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The problem of Mars entry trajectory optimization and guidance is considered. The vehicle
is modeled as a point mass in motion over a spherical non-rotating planet. The objective is to
maximize the altitude at the end of atmospheric entry subject with a terminal constraint on
speed. In addition, path constraints are enforced on the sensed acceleration, heating rate, and
dynamic pressure. The key features of the entry trajectory are then analyzed. Then, using
the same computational approach as was used to compute the reference optimal trajectory,
a method is developed for entry guidance. In particular, guidance updates are performed at
constant intervals. Over each guidance cycle the dynamics are simulated using a perturbed
(off-nominal) model. Then, the optimal trajectory and control are re-computed on the remaining
horizon at the end of each guidance cycle. The performance of the method for guidance is then
analyzed for different off-nominal coefficients of drag and guidance cycle durations.

I. Nomenclature

= aerodynamic acceleration, m/s>

drag coefficient of spacecraft

lift coefficient of spacecraft
aerodynamic drag, N

gravitational acceleration at the center of Earth, m/s?
scale height, m

altitude, m

aerodynamic lift, N

heat rate, W/m?

aerodynamic pressure, Pa

radius of Mars, m

radial distance from the center of Mars, m
nose radius, m

reference area of spacecraft, m?

time, s

initial time, s

terminal time,s

spacecraft speed, m/s

state vector

flight path angle, rad or deg

geocentric longitude, rad or deg

bank angle, rad or deg

geocentric latitude,rad or deg

heading angle, rad or deg

= Martian atmospheric density, kg/m>

= base Martian atmospheric density, kg/m>
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II. Introduction

ARs entry, descent, and landing (EDL) is one of the challenging problems in Mars missions. A key aspect that

makes Mars EDL such a challenging problem is the presence of a large number of constraints during entry. In
particular, it is necessary to impose constraints on heating rate, sensed acceleration load, and dynamic pressure during
entry. Placing a limits on these quantities ensures that the vehicle does not overheat and is not subject to excessively large
structural loads during entry. In addition to designing reference trajectories that remain within acceptable constraint
limits, it is also necessary to maintain these constraints when controlling the vehicle as it enters the atmosphere (that is,
real-time control).

In addition to the challenge of determining entry, descent and landing reference trajectories for Mars missions,
another critical aspect of a Mars mission is guidance. In particular, because of modeling errors and disturbances,
the entry vehicle will not stay on the reference solution during entry unless mid-course corrections are made. Such
corrections require that the control be re-computed at various points along the entry trajectory in order to steer the
vehicle back on course so that it attains the terminal (target) conditions. In addition, because most reference trajectories
are planned in a manner that optimizes a specified performance index, it is desirable that any mid-course corrections
also be made in a manner such that the vehicle is as close to the optimal (reference) trajectory as possible.

Previous methods for guidance include proportional navigation (PN) [[1, 2], linear-quadratic (LQ) methods [3H5]],
neighboring optimal control (NOC) [6]], and other trajectory tracking methods. While these methods have been used
with success in various applications, one limitation with these techniques is that neither the full nonlinear dynamics
nor the full effect of the optimization criteria are taken into account in the guidance law. More recently, finite-horizon
guidance and control laws have been developed where the computed control takes into account higher-order effects
in the system dynamics. Finite-horizon guidance and control techniques include model predictive control[7H10] and
techniques that employ nonlinear programming.

This research focuses on the application of a computational framework for the real-time solution of optimal control
problems for Mars entry reference trajectory generation and guidance. The problem of interest is one where the vehicle
enters the Martian atmosphere at a high altitude and high speed. In addition, during entry the vehicle is subject to
constraints on sensed acceleration, heating rate, and dynamic pressure. The objective of the entry is to maximize the
terminal altitude (from which a parachute could be deployed) subject to a constraint on the terminal speed. The first
part of this paper focuses on determining reference optimal trajectories for this aforementioned altitude maximization
problem. Specifically, the reference optimal control problem is solved using an adaptive Gaussian quadrature collocation
method [11H19]. The second part of this study develops a method for optimal guidance and control using the same
computational approach employed for determining the reference optimal trajectory and control. Specifically, the optimal
control problem is re-solved at constant time intervals (guidance cycles), where over each guidance cycle the dynamics
are simulated using an off-nominal (perturbed) dynamic model. Each time the optimal control problem is re-solved, the
horizon is shorter than it was previously and the mesh in the adaptive Gaussian quadrature collocation method such that
the mesh becomes progressively smaller as this horizon shrinks. The method for mesh generation and guidance used in
this paper is taken from Ref. [20]. Finally, the Mars entry dynamics in this study are a three-dimensional version of the
model developed in Ref [21].

