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We explore the forces that shape our spheroidal earth and the forces that govern the motion
of a puck that slides without friction on its surface. The earth’s stable spheroidal shape (apart
from small-scale surface features) is determined by balancing the gravitational forces that hold it
together against the centrifugal forces that try to tear it apart. The motion of a puck on its surface
differs profoundly from motion on a sphere because the earth’s spheroidal deformations neutralize
the centrifugal and gravitational forces on the puck, leaving only the Coriolis force to govern the
motion. Yet the earth’s spheroidal deformations are small and difficult to see in scale drawings.
To assist students in exploring the crucial role of these deformations for motion on the earth’s
surface, we develop a model of uniformly rotating homogeneous earth-like planets with arbitrary
eccentricities and arbitrary angular speeds of rotation, derive equations of motion for a puck sliding
on the frictionless surface of such a planet, and introduce CorioVis software for visualizing this
motion. By construction, this model replicates the rotational properties of the reference spheroid
that is used in terrestrial cartography, geodesy, and the global positioning system.

I. INTRODUCTION

The motion of a hockey puck on the earth’s spheroidal
surface differs profoundly from motion on a sphere [1].
Motion on a frictionless sphere is simple; the puck ex-
ecutes uniform circular motion in a great circle around
the earth’s center, as seen by an inertial observer, and
spends equal time in the northern and southern hemi-
spheres [2]. On a frictionless spheroid, the puck executes
“inertial oscillations” that generally keep it close to its
initial latitude [3-7].

Why? Because the apparent gravitational force, de-
fined as the vector sum of the gravitational and centrifu-
gal forces, is perpendicular to the earth’s spheroidal sur-
face at every point on this surface (ignoring small-scale
surface features), as seen by an observer in the rotating
frame [8]. The earth’s spheroidal deformations therefore
neutralize the gravitational and centrifugal forces and
leave only the velocity-dependent Coriolis force to govern
the puck’s motion [9, Ch. 6]. Consequently, the puck’s ki-
netic energy is conserved not in the inertial frame, as it is
for a spherical earth, but in the rotating frame [1]. These
facts are well known in the meteorology and oceanogra-
phy communities [10-13], but seem to be less appreciated
in the physics community.

The earth’s spheroidal deformations are small and dif-
ficult to see in photographs or scale drawings. In the
geodesy literature, the relative difference between the
equatorial radius a and the polar radius b of the earth
is called the flattening,
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For the values a, and b, for the reference spheroid that

is used in terrestrial cartography, geodesy, satellite nav-
igation, and the global positioning system, the earth’s
flattening is f, = 0.0034 (Table I, [14-17]). This small
value belies the crucial role of spheroidal deformations in
the motion of objects moving on the earth’s surface.

Compounding this problem is a long history of confu-
sion about the Coriolis force, including errors by Richard
Feynman and Max Born [8, 18-24]. Hadley’s princi-
ple is often invoked to explain Coriolis deflections for
northward and southward motion, but this principle
violates the conservation of axial angular momentum
[8, 11, 13, 21, 25-28], as do some studies of objects that
are dropped vertically [20, 29, 30]. For both horizontal
and vertical motion, conservation of axial angular mo-
mentum in the inertial frame is needed to correctly ac-
count for Coriolis deflections [31-33].

The centrifugal and Coriolis forces are “inertial” forces

TABLE 1. List of constants including symbols, descriptions,

equation numbers, and values. The subscript “r” refers to
values for the earth’s reference spheroid [14-17].

Sym. Description Eq. Value
ar equatorial radius (1) 6378.137 km
by polar radius (1) 6356.752 km
fr flattening (1) 0.003353
Ty period (2) 23.93 hr
Q angular speed (2) 7.292 x 107° rad/s
ér eccentricity (14) 0.08182
G gravitational constant (19) 6.674 x 107! N-m? /kg?
pm  mass density (20) 7097 kg/m?®




that appear as extra terms in Newton’s second law when
it is transformed into a rotating reference frame. In-
structors of introductory general physics courses gener-
ally teach uniform circular motion in the inertial frame,
without introducing the rotating frame or the centrifu-
gal force [34]. Students of intermediate (upper-division
undergraduate) classical mechanics learn how transform
Newton’s second law into the rotating frame, and are
thereby introduced to the centrifugal and Coriolis forces
[35, Ch. 9]. These forces are central to understanding the
shape of the earth and motion on its surface [4, 36].

In this paper, we do not address the pedagogy of the
centrifugal force [34], and focus instead on its role in
shaping the earth and in governing the frictionless motion
of a puck on its surface.

