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I. Introduction

M INIMUM-TIME rigid-body reorientation problems first
gained traction in the work of Bilimoria and Wie [1], where

a three-axis rigid-body spacecraft was considered and eigenaxis
rotations were shown to not be time optimal. The work of Shen and
Tsiotras [2] later showed that more generic time-optimal solutions
could be obtained by considering axisymmetric rigid bodies con-
trolled by two torques, i.e., an underactuated spacecraft. Shen and
Tsiotras [2] and Tsiotras and Longuski [3] further advanced thework
of Bilimoria andWie [1] by extending the analysis from a triaxisym-
metric body to an axisymmetric body, and highlighted the challenges
associated with solving minimum-time reorientation problems.
Despite these difficulties, the results of Refs. [2,3] have practical
applications because many spacecraft can be modeled as an axisym-
metric body instead of a triaxisymmetric rigid body. The results in
Ref. [4] later showed that the time-optimal reorientation of an axi-
symmetric body could be extended to three control torques while still
considering a spin-stabilized orientation, and solutions obtained for
this three-torque control problem showed improvement over solu-
tions obtained with the two-torque control model.
This paper revisits the minimum-time reorientation of a spin-

stabilized axisymmetric rigid spacecraft using three control torques.
As alluded to earlier, the optimal solutions to such problems are
known to have a control that is either bang-bang or singular [2,5].
This work analyzes the optimal solution structure of the minimum-
time reorientation problem and discusses optimal solutions of various
minimum-time maneuvers. Furthermore, numerical solutions are
obtained using a recently developed bang-bang and singular optimal
control (BBSOC) method, which solves bang-bang and singular
optimal control problems [6].
Although bothRef. [2] and thiswork focus on the optimization of a

minimum-time axisymmetric rigid spacecraft, the work in this paper
differs significantly from the work of Shen and Tsiotras [2] in the
following ways. First, the numerical approach used to solve the
problem in Ref. [2] consisted of using an indirect shooting method
that required the formulation of the optimality conditions, whereas in
this work the aforementioned direct collocation BBSOC method [6]
is employed. This difference in methodology is significant because
the BBSOC method does not require a priori information about the

solution structure or optimality conditions. Also, as stated, the
BBSOCmethod is implemented using amultiple-domain Legendre–
Gauss–Radau (LGR) direct collocation method [6], where a conver-
gence theory has been established under certain assumptions on
smoothness and coercivity [7]. Next, the BBSOC method produced
more accurate solutions to the problem under consideration relative
to the numerical solutions obtained in Ref. [2]. Finally, as first
observed in Ref. [4], three control torques are considered in this
paper, whereas only two control torques were considered in Ref. [2].
The inclusion of a third control torque produces smaller optimal
terminal times because the third control torque makes it possible to
optimize the rotation of the body about the axis of symmetry and,
thus, allowing the body to spin about its symmetry axis at a non-
constant rate.
The remainder of the paper is organized as follows. Section II

presents the system model and problem formulation studied. Sec-
tion III presents the optimality conditions derived from Pontryagin’s
minimum principle along with a brief analysis of the singular con-
trols. Section IV provides an overview of the numerical approach
used to solve the problem, the BBSOC method, and the numerical
approach developed in Ref. [2]. Section V provides numerical results
for three different maneuvers studied. The results are then summa-
rized and further discussed in Sec. VI. Finally, Sec. VII provides
conclusions on this research.

II. Formulation of Optimal Control Problem
The minimum-time reorientation of an axisymmetric rigid space-

craft shown in Fig. 1 is stated as follows: Minimize

J ! tf (1)

subject to the dynamic constraints

_ω1 ! aω3ω2 " u1;

_ω2 ! −aω3ω1 " u2;

_ω3 ! u3;

_x1 ! ω3x2 " ω2x1x2 "
ω1

2
#1" x21 − x22$;

_x2 ! −ω3x1 " ω1x1x2 "
ω2

2
#1" x22 − x21$ (2)

the control path constraints

umin ≤ uj ≤ umax; j ∈ #1; 2; 3$ (3)

and the boundary conditions

ω#0$ ! %ω10;ω20;ω30&⊤;

x#0$ ! %x10; x20&⊤;

