(2l − 1)!!

[l/2]∑
m=0

(−1)m(2l − 2m)!

2lm!(l −m)!(l − 2m)!
r2m{r⊗l−2mI⊗m}+, (8)

where I =
∑3

i=1 eiei is the unit tensor and {}+ denotes symmetrization of vectors. The lowest

orders are

P0(r) = 1,

P1(r) = r,

P2(r) = rr− r2

3
I,

P3(r) = rrr− 3

5
r2{rI}+.

For vectors a, b, c, . . . , the symmetrization is defined by

{abc · · · }+ =
1

symmetry factor
(permutations of abc · · · ). (9)

For example,

{ab}+ =
1

2
(ab + ba), (10)

{abc}+ =
1

3!
(abc + bca + cab + acb + bac + cba), (11)

and so on. Note that the symmetry factor for {r⊗l−2mI⊗m}+ in Eq. (8) is

Sl
m =

l!

(l − 2m)!2mm!
.

For example, S3
1 = 3 and

{rI}+ =
3∑

i=1

{reiei}+ =
3∑

i=1

1

3
(reiei + eirei + eieir),

which also can be obtained from Eq. (11) by setting a = r and b = c = ei with a summation over

i. The harmonic tensors satisfy the following orthogonality relation, Eq. (18) of Ref. [45], for a

symmetric traceless tensor Mn(r) which is independent of r̂∫
d2r̂Mn(r) · Pn(r)Pl(r) = 4πr2lσlM

n(r)δln (12)

with

σl =
l!

(2l + 1)!!
, (13)
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where r̂ = r/r = e1 sin θ cosϕ+ e2 sin θ sinϕ+ e3 cos θ and d2r̂ = sin θdθdϕ in spherical polar

coordinates.

Since every term in Pl(r′)−r′⊗l has at least one I as shown in Eq. (8) and the traceless property

(7) means that I : Pl(r) = 0, we find that [Pl(r′)− r′⊗l] · Pl(r) = 0 and similarly Pl(r′) · [Pl(r)−

r⊗l] = 0. Therefore we have

r′⊗l · Pl(r) = Pl(r′) · Pl(r) = Pl(r′) · r⊗l, (14)

and rewrite Eq. (2) as

1

|r− r′|
=
∞∑
l=0

(−1)l

l!
Pl(r′) · ∇⊗l 1

r
=
∞∑
l=0

(2l − 1)!!

l!

1

r2l+1
Pl(r′) · Pl(r). (15)

Note that the orthogonal relation implies∫
d2r̂′

1

|r− r′|
=

4π

r
(r > r′), (16)

which can also be easily obtained by direct integration.

Here we define the lth order multipole moment for distribution ρ(r) as

ml =
(2l − 1)!!

l!

∫
V

d3r′ρ(r′)Pl(r′). (17)

The lowest orders are explicitly written as follows:

m0 =

∫
V

d3r′ρ(r′),

m1 =

∫
V

d3r′ρ(r′)r′,

m2 =
3

2

∫
V

d3r′ρ(r′)

(
r′r′ − 1

3
r′2I

)
,

m3 =
5

2

∫
V

d3r′ρ(r′)

(
r′r′r′ − 3

5
r′2{r′I}+

)
.

Plugging Eq. (15) into Eq. (1) and using the definition (17), we can write

φ(r) =
∞∑
l=0

φl(r) = k
1

δl
ml · ∇⊗l 1

r
= k

∞∑
l=0

ml · Pl(r)

r2l+1
, (18)

where φl(r) is the potential at r due to the point multipole ml located at the origin. Equation

(18) states that the potential due to an arbitrary source distribution can be expressed in a series of

potentials φl(r). The electric field can be obtained by E(r) = −∇φ(r) from Eq. (18)

E(r) =
∞∑
l=0

El(r) = −k
∞∑
l=0

1

δl
ml · ∇⊗l+1 1

r
= k

∞∑
l=0

(2l + 1)
ml · Pl+1(r)

r2l+3
, (19)

where Eqs. (3) and (4) have been used in the last equality.
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III. INTERACTIONS BETWEEN MULTIPOLE SPHERES

In the last section we have obtained expressions for the potential and field due to a point mul-

tipole. Now we consider the potential and field due to a spherically symmetric distribution of

multipoles (see Fig. 1), and the force and torque between two distributions. Here we do not con-

sider self-interactions between multipoles inside the sphere but the external field generated by the

spherical distribution.

