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Abstract

We construct a catalog of star clusters from Hubble Space Telescope images of the inner disk of the Triangulum
Galaxy (M33) using image classifications collected by the Local Group Cluster Search, a citizen science project
hosted on the Zooniverse platform. We identify 1214 star clusters within the Hubble Space Telescope imaging
footprint of the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER) survey.
Comparing this catalog to existing compilations in the literature, 68% of the clusters are newly identified. The final
catalog includes multiband aperture photometry and fits for cluster properties via integrated light spectral energy
distribution fitting. The cluster catalog’s 50% completeness limit is ∼1500 M☉ at an age of 100Myr, as derived
from comprehensive synthetic cluster tests.

Unified Astronomy Thesaurus concepts: Star clusters (1567); Triangulum Galaxy (1712); Catalogs (205)

Supporting material: machine-readable tables

1. Introduction

For decades, star clusters have been recognized as useful
tracers of star formation. Rather than representing uniform
tracers of star formation, we now understand that non-
embedded, long-lived, gravitationally bound star clusters
emerge from natal regions with relatively high gas surface
density and star formation efficiency (Elmegreen & Efre-
mov 1997; Kruijssen 2012; Grudić et al. 2021). Star clusters
contain ∼5%–30% of the stellar mass formed (Johnson et al.
2016; Adamo et al. 2020) and are long-lasting remnants of
peaks in hierarchically structured star-forming regions that
survived the stellar feedback and gas removal dissolution that
unbind most stellar groupings and natal structures.

We now have broad samples of clusters spanning a wide
variety of galactic environments, where long-lived bound star
clusters are tell-tale tracers of past episodes of intense, efficient
star formation. Large imaging surveys using the Hubble Space
Telescope (HST) have made significant progress in cataloging
and characterizing star cluster populations in nearby (3–30 Mpc)
galaxies (e.g., LEGUS, PHANGS-HST; Adamo et al. 2017; Lee
et al. 2022). While the diversity of galactic environments
included in these samples is very useful for purposes of galaxy-
to-galaxy comparisons, individual star clusters at these distances

are only marginally resolved, limiting observational measure-
ments to integrated properties.
In contrast, studies of neighboring galaxies in the Local

Group provide a unique opportunity for detailed studies of
external galaxies and their star clusters, yielding a rich picture
of star formation observed at and below molecular cloud spatial
scales—a level of detail not possible in more distant
extragalactic targets. Due to their proximity and the spatial
resolving power of HST, Local Group galaxies provide an
unmatched opportunity to construct high-quality cluster
catalogs and make detailed observations of these systems and
their environments (e.g., Johnson et al. 2012). Local Group
cluster catalogs reach low cluster mass completeness limits
leading to increased sample sizes and diversity. Observations at
these distances resolve individual cluster member stars leading
to marked improvements in age-dating precision and usefulness
to stellar evolution studies (Johnson et al. 2016; Girardi et al.
2020).
This paper studies the star cluster population of the

Triangulum Galaxy (M33), whose intermediate galaxy mass
and relatively active star formation provides a point of
comparison to studies of the stellar cluster populations of the
Andromeda galaxy (M31) and the Magellanic Clouds. Notably,
M33 hosts a larger star formation rate (SFR) surface density
(ΣSFR) than the bulge-dominated, relatively quiescent M31
(Williams et al. 2021). Therefore, we expect observations of
M33ʼs young cluster population to unlock valuable new
insights into star cluster formation and evolution. Triangulum’s
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relatively face-on orientation (inclination angle of 55°; Koch
et al. 2018) also presents an advantage over Andromeda in
terms of line-of-sight dust attenuation and projection effects.

Studies of the star cluster population in M33 include results
from both ground-based (e.g., Christian & Schommer 1982;
San Roman et al. 2010) and space-based (e.g., Chandar et al.
1999, 2001; Park & Lee 2007; San Roman et al. 2009)
observations, as summarized by Sarajedini & Mancone (2007).
Previous work demonstrated HST’s utility for identifying star
clusters, but the spatial coverage of M33ʼs star-forming disk
was sparse and largely noncontiguous, preventing systematic
studies of the cluster population. As a result, much of the past
work to characterize M33ʼs star clusters made use of ground-
based imaging and photometry (e.g., de Meulenaer et al. 2015;
Fan & de Grijs 2014), especially from the Local Group Galaxy
Survey (LGGS; Massey et al. 2006).