Φ%Y#tf$& ! 0 (4)

where ω ! #ω1;ω2;ω3$ is the angular velocity, x ! #x1; x2$ is the
relative position of the inertially fixed “3”-axis as viewed by an
observer fixed in the body [3], Y ! %ω; x& is the state, u ! #u1; u2$
is the control, #I1; I2; I3$ are the principal-axis moments of inertia,
a ! #I2 − I3$∕I1, and Φ∶R5 → Rk; k ≤ 5 is a differentiable vector
function that defines the terminal constraints on the state. Further
details on the model and associated derivations are found in Ref. [8].
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III. Mathematical Analysis
TheHamiltonian for the optimal control problem defined in Sec. II

is given as

H ! λ1#aω3ω2 " u1$ " λ2#−aω3ω1 " u2$ " λ3u3

" λ4
!
ω3x2 " ω2x1x2 "

ω1

2
#1" x21 − x22$

"

" λ5
!
−ω3x1 " ω1x1x2 "

ω2

2
#1" x22 − x21$

"
(5)

where λ ! #λ1; λ2; λ3; λ4; λ5$ is the costate. The remaining first-order
necessary conditions are

_λ ! −
#
∂H
∂Y

$⊤
;

λ⊤#tf$ ! ν⊤
∂Φ

∂Y#tf$
;

H#tf$ ! −1 (6)

where ν ∈ Rk. Because the control appears linearly in the Hamiltonian,
the optimal control is obtained from Pontryagin’sminimumprinciple as

u'j !

8
>><

>>:

umin; gj > 0;

uj;s; gj ! 0;

umax; gj < 0;

j ∈ #1; 2; 3$ (7)

where

gj ! λj; j ∈ #1; 2; 3$ (8)

are the switching functions corresponding to the components uj,
j ∈ #1; 2; 3$, of the control, respectively.

A. Singular Control Analysis

Assume now that a ≠ 0 and ω3 ≠ 0, ∀ t ∈ %t0; tf&. An optimal
control component u'j is singular whenever gj ! 0 during a nonzero
interval %t1; t2& ⊂ %t0; tf& and is obtained from the condition

d#2rj$

dt#2rj$
#gj$ ! 0; #rj ! 0; 1; 2; : : : $; j ! 1; 2; 3 (9)

where 2rj is the minimum number of times gj is differentiated to
obtain the corresponding control uj;s [9,10]. Furthermore, the gen-
eralized Legendre–Clebsch condition [9,11,12]

#−1$r ∂
∂uj

#
d2r

dt#2r$
gj

$
≥0; #rj!0;1;2;:::$; j!1;2;3 (10)

must hold over the duration of a singular arc %t1; t2&. Finally, because
Shen and Tsiotras [2] showed that it is suboptimal for all three control
components to be singular, this paper considers the case where only
one control component is singular along with the two special cases
where either a or ω3 is zero.

B. Special Cases

First, for the case where one of the first two control components is
singular while the other two control components are bang-bang, the
switching function of interest must be differentiated with respect to
time four times until the corresponding control component appears
[8]. The singular control components u1;s and u2;s are then given as
follows:

u1;s ! −
_λ2%2aω3

3#a" 1$2 − 2aω3ω2
1 " 2aω3ω2

2 " 2ω1u2& − ω2λ2#4a2ω2
3ω1 − 3aω3u2$

_λ2ω2 − ω3#1" 2a$#λ3x2 − λ4x1$
(11)

u2;s ! −
_λ1%2aω3

3#a" 1$2 − 2aω3ω2
1 " 2aω3ω2

2 " 2ω2u1& − ω1λ1#4a2ω2
3ω2 " 3aω3u1$

_λ1ω1 − ω3#1" 2a$#λ3x2 − λ4x1$
(12)

The remaining bang-bang control components are determined
according to Eq. (7). Furthermore, the generalized Legendre–
Clebsch condition in Eq. (10) implies that the denominator of
Eqs. (11) and (12) must be nonnegative in order for the singular
control to be optimal.
Next, for the case where ω3 ≡ 0 the control component u3 is

eliminated from Eq. (2), u1 is singular, and u2 is bang-bang such
that [8]

u'1;s ! 0 (13)

and

u'2 !
%
u2;min; λ2 > 0;
u2;max; λ2 < 0

(14)

Finally, for the special case when a ! 0 and ω3 is constant, u3 is
eliminated, u1 singular, and u2 bang-bang. Moreover, because all
higher-order derivatives of g1 are zero, u1 lies on an infinite-order
singular arc. Consequently, any value of u1 that lies within the limits
%u1;min; u1;max& and satisfies the boundary conditions is optimal, while
the bang-bang control u2 is determined by Eq. (14).