This paper is organized as follows. Section [l provides a description of the Bolza optimal control problem. Section
[[V]provides a description of the Legendre-Gauss-Radau collocation method used to solve the optimal control problem
numerically. Section [V]provides the formulation of the Mars entry optimal control problem. Section [VI|provides
a description of the approach used to generate the reference trajectory and perform guidance updates. Section [VII
provides the key results obtained in this research along with a discussion of the results. Finally, Section [VIII provides
conclusions on this work.

I11. Bolza Optimal Control Problem
Without loss of generality, consider the following general optimal control problem in Bolza form. Determine the
state y(7) € R™ and the control u(7) € R™ on the domain 7 € [~1,+1], the initial time, #o, and the terminal time
that minimize the cost functional

_ +1
T = MOty D)+ L2 [ 52y, um. i ) n
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subject to the dynamic constraints

AU Ry, w0, ) =0, @
the inequality path constraints
Cmin < €(Y(7), w(7),2(7,70,17)) < Cmax, 3)
and the boundary conditions
bmin < b(y(=1),10,y(+1),15) < bax. 4)

It is noted that the time interval 7 € [—1,+1] can be transformed to the time interval ¢ € [fo,¢f] via the affine

transformation
tr —1o tr+1o
+ .

t=t(t,t0,t5) = 5

(7. 10,1¢) 77 > 5)

In order to discretize the optimal control problem using an #p method, the domain 7 € [—1, +1] is partitioned into

a mesh consisting of K mesh intervals Sg = [Ti-1,Tx], k =1,...,K, where -1 =Ty < T} < ... < Tg = +1. The
K

mesh intervals have the property that U Sk = [-1,+1]. Let y*® (7) and u®) (7) be the state and control in Sy. Using

k=1
the transformation given in Eq. (5), the Bolza optimal control problem of Egs. (I)—(#) can then rewritten as follows.

Minimize the cost functional
T =My (=1), 19,y 5 (+1), 15)

i KTy 6
k=1 Tk-1
subject to the dynamic constraints
(k) -
YT 0,00 (), 0B (1), 0) =0, (k=1,....K), (7)
dt 2
the path constraints
Cin < ¢y P (1), (1),1) < eqax,  (k=1,...,K), ®)
and the boundary conditions
bunin < by (=1), 10,y (+1),15) < byas. )
Because the state must be continuous at each interior mesh point, it is required that the condition y(7,") = y(7;), (k =
1,...,K — 1) be satisfied at the interior mesh points (71, ...,Tk_1)-

IV. Legendre-Gauss-Radau Collocation
The multiple-interval form of the continuous-time Bolza optimal control problem in Section [IIlis discretized using
collocation at Legendre-Gauss-Radau (LGR) points [11H13}[17]. In the LGR collocation method, the state of the

continuous-time Bolza optimal control problem is approximated in Sk, k € [1,...,K], as
Ni+1
(k) ~ YK — (k) p(k)
y® () 2 YW (r) = Zl vl (7
j:
Ni+1 (k) (10)
K -1
§'0= | =
=1y 1
1#j
where 7 € [—1,+1], [J(.k) (1), j=1,...,Nr +1,is abasis of Lagrange polynomials, (Tl(k), e, ‘r}(vi)) are the Legendre-

Gauss-Radau (LGR) [11]] collocation points in Sy = [Tk-1, Tk ), and TI(\Ji)+ | = Tk is a noncollocated point. Differentiating
Y®) () in Eq. with respect to 7 gives

Ni+1 (k)
Y _ i yw s 0 (11)
dt 7 dr

A
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Defining tl.(k) = I(Ti(k) .10, 15) using Eq. (§), the dynamics are then approximated at the N LGR points in mesh interval

kell,...,K] as
S pOY R g (v gl 1) <o,

= (12)
(l'= 1,...,Nk),

where D;f) = d{’J(.k)(Ti(k))/dT, (i=1,...,Nx), (j=1,...,Nr +1) are the elements of the Ny X (Ny + 1) Legendre-
Gauss-Radau differentiation matrix [L1]] in mesh interval Si, k € [1,...,K]. The LGR discretization then leads to the
following nonlinear programming problem (NLP). Minimize