We note that an alternative catalog of M33 young star cluster
candidates was published by Sharma et al. (2011) based on
mid-infrared Spitzer 24 μm source identification. This catalog
should be sensitive to embedded clusters that are not detected
by an optical search, and has been used for analysis of M33
clusters by a number of groups (e.g., González-Lópezlira et al.
2012; Pflamm-Altenburg et al. 2013; Corbelli et al. 2017).
However, significant concerns about this catalog’s contamina-
tion by non-cluster objects and its suitability for star cluster
studies have been well articulated by Sun et al. (2016). HST
observations will have comparatively limited sensitivity to the
earliest embedded stages of star cluster formation (1–3 Myr),
but its high spatial resolution (0 1 versus ∼6″ for Spitzer
24 μm images) remains the best avenue for the identification
and analysis of star clusters at nearly every other age.

The Panchromatic Hubble Andromeda Treasury: Triangu-
lum Extended Region survey (PHATTER; Williams et al.
2021) of M33 delivers contiguous, multiband imaging of a
majority of the galaxy’s star-forming disk, extending the same
quality of data obtained by the Panchromatic Hubble
Andromeda Treasury survey (PHAT; Dalcanton et al. 2012)
of M31 to M33. Similarly, this work moves cluster studies in
M33 into a new era using techniques and analysis that were
employed to construct the PHAT cluster catalog (Johnson et al.
2015; hereafter J15) for M31.

Facing the absence of a robust algorithmic method for
identifying clusters in Local Group galaxy images, we
launched an online citizen science project, the Local Group
Cluster Search (LGCS), to perform a visual search of the
PHATTER data. We employ the crowdsourced methodology
developed for PHAT and the Andromeda Project (J15) to
construct a star cluster catalog. This approach improves on the
subjectivity of expert-led searches conducted in the past for
M33 (e.g., Christian & Schommer 1982; Chandar et al. 1999)
using a “wisdom of the crowds” consensus classification
technique, where an unbiased, repeatable result is obtained by
averaging over tens of independent image classifications. In
addition to producing a robust cluster catalog, we characterize
catalog completeness using synthetic clusters inserted into the
search images. Not only does this methodology produce useful
results, but it facilitates meaningful engagement with project
volunteers regarding astronomy and star cluster science.

In this paper, we present the survey-wide cluster catalog for
PHATTER. We describe the LGCS project, its input data and
preparation, and data collection results in Section 2. We
analyze image classifications and outline the steps required to

produce a cluster catalog in Section 3. We present the final
catalog in Section 4, followed by a characterization of the
catalog’s completeness in Section 5. We derive integrated light
ages and masses in Section 6 and place the new catalog in
context with previous work in M33 and similar work in M31 in
Section 7.
This catalog serves as the foundation for PHATTER survey

cluster science. Future work includes the measurement of the
cluster mass function (Wainer et al. 2022), measurement of the
high-mass stellar initial mass function, calibration of stellar
evolution models, and more. These studies will build upon and
benefit from comparisons to the PHAT star cluster studies of
M31, including measurements of the star cluster formation
efficiency (Johnson et al. 2016), the cluster mass function
(Johnson et al. 2017), and the high-mass stellar initial mass
function (Weisz et al. 2015).
Throughout this work, we assume a distance to M33 of

859 kpc (distance modulus = 24.67; de Grijs & Bono 2014)
where 1 arcsec is equivalent to ∼4.2 pc.

2. Data

In this section, we describe the LGCS citizen science project
and the underlying HST data that enable this study. We begin
by describing the PHATTER imaging used for the project
(Section 2.1) and the LGCS website interface (Section 2.2).
Next, we discuss data collection and statistics regarding image
classifications and project volunteers (Section 2.3). Finally, we
discuss the creation of synthetic clusters used to characterize
catalog completeness (Section 2.4).