IV. Numerical Approach: BBSOC Method
The optimal control problem formulated in Sec. II is solved using

the BBSOC method developed in Ref. [6]. The BBSOC method
identifies the existence of singular arcs in the optimal control and
then performs an iterative regularization procedure on an interval
where a singular control has been identified. The BBSOC method
also identifies the switching structure of a nonsmooth control sol-
ution and optimizes the values of the switch times. After the bang-
bang and singular structure has been identified, the BBSOC method
performs a multiple-domain partitioning of the original domain such
that each domain corresponds to one of the identified behaviors in the
optimal control. The method is algorithmic in nature and requires no
user input. A flowchart for the BBSOCmethod is provided in Fig. 2a.
More details on the BBSOC method and the multiple-domain LGR
collocation can be found in Refs. [6,13].

Fig. 1 Axisymmetric rigid body with three control torques.
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An important contribution of this paper is comparing the approach
used in this paper with the approach used in Ref. [2]. Specifically, the
BBSOC method has been developed for solving nonsmooth and
singular optimal control problems. In this paper, the performance
of the BBSOC method is compared to the approach used in Ref. [2].
Specifically, the method of Shen and Tsiotras [2] uses an indirect
shooting method to solve the optimal control problem. Given that a
very good initial guess is often required in order to successfully
employ an indirect method, Shen and Tsiotras [2] first uses a direct
method, EZopt, to obtain an initial guess for the indirect method,
BNDSCO, a multiple-shooting based optimal control software. In
particular, the Lagrange multipliers obtained from EZopt are used to
obtain initial guesses for the costates using COSCAL, a costate
calculator developed in Ref. [2]. Then, an initial guess of the states,
costates, and controls along with the switching structure is provided
to BNDSCO. Given that Shen and Tsiotras [2] employ an indirect
shooting method, the higher-order singular optimality conditions
must be derived and the switching structure of the control must be
known a priori. On the other hand, the BBSOC method used to
generate the results in this paper neither requires that the higher-order
singular arc optimality conditions be derived nor does it require a
priori knowledge of the switching structure of the optimal control.
Instead, the BBSOC method identifies algorithmically the structure
of the optimal control and solves for the singular control through the
aforementioned regularization procedure (which is itself algorithmic
and requires no user intervention). Figure 2 provides a flowchart that
compares theBBSOCmethod to themethod of Shen andTsiotras [2].

V. Results
All results presented in this section were obtained using the

BBSOC method [6] implemented in MATLAB® with the nonlinear
programming (NLP) problem solver IPOPT [14], where IPOPTwas
employed in full-Newton (second-derivative) mode using the default
NLP solver tolerance of ϵNLP ! 10−7. Any necessary mesh refine-
ment was performed using the mesh refinement method described in
Ref. [15] using a mesh refinement accuracy tolerance of ϵmesh !

10−5 along with a minimum and maximum number of LGR points in
each interval of 3 and 12, respectively. The BBSOC method was
initialized using a mesh that consisted of 20 uniformly spaced mesh
intervals and three collocation points per mesh interval. A straight-
line guess is used for variables with boundary conditions at both
endpoints, and a constant guess is used for variables with boundary
conditions at only one endpoint. All derivatives required by IPOPT
were provided using the algorithmic differentiation software ADi-
Gator [16]. Finally, all computationswere performed on a 2.9GHz 6-
Core Intel Core i9 MacBook Pro running Mac OS Big Sur Version
11.6with 32GB2400MHzDDR4ofRAM, usingMATLABversion
R2019b (build 9.7.0.1190202), and all computation (CPU) times are
in reference to this aforementioned machine.
The following three maneuvers are considered: 1) a rest-to-rest

(RTR) maneuver, where the resulting control is bang-bang; 2) a
nonrest-to-rest (NRTR) nonspinning maneuver, where the resulting
control exhibits a finite-order singular arc; and 3) a rest-to-nonrest
(RTNR) maneuver, where the resulting control exhibits an infinite-
order singular arc. Each case is solved using the BBSOCmethod and
GPOPS − II [17] (referred to as hp-LGR in Discussion), and also
compared with the results presented in Ref. [2], where the numerical
approach discussed in Sec. IV is implemented.