T~ MYV, 10, YE) L 1p)

Ng+1°
=10 @) ey glo 0 (13)
+ZZ 5wy LU0
k=1 j=1

subject to the collocation constraints of Eq. and the constraints
emin < (Y, UM 1 0) < e, (= 1,0, Np), (14)
bunin < b(Y{" 10, Y}y, 1115 < Binas, (15)

(k) _ y(k+l) -
Yya=Y (k=1,...,K-1) (16)
where N = Zf:] N is the total number of LGR points and Eq. is the continuity condition on the state and is

enforced at the interior mesh points (77, ..., Tkx-1) by treating Y](\’;Z . and Yikﬂ) as the same variable in the NLP.

Finally, it is noted that the mesh refinement method developed in this paper requires an estimate of the solution error
on the current mesh. In this paper the approach for estimating the solution relative error that used in Ref. [17]] and
compares two approximations to the state (one with higher accuracy than the other). The details of this relative error
estimate are beyond the scope of this paper and the reader is referred to Ref. [17] for the details.

V. Problem Formulation

A. Equations of Motion
The equations of motion for a point mass in motion over a spherical non-rotating planet are given as [22]

7= vsinvy,
y = —-D — gsiny,
§ = v cOSy sin Y
- 7 oS ¢
i = V COSy COS Y a7
= . ,
. 1 L
y = —[Lcosa+(———)cosy],
v rov
J o= Lsin0'+vcosysimﬁtan0’
v Ccosy r

where g = u/r?. Next, the lift and drag specific forces are defined, respectively, as

CLS
L = qCL ’
m
(18)
D = qCDS’
m
where |
q:zpv2 (19)
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is the dynamic pressure,
p = poe "M (20)

is the density of the Martian atmosphere, and
h=r-R (21)

is the altitude over a spherical planet. It is noted that the quantities pg, H, and R, are, respectively, the sea level density,
the density scale height, and the radius of the planet (and are all constants). The physical constants used in this study are
shown in Table[]]

Table 1 Physical constants.

Parameter Value

R 3.386 x 10° [m]

u 4.284 x 1013 [m?/s?]
8o 9.80665 [m/s?]

S 15.9 [m?]
Cp 1.45

CrL 0.348

m 3300 [kg]

£0 0.0158 [kg/m3]
H 9354 [m]

K, 1.9027 x 1078 [W/cm?]
N 0.5

M 3

T 0.6 [m]

B. Path Constraints
The path constraints imposed on the aerodynamic pressure, aerodynamic acceleration, and heat rate are defined,
respectively, as

q < Gmax» (22)
VL2 + D?
A= —+ < Amax, (23)
80
o N
Q=K47)VM<QW, (24)
n

where N, M, and K, are constants.
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C. Boundary Conditions
The following initial conditions were imposed:

r(to) = 1o,
v(to) = Vo,
o(t, = 0o,
(to) o 25)
#(t0) = o,
y(to) = o
Y(to) = o,
where rg, vo, 6o, ¢0, Y0, Yo are specified values. Next, the terminal condition was given as
V(tf)ZVf, (26)
where v s is specified. Next, the following bounds are set for the components of the state during the motion:
Fmin < ¥ =< TFmaxs
Vmin < V< Vmaxs
gmin < 68 < gmax, (27)
¢min < ¢ < ¢maXs
Ymin < Y =X Ymax»
lﬁmin < w < lﬁmam
Additionally, the control, o, is bounded as follows:
Omin < O =< Omax- (28)

The numerical values for the boundary conditions are shown in Table 2| while the bounds on all variables and constraints
are shown in Table 3

Table 2 Boundary conditions.

Parameter Value
ro 3.5112 x 10° [m]
6o 0 [rad]
Vo 6000 [m/s]
do -0.0873 [rad]
Y0 -0.2007 [rad]
Yo 1.6581 [rad]
v 540 m/s

D. Mars Entry Optimal Control Problem
The Mars entry optimal control problem is now stated as follows. Maximize the terminal altitude, that is, maximize

max h(ty) (29)

subject to the dynamic constraints of Eq. (17), the path constraints of Egs. (22)—(24), the initial conditions of Eq. (25),
the terminal condition of Eq. (26)), the state bounds given in Eq. (27), and the control bounds given in Eq. (28).
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Table 3 Bounds on variables and constraints.