Despite evidence that using multiple representations
(verbal, mathematical, graphical, pictorial, and analogi-
cal) in instruction can increase student performance [37—
40], and despite evidence that attending to student inter-
pretations of concepts can increase student interest [41],
treatments of the Coriolis force in intermediate mechan-
ics tend to be largely mathematical [35]. Physics students
using computer simulations have been shown to outper-
form their counterparts who use physical equipment or
textbooks [42-45]. Yet currently available visualizations
of Coriolis phenomena on the rotating earth are restricted
to the spherical earth and to one frame of reference [46].

Given the importance of the Coriolis force in mete-
orology [11, 47], oceanography [12], ballistics [48], and
sniping [49] and given the persistent errors, misconcep-
tions, and omissions in the literature, there is a critical
need for instructional materials that teach motion on the
earth’s surface clearly, simply, and correctly, and that
engage multiple representations and points of view.

The purpose of this paper is to address this need. We
accomplish this by introducing a geodetic model that re-
lates the eccentricity of a homogeneous earth-like planet
to its stable angular speed of rotation, together with
feature-rich web-based interactive visualization software
called CorioVis [50]. This software enables students to
explore the motion of a puck for their choices of the
earth’s eccentricity and angular speed of rotation, from
both the inertial and rotating frames of reference. We
offer this software freely to the physics and earth science
communities.

In contrast with other models that assume small
spheroidal deformations [51, p. 48][9, Ch. 6], our model
and our software describe motion on an earth whose
spheroidal eccentricity and angular speeds of rotation are
both arbitrary. This generality enables students to see
how a puck moves on a planet whose spheroidal defor-
mations are large enough to see, and to explore the con-
sequences of varying the rotation rate and eccentricity.

The earth’s reference rotation period of 7, = 23.93 h is
the time required for the earth to rotate once on its axis
with respect to the stars. Because of the earth’s orbit
around the sun, this period is shorter than the earth’s
mean solar day of 24 h, the average time required for the

earth to rotate once on its axis relative to the sun. The

corresponding angular speed of rotation is [14] (Table I)
2

O, = 5 =7.202 x 1077 rad/s. (2)

Ty

Early in its history, the earth was flatter and had a
smaller rotation period. This period has increased over
time in part because lunar tidal forces have transferred
angular momentum from the earth to the moon [36, 52].
Computer models show that shortly after the astronom-
ical impact that is thought to have created the moon,
the earth’s rotation period might have approached the
instability limit of 7~ 2 h [53].

At least one dwarf planet has significant flattening.
Haumea, discovered in 2004, is the third-largest dwarf
planet in the solar system after Eris and Pluto [54, 55].
It has flattening f = 0.5 and rotation period 7 = 3.9
h, the smallest period of any known body in the solar
system larger than 100 km [56-58].

Our model considers only the roles of the two largest
forces in shaping the earth, gravity and the centrifugal
force, which are responsible for the 21-km difference be-
tween the earth’s equatorial and polar radii. We ignore
forces associated with geologic activity, which are re-
sponsible for smaller-scale surface features such as 8.8-
km Mount Everest. We ignore the roles of material
properties and tidal forces from nearby celestial bodies
[59-61]. The study of the effect of rotation on flat-
tening dates back to Sir Isaac Newton, who proposed
f=1/230 = 0.0043 in his Principia [62].

Contributions of this paper include: (a) a model of
the stable angular speeds of spheroidal earth-like planets
of arbitrary eccentricities, (b) a model of the motion of
a puck on the surface of such a planet that rotates with
arbitrary angular speed, and (c) CorioVis simulation and
visualization software that is based on these models.

The remainder of this paper is organized as follows:
We discuss the geodetic coordinates that are used to de-
scribe motion on a spheroid (Sec. IT), develop a model of
the stable angular speed of a spheroidal earth-like planet
of arbitrary eccentricity (Sec. III), review the forces act-
ing on a puck that slides without friction on its surface
(Sec. IV), review the conservation laws that apply to this
motion (Sec. V), develop the associated equations of mo-
tion (Sec. VI), introduce CorioVis visualization software
(Sec. VII), use CorioVis to explore the motion of a puck
on a highly eccentric planet (Sec. VIII), and discuss con-
clusions and future plans (Sec. IX).