A. Potential and field due to a multipole sphere

From the multipole moment (17), the multipole moment density Ml is defined by

Ml(r) = lim
∆V→0

∆ml

∆V
, (20)

where ∆ml is the multipole moment in a volume element ∆V . The potential due to multipole

density localized in a solid sphere So centered at the origin is

φl
o(r) = k

∫
o

d3r′
Ml(r′) · Pl (r− r′)

|r− r′|2l+1
, (21)

where
∫
o

denotes a volume integral over So. Using Eq. (3), we write

φl
o(r) =

k

δl
∇⊗l ·

∫
o

d3r′Ml(r′)
1

|r− r′|
. (22)

For a spherically symmetric distribution Ml(r′) that is independent of r̂, we can write∫
d3r′Ml(r′) =

∫
4πr′2dr′Ml(r′) = ml, (23)

and Eq. (16) implies ∫
d3r′Ml(r′)

1

|r− r′|
=

∫
4πr′2dr′Ml(r′)

1

r
=

ml

r
. (24)

Hence we can simply write Eq. (22) as

φl
o(r) =

k

δl
ml · ∇⊗l 1

r
= k

ml · Pl(r)

r2l+1
, (25)

which is equal to φl(r) in Eq. (18). Thus we have shown that the potential due to a spherically

symmetric distribution is equal to the potential due to the point multipole at the center. We further

note that, for the dipole moment, not only a uniform dipole density [9] but also any spherically

symmetric density with radial variation yields the potential of a point dipole.

8



The field due to the lth multipole sphere can be obtained from Eq. (25),

El
o(r) = −∇φl

o(r) = −km
l · ∇⊗l+1

δl

1

r
= k(2l + 1)

ml · Pl+1(r)

r2l+3
, (26)

which shows that the field due to a multipole sphere is equal to the field due to the corresponding

point multipole. Then the potential and field due to a sphere Sb centered at rb are φl
b(r) = φl

o(r−rb)

and El
b(r) = El

o(r− rb), respectively.

B. Potential energy and force between charge distributions

In the previous section, we have shown that the potential and field due to a spherically sym-

metric multipole sphere are equal to those due to the corresponding point multipole at the center

of the sphere. Now we discuss the energy and force between two spheres.

First we consider a general charge distribution around ra and calculate the potential energy due

to another distribution around rb

U(ra, rb) =

∫
Va

d3r′ρa(r
′)φb(ra + r′), (27)

where the potential is given by Eq. (18). Considering the source at rb instead of the origin and

using the expansion (15),

φb(ra + r′) = k
∞∑
l=0

1

δl
ml

b · ∇⊗la

1

|rab + r′|

= k
∞∑
l=0

1

δl
ml

b · ∇⊗la

∞∑
n=0

1

n!
Pn(r′) · ∇⊗na

1

rab
, (28)

where ∇a is the gradient operator with respect to ra, rab = ra − rb, and rab = |rab|. Plugging the

potential into (27), integrating over r′, and using the definition (17), we have

U(ra, rb) =
∞∑
l=0

∞∑
n=0

k
(−1)n

δnδl
(mn

am
l
b) · ∇⊗n+l

a

1

rab
=
∞∑
l=0

∞∑
n=0

Unl
ab , (29)

where Unl
ab is the potential energy of two point multipoles mn

a at ra and ml
b at rb and can also be

written as, by Eq. (3),

Unl
ab = k

(−1)nδn+l

δnδl
(mn

am
l
b) · Pn+l(rab). (30)
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Thus we have expressed the potential energy of two localized sources as the sum of potential

energy of two point multipoles. Here are a few low-order examples:

U0,1
ab = kma

mb · rab
r3
ab

, (31)

U1,0
ab = −kmb

ma · rab
r3
ab

, (32)

U1,1
ab = −3

ma · rabmb · rab
r5
ab

+
ma ·mb

r3
ab

. (33)

Now the force on the distribution around ra due to another distribution around rb

F(ra, rb) =

∫
Va

d3r′ρa(r
′)Eb(ra + r′) (34)

can be easily obtained from

F(ra, rb) = −∇aU(ra, rb) =
∞∑
l=0

∞∑
n=0

Fnl
ab, (35)

where Fnl
ab is the force between two point multipoles of order n and l. From Eq. (29), we have

Fnl
ab = −∇Unl

ab = k
(−1)n

δnδl
(mn

am
l
b) · ∇⊗n+l+1

a

1

rab
. (36)

Or using definition (3), we also write

Fnl
ab = k

(−1)nδn+l+1

δnδlr
2n+2l+3
ab

(mn
am

l
b) · Pn+l+1(rab). (37)