Parameter Value Parameter Value
Fmin 3.3862 x 10° [m] Fmax 3.5112 x 10%[m]
Vmin 0.1 [m/s] Vmax 6000 [m/s]
Omin =27 [rad] Omax 27 [rad]
Dmin -1.2217 [rad] Dmax 1.2217 [rad]
Ymin -1.0472 [rad] Ymax 0 [rad]
Ymin =27 [rad] Ymax 27 [rad]
Omin 0.05236 [rad] O max 2. 0944 [rad]
Gmin 0 [Pa] Gmax 10000 [Pa]
Anmin 0 [m/s?] Amax 580 [m/s*]
Onmin 0 [W/cm?] Onmax 70 [W/cm?]

VI. Reference Optimal Solution and Guidance Strategy

A. Reference Optimal Solution

The reference optimal control problem formulated in Section [V was solved using the optimal control software
GPOPS —II. GPOPS —II employs adaptive Gaussian quadrature collocation [11H16} 18 [19] This method allows
smaller meshes to be used than if an 4 method, a fixed order method, was utilized, all the while achieving the desired
accuracy tolerances. The adaptive method does this by placing a larger number of mesh points where the solution is
nonsmooth or experiences rapid changes, and places fewer mesh points where the solution is smooth. The smoothness
of the solution was determined by approximating the state using a basis of Legendre polynomials and assessing the
decay rate of the polynomial coefficients as a function of the coefficient index [19]. GPOPS — II also implements the
nonlinear programming problem solver, IPOPT, an interior point method [23]. [POPT was employed in full Newton
mode, and supplies the objective function gradient, Lagrangian Hessian, and constrain Jacobian. Sparse central finite
differencing was used to supply IPOPT with the first and second derivatives. When setting up the optimal control
problem in GPOPS — II, the initial conditions, boundary conditions, model parameters, an initial guess, and an initial
mesh were used as inputs. A continuous function was created to compute the spacecraft dynamics, state, and path
constraints. An objective function was created to define the desired end goal, which in this problem was to maximize
the terminal altitude. GPOPS — II outputs the optimal solution containing the state matrix and corresponding control
matrix.

B. Guidance Strategy

In order to explore the effect of modeling errors and perturbations from the reference solution, the following strategy
was employed and follows an approach similar to that described in Ref. [20]. First, it was assumed that the coefficient
of drag for the actual vehicle is different from the reference value of Cp. Then, using the reference solution as the
starting point, the reference optimal control problem was computed using GPOPS — II. The flight of the vehicle is
then simulated on the time interval [#g, #o + AT] using the perturbed model where AT is the guidance cycle time with
the MATLAB ordinary differential equation solver ODE113. The state of the vehicle attained from the simulation
with the perturbed model is then used as the initial condition for solving the optimal control problem on the remaining
horizon (that is, the horizon o + AT, t ¢ ]). The process of simulating the flight with the perturbed model is then repeated
over each subsequent guidance cycle AT and the resulting state at the end of the guidance cycle is using as the initial
condition when solving the optimal control problem over a progressively shrinking horizon until the remaining horizon
is smaller than AT (at which point the last computed control is used to simulate the remainder of the flight). In this
manner, the remaining horizon is to + kAT, t ¢, where to + kAT, where K is the total number of guidance cycles. In
order to obtain a solution quickly to the optimal control problem, at the start of each guidance cycle the starting mesh
used for GPOPS — II consists of only that portion of the mesh that corresponds to the remaining horizon. In other
words, the portion of the mesh that occurs prior to the time ¢y + kAT is deleted and only that portion of the mesh from
[to + kAT, tr] is used. Using this process, the mesh on the remaining horizon is smaller than the mesh used on the
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previous remaining horizon. By using a smaller mesh on each remaining horizon the problem can be solved more
quickly as the guidance cycles evolve because the resulting NLP from GPOPS — II becomes progressively smaller. it
should be noted that all computations were performed on a 2.4 GHz 8-Core Intel Core i9 2019 MacBook Pro with 32
GB 2667 MHz DDR4 running on Mac OS version 11.3.1 Big Sur. The computations were performed by MATLAB
Version R2019b.