II. COORDINATES

We use geodetic coordinates (0, ¢) to describe the mo-
tion of a puck on the earth’s spheroidal surface, with the
geodetic latitude 6 defined as the angle between the nor-
mal direction and the equatorial plane, measured north-
ward from the equator, and with the longitude ¢ mea-
sured eastward from the prime meridian. The equato-
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FIG. 1. Geodetic coordinates used to specify points on the
surface of the earth, treated as a spheroid with equatorial
radius a and polar radius b, in the rotating reference frame
(a). As viewed by an earthbound observer in this frame, the
unit vectors X, ¥, and Z are stationary, with X and y marking
specific geographical points on the equator and Z marking the
north pole. Shown for a point on the surface are its position
vector r, its normal vector n, its geodetic latitude 0, its geo-
centric latitude 0, and its longitude ¢, with orthogonal unit
vectors ¢, 6, and 1 respectively pointing east, north, and up.
The vector p specifies the equatorial projection of r, with p
pointing away from the axis of rotation. Frame (b) shows the
(p, z) plane of the spheroid, with qAS directed into the page and
ny giving the component of n along the p axis.

rial radius a is assumed to be independent of longitude.
The geodetic latitude 6 is more convenient mathemati-
cally than the geocentric latitude ', defined as the angle
between the line to the earth’s center and the equato-
rial plane (Fig. 1). When used without qualification, the
term “latitude” refers to the geodetic latitude 6, which
is used for GPS coordinates and cartography [63].

In this section, we derive the transformation between
geodetic and Cartesian coordinates [17, 64] and identify
unit vectors that facilitate our treatment of motion on
the earth’s surface.

In Cartesian coordinates, the position of a puck on the

surface of a rotating spheroidal earth is given by
r =X+ yy + 22, (3)

where the unit vectors X, ¥, and Z rotate with the earth,
as seen by an observer in the inertial frame. As seen by an
observer in the rotating frame, these vectors are station-
ary and point toward specific, unchanging geographical
locations on the earth’s surface, with X marking the in-
tersection of the prime meridian and the equator, located
off the west coast of Africa, ¥ marking the ¢ = 90° east
latitude position on the equator, located in the Indian
Ocean, and z marking the north pole and defining the
earth’s rotation axis.

A spheroid is defined as an ellipsoid with two semi-axes
of equal length, which we take in the x and y directions.
With the unequal semi-axis in the z direction, we write

22 2,2

. ! (4)
where a is the semi-major axis, or equatorial radius, and
b is the semi-minor axis, or polar radius. For an oblate
spheroid, a > b [65].

The purpose of this section is to express x, y, and z as
functions of # and ¢ for points on the earth’s spheroidal
surface. To this end, it is convenient to combine the
equatorial components of r into a vector

p =k +ys (5a)
=pcospX + psingy (5b)

that points away from the axis of rotation, whose magni-
tude p = |p| is the distance from this axis to the point of
interest on the earth’s surface. It is also helpful to define
a normal vector

n=n,p+ 22 (6a)
=ncosfp+nsinfdz (6b)

of magnitude n that points from the equatorial plane to
the point of interest on the surface, measured along the
direction normal to this surface (Fig. 1b). Accordingly,
Eq. (4) becomes

2 L2
L+ =1 (7)
implying that every cross section of the spheroid that in-
cludes the z axis is an ellipse with semi-major axis a and
semi-minor axis b. The spheroid is therefore an “ellipsoid
of revolution” [65].
We differentiate Eq. (7) to find the slope of the tangent
to the ellipse,

dz b2 p
-5t (8a)

a? z’
and the slope of the normal to the ellipse,

dp a®z
- = —=-. b
dz b2p (8b)



According to Fig. 1b, we can set this slope equal to z/n,,
and the p component of n becomes

bQ
ny = aﬁpv (9)

whence Egs. (6) give

2

p= Z—Zn cos 6 (10a)
z =mnsind. (10b)
Substituting Egs. (10) into Eq. (7) yields
1— 2
S s (11)
1 —e2sin® 6
where
2 _ 2
a

is the spheroidal eccentricity. Equation (1) gives a rela-
tionship between the eccentricity and the flattening,

e2=1—(1-f)>~ (13)

Both e and f range between zero and one. For the refer-
ence spheroid, the eccentricity is (Table I) [14-16]

/a2 — b2
e = Y = 0.08182. (14)

Finally, substituting Eq. (11) into Egs. (10) gives p and
z as functions of 6,

. acosf (15a)
1 —e2sin? 6
1—e?)sinb
__a(l—¢)sing (15b)

V1 —e2sin’0

Figure 1b demands that z = ptan6’ = n,tan#, whence
Egs. (9) and (12) give

tan 6’ = (1 — ¢®) tan6. (16)

Using Egs. (5b) and (6b), we define unit vectors by

ﬁ:%:cos¢&+sin¢§7 (172)

fi="2 = cosfp+singz (17b)
n

- di

sz—z—fsin9ﬁ+cosﬂi (17¢)

. dp o .

¢:%:—51n¢x+cos¢y, (17d)

with derivatives carried out with X, ¥, and z held fixed.
Equations (17b) and (17¢) yield

p=—sinf0+ cosfn. (17e)

4

The unit vectors ngS, 9, and 10 form an orthogonal right-
handed geodetic coordinate system, and respectively
point east, north, and up (Fig. 1). Thus, Eq. (3) be-
comes

(18a)
(18Db)

r=pp+ 2z
=pcospx+ psingy + 2z,

with p and z given by Egs. (15). Equation (18b) gives the
Cartesian coordinates (x,y, z) of a point with latitude 6
and longitude ¢ on the earth’s spheroidal surface, and
reduces to spherical coordinates for e = 0.

