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A numerical optimization study of a minimum-fuel LEO-to-MEO orbital trajectory trans-
fer is solved using a bang-bang and singular optimal control (BBSOC) method with multi-
domain Legendre-Gauss-Radau quadrature collocation. Modified equinoctial elements are
used to avoid singularities that occur in orbital elements. The time, 7, state components,
(p, f, g h, k, L,m), and control components, (i, u;, u,, T') are optimized in this one phase prob-
lem where seven cases of the initial thrust acceleration values are considered. The structure
of the thrust was not assumed, therefore the optimizer determined the number of switch
points. The solutions were categorized as partial and multiple revolution optimal trajec-
tories. The initial thrust accelerations considered for the partial revolution solutions are
so = [1.0206 x 10°,5.1029 x 10!, 1.0206 x 107!,5.1029 x 1072] AU. Furthermore, as the ini-
tial thrust acceleration decreased, the final mass decreased while the total time thrusting
increased. The initial thrust accelerations considered for the multiple revolution solutions
are so = [1.0206 X 107%,5.1029 x 1073, 1.0206 x 107*| AU. Furthermore, as the initial thrust
acceleration decreased, the final mass increased while the total time thrusting increased. An
in-depth study was completed for the cases of so = [1.0206 x 107!, 1.0206 x 10~3| AU, where
the final mass was [0.6683,0.5991] MU and the total time thrusting was [4.0305, 487.3276] TU.
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Nomenclature
a semi-major axis
AU acceleration unit
DU length unit
e eccentricity
f second modified equinoctial orbital element
FU force unit
g third modified equinoctial orbital element
8E sea level gravity of Earth
h fourth modified equinoctial orbital element
i inclination
Isp specific impulse
k fifth modified equinoctial orbital element
L true longitude
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m mass of spacecraft

my initial mass of spacecraft

7! mass flow rate

MU mass unit

p semi-latus rectum (first modified equinoctial orbital element)
r distance from Earth to spacecraft

Rg radius of Earth

S0 initial thrust acceleration

t time

to initial time

ty terminal time

fThruse  total time thrusting

T thrust magnitude
TU time unit
Tinax maximum thrust magnitude

vU speed unit

Uy radial component of thrust direction

Uz transverse component of thrust direction
Up normal component of thrust direction
UE gravitational parameter of Earth

v true anomaly

w argument of periapsis

Q right ascension of the ascending node

I. Introduction

For several decades, a topic of interest to the space community has been studying and advancing propulsion
technology. Traditionally, high-thrust chemical propulsion was used for space travel, but more recently has been
replaced with low-thrust propulsion, using either electric propulsion or solar electric propulsion, due to high propellant
efficiencies that can reduce the cost of missions. Using a low-thrust propulsion system has a significantly lower fuel
consumption than a high-thrust propulsion system, though the propulsion system is typically in use for a significant
portion of the mission and can result in a longer duration for the completion of the mission. This research focuses on
the use of a variety of low-thrust propulsion values to accomplish an orbit transfer from a low-Earth orbit (LEO) to a
middle-Earth orbit (MEO).