VII. Results and Discussion

This section explores the results obtained by computing the optimal trajectory and implementing guidance updates
as outlined in Section The modeling errors were simulated by varying the coefficient of drag of the entry vehicle
when integrating the dynamics to simulate the actual motion of the spacecraft. Multiple values of Cp were used,
however only values of Cp = 1, 1.9 are presented in this paper. When completing the guidance updates presented in
Subsection|[VILB and Subsection [VIL.C, a guidance cycle period of 10 seconds was used. The guidance cycle period
was chosen such that the computational time was sufficiently smaller than the guidance cycle period. Finally, the effect
of the guidance cycle period was studied in Subsection[VILD}

A. Reference Solution
When solving the reference optimal control problem, i.e using a coefficient of drag value of Cp = 1.45, the final
state of the spacecraft was found to be:

y(ty) =[104km+R 540m/s 0.306rad —0.137rad - 0.246rad 2.07rad] (30)

The spacecraft altitude, speed, acrodynamic acceleration, aerodynamic pressure, heat rate and bank angle of the
spacecraft versus time for the reference solution are shown in Fig. [T. The following observations can be made from
the reference trajectory. First, the vehicle enters the atmosphere at approximately 60 km/s and holds this speed for
approximately 100 seconds, at which point the Martian atmospheric density becomes sufficiently large enough to
produce enough drag force to lower the velocity. This point occurs at an altitude of approximately 40 km. From Fig.
[I(c) it can be seen that the path constraint on the acceleration becomes active roughly 150 seconds into entry. As the
vehicle continues its entry phase it can be seen that it’s speed continues to decrease until it reaches a value of 540 km/s,
at which a parachute would be deployed and the descent phase of the mission would begin. This occurs at a maximized
final altitude of 10.4 km.

When observing the control generated by solving the optimal control problem, it can be seen that it roughly follows
a bang-bang control pattern, switching between the minimum bank angle, oo = 30° and the maximum bank angle
o = 120°. The minimum bank angle was chosen such that it was large enough to ensure the lift vector would not point
vertical,, and the maximum bank angle was chosen such that it was small enough to ensure the vehicle would not be at
risk of entering a spin. The bang-bang behavior seen is a result of the spacecraft depleting speed quickly while banking
at a value o = 30° and then flipping to a value of oo = 120° to ensure the heating rate does not exceed the maximum
allowable value.
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Fig. 1 Results for the reference solution.

B. Simulation of flight for the case of Cp = 1.

Figure 2 shows the spacecraft altitude, speed, acrodynamic acceleration, aerodynamic pressure, and heat rate of
the spacecraft versus time for the case of Cp = 1 when guidance updates are implemented compared to the reference
solution. Additionally, the computation time for each guidance cycle and bank angle was plotted versus time.

The final state for the case of Cp = 1 was found to be:

y(i5) = [8.14km+R 553 m/s 0.368rad —0.163rad —0.268rad 2.26 rad] 31)

The time to reach the final state was 406.5 seconds.

Figure 2{b) shows that during the first 60 seconds approximately, the speed curve for the reference solution and the
curve generated through guidance updates overlie each other since the atmospheric density at the beginning of entry is
not large enough to cause a drag force sufficiently large enough to slow the vehicle. The curves then diverge, where
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the speed curve for the solution with guidance updates decreases at a slower rate than reference solution curve. The
coefficient of drag in this case was smaller than the reference solution and as a result, the drag force on the vehicle will
be lower and the vehicle will take longer to slow down to its terminal velocity and will reach a lower final altitude. It is
also noted that the final speed does not reach the desired terminal speed.

Additionally, when simulating a modeling error it can be seen in Fig. [2{d) that the heating rate exceeds the maximum
allowable value, reaching a maximum value of 77.19 W/cm?. It can be seen from Fig. f) that when the path constraint
is active, the computational time to complete the update spike (the tenth cycle). Larger computational times decrease
the effectiveness of completing guidance updates.

The effectiveness of guidance updates can be observed by solving the optimal control problem with the modeling
error while not completing any guidance updates. For the case of Cp = 1, when the control generated from reference
solution is integrated from the initial to the final time, the final state produced was computed to be:

y(ty)=[24.1km+R 1110m/s 0.333rad -0.150rad —0.0379rad 2.08 rad] (32)

Without guidance updates the vehicle would be traveling at more than double the desired terminal speed at the time the
reference solution would predict the parachute to be deployed.