2.1. PHATTER Images and Resolved Star Photometry

The HST images analyzed by the LGCS project were
obtained as part of the PHATTER survey. Full details of the
survey are presented in Williams et al. (2021), but here we
highlight the features of this survey that are relevant to star
cluster catalog work.
The PHATTER survey uses the same imaging strategy as the

PHAT survey, where parallel observations are efficiently
obtained with the Advanced Camera for Surveys (ACS) and
Wide Field Camera 3 (WFC3). These observations are organized
into three contiguous “bricks”, a 3× 6 mosaic of WFC3
footprints formed from pairs of parallel ACS and WFC3 images
that combine to create a rectangular region of fully overlapped
spatial coverage in all observed passbands. This observing
strategy yields images in six filters: F475W and F814W in the
optical obtained with ACS/WFC; F275W and F336W in the
near-UV obtained with WFC3/UVIS; and F110W and F160W
in the near-IR (NIR) obtained with WFC3/IR. The PHATTER
survey’s three bricks (54 individual fields of view) span the inner
disk of M33, extending out to a galactocentric radius of ∼4 kpc.
We use three types of image products from the survey. First,
drizzled single-pointing ACS images were used to create optical
images with synthetic clusters inserted to minimize computa-
tional effort (see Section 2.4). Second, brick-wide mosaic images
for each of the six filters were used for aperture photometry of
the clusters, which provide the best overlapping spatial coverage
and artifact removal (i.e., chip gaps and cosmic rays). Third,
LGCS search images (see Section 2.2) were extracted from
survey-wide optical mosaic images. All images have an image
scale of 0 05 pixel−1 and are astrometrically aligned to Gaia
DR2 with 3 mas (7mas) residuals for ACS/WFC and WFC3/
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UVIS (WFC3/IR), and are combined and distortion corrected
using AstroDrizzle from the DrizzlePac package
(STSCI Development Team 2012; Hack et al. 2013; Avila
et al. 2015).

In addition to the images, we also use PHATTER resolved
star photometry catalogs presented by Williams et al. (2021).
This point-spread function photometry was measured simulta-
neously in all six filters using DOLPHOT,10 an updated version
of the HSTphot photometry package (Dolphin 2000).

We use the PHATTER photometry catalogs to quantify and
map stellar density across the survey footprint. Specifically, we
define and use two quantities: NMS, the number of upper main-
sequence stars selected using a color–magnitude cut of
F475W < 24 and F475W − F814W < 1; and NRGB, the
number of bright RGB stars defined using a polygon region in
the optical color–magnitude diagram (CMD) that mimics a
NIR-based selection used in M31 by J15, where F475W −
F814W > 1.5 and F814W brighter than ∼22.5.

2.2. LGCS Interface

The Local Group Cluster Search (LGCS)11 is a citizen
science project built and hosted on the Zooniverse12 platform.
The project is a direct follow-on of the Andromeda Project
(J15), but was built using the Zooniverse’s Project Builder13

platform tools rather than being built as a custom project-
specific website. The Project Builder platform allowed the
research team to build and configure the project without the
effort or assistance of the Zooniverse web development team,
though LGCS has fewer custom features than the Andromeda
Project (e.g., no interactive walk-through of interface tools
during the project tutorial). The main capabilities provided by
the Zooniverse platform, however, remain the same: an
interactive user interface that enables image annotation, web
hosting for the project page and image data, subject image
selection and queuing, feedback confirming the correct
identification of synthetic clusters in the images (see 2.4),
and the storage of classification responses.