Much exploration and investigation has been conducted previously on the design of low-thrust orbital transfer
missions [1H11]. Ref. [[1]] conducted a survey on approaches for low-thrust trajectory optimization and focused on
being able to solve hybrid-optimal control problems. Extensive research went into the review of traditional and new
methodologies and tools and it was determined that most low-thrust trajectory optimizers are complicated, not easily
able to include mission-planning, and cannot search over multi-objective design spaces. Ref. [2] compared two nonlinear
model predictive control strategies to solve a minimum-fuel Earth-to-Mars rendezvous maneuver to showcase the ability
to use each strategy to solve problems with interplanetary orbital dynamics and low control authority. The first strategy
consisted of solving the optimal control problem over a receding horizon with a fixed number of control subintervals
and was able to withstand errors in control allocation and unmodeled effects. The second strategy consisted of solving
the optimal control problem over a receding horizon with a shrinking number of control subintervals. Then, in order to
maintain controllability, a doubling strategy was employed and was shown to also handle more complicated bounded
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problems as well. Ref. [3] developed a novel method, called evolutionary neurocontrollers, to solve low-thrust orbital
transfer optimal control problems that combines evolutionary algorithms and artificial neural networks. The benefit of
this method is that it does not require an initial guess because most traditional local optimizers have a convergence
behavior that depends heavily on an adequate initial guess, so the solution obtained is usually close to the initial guess.
Ref. [4] implemented a homotopic approach to solve a minimum-fuel low-thrust optimal trajectory problem, which
decreased the computational time and increased the chance of determining the global optimal solution. The switching
structure is also detected by finding the first and second-order time derivatives of the switching function to determine if
the control is bang-bang. Refs. [3l 6] both implement genetic algorithms to obtain solutions to low-thrust orbit trajectory
optimal control problems. Ref. [5] investigated the effectiveness of genetic algorithms to determine near-optimal
low-thrust trajectory solutions with the ability to implement a thrust/coast arc variable, whereas Ref. [6] used a hybrid
optimization method that consisted of a multi-objective genetic algorithm with a low-thrust trajectory optimizer that
implemented calculus of variations. Ref. [7]] focused on determining high-accuracy solutions for a minimum-time,
low-thrust Earth-orbit transfer problem using a variable-order Legendre-Gauss-Radau collocation method. An initial
guess was generated by solving a sequence of modified optimal control problems one-revolution at a time until the
terminal boundary conditions were satisfied. Ref. [8] optimized a low-thrust orbit transfer problem with eclipsing, where
the spacecraft is on a coasting arc when passing through Earth’s shadow and used a receding horizon algorithm to create
an initial guess. The optimal control problem was separated into multiple phases based on the thrust structure. Ref. [9]
solved a minimum-fuel low-thrust Earth-to-Mars orbital transfer using both indirect and direct methods assuming a
on-off-on thrust structure. For the indirect method, a two-point boundary value problem was derived, whereas for the
direct method, an optimal control software GPOPS — II was used to solve the optimal control problem. Ref. [10] solved
a minimum-fuel low-thrust orbital transfer problem where the thrust is discontinuous with a homotopic method, in order
to establish convergence properties, where 1786 switches were detected for a thrust of 0.1 N.

This research is inspired by the work of Ref. [11]. While both this work and Ref. [[11] focus on the design
of a minimum-fuel Earth-centric orbit transfer using low thrust propulsion, the works vary significantly from one
another. First, the research in this work is focused only on a LEO-to-MEO orbit transfer, whereas Ref. [11] also
studies LEO-to-HEO and LEO-to-GEO transfers. Second, this work is solved using a method for solving bang-
bang and singular optimal control problems using multi-domain Legendre-Gauss-Radau collocation as described in
Ref. [12] and the nonlinear programming (NLP) problem solver IJPOPT as described in Ref. [13]], whereas Ref. [[L1]
uses a direct higher order collocation 7th degree system (DHOC7) as described in Ref. [14] and the NLP problem
solver SNOPT. Third, this work uses the components of the thrust direction as the control in order to negate the
possibility of the wrapping effect that can occur from using angles as the control, whereas Ref. [11] used the in-plane
and out-of-plane thrust angle as the control. Fourth, this work studied seven cases of initial thrust acceleration,
so = [1.0x101,5.0x 10° 1.0 x 10°,5.0x 107", 1.0 x 1071,5.0 x 1072, 1.0 x 1072] m-s™2, whereas Ref. [11] studied
four cases, s¢g = [1.0 x101,1.0%x10%1.0x 1071, 1.0 x 10‘2] m - s~2. Fifth, this work did not assume the thrusting
structure and allowed our method to determine the optimal thrusting structure, whereas Ref. [[11] determined a
burn-coast-burn thrusting structure a priori that is modeled after the burn structure described in Ref. [[15].

This paper is as organized as follows. Section [[Ipresents the one-phase minimum-time LEO-to-MEO orbital transfer
optimal control problem by providing the modeling assumptions, dynamics, path constraints, event constraints, the units
used to solve the problem, boundary conditions, and variable bounds. Section |[II| presents the results and discussion of
the numerical optimization study using the MATLAB optimal control software, GPOPS — II. Section[[V|presents the
conclusions on this research.

II. Problem Description

This section develops the assumptions, equations of motion, constraints, and boundary conditions that define
the LEO-to-MEO orbit transfer optimal control problem. Section[[I.A]presents the simplifications and assumptions
that were used to model the motion of the spacecraft. Section[[L.B/provides the differential equations of motion for
the spacecraft as well as the path constraints and event constraints. Section [[I.C presents the units used to solve the
problem. Section |[I.D|presents the initial and terminal boundary conditions as well as the lower and upper bounds on
the time, control, and state in each phase. Finally, a description of the complete optimal control problem is provided in

Section[ILE!
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A. Modeling Assumptions

First, it is assumed that the spacecraft is modeled as a point mass. Second, the only forces acting on the spacecraft are
those due to thrust and spherical two-body gravity between the spacecraft and the Earth. Consequently, third-body effects
and zonal harmonic gravitational coefficients are neglected. Third, the control is the thrust direction, u = (u,., uy, uy),
and magnitude, 7. Finally, when the eccentricity is zero, e = 0, the argument of periapsis is undefined, therefore it is
assumed that w = 0 rad.