C. Energy and force between spheres

Next we consider two multipole spheres Sa and Sb centered at ra and rb with total moments ma

and mb of multipole orders n and l, respectively. Since the potential due to a multipole sphere is

the potential of the point multipole, the potential energy is obtained by integrating the multipole

density over sphere Sa in the multipole potential φl
b. From Eq. (29), replacing ra with ra + r′ and

ma with
∫
a

d3r′Mn
a(r′), we can write the potential energy of the two spheres as

Unl
S,ab = k

(−1)n

δnδl

∫
a

d3r′[Mn
a(r′)ml

b] · ∇⊗n+l
a

1

|rab + r′|
. (38)

With the help of Eq. (24) for rab > r′ (two spheres not overlapped),∫
d3r′Mn

a(r′)
1

|rab − r′|
=

ml
a

rab
, (39)
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and Eq. (38) becomes

Unl
S,ab = k

(−1)n

δnδl
mn

am
l
b · ∇⊗n+l

a

1

rab
= Unl

ab . (40)

This equals the energy of two point multipoles in Eq. (29). Therefore the potential energy of a

multipole sphere in a field of another multipole sphere is the same as the potential energy of the

corresponding point multipoles at the center of each sphere.

The force between the two spheres can be obtained from

Fnl
S,ab = −∇aU

nl
S,ab(ra). (41)

Since Unl
S,ab = Unl

ab , it is obvious that

Fnl
S,ab = Fnl

ab. (42)

We can arrive at the same conclusion by starting from Eq. (36). Replacing ra with ra + r′ and ma

with
∫
a

d3r′Mn
a(r′), we can write the force between two spheres as

Fnl
S,ab =

∫
d3r′k

(−1)n

δnδl
[Mn

a(r′)ml
b] · ∇⊗n+l+1

a

1

|rab + r′|
. (43)

Using Eq. (39) we have

Fnl
S,ab = k

(−1)n

δnδl
mn

am
l
b · ∇⊗n+l+1

a

1

rab
. (44)

Therefore the force between two spherically symmetric multipole spheres is equal to the force

between two point multipoles.

D. Torque between spheres

Similarly, we calculate the torque τ (ra, rb) on a charge distribution around ra due to another

distribution around rb

τ (ra, rb) =

∫
Va

d3r′ρa(r
′)(ra + r′)× Eb(ra + r′). (45)

The torque can be decomposed into the orbital (orb) and intrinsic (int) parts

τ (ra, rb) = τ orb(ra, rb) + τ int(ra, rb), (46)

defining

τ orb(ra, rb) = ra ×
∫
Va

d3r′ρa(r
′)Eb(ra + r′). (47)
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and

τ int(ra, rb) =

∫
Va

d3r′ρa(r
′)r′ × Eb(ra + r′). (48)

For the orbital torque, it is obvious from Eqs. (34) and (35) that

τ orb(ra, rb) = ra × F(ra, rb) =
∞∑
l=0

∞∑
n=0

τ nl
orb,ab (49)

where

τ nl
orb,ab = ra × Fnl

ab (50)

as expected.

For the intrinsic torque, we use Eq. (26) similarly to Eq. (28)

Eb(ra + r′) = −k
∞∑
l=0

1

δl
ml

b · ∇⊗l+1
a

1

|rab + r′|

= −k
∞∑
l=0

1

δl
ml

b · ∇⊗l+1
a

∞∑
n=0

1

n!
Pn(r′) · ∇⊗na

1

rab
(51)

where we also have used Eq. (15). Plugging this into Eq. (48) and rearranging one ∇a operator

that has a cross product with r′, we can write

τ int(ra, rb) = k
∞∑
n=0

∇a ×
∫
Va

d3r′ρa(r
′)r′Pn(r′) · ∇⊗na

∞∑
l=0

1

δl
ml

b · ∇⊗la

1

n!

1

rab
.

Now we use the recurrence relation which can be easily derived from Eq. (3),

Pn+1(r) = rPn(r)− r2

2n+ 1
∇Pn(r), (52)

the identity (∇a ×∇a = 0)

∇a ×∇′Pn(r′) · ∇⊗na r−1
ab = ∇a ×∇′r′⊗n · ∇⊗na r−1

ab = 0, (53)

and the definition (17) to derive

τ int(ra, rb) =
∞∑
l=0

∞∑
n=0

τ n+1,l
int,ab, (54)

where τ n+1,l
int,ab is the torque on the (n+ 1)st point multipole at ra due to the lth point multipole at rb

τ n+1,l
int,ab = k

(−1)n+1(n+ 1)

δlδn+1

∇a ×mn+1
a ·n ∇⊗na ml

b · ∇⊗la

1

rab
. (55)

It can also be written as
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τ n+1,l
int,ab = k

(−1)n(n+ 1)!

