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We analyze the rotational dynamics of six magnetic dipoles of identical strength at the vertices of
a regular hexagon with a variable-strength dipole in the center. The seven dipoles spin freely about
fixed axes that are perpendicular to the plane of the hexagon, with their dipole moments directed
parallel to the plane. Equilibrium dipole orientations are calculated as a function of the relative
strength of the central dipole. Small-amplitude perturbations about these equilibrium states are
calculated in the absence of friction and are compared with analytical results in the limit of zero
and infinite central dipole strength. Normal modes and frequencies are presented. Bifurcations are
seen at two critical values of the central dipole strength, with bistability between these values.

Bifurcations are at the heart of nonlinear dy-
namics and play a critical role in technology. We
present a simple system with a straightforward
physical interpretation that nonetheless exhibits
bifurcations and bistability. Examining a set of
magnets in a “filled hexagon” consisting of a ring
of six magnets with a seventh magnet at its cen-
ter and varying the strength of the central mag-
net, we predict two different sets of vibrational
behavior corresponding to the extreme values of
the central dipole. These regimes overlap, lead-
ing to bistability.

I. INTRODUCTION

Dipoles are the simplest magnetic objects yet
found and the second simplest term in multipole
expansions. Collections of dipoles can be used to
make magnetomechanical systems used for latches,
gears, bearings, and other devices where low fric-
tion and high longevity are valued.1–3

Bifurcations and catastrophes are important non-
linear phenomena that are integral to the under-
standing of the buckling of structures under pressure
such as bridges and carbon nanotubes.4

With this in mind, we consider how simple sys-
tems comprised of small numbers of spherical mag-

nets can offer an environment for detailed examina-
tion of these phenomena and more. This is in con-
trast with the higher dimensionality typically asso-
ciated with systems that exhibit such nonlinear be-
haviors.

Systems with small numbers of dipoles have been
explored previously. Pollack examined the rotation
of two dipoles that are free to spin about fixed axes.5

Stump et al. investigated the normal modes for ar-
bitrary numbers of dipoles that are fixed at the ver-
tices of a regular polygon.6 Kantorovich et al. find
that ring formation is a significant contributor to
anomalous behavior in the magnetic response of a
ferrofluid at low temperatures.7 Edwards et al. il-
lustrate the fact that a uniformly magnetized sphere
not only generates magnetic fields as though it were
a point dipole, but that pairs of such spheres inter-
act with each other as if they were point dipoles.8

Experiments in the self assembly of a 32-pole clus-
ter validate this equivalence,9 which simplifies the
examination of a sphere that slides freely along the
surface of another fixed sphere,10 the dynamics of a
free sphere bouncing against a fixed sphere,11,12 and
isomorphisms between the dynamics of two freely
sliding spheres and physical pendulums.13

We consider a system of six identical dipoles
at the vertices of a regular hexagon and a seventh
dipole fixed at the center. The central dipole is
identical to the six perimeter dipoles except that
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its dipole strength is variable. All seven are con-
strained to spin frictionlessly on axes so their dipole
moments remain coplanar with the hexagon. To
find equilibrium states, we begin with the solution
of Stump et al. that applies for a central dipole of
zero strength.6 We then construct equilibrium states
for finite central dipole strength by increasing the
central dipole strength incrementally and introduc-
ing an effective drag in Lagrange’s equations to en-
able the system to relax until the net torque on each
dipole vanishes. These equilibrium states agree
with those obtained by Smith et al. by minimizing
the magnetostatic potential energy.14

We explore normal modes of oscillation by
considering small-amplitude periodic perturbations
about these equilibrium states. Two qualitatively
different overlapping regimes of oscillatory motion
are observed with discontinuous transitions at criti-
cal values of the central dipole strength. These criti-
cal values agree with those found by Smith et al. by
considering transitions in the magnetostatic poten-
tial energy.14 For vanishing central dipole strength,
our numerical results agree with analytical calcula-
tions by Stump et al.6 At very large values of the
central dipole strength, our numerical results con-
verge to our analytical calculations for an infinitely
strong central dipole.

II. SYSTEM AND METHODS

A. Geometry

The centers of six identical dipoles are fixed at
the vertices of a hexagon, and a seventh dipole with
variable strength but identical moment of inertia is
fixed at the center of the hexagon. All seven are
allowed to spin freely in the plane of the hexagon
about axes that are perpendicular to this plane, with
their magnetic moments directed parallel to this
plane. The ith dipole’s orientation relative to the
x-axis is denoted as φi, with i = 0,1,2, ...,6. The
distance between dipoles i and j is denoted as ri j
and the angle of the associated line segment with
the x-axis is denoted as θi j (Fig. 1).

y

x

FIG. 1: Schematic diagram defining the variables
used to depict six dipoles arranged at the vertices
of a regular hexagon with a seventh dipole at the

center. Dipole orientations are denoted by arrows,
with φi denoting the angle that dipole i makes with
the x-axis. The distance between dipoles i and j is
denoted by ri j. The angle that segment ri j makes
with the x-axis is denoted by θi j. The perimeter

dipoles m1,m2, ...,m6 all have the same strength m,
while the central dipole may have a different

strength, m0. The presented configuration is not an
equilibrium state.