III. STABLE ANGULAR SPEED

In this section, we use a relationship between the shape
of a uniformly rotating homogeneous fluid body and its
stable angular speed to develop a model of earth-like
planets of arbitrary eccentricity. This model replicates
the rotational properties of the earth’s reference spheroid
and extends to flatter, faster-rotating planets.

We consider a uniformly rotating self-gravitating ho-
mogeneous fluid body that finds its stable spheroidal
shape by balancing the gravitational forces that hold it
together against the centrifugal forces that try to tear it
apart. This shape is called the MacLaurin spheroid. In
1742, MacLaurin obtained a relationship [66-70]

Q2 (e) _V1l—e? 3

21Gpm €3 (

—2e?)sin"'e— e% (1—¢€?) (19)
between the spheroid’s eccentricity e, its stable angular
speed of rotation €2, its mass density p.,, assumed uni-
form, and the universal gravitational constant G [71].

The earth’s mass density varies from about 3,000
kg/m? in the crust to about 13,000 kg/m? in the core,
and has an average value of about 5500 kg/m? [72]. In-
serting p, = 5500 kg/m?3 and e = 0.08182 from Eq. (14)
into Eq. (19) yields Q = 6.4 x 1075 rad/s, which under-
estimates the earth’s reference angular speed of rotation
given by Eq. (2). This difference stems from: (a) the
model’s neglect of variations in the earth’s mass density
and material properties, (b) the inverse square depen-
dence of the gravitational force on distance, and (c¢) the
model’s neglect of tidal forces from nearby celestial bod-
ies [59-61, 67, 70].

To match the earth’s rotational properties while pre-
serving the simplicity of the homogeneous model, we de-
termine p,, by inserting the values of Egs. (2) and (14)
into Eq. (19), which gives

P = 7097 kg/m®. (20)

This value falls within the earth’s mass density range.
Figure 2 shows the stable angular speed €2(e) vs. the ec-
centricity e using the value of p,, given by Eq. (20). This
angular speed reaches a maximum Q(em) at e,y = 0.9300,
above which flattened spheroids rotate more slowly than
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FIG. 2. Plot of the scaled stable angular speed of rotation
Q/v/Gpm vs. the spheroidal eccentricity e for the homoge-
neous self-gravitating fluid model of earth-like planets given
by Egs. (19) and (20) (solid trace), together with its e — 0
limit given by Eq. (21) (dashed trace). Also shown are the
earth’s reference eccentricity e, ‘Ehe critical eccentricity ec,
and the eccentricity e, at which € reaches its maximum.

this maximum speed. Above e, = 0.8127, MacLau-
rin spheroids are unstable to perturbations that convert
them into Jacobi ellipsoids [68, 70]. MacLaurin spheroids
are stable over the range 0 < e < e., which is sufficient
for our pedagogical purposes. Also shown in Fig. 2 is the
e — 0 limit

27Gpm

Qe) =2 5 ©

(21)

which agrees with Eq. (19) to within 3% over this range.
We also require that the spheroid of eccentricity e have
the same volume as the reference spheroid by setting

4 4
V= §7Ta2b = gﬂafbr. (22)
Combining Eqgs. (12), (14) and (22) yields the equatorial
and polar radii, a and b, for a spheroid of eccentricity e
whose volume is the same as the reference spheroid,

1_ 62 1/6
0= ar<1 - 62)
1—¢€? 1/3
b=b, .
(%)
For e = 0, Egs. (14) and (23) give the result a = b for
a sphere. Figure 3 is a plot of a/a, and b/b, vs. the

eccentricity e, with a/a, = b/b, = 1 at e = e,, and with
a/a, = 1.20 and b/b, = 0.70 at e = e..

(23a)

(23b)

FIG. 3. Plot of the ratio a/a. of the equatorial radius a to the
reference equatorial radius a, and the ratio b/b, of the polar
radius b to the reference polar radius b, vs. the eccentricity e,
from Eqgs. (23). Indicated also are the reference and critical
eccentricities, e, and e..

In summary, we model the earth and earth-like plan-
ets of arbitrary eccentricities e as MacLaurin spheroids
of uniform mass density p,, = 7097 kg/m?® whose stable
angular speeds of rotation Q(e) are given by Eq. (19) and
whose equatorial and polar radii are given by Egs. (23).
Evaluated at the earth’s reference eccentricity e, the
model recovers the earth’s angular speed €),, equatorial
radius a,, and polar radius b, (Table I).