B. Equations of Motion

The dynamics of the spacecraft are described using modified equinoctial elements, (p (¢), f (), g (¢), h(t), k (¢), L (1)),
and the mass, m (¢). The first modified equinoctial element, p, is the semi-latus rectum, the second and third modified
equinoctial elements, f and g, describe the eccentricity, e, of the orbit, the fourth and fifth modified equinoctial elements,
h and k, describe the inclination, i, of the orbit, and the sixth modified equinoctial element, L, is the true longitude. The
differential equations of motion of the spacecraft are given as [16]]

dp P ZPA
. R £
dt UE W

d 1
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where
7 = 1+ +K
. 2
w = 1+ fcosL+gsinL.

The non-two-body perturbations in the radial, transverse, and normal directions, (A, A, Ay), are due to the thrust of the
spacecraft and are given as

T
Ar =  —Up
T
Ay = n_1ut’ 3)
T
A, = —uy.
m

The control consists of the thrust magnitude, 7', and the thrust direction, u = (u,., u;, u,, ), where the radial direction
is along the Earth-spacecraft line, the transverse direction is along the orbital motion and perpendicular to the radial
vector, and the normal direction is along the orbit’s angular momentum vector. Next, in order to ensure that the thrust
direction is a unit vector, the following equality path constraint is enforced:

W+ u? vud =1 4)
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Finally, in order to ensure that the final orbit is achieved, the following terminal event constraints are enforced, which
are modeled after Ref. [[17]:

p (1) = ay (1 - 6,20)

£ly)+&y) = e

W (t7) + k* (ty) = tan? (%) (5)
k(ir) = sin(Qy),

h (tf) > 0,

where only the terminal semi-major axis, ay, eccentricity, ey, inclination, iy, and right ascension of the ascending node,
Q, are constrained because the MEO eccentricity is 0, which means that the argument of periapsis, w (¢7), is undefined,
and the true anomaly, v (tf), is considered to be free. The numerical values of the variables required to model and solve
the problem are given in Table

Table 2 Physical constants.

’ Quantity Value ‘ Units ‘
Earth Radius, Rg 6.378145 x 10° m
Earth Gravitational Parameter, ug | 3.986004418 x 10 | m3.s72
Earth Sea Level Gravity, g 9.80665 x 10° m-s2
Initial Mass, mq 1.000 x 103 kg
Specific Impulse, g, 1.000 x 10° s

C. Scale Factors

The units used in the optimal control problem were chosen such that the gravitational parameter of the Earth is
equal to unity. In order to attain a gravitational parameter of unity, the distance unit, DU, speed unit, VU, time unit, TU,
acceleration unit, AU, mass unit, MU, and force unit, FU, were chosen as follows:

DU [ Rge
VU Ve /DU
TU | _| DU/VU ' ©
AU VU/TU
MU my
| FU | | MU-AU |

D. Boundary Conditions and Bounds

Table 3] shows the orbital elements of the initial low Earth orbit and terminal middle Earth orbit obtained from
Ref. [11]]. Bounds are placed on the true longitude, control, and state and are given as
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Table 3 Orbital elements for LEO and MEO orbits.

Orbital Element \ LEO \ MEO |
Semi-major Axis, a 7.003 x 10° (m) = 1.0980 (DU) | 2.656 x 107 (m) = 4.1642 (DU)
Eccentricity, e 0 0
Right Ascension of the Ascending Node, Q (rad) 0 0
Inclination, i (rad) 0.4974 0.9547
Argument of Periapsis, w (rad) Undefined (Chosen to be 0) Undefined
True Anomaly, v (rad) Free Free
fomin < fo =< [Iomax
Ifmin < If < Ifmax
Upmin < Uy = Urmax
Urmin < U =< Umax
Upmin < Un = Upmax
Tinin < T < Thax
Pmin < p < Pmax - @)
fmin < f < fmax
8min < g < Smax
Nmin < h < hmax
kmin < k< kmax
Lin < L < Lpax
Mumin < m < Mpax

Table ] provides the initial and terminal boundary conditions along with the lower and upper bounds. Table 5] gives the
initial thrust acceleration, s¢, and the maximum thrust magnitude, Ty, for all cases studied in this research.

Table 4 Initial and terminal boundary conditions with lower and upper bounds.