B. Equations of Motion

We start with the magnetostatic potential energy
of a pair of magnetic dipoles which are oriented in
a common plane,13

Ui j =−U0
Ci j

2

(
a
ri j

)3

[cos(φi−φ j)

+3cos(φi +φ j−2θi j)]. (1)

Here,

U0 =
µ0m2

4πa3 (2)

is the energy scale, µ0 is the vacuum permeability,
m is the strength of a perimeter dipole, and a is the
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FIG. 2: Schematic representations of the seven eigenmodes of oscillation about the circular state for a
central dipole with relative strength α = 1.3. The thin lines denote the equilibrium dipole orientations for

this configuration, ~φ ∗. The arrows denote the perturbed orientations, ~φ ∗+δ~φi.

distance between adjacent dipole centers. The coef-
ficient

Ci j =

{
α if i = 0 or j = 0
1 otherwise

(3)

involves the ratio α = m0/m of the central dipole
strength m0 to the perimeter dipole strength m. The
limiting case illustrated in Fig. 1 shows a = D, the
sphere diameter. Our calculations are also valid for

a > D, which would apply if the dipoles were kept a
fixed distance from each other by some other force.
The total magnetostatic potential energy of the sys-
tem is given by

U(~φ) =
1
2

Σ
6
i, j=0,i6= jUi j, (4)

where the factor 1/2 ensures that each pairwise in-
teraction is counted only once. The total kinetic en-
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FIG. 3: Scaled frequencies ωi of normal-mode
oscillations about the circular state vs. the central
dipole strength α , where Ω is the characteristic

frequency.

ergy is

T =
I
2

Σiφ̇
2
i , (5)

where I is the moment of inertia of a dipole. The
Lagrangian and equations of motion are

L = T −U (6a)
d
dt

(
∂

φ̇i
L
)
= ∂φiL (6b)

Iφ̈i =−∂φiU, (6c)

where ∂φi = ∂/∂φi. To determine equilibrium
states, we begin with the ground state of orientations
found in Stump et al.6 for hexagonally arranged
dipoles and increase α incrementally from α = 0.
As the exact orientations for equilibrium depend on
α , when the center dipole strength is increased by
some ∆α , the previous orientations are no longer an
equilibrium state. The system would then proceed
to oscillate around the new, unknown equilibrium.
We use an RK45 numerical integrator15 to evolve
the system in time. To damp these oscillations and

settle into the new equilibrium, we slowly increase
a damping factor γ to dissipate energy,

Iφ̈i =−∂φiU− γφ̇i. (7)

The objective is to pass through critical damping
and to reduce the sum of the squares of the accel-
erations until this sum is below a small threshold ε ,

Σ
6
i=0φ̈

2
i < ε. (8)

For most of the simulations, we use ε = 10−8. Once
this threshold is reached we consider the configura-
tion to be an an equilibrium state, ~φ ∗(α).

These equilibrium states agree with those ob-
tained by minimizing the magnetostatic potential
energy.14 The total system’s net dipole moment and
potential energy undergo a bifurcation at a critical
value α = α2 ≈ 2.47, above which the central mag-
net plays a dominant role. We therefore refer to this
state as the “dipolar state." Consideration of the po-
tential energy, the toroidal magnetic moment, and
three dipole orientation angles indicates that the bi-
furcation at α = α2 is a fold bifurcation.16

When lowering α through α2, the dipolar state
persists until a lower critical value α = α1 ≈ 1.16
is reached, below which the system reverts to the
original state, called the “circular state" because of
the significant role of the perimeter magnets. Thus,
the system is bistable for α1 < α < α2. Con-
sideration of several state variables indicates that
the bifurcation at α = α1 is a subcritical pitchfork
bifurcation.16

C. Small Amplitude Analysis

Given the equilibrium states, we linearize the ac-
celeration terms φ̈i in a manner similar to the one
described in Taylor’s Mechanics,17

Iφ̈i ≈U0Σ j

[(
∂φ j ∂φi

U
U0

)∣∣∣∣
~φ∗

]
φ j. (9)

Equation (9) is equivalent to a matrix operating on
a vector, and allows us to rewrite the expression as

I~̈φ =U0M̂~φ , (10)
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FIG. 4: Each panel depicts the normal mode of
oscillation around the circular state. Dashed traces

correspond to φ1,φ2, and φ3, while the thicker
markers correspond to φ4, φ5 and φ6. The solid

trace denotes the value of φ0. In many cases two
degrees of freedom are synchronized, in which case
the variables are listed as a comma-separated pair.