A. Rest-to-Rest Maneuver: Bang-Bang Control

The RTR maneuver assumes that both a and ω3 are nonzero and
a ! 0.5. The boundary conditions for this case are given as

ω10 ! 0; ω1f ! 0;

ω20 ! 0; ω2f ! 0;

ω30 ! −0.5; ω3f ! −0.5;

x10 ! 1.5; x1f ! 0;

x20 ! −0.5; x2f ! 0

For this maneuver, most RTR maneuvers, and some NRTR maneu-
vers where the body is spinning and axisymmetric, all three controls

a) b)

Fig. 2 Flowchart of the a) BBSOC method and b) computational scheme used in Ref. [2].
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are bang-bang [2]. The goal is to rotate the body until the direction of
the symmetry axis is aligned with the inertially fixed 3-axis repre-
senting a rest condition. The three components of the optimal control
were found to be bang-bang such that u1 contains a single switch
while u2 and u3 contain two switches. The minimum time to com-
plete the maneuver was approximately 2.5126 s.
Figures 3 and 4 show the three control solutions along with their

corresponding switching functions and time history of the angular
velocities. It is observed in Fig. 3 that the BBSOC method identified
the five switch times and constrained the control to the appropriate
limit. In contrast, the solution obtained using the hp-LGR method
contains collocation points located between the lower and upper
limits on the control in the neighborhood of the switch times. Table 1
provides a further comparison between the BBSOC and hp-LGR
methods by showing the performance of each method and by com-
paring thevalues of the switch points and theminimum terminal time.
Table 1 also compares the results of Shen and Tsiotras [2], where it is
seen that the BBSOC method not only obtains a lower optimal
terminal time, but also obtains the solution in amore computationally
efficient manner than the method of Shen and Tsiotras [2]. It is noted
that Shen and Tsiotras [2] claimed that it took less than 2 s for
BNDSCO to converge. Note, however, that it took EZopt 2 minutes
to converge to the initial guess required as the initial guess for
BNDSCO. As a result, it is seen that one of the major drawbacks

of using an indirect method beyond requiring the derivation of the
singular optimality conditions is increased computation time relative
to a direct collocation method such as the BBSOC method. Further-
more, by allowing the symmetry axis to spin at a nonconstant rate, a
smaller terminal time is achieved by the three-torque control formu-
lation used in this paper as compared to the two-torque formulation in
Ref. [2]. Specifically, Table 1 shows a 3.73% reduction in the terminal
time obtained by the BBSOC method compared with the method of
Shen and Tsiotras [2].

B. Nonrest-to-Rest Maneuver for ω3 ! 0: Finite Singular Arc

For this special case the body is assumed not to be spinning about
the symmetry axis. Therefore, #a;ω3$ ! #0.5; 0$, ∀ t ∈ %t0; tf& and
the boundary conditions are given as

ω10 ! −0.45; ω1f ! 0;

ω20 ! −1.1; ω2f ! 0;

ω30 ! 0; ω3f ! 0;

x10 ! 0.1; x1f ! 0;

x20 ! −0.1; x2f ! 0

An analysis of this special case has been provided in Sec. III.B and
showed that the first control component contains a second-order
singular arc [as given in Eq. (13)] while the second control compo-
nent is bang-bang. The optimal minimum time to complete the
maneuver is 2.8839 s.
Figures 5a, 5b, and 6a show the optimal controls and switching

functions obtained using the BBSOC method and hp-LGR method.
The singular arc begins at t%4&s ≈ 1.9054. A numerical issue that occurs
when using direct methods on singular optimal control problems is the

a) b) c)

Fig. 3 Control component solutions for the spinning RTR maneuver.

a) b)

Fig. 4 Switching functions and state solutions for the spinning RTR maneuver.