Variable ‘ Initial ‘ Terminal ‘ [Lower, Upper] ‘
Time, ¢t (TU) 0 Free [0, Free]
Radial Thrust Direction, u, Free Free [Free, Free]
Transverse Thrust Direction, u, Free Free [Free, Free]
Normal Thrust Direction, u,, Free Free [Free, Free]
Thrust Magnitude, T (FU) Free Free [0, Tiax]
Semi-latus Rectum, p (DU) 1.0980 | 4.1642 [Free, Free]
Second Modified Equinoctial Element, f 0 Free [-1,1]
Third Modified Equinoctial Element, g 0 Free [-1,1]
Fourth Modified Equinoctial Element, 2 | 0.2540 Free [-1,1]
Fifth Modified Equinoctial Element, k 0 Free [-1,1]
True Longitude, L (rad) Free Free [Free, Free]
Mass, m (MU) 1 Free [0.01, 1]
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Table 5 Initial thrust acceleration and maximum thrust values for all cases.

Initial Thrust Acceleration, s¢ Maximum Thrust, Tiax
ms?) [ (U N [ @
1.0 x 10! 1.0206 x 10° | 1.0x 10* | 1.0206 x 10°
5.0%x10° | 5.1029x 107" | 5.0 10° | 5.1029 x 107!
1.0x10° | 1.0206x 10" | 1.0x 10° | 1.0206 x 107!

50x1071 | 5.1029x 1072 | 5.0x 10? | 5.1029 x 1072
1.0x 107" | 1.0206 x 1072 | 1.0 x 10% | 1.0216 x 1072

50x1072 | 5.1029x 1073 | 5.0x 10" | 5.1029 x 1073
1.0x 1072 | 1.0206 x 1073 | 1.0x 10" | 1.0216 x 1073

E. Optimal Control Problem

For the LEO-to-MEO Earth orbit transfer, the optimal control problem is stated as follows. Determine the state
(. f. 8 h k, L,m), the control (u,, u;, u,,T), as well as the terminal time ¢ which maximizes the final mass of the
spacecraft, my, therefore the following cost functional needs to be minimized

J=-m ®)

while satisfying the dynamics and path constraints in Section[[L.B]and the variable bounds and boundary conditions in
Section[ILD!

II1. Results and Discussion

This section presents the results acquired by solving the LEO-to-MEO orbital transfer optimal control problem
described in Section [lI} This problem is solved for multiple initial thrust acceleration values. It is noted that only
the cases of sy = [1.0206 x 107!,1.0206 X 107*| AU are studied in-depth and are presented in Subsection [IILB.1
and Subsection [[IL.B.2, respectively. The LEO-to-MEO orbital transfer problem is solved using the general-purpose
MATLAB optimal control software GPOPS — II [18] with the following settings.

First, the bang-bang and singular optimal control (BBSOC) method described in Ref. [12] is used to detect the
structure of the solution and solve the optimal control problem. This method solves bang-bang and singular optimal
control problems using multi-domain Legendre-Gauss-Radau (LGR) collocation. The structure detection portion of the
BBSOC method locates the switch times in the control, and then determines where the solution is bang-bang or singular
by inspecting the corresponding switching function. Once the structure has been detected, the problem is split into
multiple domains such that it includes additional decision variables that represent the switch points in order to optimize
the location of the non-smooth portions of the control. It is noted that the control is set to either the upper or lower limit
for bang-bang domains. Second, the mesh refinement method described in Ref. [19] is used with a mesh refinement
accuracy tolerance, €mesn, of 107, This method solves a continuous-time optimal control problem using collocation at
LGR points and allows for changes in the number of mesh intervals and the degree of the approximating polynomial
within the mesh interval. During this process, the degree of the polynomial within a specified mesh interval is increased
if the degree is below the maximum allowable degree and if the degree is above the maximum allowable degree, the
mesh interval is divided into sub-intervals. Third, the nonlinear program (NLP) solver IPOPT [13] is employed in
full Newton (second derivative) mode with an NLP solver tolerance, exgp, of 107°. All first and second derivatives
required by IPOPT ware obtained using ADiGator, an open-source algorithmic differentiation software [20]. Finally, all
computations were performed using a 2.9 GHz Intel Core i9 MacBook Pro running Mac OS version 11.6 (Big Sur) with
32GB 2400MHz DDR4 RAM and MATLAB Version R2018b (build 9.5.0.944444).