To facilitate a complete understanding of the role of
the earth’s shape for motion on its surface, we also con-
sider planets that rotate at angular speeds € that differ
from their stable angular speed (e). For this purpose,
once the stable spheroidal shape with eccentricity e and
angular speed €(e) has been achieved, we freeze the earth
into a rigid undeformable body of eccentricity e, and then
consider the consequences of changing its angular speed.
In this way, we can consider angular speeds ) that are
smaller than, equal to, or larger than (e).

IV. FORCES

We now consider the forces on a puck that slides on
the surface of a rotating spheroidal planet of eccentricity
e. The planet rotates with angular speed €2, which may
or may not coincide with the stable angular speed 2(e)
given by Eq. (19).

As seen by an observer in an inertial frame Sy, that is,
as seen by an observer who looks down from space upon
the rotating spheroidal earth, a puck of mass m that
slides without friction along its surface satisfies Newton’s



second law,
d?r
m (dtQ) =F, +F,. (24)
So
Here Fy = mg and F,, = —F,1i are the gravitational and

normal forces on the puck, g is its gravitational accelera-
tion, r is its position, and (d?r/dt?)s, is its acceleration.

We also consider a non-inertial frame S that rotates
with the earth’s angular velocity 2 = Q2 relative to the
inertial frame. Transforming Eq. (24) into the rotating
frame gives [1]

e T S 25

m(dt2)s_ g+ n+t Feor + ceny ( )
where the Coriolis force Feor = —2m€Q x (dr/dt)g and
the centrifugal force Feep, = —mQ x (2 X r) are “iner-
tial” forces that apply only in the rotating frame. In
this frame, (d?r/dt?)s is the acceleration and (dr/dt)s =
Vg QAS + vg 0 is the velocity, with eastward and northward
components

d¢
= p— 2
Ve =Py (26a)
do
= _ 2
Vo Rdt’ ( 6b)
where
1— 2
- (1= (27)

(1 — €2 gin? 9)3/2

is the earth’s meridional radius of curvature, measured
along a line of longitude. In Eq. (25), the Coriolis and
centrifugal forces augment the normal and gravitational
forces that also apply in the inertial frame.

The apparent gravitational force F’g = Fg + Feen is
defined as the vector sum of the gravitational and cen-
trifugal forces, and is perpendicular to the surface of a
stably rotating planet at every point on its surface [8].

V. CONSERVATION LAWS

As seen by an observer in the inertial frame Sy, the
torques on the puck have no components in the axial
direction and the axial component of the puck’s angular
momentum is therefore conserved [1]. This component is
given by

(Lz)so =mp (Qp + ’U¢) ) (28)

where the puck’s eastward velocity 2p+vg in the inertial
frame is the sum of the earth’s tangential velocity Qp and
the puck’s eastward velocity vy in the rotating frame.
As seen by an earthbound observer in the rotating
frame S, the kinetic energy of the puck is given by

(T)g = %m (v3 +v3) . (29)

The time rate of change of this energy is given by [1]

d (e .
%(T)sfm(ﬂ —Q)pvgsmﬁ, (30)

Thus, for stably rotating planets with Q@ = Q(e), the
puck’s kinetic energy is conserved in the rotating frame
because the associated forces do no net work on the puck.

VI. EQUATIONS OF MOTION

We now construct equations of motion from these con-
servation laws. To build dimensionless constants, we con-
sider a puck of mass m that is at rest at the equator as
seen by a rotating observer on an earth-like planet of
arbitrary eccentricity e that rotates at the earth’s refer-
ence angular speed €2,. As seen by an inertial observer,
this puck has tangential speed af),, angular momentum
ma?Q,, and kinetic energy ma?Q2/2.

We accordingly define a dimensionless axial angular
momentum in the inertial frame,

(LZ)SO
ma2$),’

L= (31a)

and a dimensionless kinetic energy in the rotating frame,

_2(D)g
T= o (31b)

These definitions, together with Egs. (15a), (26), and
(27), allow us to write Eqs. (28), (29), and (30) as

r- cos? 6 Q+¢
C1—e2sin®0 \ Q.
- cos? 6 qﬁ n (1-— 62)2 ﬁ

C 1—e?sin®g \ Q2 (1 — €2sin® 0)3 03

(32b)
F 02 —292 (1 —€?)sin 202 6.
Q7 (1 — e2sin? 9)

(32a)

(32¢)

where the overdot denotes d/dt.