The scope of the LGCS project extends beyond the search of
PHATTER imaging presented here; the project hosts a visual

cluster search of SMASH (Nidever et al. 2017) imaging of the
Large and Small Magellanic Clouds, and will expand to
additional data sets in the future. This study focuses solely on
the results of the PHATTER M33 search, while results from
other LGCS searches will be published separately in
future work.
Volunteers who participate in the LGCS search of the

PHATTER data use a simple annotation interface to mark
objects of interest, as shown in Figure 1. Specifically,
participants are asked to mark star clusters, background
galaxies, and nebulous emission regions using a circular tool
with adjustable size. Users click the center of an object in the
image and drag outward to set a circular marker’s radial size.
Two images are shown to participants: a color image
constructed from the F475W and F814W bands, and an
inverted grayscale F475W image. The two-band composite
image provides important color information, while the inverted
singleband image provides high contrast to improve the
detection of faint clusters. Individual ∼36″× 25″(∼150×
100 pc) subimages are extracted from survey-wide drizzled
mosaic images. These subimages spatially overlap by
100 pixels (5″) to minimize edge effects on the search results.
In addition to the image annotation interface, the LGCS

project also hosts helpful resources for volunteers. Participants
are presented a tutorial for instruction about the task during
their first visit to the classification page, which includes a short
demonstration video and text instructions. Volunteers can also
access a number of “About” pages that summarize the project’s
research goals and background information, a field guide that
provides detailed examples of target objects, and a forum called
“Talk” to facilitate interactions between with the research team
and project participants.

2.3. Data Collection and Classification Statistics

The LGCS project collected image classifications from 2019
January 8 to 2019 February 28. During this time, LGCS
volunteers submitted 269,645 classifications, where one
classification denotes a participant’s response specifying the
location and size of any objects they identify in an image. Each
search image was classified by at least 60 unique volunteers.
A total of 2757 users participated in the LGCS project, 1517

of whom participated as registered users using a Zooniverse
account. Contributions from individuals who were not logged
in are identified and grouped via an anonymized hash of the

Figure 1. Screenshot of the LGCS annotation interface.

10 http://americano.dolphinsim.com/dolphot/
11 https://www.clustersearch.org/
12 https://www.zooniverse.org/
13 https://www.zooniverse.org/lab
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participant’s IP address. We note that while unregistered users
represent 45% of the volunteers by number, these users only
contributed 8% of the total classifications. Beyond this
difference between registered and unregistered users, the
distribution of effort across the pool of participants varies
significantly, as shown in Figure 2. The median number of
classifications per person is nine (19 for registered users), but
half of all the classification effort was provided by the 50 most
active volunteers—each of whom contributed at least 1267
classifications. This behavior is consistent with trends seen for
the Andromeda Project (J15) and other Zooniverse projects
(Spiers et al. 2019), where a relatively small group of active
volunteers contribute a bulk of the total effort.

2.4. Synthetic Cluster Generation

A key part of our analysis is incorporating synthetic clusters
with known ages, masses, and radii into the visual search.
Synthetic clusters were inserted into the same LGCS images
used for the cluster search, but were analyzed separately. The
synthetic clusters were created following a procedure similar to
the one used by J15. In short, a synthetic cluster’s individual
member stars were drawn with masses following a Kroupa
(2001) initial mass function (IMF) and stellar properties for a
specified age using PARSEC 1.2S + COLIBRI PR16
isochrones (Bressan et al. 2012; Marigo et al. 2017). Spatial
positions were drawn from a King (1962) profile with a specified
effective radius, Reff, and a concentration (R Rtidal core) of 30.

The sample of synthetic clusters were created with the following
properties:

1. Ages were drawn randomly from a grid of log(Age/yr)
values ranging from 6.6 to 10.1 incremented every
0.05 dex.

2. Masses were drawn randomly from a continuous uniform
distribution of log(Mass/M☉) values ranging from 2.0 to 5.0.

3. A fixed Solar metallicity (Z= 0.0152) was assumed for
ages younger than 5 Gyr. For older ages, the metallicity
was randomly drawn from a set of five discrete values
(Z= [0.0152,0.005,0.0015,0.0005,0.00015]) so that the
sample of older synthetic clusters would span a
metallicity range resembling that of Galactic and
extragalactic globular clusters.

4. Extinctions were drawn from an exponential AV distribu-
tion which ranges from the foreground Milky Way
extinction value of 0.11 to 3.0 mag, following the
expression µ -( ) ( )P A e ;V

A 1.34V this is the same distribu-
tion used for M31 synthetic clusters by J15.