10
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Fig. 2 Results for the case of Cp = 1.
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C. Simulation of flight for the case of Cp = 1.9

The following figures show the height above the Mars surface, speed, aerodynamic acceleration, aerodynamic
pressure, and heat rate of the spacecraft versus time for the case of Cp = 1.9 with the implementation of guidance
updates compared to the reference solution. Additionally, the computation time for each guidance cycle and the bank
angle were plotted.

The final state for the case of Cp = 1.9 was found to be:

y(if) =[11.9km+R 532m/s 0.284rad —0.127rad —0.235rad 1.97 rad] (33)

The time to reach the final state was 280 seconds.

It can be seen from Fig. [3 that the curves of the solution computed with guidance updates follow the reference
solution curves more closely then in the case of Cp = 1. Additionally the vehicle achieves its desired terminal velocity
in a shorter amount of time than the reference solution, and at a higher terminal altitude. However, due to the increased
drag force, the maximum allowable aerodynamic acceleration is exceeded, reaching a maximum value of 5.19go [m/s?].

While it may seem that the performance of the vehicle compared to the case of Cp = 1, it should be noted that at
the very last guidance cycle, the computation time has a significant spike. This could imply that the optimal control
problem is becoming infeasible.

The effectiveness of the guidance updates can be demonstrated by computing the state of the vehicle using the
control generated from the reference solution and integrating the dynamics including the modeling error. The final state
without guidance updates was computed to be:

y(ty) =[5.04km+R 350m/s 0.291rad —0.130rad —0.463rad 2.04 rad] (34)

Without guidance updates the vehicle would deploy the parachute at a speed of 350 m/s, leading to a non-optimal
terminal altitude.
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Fig. 3 Results for the case of Cp = 1.9.
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D. Comparison of guidance cycle periods

The final altitude and speed were plotted as a function of guidance cycle period in the case of Cp = 1 and the results
were compared to the values achieved in the reference solution, as well as the solution with the modeling error and no
guidance updates. (Fig. @ and[5).

The shortest guidance cycle period, every 2.5 seconds, generated the closest final speed to the desired final speed,
reaching a terminal speed of 542 m/s. While a guidance cycle of 2.5 seconds allows the terminal speed to reach
the necessary speed to deploy the parachute, it came with the price of high computational times. The maximum
computational times for this guidance cycle exceed the actual guidance cycle period. The same behavior held for a
guidance cycle period of 5 seconds. In this case the terminal speed reached a value of 445 m/s however the maximum
computational times still exceeded 5 seconds. The guidance cycle period of 10 seconds produced a terminal speed of
553 m/s. The computational times for this guidance cycle period remained significantly below 10 seconds, which is why
a guidance cycle period of 10 seconds was chosen for the earlier analysis presented in Subsection|[VILB]and Subsection

VILA
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and the solution obtained by introducing the modeling error without guidance updates. Results were obtained
forCp =1

Terminal Speed
S
ot

300 I I I I
0 10 20 30 40 50 60
Guidance Cycle Periods

o Final Speed per Guidance Cycle Period
— — Final Speed of Reference solution
Final Speed without Guidance Updates
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VIII. Conclusions

A computational approach for optimal trajectory generation and guidance of a Mars entry vehicle has been presented.
The goal was to maximize the terminal altitude of the vehicle when a desired terminal speed is achieved. Additionally,
guidance updates were implemented by introducing a modeling error into the problem and resolving the optimal control
problem at given guidance cycle periods. It was found that in reference solution using a coefficient of drag of Cp=1.45,
that the optimal trajectory produced a maximum terminal altitude of 10.43 km. Modeling errors were generated by
simulating the dynamics of the vehicle with off-nominal coefficient of drag values of 1 and 1.9. Without introducing
guidance updates, integrating the dynamics for these off-nominal coeflicients of drag using the control generated from
the reference solution led to terminal altitudes of 24.1 km and 5.04 km, respectively, corresponding, respectively, to
terminal speeds of 1110 m/s and 350 m/s. When implementing guidance updates every 10 seconds, the maximum
terminal altitudes computed were 8.14 km and 11.1 km corresponding to terminal speeds of 553 m/s and 532 m/s,
respectively.
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