It is convenient to rewrite Eqs. (32) as a system of
three coupled first-order nonlinear differential equations,

¢ = fi (33a)
T = Q0 fs, (33¢c)



where

1—e2sin?6 Q
= ——>—L— = d
h cos2 0 £ Q. (33d)

1—e?sin?6 3/2
PR ) R (330)

02— 0%\ (1-¢?)sin26
fs = < Q2 ) (1 — e2sin? 0)2 /2 (331)
cos? 6

fo=T — 2 (33g)

————5. /i
1—e2sin?6

are dimensionless functions of § and 7, and where f5
takes the sign of 6.

The general three-dimensional system of Eqgs. (33) de-
scribes the time evolution of the longitude ¢(t), the
geodetic latitude 6(t), and the dimensionless kinetic en-
ergy 7 (t) in the rotating frame [Eq. (32b)] for a hockey
puck that moves without friction on the surface of a ho-
mogeneous earth-like body of arbitrary spheroidal eccen-
tricity e and arbitrary angular speed of rotation 2. The
stable angular speed €2 depends on e, and is given by
Eq. (19). The earth’s reference angular speed €2, is given
in Table I. The dimensionless axial angular momentum
L in the inertial frame is a constant of the motion, and
is given by Eq. (32a).

We now consider three special cases.

Case 1: Stably rotating earth of arbitrary eccentric-
ity. For an earth-like body of arbitrary eccentricity e
whose angular speed (2 matches its stable angular speed
Q, Egs. (33¢) and (33f) demand that 7 = 0. Accordingly,
T is a constant of the motion given by Eq. (32b), and
Egs. (33) reduce to a two-dimensional system of equa-
tions in ¢(t) and 0(t),

o=
6=, fo,

(34a)
(34b)

with f1 and fs given by Eqgs. (33d) and (33e).
Case 2: Stably rotating weakly spheroidal earth. An
approximate two-dimensional system of equations for

weakly spheroidal earths can be obtained by setting e = 0
in Egs. (34), yielding

o= (35a)
0=, fo, (35b)
where
fi = Lsec? — 2 (35¢)
O,
0 2
fa== T—(ﬁsec@—90059> , (35d)

with constants of the motion given by

L= (Q + ¢> cos? 0 (35¢)
0,
¢2 62
T= Q—gc0829+ "R (35f)

This weakly spheroidal approximation serves as the ba-
sis for previous investigations of motion on the earth’s
surface [5, 73-76]. In this approximation, the earth’s ec-
centricity is considered to be nonzero in order to conserve
the kinetic energy 7T in the rotating frame, and is con-
sidered to be zero otherwise. For motion on the earth’s
surface, the weakly spheroidal approximation agrees with
the general case described by Egs. (33) to within 0.1%.

Case 3: Spherical earth. For a spherical earth with
e = 0, the stable angular speed €2 = 0 vanishes through
Eq. (21). Consequently, such an earth cannot rotate sta-
bly at any nonzero angular speed 2, and T is not con-
served at any nonzero angular speed. Setting e = 0 in
Egs. (33) yields

QB =0 fi (36a)
0 — O fo (36b)
. 02

T =~ fosin2, (36¢)

with f1, fa, £, and T given by Egs. (35¢)-(35f). Equa-
tions (36) are identical to Egs. (35) except for Eq. (36¢),
which governs the time dependence of 7. For the spher-
ical earth, the kinetic energy is conserved in the inertial
frame [1], in which the puck executes uniform circular
motion in great circles around the center of the earth [2].
Such eminently simple motion bears little resemblance to
motion on our weakly spheroidal earth.

VII. CORIOVIS SIMULATIONS

In this section, we introduce Corio Vis simulation and
visualization software as a feature-rich pedagogical tool
for exploring the motion of a puck on the surface of a
frictionless spheroidal earth-like planet of arbitrary ec-
centricity e and of arbitrary angular speed of rotation €2,
in both the inertial and rotating reference frames [50].

A. Inputs

CorioVis software integrates Egs. (33) using the
fourth-order Runga-Kutta algorithm with a time step At
that is fixed except near latitude extrema and pole cross-
ings. The inputs are:

1. Spheroidal eccentricity, e
2. Angular speed of rotation (rad/s), 2
3. Initial latitude (deg), 6y



4. Initial longitude (deg), ¢o

5. Initial northward velocity (m/s), vgo.
6. Initial eastward velocity (m/s), vgo
7. Simulation speed / time step (s), At

For Input 1, the user may enter an arbitrary value for the
eccentricity e, may click a button to set the eccentricity
to its reference value e, = 0.08182 (Table I), or may click
a button to set e = 0 (for a spherical earth). For Input 2,
the user may enter an arbitrary value for {2 or may click
a button to set this ratio to its stable value 2(e) given by
Eq. (19). Inputs 3 and 4 are the initial latitude 6(0) = 6y
and the initial longitude ¢(0) = ¢g, both measured in
degrees. Inputs 5 and 6 are the initial northward velocity
vgo and the initial eastward velocity vgo, both measured
in meters per second. The initial values 90 and (;50 follow
from Egs. (15a), (23a), (26), and (27), and the initial
values Ly and 7 follow from Eqgs. (32a) and (32b).