In order to solve the minimum-fuel LEO-to-MEO optimal control problem described in Section [[I} an initial guess
must be supplied to GPOPS — II. In this research, the initial guess is determined for each case by using the ordinary
differential equations solver odel113 in MATLAB. The ODE solver is used to integrate the spacecraft dynamics,
(p@®),f(t),g@),h(),k(t),L(t),m(t)),in Eq. with the initial conditions given as the LEO orbital elements in
Table[3 that are then converted to modified equinoctial elements. The initial guess is integrated until the semi-major



Downloaded by Anil Rao on November 29, 2022 | http://arc.aiaa.org | DOI: 10.2514/6.2022-2274

axis, a, of the orbit is equal to the corresponding MEO value, ay = 4.1642 DU. For the control, (u, u;, un, T), the thrust
magnitude, T, is considered to be at maximum for the entirety of the integration and the thrust direction components
are solved for afterwards by assuming that the thrust is always in the same direction as the velocity vector. It is noted
in this study that the minimum-fuel LEO-to-MEO orbit transfer optimal control problem is solved using initial thrust
acceleration values in Table[5] which are inspired by the values given in Ref. [11]]. The key features of the solutions are
shown for the cases of 5o = |1.0206 x 107!,1.0206 x 107*| AU.

A. Overall Performance

The minimum-fuel results for the LEO-to-MEO transfer for multiple initial thrust acceleration values are shown
in Table E For each case of so, the final mass, my, fuel consumed, mg — my, total thrusting time, trp,ys:, total
number of revolutions, and the number of thrust arcs are presented. The solutions can be separated into two
categories: orbital trajectories with partial revolutions and multiple revolutions. The cases with partial revolutions
are 5o = [1.0206 x 10°,5.1029 x 107!, 1.0206 x 107!,5.1029 x 1072 AU. As the initial thrust acceleration decreases,
the final mass decreases, while naturally the amount of fuel consumed increases, and the total time thrusting increases.
During these cases, the final mass decreases with respect to decreasing initial thrust acceleration values because the
thrust arcs occur for a longer period of time, where the largest value of sy = 1.0206 x 10° AU has a total thrusting
time of f7p,usr = 0.3784 TU, whereas the smallest value of 5o = 5.1029 X 1072 AU has a total thrusting time of
trnruse = 12.4948 TU. An interesting phenomenon occurs for the four largest values of initial thrust acceleration.
Specifically, the three largest cases only have two thrust arcs while the fourth largest initial thrust acceleration,
S0 =5.1029 x 1072 AU, has a partial revolution with only one thrust arc.

The cases with multiple revolutions are 5o = [1.0206 x 1072,5.1029 x 1073, 1.0206 x 10~3] AU. As the initial
thrust acceleration decreases, the final mass increases, while naturally the amount of fuel consumed decreases, and the total
time thrusting increases. During these cases, the final mass increases with respect to decreasing initial thrust acceleration
values because the spacecraft was either thrusting continuously, as in sg = [1.0206 x 1072,5.1029 x 10‘3] AU, or has
only short coasting arcs, as in so = 1.0206 x 1073 AU, therefore a smaller initial thrust acceleration value would consume
the least fuel, even though a smaller sy occurs over a larger time period. The total number of revolutions needed to
complete the orbit transfer increases, which is expected behavior when decreasing the initial thrust acceleration values,
with the exception of so = 5.1029 x 10~! AU that completes 0.5352 revolutions for the optimal trajectory, whereas
so = 1.0206 x 10° AU completes 0.6150 revolutions for the optimal trajectory. This behavior is due to the smaller initial
thrust acceleration value leading to a longer total time thrusting, while consuming almost the same amount of fuel,
where the consumption differs by 0.0002 MU.

Table 6 Final mass, fuel consumption, total time thrusting, total revolutions, and thrust arcs.

’ so (AU) ‘ my (MU) ‘ mo — my (MU) ‘ trirus: (TU) ‘ Total Revolutions | Thrust Arcs

1.0206 x 10° 0.6750 0.3250 0.3784 0.6150 2
5.1029 x 107! 0.6748 0.3252 0.7800 0.5352 2
1.0206 x 107! | 0.6683 0.3317 4.0305 0.6774 2
5.1029 x 1072 | 0.4860 0.5140 12.4948 0.8328 1
1.0206 x 1072 | 0.5728 0.4272 51.9162 3.8895 1
5.1029 x 1072 | 0.5929 0.4071 98.8230 13.3663 1
1.0206 x 1073 | 0.5991 0.4009 487.3276 31.6368 4

B. Key Features of Optimized Solutions

This section shows the key features of the partial revolution optimal trajectory solutions using the particular case
of 59 = 1.0206 x 10~" AU and of the multiple revolution optimal trajectory solutions using the particular case of
so = 1.0206 x 1073 AU. The results shown focus on the spacecraft trajectory and the control that produces the observed
behavior. It is noted that in all figures, the solid red line represents when the spacecraft is on a coasting arc.
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1. Partial Revolution Optimized Solution