Table 1 Comparison of computational results for the RTR
maneuver

Method t%1&s t%2&s t%3&s t%4&s t%5&s tf CPU, s

BBSOC 0.1224 0.6114 1.2091 1.4088 1.8676 2.5126 2.09
hp-LGR 0.1145 0.6118 1.2108 1.4069 1.8658 2.5126 4.41
Ref. [2] —— — — — — —— —— 2.61 122
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occurrence of chattering behavior along the singular arc. This is
observed in the hp-LGR solution and successfully removed by the
BBSOC method as shown in Fig. 5c. Figure 5c shows the control
history of the regularization procedure implemented by the BBSOC
method. Additionally, values for the switch times and final time are
provided in Table 2 along with the CPU times for each method. Given
thatShenandTsiotras [2] donot provide the final time for their solution
tomore than twodecimal places, it is difficult to compare theminimum
times achieved by each of the numerical approaches. It is also noted
that the CPU time listed for Ref. [2] is composed of the time it took
forEZopt to converge to the initial guess for BNDSCO(5minutes) and
the computation time forBNDSCO (2 s). Regardless, it is clear that the

BBSOC framework is more computationally efficient at solving non-
smooth and singular optimal control problems.
Optimality is verified for the existence of the singular arc by

checking that the generalized Legendre–Clebsch condition in
Eq. (10) is satisfied and checking that the Hamiltonian satisfies the
transversality condition in the last line of Eq. (6). According to Pager
and Rao [8], ω1 ! x1 ! 0 for Eq. (10) has to be satisfied. This is
confirmed by looking at ω1 and x1 in Figs. 6b and 7b. The second
point can be verified by computing the Hamiltonian using the
numerical solution obtained by each method. The Hamiltonian time
history is provided in Fig. 6c and shows that the BBSOC solution is
optimal by producing a constant Hamiltonian value of −1, whereas

a) b) c)

Fig. 5 Control component solutions for the nonspinning NRTRmaneuver, where Fig. 5c shows the control history of the BBSOCmethod for obtaining
the singular control.

a) b) c)

Fig. 6 Switching functions and state solutions for the nonspinning NRTR maneuver, where Fig. 6c shows the time history of the Hamiltonian.

Table 2 Comparison of computational results for the nonspinning NRTR maneuver

Method t%1&s t%2&s t%3&s t%4&s t%5&s tf δ ϵ p CPU, s

BBSOC 0.6498 1.2898 1.8177 1.9054 1.9919 2.8839 1.24 × 10−10 10−3 2 3.37
hp-LGR 0.6498 1.2897 1.8184 1.9226 1.9922 2.8839 —— —— — — 5.18
Ref. [2] —— —— —— 1.9040 — — 2.8800 —— —— — — 302

a) b) c)

Fig. 7 Optimal trajectories for the a) RTR, b) nonspinning NRTR, and c) inertially symmetric RTNR maneuvers in the x1–x2 plane.
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the hp-LGR solution produces a nonconstant Hamiltonian. The
maximum absolute error of the Hamiltonian for both the BBSOC
method and the hp-LGR method is 1.69 × 10−7 and 1.11 × 10−3,
respectively. The singular control produced by the BBSOC method
can also be compared with the optimal control law in Eq. (13), where
the maximum absolute error is 1.3 × 10−5. Thus, the singular arc is
optimal based on the analysis of Sec. III and the optimality verifica-
tion provided in this section.

C. Rest-to-Nonrest Maneuver for a ! 0: Infinite-Order Singular Arc

For this special case the rigid body is assumed to be inertially
symmetric but spinning at a constant rate about the symmetry axis.
Consequently, a ! 0 and the boundary conditions are given as

ω10 ! 0; ω1f ! 1;

ω20 ! 0; ω2f ! 2;

ω30 ! −0.3; ω3f ! −0.3;

x10 ! 0; x1f ! Free;

x20 ! 0; x2f ! Free

and represent an RTNR maneuver. The first control component
contains an infinite-order singular arc across the entire time horizon,
the second component is bang-bang, and the third control component
is zero since ω3 is constant. As a result of the infinite-order singular
arc, many singular control solutions produce the optimal trajectory.
The fact that many singular solutions exist is explained by looking at
the reduced dynamics where it is noted that ω2 must reach the
specified final angular velocity of 2 rad∕s in 2 s (which is the optimal
final time). One solution to the infinite-order singular arc is provided
in Fig. 8a. Likewise, the corresponding numerical solution is
provided in Figs. 8b and 9b including the second control component,
the regularization iteration history for the singular control compo-
nent, the corresponding control switching functions, and time histor-
ies of angular velocity. As expected, these results are in agreement
with the results of Shen and Tsiotras [2] (see Table 3), noting that the
results of this work were obtained without using the known structure
of control or the fact that the control lies on an infinite-order singular
arc. The parameters associatedwith the BBSOCmethod are provided
in Table 3 along with the CPU times for the BBSOC and hp-LGR
methods.
Finally, optimality can be verified for the occurrence of the sin-