If the user specifies that the earth rotates at its sta-
ble angular speed 2 = (e), then f3 =7 =0 and T is
constant. In this case, both the axial angular momen-
tum in the inertial frame and the kinetic energy in the
rotating frame are conserved, and the corresponding val-
ues L = Ly and T = 7Ty remain constant throughout
the simulation. If the user specifies some other angular
speed, only £ = L is conserved, and Eq. (33c) tracks
the time evolution of 7.

If 0, # 0, then its sign determines the initial sign of f5
in Eq. (33e). The Runge-Kutta method fails for 8y = 0,
for which we set fy = +1x 10719, with its sign determined
by the sign of the initial northward component of the net
force [1, from Egs. (26¢) and (40)]

0 - Fpeto = —mpp sin Oy (92 -0+ 2Qgi>0) . (37)

B. Latitude Extrema

We use a binary search-like procedure to find latitude
maxima 0,,x and minima 6,;,, where 6 = fo = 0. When
the numerical integration overshoots such an extremum
and yields a latitude that is outside the allowed range
Omin < 0 < Bnax, the consequence is that f4 < 0 and 6
is imaginary by Eq. (33b). Each Runge-Kutta time step
requires 6 to be evaluated at four different values of 6.
Normally, fy > 0 for each of these, and the time step
succeeds. If f; < 0 for one or more of these angles, then
f is near an extremum and the time step fails. After
a failed time step, we bisect the time step (At — At/2)
and try again, integrating until one of these bisected time
steps fails, then bisect the time step again, etc. Bisecting
N times improves the resolution of the extremum by a
factor of 2. We typically use N = 10, which improves
the resolution by a factor of 21 = 1024. Once an ex-
tremum has been found using this search procedure, we
reverse the sign of fo and continue the integration using
the original time step At of Input 7.

Our search procedure differs from the classic binary
search algorithm in that, while binary search moves in
both the positive and negative directions, our procedure
only moves forward in time. As a result, our time step
does not necessarily bisect at each iteration, as occurs in
binary search, affecting the runtime complexity. Instead
of the O(logn) complexity of binary search, our runtime
complexity is O(klogn), where k is the maximum num-
ber of iterations between bisections. In practice, k < 2,
reducing our runtime complexity to that of binary search.

C. Near Pole Crossings

Equations (33a) and (33d) give the time rate of change
of the longitude, (;-5, which becomes large when the puck
passes near a pole (§ ~ £7/2). To resolve the puck’s
trajectory when it is close to a pole, we use smaller time
steps defined by
de

At = At, (38)

where
bo = QL — Q (39)

is the time rate of change of the longitude at the equa-
tor, found by setting # = 0 in Egs. (33a) and (33d). If
|¢| > |¢e| at any point in the simulation, then we use the
reduced time step At’ instead of the regular time step At
specified in Input 7. In this way, changes in ¢ that occur
during time steps near pole crossings are comparable to
changes that occur elsewhere.

The puck reaches a latitude extremum at the point
of closest approach to a pole. During the approach to
this point, Eq. (38) is used as needed for the integra-
tion. When a Runge-Kutta time step fails during this ap-
proach, then the binary search-like procedure discussed
above is used to refine the estimate of the extremum,
using the original time step At of Input 7. Once this es-
timate has been refined, we reverse the sign of fo and use
Eq. (38) as needed to integrate away from the extremum.

D. Features

CorioVis visualizes the motion of the puck in the ref-
erence frame of the user’s choice. In the inertial frame, it
shows a rotating earth and stationary background stars.
In the rotating frame, it shows a stationary earth and
moving background stars. The viewing perspective may
be changed by clicking and dragging on the image of the
earth. CorioVis also displays the time-dependent nu-
merical values of the time ¢, the earth rotation angle 2,
the puck latitude 0, the puck longitude ¢, the time rate
of change of latitude 6, the time rate of change of lon-
gitude ¢, the “relative” puck speed (vi + v2)1/2 in the



rotating frame, the “absolute” puck speed in the inertial
frame, the relative dimensionless kinetic energy 7T, the
absolute dimensionless kinetic energy, and the absolute
dimensionless axial angular momentum L.

E. Validation

CorioVis was written by J. Edwards in JavaScript. To
validate CorioVis, B. Edwards wrote an independent For-
tran code to integrate Egs. (33). The two codes predict
values of ¢(t), 6(t), and T (¢) that agree with each other.
As a second validation, we calculate the dynamical val-
ues of conserved quantities and compare them with their
conserved values, reducing At until the differences be-
tween the dynamical values and the conserved values are
less than 0.1%. For motion on the reference spheroid,
this occurs at a time step of about At = 50 s.