where the elements of M̂, the Hessian matrix, are
defined by

Mi j =−
(

∂φ j ∂φi

U
U0

)∣∣∣∣
~φ∗

. (11)

These derivatives are calculated numerically at the
equilibrium orientations. We assume oscillating so-
lutions of the form

~φ = ~φ ∗+ ~δφi exp(−iωit), (12)

and reduce the problem of predicting the time evo-
lution to an eigenvalue calculation of the form

−ω2
i

Ω2
~δφi = M̂ ~δφi, (13)

where

Ω
2 =

U0

I
(14)

is the characteristic frequency squared.6 Going for-
ward we will refer to ~δφi as the eigenvector for a
given mode.

III. ANALYSIS

A. Comparing with Prior Results

The α = 0 case provides an opportunity to val-
idate our method by comparing it with the mag-
netic polygon analysis of Stump et al.,6 as our α = 0
case is equivalent to their N = 6 case. For N mag-
nets located at the vertices of a regular N-gon, their
normal-mode frequencies are given by

ω
2
j =

λ j

I
(15a)

= Ω
2

(
ZN +Σ

N−1
ν=1

[
1+ sin2 πν

N
ρ(ν)

]
cos

2π

N
jν

)
.

(15b)

The index j is the mode label ranging from 1 to 6
and does not map to our mode labeling because its
intent is to exhaustively enumerate all the modes for
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an arbitrarily sized polygon, not to name the modes
in order of increasing frequency. That said,

ρ(n) =
sin(πn/N)

sin(π/N)
(16)

is the dimensionless distance between a pair of
dipoles, and

ZN = Σ
N−1
n=1

1+ cos(πn/N)2

ρ(n)3 (17)

is a quantity related to the potential energy per
dipole.

When N = 6 there are four unique eigenvalues.
To account for scaling factors, we compare the ra-
tios in rising order, ω2

2/ω2
1 and so on. Since there

are four unique eigenvalues, there will be three
such ratios. To six decimals, they are 1.364407,
1.722194, and 1.578773. The values generated by
our methodology agree with Stump et al. within
machine precision (1 part in 1014). A seventh mode
exists in our system associated with the free spin-
ning of the central magnet, as at α = 0 the central
magnet is uncoupled from the orientation of the six
perimeter magnets.

B. Normal Modes of Oscillation

Figure 2 shows the normal modes of oscilllation
about the circular state for α = 1.3. Using Eq. (13)
to evaluate the normal modes as a function of α , we
obtain Figs. 3 and 4. These plots allow us to survey
the behavior of the normal modes over the full range
of the circular state.

One noteworthy feature of Fig. 3 is the splitting
from four distinct modes at α = 0, two of which
are doubly-degenerate, to six distinct modes for α >
0. Additionally, a new eigenmode (ω1) associated
with movement of the central magnet appears, and
its frequency eventually surpasses the next lowest
and, briefly, the third lowest.

The frequencies vary continuously throughout
the process until α = α2, where the circular
state equilibrium becomes unstable through a fold
bifurcation.16 This and characteristic ratios between
different coordinates that remain constant provide a
consistent way to identify each mode. For example,
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(a) Subcritical bifurcation at α1 ≈ 1.15.
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(b) Fold bifurcation at α2 = 2.47.

FIG. 5: Values of (ω2/Ω)2 from Fig. 7 near the
dipolar-state subcritical bifurcation at α1 = 1.16 (a,

data points) and values of (ω2/Ω)4 from Fig. 3
near the circular-state fold bifurcation at α2 = 2.47
(b, data points). Shown as solid traces are linear fits
to the data that intersect the ω2 = 0 axis at α = α1

(a) and α = α2 (b).

in mode 1, δφ1/δφ4 > 0 so if you were calculating
normal modes and unsure if a vector was associated
with mode 1, 2, or 3, calculating δφ1/δφ4 would
tell you if you had mode 1, or either mode 2 or 3.

Our frequency data support the conclusion that
the instability at α =α2 is a fold bifurcation.16 Near
such bifurcations, a normal-mode frequency van-
ishes according to18

ω
2

∝ (α2−α)1/2. (18)

The linearity of (ω2/Ω)4 vs. α in Fig. 5b supplies
evidence of this conclusion.
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FIG. 6: Ri is the ratio of eigenvalue ω2
i /α at α and its projected value for α → ∞, Ωi. All modes of the

dipolar state converge on their α → ∞ limiting behavior at varying rates.