Figure|1|shows the optimized three-dimensional trajectory of the LEO-to-MEOQ transfer for so = 1.0206 x 10~! AU
in scaled Cartesian coordinates, where the conversion between modified equinoctial elements and position can
be found in Ref. [16]]. It is seen that the spacecraft begins in a low Earth orbit that corresponds to the orbital
elements (ag, g, Qo, io, wo, v9) = (1.0980 DU, 0, 0 rad, 0.4974 rad, O rad, Free) and terminates in a middle Earth orbit
that corresponds to the orbital elements (af, er, Qr,if, wr, vf) = (4.1642 DU, 0, 0 rad, 0.9547 rad, Undefined, Free).
The optimal trajectory consists of 0.6774 revolutions with a final mass of 0.6683 MU, two thrust arcs, and a total time
thrusting of 4.0305 TU. It is seen that the spacecraft begins and ends with a thrust arc.

—— Thrust
Coast

05 | !
=
2 of § ; /
> ‘ i
05
—— %
T T ——— z
050 05 4 o
y (DU)

Fig.1 Optimal three-dimensional spacecraft trajectory.

Figure [2| shows the behavior of the orbital elements of the optimized trajectory. The semi-major axis, a, increases
from 1.0980 DU to 2.6684 DU during the first thrust arc, remains at 2.6684 DU for the duration of the coast arc, then
increases to 4.1642 DU during the final thrust arc. The semi-major axis is always increasing because the trajectory of
the spacecraft is always moving farther away from the Earth. The eccentricity, e, increases steadily from 0 to 0.5592
during the first thrust arc, remains at 0.5592 for the duration of the coast arc, and then decreases to O during the final
thrust arc. The eccentricity begins and ends at 0 because the initial and terminal orbits are circular, and rapidly changes
during the thrust arcs because the optimal trajectory changes from circular to increasingly more elliptic then back to
circular in order to maximize the final mass. The right ascension of the ascending node, Q, begins at O rad, decreases
to —0.0227 rad, then increases to 0.0057 rad during the first thrust arc, remains at 0.0057 rad during the coast arc,
and then decreases to —0.0097 rad and increases to O rad. This behavior is a result of the boundary conditions for
both the initial LEO and final MEO orbit, since it is required that Q = 0 rad at those points on the trajectory. It is also
noted that the line of nodes moves only slightly since € has a range of 0.0284 rad. The inclination, i, slowly increases
from 0.4974 rad to 0.5442 rad during the first thrust arc, remains at 0.5442 rad during the coast arc, and then rapidly
increases to 0.9547 rad during the final thrust arc. The inclination changes by 0.0468 rad during the first thrust arc and
by 0.4105 rad during the final thrust arc. The maneuvers are more fuel efficient because the spacecraft is farther away
from the Earth, therefore the velocity is smaller, and inclination changes require a change in the direction of velocity.
Therefore, when the velocity is smaller the maneuver will require less fuel to be implemented, so the inclination changes
more during the final thrust arc. The argument of the periapsis, w, is only undefined at the initial and terminal end
points because ¢ = 0, which explains the discontinuities that occurs at the beginning and end of the trajectory. For
the defined portions of w, it starts at —0.9608 rad then increases to —0.0144 rad during the first thrust arc, remains at
—0.0144 rad during the coast arc, then increases to 0.0735 rad during the final thrust arc. The true longitude, L, rapidly
increases from —1.0266 rad to 1.0038 rad during the first thrust arc, increases from 1.0038 rad to 3.0666 rad during the
coast arc, and then slowly increases to 3.2294 rad during the final thrust arc. It is noted that the true longitude rapidly
increases during the first thrust arc compared to the slow increase during the final thrust arc because the velocity of the
spacecraft is higher when it is located closer to Earth.

Figure 3| shows the mass of the spacecraft throughout the fuel-optimized trajectory. The mass starts at 1 MU, as in
accordance with the initial boundary conditions, then decreases to 0.8057 MU during the first thrust arc, remains at
0.8057 MU during the coast arc, and then decreases to 0.6683 MU during the final thrust arc, which is the optimized
final mass. The amount of fuel consumed for the LEO-to-MEO transfer is 0.3317 MU.
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Fig. 2 Orbital elements of the optimal trajectory.