δln!δn+1

(mn+1
a · ∇⊗na )× (ml

b · ∇⊗l+1
a )

1

rab

= k
(−1)n(n+ 1)δn+l+1

δlδn+1r
2n+2l+3
ab

mn+1
a ml

b(×·n+l)Pn+l+1(rab). (56)

where (×·n+l) denotes an l-fold dot product with ml
b and an n-fold dot product with mn+1

a followed

by a cross product with mn+1
a . Eq. (54) states that the intrinsic torque of two localized sources is the

sum of torques between two point multipoles of the source distributions. Here are the lowest-order

examples:

τ 10
int,ab = km1

a ×m0
b

rab
r3
ab

, (57)

τ 11
int,ab = km1

a ×
(

3m1
b · rabrab
r5
ab

− m1
b

r3
ab

)
, (58)

which reproduce the torques on a dipole, m1
a × E(B) for the electro(magneto)static case.

Now we consider the intrinsic torque between two multipole spheres. Since the force between

two multipole spheres is the same as that of the corresponding point multipoles, it follows from

Eq. (50) that the orbital torque between two multipole spheres is equal to the orbital torque between

two point multipoles

τ nl
orb,S,ab = ra × Fnl

S,ab = ra × Fnl
ab = τ nl

orb,ab.

The intrinsic torque between two multipole spheres is, from Eq. (55),

τ n+1,l
int,S,ab = k

(−1)n(n+ 1)!

δln!δn+1

∫
d3r′[Mn+1

a (r′) · ∇⊗na ]× (ml
b · ∇⊗l+1

a )
1

|rab + r′|

and again with the help of Eq. (24), we can easily see that

τ n+1,l
int,S,ab = τ n+1,l

int,ab.

Therefore we have shown that the torque between two spherically symmetric multipole spheres is

equal to the torque between the corresponding point multipoles located at each center.

IV. DISCUSSION

We have established an equivalency between a spherically symmetric multipole distribution and

a single point multipole for any order of multipole, which generalizes the equivalency between a
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spherical dipole distribution and a point dipole. First, the potential and field produced outside of an

isotropic multipole distribution are equivalent to those produced by a single multipole at the center

of the distribution. Second, the potential energies of isotropic multipole distribution in the field

of others are the same as those of corresponding point multipoles at the center of each isotropic

distribution. Finally, the force and torque of one isotropic multipole distribution acting on another

is equivalent to those of one point multipole acting on another point multipole.

While the multipole expansion is used to write multipole distributions as the superposition of

single point-like multipoles, such as is done in the fast multipole method, we emphasize that this

work shows that spherically symmetric multipole moment density distributions can be written as

one single corresponding point-like multipole. Moreover, the interaction between spherically sym-

metric multipole density distributions is the same as the interaction between point-like multipoles.

Furthermore, this is not an approximation that is valid only for long-range interactions, but is an

exact result for non-overlapping distributions.

The equivalence relationships presented here generalize and relate previously established ones.

For example, the subclass of isotropic monopole density distributions provides a familiar special

case, often taught to introductory physics students, where Gauss’ law can be used to show that the

electric field and potential outside an isotropic distribution of electric charge is equivalent to those

of a point charge with a charge equal to the net charge of the distribution. Another familiar special

case is the equivalence of the magnetic field produced by a uniformly magnetized sphere (hard

ferromagnet) and that of a single point magnetic dipole [9, 34]. This work generalizes these cases

to any multipole distribution with spherical symmetry.

Jansen made use of the multipole expansion to study the Coulomb interaction between molecules

with a high degree of rotational symmetry [38], where the asymptotic properties of such molecules

are approximated by values averaged over the azimuthal angle. He established an equivalence the-

orem between rotationally symmetric charge distributions and an assembly of point charges lying

on axis. A special case of his work is an equivalence between isotropic charge distributions and a

point charge monopole. Our work extends this special case to isotropic multipole distributions.

This work achieves a significant reduction in the description of interacting isotropic multipole

spheres, which may be useful in teaching and research. For example, Edwards, et. al. reduced the

interactions between uniformly magnetized spheres to those of single point dipoles [9]. One can

construct more complex arrangements of isotropic multipole spheres than uniformly magnetized

spheres, such as coated spherical magnets (see introduction), nested magnetized spheres, hollow

14



magnets, complex materials, magnetically interacting astrophysical bodies, etc., where descrip-

tions and numerical simulations of such interacting bodies would be greatly simplified by making

use of this reduction.
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