5. Effective radii (Reff) were drawn from the distribution of
measured values obtained for M31 clusters by J15, but
biased to larger Reff values to ensure sufficient number
statistics of diffuse clusters in the high-Reff tail for
completeness determination purposes.

After creating a parent population of artificial clusters, we
chose a subset to insert into the LGCS images. This selection
was based on cluster magnitude and age, and it was designed to
produce a sample of synthetic clusters that spans the full range of
detectability, from easily detected to undetectable. Specifically,
we adopt the following magnitude limits: 18.5<mF475W< 22
for < <( )6.6 log Age yr 8.0; 19.5<mF475W< 22.5 for <8.0

<( )log Age yr 9.0; and 20<mF475W< 22.5 for for <9.0
<( )log Age yr 10.0.

We inserted the magnitude-selected sample of synthetic
clusters into the F475W and F814W images using DOLPHOT.
One synthetic cluster was added per LGCS search image,
positioned pseudorandomly within the image, avoiding posi-
tions within 120 pixels of the edge. Because DOLPHOT places
the synthetic clusters into each individual frame before
drizzling, we use single-field images as opposed to multi-
image mosaics for insertion to minimize computational
complexity. The insertion locations were chosen to avoid chip
edges and gaps to ensure that the synthetic images were
essentially identical to the original search images.
We created two batches of synthetic clusters, each with 848

objects for a total of 1696 synthetic clusters. The first batch was
randomly assigned to LGCS images spanning the entire
PHATTER survey footprint, resulting in a diverse set of
cluster-image pairs across the full range of galactic environments.
The second batch was assigned spatial locations in a targeted
manner, such that young clusters (<100 Myr) were placed in
regions of the footprint with a high density of bright, blue stars,
as defined by their high NMS values (NMS> 1200 stars per search
image). The remaining older synthetic clusters were distributed
across the remaining fields with lower NMS values. The targeted
placement of this second batch ensures that sufficient numbers of
young synthetic clusters fall within young star-forming regions,
safeguarding our ability to derive catalog completeness for the
key population of young star clusters.

Figure 2. Classification statistics of individual LGCS users, sorted in
decreasing order of the total submitted classifications. Top: the cumulative
fraction of the LGCS’s ∼269,000 classifications. Bottom: the number of
classifications submitted by the Nth ranked volunteer. The red dashed–dotted
lines illustrate that 50% of all the classifications were performed by the 50 most
active volunteers, who each contributed at least 1267 classifications. The blue
dashed–dotted lines illustrate that 90% of all classifications were performed by
463 volunteers who each contributed at least 62 classifications.
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3. Catalog Construction

The process of converting LGCS image classifications into a
star cluster catalog involves combining 60 independent
classifications from each image into a consensus result
regarding the presence, location, and size of candidate clusters
(and other objects). This target number of classifications per
image is selected as a balance of keeping the statistical errors of
the classification results low and maintaining a reasonable total
runtime for the project.

The first step in this process is to compile and combine the
candidate identifications made by LGCS participants. We
merge identifications following the procedure described in
detail in Appendix A of J15: we aggregate markings for each
individual search image by clustering marker centers and
merging overlapping candidates, then we combine the per-
image lists of identifications into a survey-wide data product by
running a spatial match to merge duplicate candidates in
regions of overlapping image coverage.

We use the fraction of classifications where the object is
detected as the principal indicator of significance. We compute
four fractional metrics to characterize each candidate:

1. fview is the fraction of total classifications where a
candidate is identified as any class of object.

2. fcluster is the fraction of total classifications where
a candidate is identified as a star cluster.

3. fgalaxy is the fraction of total classifications where a
candidate is identified as a background galaxy.

4. femission is the fraction of total classifications where
a candidate is identified as an emission region.

These quantities are related by:

= + + ( )f f f f . 1view cluster galaxy emission

We note that the definitions of these metrics differ slightly from
those used by J15, such that all four metrics are normalized by
the total number of available image classifications.