Finally, Fig. [ shows the control components of the optimal trajectory, which are the thrust magnitude, 7, and the
thrust direction components, (u,, u;, u,). The thrust magnitude starts at Tj,x = 0.1021 FU, decreases to 0 FU on the
coast arc, and then increases to Tp,x = 0.1021 FU, therefore the thrust has two discontinuities and the structure of this
solution is bang-off-bang. It is noted that the structure of the thrust is not assumed before solving the problem. The
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Fig.3 Mass of spacecraft.

components of the thrust direction are only applicable when the thrust is non-zero (i.e., the two thrust arcs). The radial
thrust direction, u,, increases from —0.1187 to 0.3080 during the first thrust arc, and then decreases from 0.0278 to
0.0133 to then increase to 0.0237 during the final thrust arc. The transverse thrust direction, u,, decreases from 0.9812 to
0.9383 during the first thrust arc, and then increases from 0.5374 to 0.8276 during the final thrust arc. The normal thrust
direction, u,, increases from 0.1520 to 0.2365 then decreases to 0.1572 during the first thrust arc, and then increases
from —0.8429 to —0.5608 during the final thrust arc. This behavior demonstrates that during the first thrust arc the
majority of the thrust is in the transverse direction in order to increase the size of the orbit since ay = 4.1642 DU, which
is much larger than ap = 1.0980 DU and that during the final thrust arc the majority of the thrust is in the transverse and
normal directions to increase the size and the inclination of the orbit. Throughout the orbit transfer, the radial direction
remains small compared to the other directions.
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(a) Thrust magnitude. (b) Thrust direction components.

Fig. 4 Control of the optimal trajectory.

2. Multiple Revolution Optimized Solution

Figure |5|shows the optimized three-dimensional trajectory of the LEO-to-MEO transfer for so = 1.0206 x 1073 AU
in scaled Cartesian coordinates, where the conversion between modified equinoctial elements and position can
be found in Ref. [16]]. It is seen that the spacecraft begins in a low Earth orbit that corresponds to the orbital
elements (ao, eg, Qo, ig, wo, Vo) = (1.0980 DU, 0, 0 rad, 0.4974 rad, O rad, Free) and terminates in a middle Earth orbit
that corresponds to the orbital elements (af, er, Qr, i, wr, vf) = (4.1642 DU, 0, 0 rad, 0.9547 rad, Undefined, Free).
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The optimal trajectory consists of 31.6368 revolutions with a final mass of 0.5991 MU, four thrust arcs, and a total time
thrusting of 487.3276 TU. It is seen that the spacecraft has four thrust arcs, where the coast arcs are near the end of the
trajectory.

—— Thrust
—— Coast

2 (DU)

y (DU)
Fig. 5 Optimal three-dimensional spacecraft trajectory.

Figure[6 shows the behavior of the orbital elements of the optimized trajectory. The semi-major axis, a, steadily
increases from 1.0980 DU to 4.1642 DU throughout the trajectory, with three small coast arcs near the end. The
semi-major axis is always increasing because the trajectory of the spacecraft is always moving farther away from the
Earth. The eccentricity, e, starts at 0 in accordance to the initial boundary conditions, then oscillates with increasing
amplitudes around approximately 0.003 at the start of the trajectory and ends up oscillating around approximately
0.017, then terminates at 0, in accordance to the terminal boundary conditions. The eccentricity begins and ends
at 0 because the initial and terminal orbits are circular and oscillates due to the multiple revolutions of the optimal
trajectory. The right ascension of the ascending node, €2, oscillates around 0 rad with increasing amplitudes, where it
begins and ends at 0 rad. This behavior is a result of the boundary conditions for both the initial LEO and final MEO
orbits, since it is required that Q = 0 rad at those points on the trajectory. It is also noted that the line of nodes moves
only slightly since Q has a range of 0.0219 rad. The inclination, i, increases from 0.4974 rad to 0.9547 rad, where
the rate of change increases throughout the trajectory. The increasing rate of change for the inclination is more fuel
efficient because the spacecraft is moving farther away from the Earth throughout the optimal trajectory, therefore the
velocity is becoming smaller, and inclination changes require a change in the direction of velocity. Therefore, when the
velocity is smaller the maneuver will require less fuel to be implemented, so the inclination changes more rapidly as the
spacecraft moves farther away from the Earth. This behavior is because changing the inclination more rapidly when the
spacecraft is farther away from the Earth is more fuel efficient since the velocity is smaller, and inclination changes
require a change in the direction of velocity, so when the velocity is smaller the maneuver will require less fuel to be
implemented. The argument of the periapsis, w, is only undefined at the initial and terminal end points because e = 0,
which explains the discontinuity that occurs at the end of the trajectory. For the defined portions of w, it starts at 0 rad
and terminates at 0.8069 rad, while oscillating around O rad with a range of 6.2775 rad. The true longitude, L, increases
from —12.5664 rad to 186.2137 rad, where the rate of change is decreasing throughout the trajectory. It is noted that the
true longitude rapidly increases during the beginning portion compared to the slow increase during the later portion
because the velocity of the spacecraft is higher when it is located closer to Earth.