gular arc by checking that the boundary conditions are satisfied and
checking that the Hamiltonian satisfies the transversality condition in
the last line of Eq. (6). The first point is verified by checking the state
solution. The second point can again be verified by calculating the
Hamiltonian using the numerical solution obtained by each method.
The Hamiltonian time history is analyzed and shows that the maxi-
mum absolute error of the Hamiltonian for both the BBSOC method
and the hp-LGR method is 9.99 × 10−9 and 1.61 × 10−8, respec-
tively. Thus, the infinite-order singular arc is optimal based on the
analysis of Sec. III.A and the optimality verification provided in this
section.

a) b) c)

Fig. 8 Control component solutions for the inertially symmetric RTNR maneuver, where Fig. 5c shows the control history of the BBSOC method for
obtaining the singular control.

Table 3 Comparison of computational results for
the spinning inertially symmetric RTNR maneuver

Method J ' δ ϵ p CPU, s
BBSOC 2.00 1.11 × 10−19 10−1 2 1.77
hp-LGR 2.00 —— —— —— 1.74
Ref. [2] 2.00 —— —— —— ——

a) b)

Fig. 9 Switching functions and state solutions for the inertially symmetric RTNR maneuver.
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VI. Discussion
It is seen for the three maneuvers studied in Sec. V that the BBSOC

method outperforms the method of Shen and Tsiotras [2] both in
computation time and in accuracy. Moreover, unlike the method of
Shen and Tsiotras [2], the BBSOC method does not require that the
singular arc conditions be derived and enforced. Furthermore, the
BBSOCmethodneither requires accurate initial guessesof the solution
nor requires a guess of the switching structure. In contrast, the results of
the method in Ref. [2] are only obtained if BNDSCO is provided a
near-optimal initial guess and the singular arc conditions are provided.
For the special case maneuvers described in Secs. V.B and V.C the

Hamiltonian was found to be numerically equal to −1 while the
generalized Legendre–Clebsch condition (10) was satisfied for both
singular controls. The hp-LGR and BBSOC methods produced
errors in the Hamiltonian on the order of 10−3 and 10−8, respectively.
Finally, it was found for the bang-bang RTRmaneuver that the errors
in the Hamiltonian were 1.50 × 10−6 and 1.98 × 10−3 using the
BBSOC and hp-LGR methods, respectively.
Finally, the optimal trajectories for each maneuver are discussed.

Figure 7 shows the optimal trajectories of eachmaneuver in the x1–x2
plane representing the goal of reorienting the relative position of the
inertial 3-axis, with respect to the body-fixed frame, from an initial
position to a final position. In particular, Fig. 7b shows the trajectory
for the NRTRmaneuver whenω3 ! 0 in Sec. V.B. Here the straight-
line portion of the trajectory represents an eigenaxis rotationwhen the
rigid spacecraft is not spinning about the symmetry axis. An eige-
naxis rotation does not appear in any of the other solutions since
eigenaxis rotations in general are not time optimal as shown in
Refs. [2,5], but they do often produce the shortest angular trajectory
between the current attitude and the desired attitude. For this special
case, however, the singular control is equivalent to an eigenaxis
rotation along that portion of the trajectory and is optimal.

VII. Conclusions
The minimum-time reorientation of an axisymmetric rigid space-

craft under the influence of three control torques has been revisited.
Different maneuvers, including special cases, have been considered
and analyzed using a recently developed BBSOC method. It was
found for the results obtained in this paper that the BBSOCmethod is
both more efficient and more accurate than previously obtained
results and without the need to derive and enforce the singular
optimal control conditions. Finally, the results show that considering
a three-torque control leads to smaller terminal times when compared
with a two-torque control.
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