VIII. TRAJECTORIES

In this section, we explore the role of the angular speed
of rotation of an earth-like planet in the motion of a puck
on its surface. We explore this role on a planet of eccen-
tricity e = 0.6, whose spheroidal deformations are large
enough to see visually, and for angular speeds of rotation
2=0,Q=9Q(e), and Q = 2Q(e). Figure 4 and CorioVis
Demos 5, 6, and 7 visualize the the puck’s motion in these
three cases for a puck launched from latitude 6y = 30°
and longitude ¢y = 0° northward at 250 m/s in the ro-
tating frame, a typical cruising airspeed for commercial
passenger aircraft [50, 77].

CorioVis Demo 5 and Fig. 4a illustrate one period
of the motion of the puck on an eccentric non-rotating
planet (2 = 0). Such a non-rotating spheroid is not in
hydrostatic equilibrium and cannot be liquid, because if
it were liquid, then it would form itself into a sphere.
Instead, the spheroid must be rigid and undeformable in
order to maintain its non-equilibrium shape. Since the
planet is not rotating, the inertial and rotating frames
are identical, there are no Coriolis and centrifugal forces,
and the gravitational force Fy is identical to the appar-
ent gravitational force F’g. Were the planet spherical, Fg
would have been perpendicular to the surface at every
point on the surface. But for e = 0.6, F, has a hori-
zontal component that is not balanced by a centrifugal
force. This horizontal component causes the puck to os-
cillate about the north pole with period 4.3 h, reaching
its maximum speed of 3400 m/s when it crosses the pole
and its minimum speed of 0 m/s at latitude 29.6°.

CorioVis Demo 6 and Fig. 4b illustrate one period of
the motion of the puck on an eccentric planet that ro-
tates at its stable angular speed Q2 = Q(e). For e = 0.6,
Eq. (19) gives Q(e) = 7.5Q,, which corresponds to a sta-
ble period of rotation of 7 = 27/Q(e) = 3.2 h. For this
planet, F’g is perpendicular to the planet at every point
on its surface, and the earth’s spheroidal deformations

(a) Non-rotating spheroid

(b) Stably rotating spheroid

(c) Fast rotating spheroid

FIG. 4. CorioVis snapshots of one cycle of the periodic mo-
tion of a puck projected northward at 250 m/s, as seen by an
observer in the rotating frame on a spheroid of eccentricity
e = 0.6 and angular speed of rotation Q@ = 0 (a), 2 = Q(e)
(b), and Q = 2Q(e) (c), where Q(e) is the stable angular speed
given by Eq. (19).



neutralize the gravitational and centrifugal forces. Con-
sequently, the motion is governed by the Coriolis force,
which acts toward the right in the northern hemisphere.
The puck’s motion consists of clockwise inertial circles
confined between latitudes 24° and 35°, executed at a
constant speed of 250 m/s in the rotating frame, with a
3.3-h period of motion and with a small westward drift
[1]. The speed is constant because kinetic energy is con-
served in the rotating frame (Sec. V). During its first
period of motion, the puck tours Algeria and ends 240
km to the west of its starting point.

CorioVis Demo 7 and Fig. 4c illustrate one period of
the motion of the puck on an eccentric planet that ro-
tates at an angular speed 2 = 2Q(e) that is twice its
stable angular speed, which corresponds to a rotation
period of 7 = 27/Q = 1.6 h. This planet is not in hy-
drostatic equilibrium, and F’g drives the puck toward the
equator, about which the puck oscillates with a period of
1.7 h. As seen by the rotating observer, the puck reaches
its maximum speed of 2700 m/s when it crosses the equa-
tor and its minimum speed when it reaches its latitude
extremes of # = £30.1°, where it travels eastward at 12
m/s. The Coriolis force is responsible for the westward
drift, which displaces the puck 3800 km to the west dur-
ing each period of the motion.
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IX. CONCLUSIONS

Motion on the earth’s surface is important enough to
merit treatments and instructional materials that are
clear and correct. Because the earth is so nearly spheri-
cal, some studies of motion on its surface assume that it
is spherical. Yet motion on a spherical earth could not
be more different than motion on our spheroidal earth.
Accordingly, we develop a spheroidal model that enables
us to explore earth-like planets of arbitrary eccentricities
and angular speeds of rotation, and deploy this model
in studying motion on the surface of the earth. We in-
troduce CorioVis software to teach motion on the earth’s
surface, and make it freely available. These efforts are de-
signed to supplement standard mathematical treatments
and to assist students with varying degrees of physics
and mathematical preparation in understanding motion
on the surface of our earth. We invite educators to use
these resources freely in their teaching.
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