Figure[7 shows the mass of the spacecraft throughout the fuel-optimized trajectory. The mass starts at 1 MU, as
in accordance with the initial boundary conditions, then decreases to 0.5991 MU, which is the optimized final mass,
where the rate of change of mass is constant excluding the three short coast arcs. The amount of fuel consumed for the
LEO-to-MEO transfer is 0.4009 MU.

Finally, Fig.[§ shows the control components of the optimal trajectory, which are the thrust magnitude, 7', and the
thrust direction components, (i, uy, 4, ). The thrust magnitude maintains a thrust of Ty, = 1.021 X 1073 FU for most
of the trajectory, with three short coast arcs near the end, therefore the thrust has six discontinuities and the structure of
this solution is bang-off-bang-off-bang-off-bang. It is noted that the structure of the thrust is not assumed before solving
the problem. The components of the thrust direction are only applicable when the thrust is non-zero (i.e., the four thrust
arcs). The radial thrust direction, u,, remains at approximately O for most of the trajectory, with a range of 0.1206.

12



Downloaded by Anil Rao on November 29, 2022 | http://arc.aiaa.org | DOI: 10.2514/6.2022-2274

4.5 .0
g —— Thrust 0.03 —— Thrust
—— Coast —— Coast
0.025
0.02
=)
a © 0.015
S
0.01
0.005
1 0
0 100 200 300 400 500 0 100 200 300 400 500
t (TU) t (TU)
(a) Semi-major axis. (b) Eccentricity.
01 . . . . 1 . . . .
00 —— Thrust —— Thrust
—— Coast —— Coast
0.005 - = 1
. 0
F
S 0.005
-0.01 |
-0.015 . . . . 0.4 . . . .
0 100 200 300 400 500 0 100 200 300 400 500
t (TU) t (TU)
(c) Right ascension of the ascending node. (d) Inclination.
4 . . . . 200
Thrust Thrust
. —— Coast —— Coast,
3
150 -
2
1 100 -
=) £)
Eo £
3 . Rl
-2
0F
-3
-4 . . . . _50 . . . .
0 100 200 300 400 500 0 100 200 300 400 500
t (TU) t (TU)
(e) Argument of the periapsis. (f) True longitude.

Fig. 6 Orbital elements of the optimal trajectory.

The transverse thrust direction, u;, oscillates around approximately 0.9 at the beginning and steadily decreases to then
oscillate around approximately 0.6 at the end, with increasing amplitudes throughout and a range of 0.7648. The normal
thrust direction, u,,, oscillates around O with increasing amplitudes throughout the trajectory, with a range of 1.9260.
This behavior demonstrates that the majority of the thrust is in the transverse direction for most of the trajectory, in order
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to increase the size of the orbit since ay = 4.1642 DU, which is much larger than ap = 1.0980 DU. The normal direction

starts to contribute more to the thrust direction during the later half of the trajectory because the inclination is changing
more rapidly. Throughout the orbit transfer, the radial direction remains small compared to the other directions.
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Fig. 8 Control of the optimal trajectory.

IV. Conclusions

This research performed a numerical optimization study of a one-phase minimum-fuel LEO-to-MEO orbital
trajectory transfer using a method to solve bang-bang optimal control problems and multi-domain Legendre-Gauss-
Radau quadrature collocation. Seven cases of initial thrust acceleration values were considered. The time, ¢,
state components, (p, f, g, h, k, L, m), and control components, (i, u;, u,, T) were optimized in this one phase prob-
lem. Numerical performance is improved by scaling the problem such that the Earth’s gravitational parameter
is unity. It was found that the solutions could be separated into two categories: partial and multiple revolu-
tion optimal trajectories. The initial thrust accelerations considered for the partial revolution solutions were
so = [1.0206 x 10°,5.1029 x 107!, 1.0206 x 107!,5.1029 x 10| AU. Furthermore, as the initial thrust acceler-
ation decreased, the final mass decreased, while naturally the amount of fuel consumed increased, and the total
time thrusting increased. The initial thrust accelerations considered for the multiple revolution solutions were
S0 = [1 .0206 x 1072,5.1029 x 10‘3, 1.0206 x 10_3] AU. Furthermore, as the initial thrust acceleration decreased, the
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final mass increased, while naturally the amount of fuel consumed decreased, and the total time thrusting increased.
An in-depth study was completed for the cases of so = [1.0206 x 107!,1.0206 x 10~} AU. The final mass was
[0.4860,0.5991] MU, the fuel consumed was [0.5140, 0.4009] MU, the total time thrusting was [4.0305,487.3276] TU,
the total amount of revolutions performed was [0.6774,31.6368], and the number of thrust arcs was [2, 4].
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