C. Large α Limit

One of the difficulties in developing an analytic
method for calculating the eigenmodes of this sys-
tem is that the equilibria themselves are nonlinear.
However, there are two values of α where the cal-
culation is simple. Stump et al.6 has already exam-
ined α = 0, as was mentioned earlier, exploiting the
system’s strong symmetry to determine the equilib-

rium.
The other such case is α = ∞. As α increases,

the perimeter magnets align increasingly with the
field of the central magnet. As α → ∞, all other
interactions are overwhelmed by this field. From
this we know that

m̂i ‖B0 ‖
(
2cos2

θ0i− sin2
θ0i
)

x̂+3cos(θ0i)sin(θ0i)ŷ,
(19)
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where θ0i is the angle defined in Sec. II A and B0 is
the magnetic field generated by the central dipole
at that location. For i = 1,2, ...,6, these equilib-
rium angles are14 0, π− tan−1(33/2), tan−1(33/2)−
π, 0, π− tan−1(33/2), tan−1(33/2)−π . Specifying
these angles allows us to evaluate the elements of
the linearization matrix M̂ in a known configuration.

It works out that M̂ contains terms of α to at most
the first power, and is analogous to the spring con-
stant k in a simple harmonic oscillator. As α ap-
proaches infinity, all ω2

i would also approach infin-
ity. For this reason we will actually calculate the
matrix limα→∞(M̂/α) which is presented here to 4
decimal places:



−9.2915 −1.0 −1.5118 −1.5118 −1.0 −1.5118 −1.5118
−1.0 −2.0 0 0 0 0 0
−1.5118 0 −1.3228 0 0 0 0
−1.5118 0 0 −1.3228 0 0 0
−1.0 0 0 0 −2.0 0 0
−1.5118 0 0 0 0 −1.3228 0
−1.5118 0 0 0 0 0 −1.3228


, (20)

for which computer algebra systems19 can read-
ily determine the eigenvalues. These values corre-
spond to −ω2

i /Ω2α and are, to 4 decimal places,
-0.1815, -1.3229, -1.9126, -2.0000, and -10.5203.
The second-lowest mode is triply degenerate. We
will refer to these as Ω2

i where

lim
α→∞

ω2
i

Ω2α
= Ω

2
i . (21)

To compare Ωi with the normal modes of the sys-
tem at other values of α we define a ratio,

Ri =
ω2

i
αΩ2

1
Ω2

i
, (22)

that captures how well a mode’s eigenvalue matches
its limiting behavior, with 1 being an exact match.
Figure 6 is a plot of Ri vs. 1/α .

The limiting behavior in Fig. 6 for α → ∞ sup-
ports the claim that the process used for intermedi-
ate values is sound. The values for the eigenvalues
and corresponding modes are produced much like
the circular state and are presented in Figs. 7 and 8.

One point of interest is that ω2
1 approaches 0 at

α ≈ 2.05 before rebounding and then surpassing the
value of ω2

2 . The value α ≈ 2.05 (1/α ≈ 0.49) cor-
responds to a vanishing net perimeter dipole mo-

peter_paper/images/mono-eigen_values_mk2.pdf

FIG. 7: Scaled frequencies ωi of normal-mode
oscillations about the dipolar state vs. the

reciprocal of the central dipole strength α , where Ω

is the characteristic frequency.

ment. When the system is perturbed along the direc-
tion of the eigenvector for ω1, the perimeter dipoles
move in such a way that the central dipole continues
to align with the magnetic field at that point, thus
no torques arise. Without any restoring force for
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FIG. 8: Each panel depicts a normal mode of
oscillation around the dipolar state. The traces are

labeled in the same manner as in Fig. 4.

motion, in that direction the period is infinite. The
scipy numerical processing package identifies an
unstable equilibrium that has very nearly the same
potential energy (a gap of approximately .011 U0 at
α ≈ 2.06), but its configuration does not match the
dipolar state.

In Fig. 7, ω2
2 drops linearly to zero as α → α1

from above, and becomes negative for α < α1 (be-
yond the frame of Fig. 7). These data support the
conclusion that the transition at α = α1 is a subcrit-
ical pitchfork bifurcation.16 Near such a bifurcation,
a normal-mode frequency vanishes according to18

ω
2

∝ α−α1. (23)

The linearity of (ω2/Ω)2 vs. α in Fig. 5a supplies
evidence of this conclusion.

IV. CONCLUSIONS

A system of seven magnets presents an opportu-
nity to examine nonlinear bifurcations and bistabil-
ity in a manner that is physically realizable and has
few degrees of freedom. We find that the circular
and dipolar equilibrium states have qualitatively dif-
ferent normal modes of oscillation. Additional av-
enues for investigation include: What is the simplest
configuration of dipoles that can exhibit nonlinear
bifurcations and instability? How does a system
of N magnets arranged in a circle around a central
magnet behave for large N? Insights into the behav-
ior of such large collections of dipoles may apply to
models of cylindrical wave guides made of materi-
als with significant molecular dipole moments.
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