The aggregation process produced a set of 10,926 unique
identifications. This total number includes many low-signifi-
cance objects, with only 4780 candidates having fview� 0.1.
For this paper, we focus primarily on the cluster candidates;
please see Appendix A for a discussion of the background
galaxy and emission region results.

We present a histogram of fcluster values in Figure 3. Our
visual inspection of cluster candidates confirmed that as fcluster

decreases, the quality of the cluster candidates is lower. We
find that for fcluster> 0.6, there are very few contaminants;
among 841 candidates, only one has fgalaxy> 0.1, and that
object is eliminated by the subsequent weighted cuts (see
Section 3.1).

3.1. User Weighting

While the fcluster metric assumes that each volunteer is
equally skilled at identifying star clusters, multiple citizen
science projects (e.g., Willett et al. 2013; Jayasinghe et al.
2019; Eisner et al. 2021) have found that weighting volunteer
responses according to their task performance can increase
sample quality and decrease catalog contamination as a
function of completeness. To maximize the usefulness of
LGCS volunteer contributions, we follow the methodology
of J15 and weight classifications based on the volunteers’
performances in identifying star clusters. In this section, we
demonstrate that employing user weighting significantly
improves the resulting cluster catalog.
We calculate user weights based on the agreement between

the classifications of the user and the entire set of LGCS
participants. We use two separate weights: one for detections,
objects the user identified; one for non-detections, objects the
user did not identify. A user’s detections are weighted
according to the average fcluster of all cluster identifications
made by the individual, such that classifications made by those
who tend to identify good candidates with higher fcluster are
assigned greater weights than those who identify worse
candidates with lower fcluster. A user’s cluster non-detections
are weighted according to the fraction of high-quality clusters
( fcluster> 0.6) that the user sees and detects, such that
classifications by those who rarely miss good clusters carry
greater weight than those who are more selective and identify
fewer clusters.
We note that volunteer classifications of synthetic cluster

images are omitted from user metric calculations. This
omission ensures that user classification metrics are based
only on real data, and that catalog completeness is not biased
due to user weighting.
We calculate two user metrics for all volunteers to quantify

the detection and non-detection behaviors described above:
fcluster, the average fcluster of all clusters a user identifies, and
fconsensus, the fraction of high-quality ( fcluster> 0.6) clusters a
user saw that they identified. Figure 4 shows these user metrics
for all volunteers who contributed more than 20 classifications.
Many users lie toward the upper right corner of the plot,
representing users who excel in both user metrics. In contrast,
users in the top left are conservative classifiers who identify
clusters with high fcluster, but miss a significant fraction of
commonly identified clusters. Those in the bottom right are
liberal classifiers who include all good clusters in their
identifications, but at the expense of including lower-quality
clusters as well.
We examine trends in user behavior by grouping users into

bins according to their total classification count, with the
average user metrics of each group plotted as colored stars in
Figure 4. Volunteers with higher classification counts (redder
points) tend to have higher user metrics scores, which may
indicate that volunteers become more skilled on average as they
classify an increasing number of images.
Because an individual’s user metrics become noisy at small

numbers of classifications, we replace the metrics of users with

Figure 3. Distribution of fcluster values for our full sample of cluster candidates.
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�20 classifications with the aggregate values of fcluster and
fconsensus obtained for their binned groups. The use of aggregate
metrics and weights for users with low classification counts has
little impact on the catalog results due to the small percentage of
total classifications contributed by these individuals (see Figure 2).

To convert a volunteer’s user metric results into a
classification weight, we adopt a generalized logistic function:

⎛
⎝

⎞
⎠

= ´ +
+ - -

( ) ( )( )W x B A
e

1

1
, 2

m x blogistic logistic

where x represents fcluster for detection weights and fconsensus for
non-detection weights, while mlogistic and blogistic are the slope
and position of maximum growth of the logistic curve,
respectively. The coefficients A and B are normalization
constants set such that W varies between 0 and 1 over the x
interval [0, 1]. We seek to identify values of mlogistic and blogistic
for detection and non-detection weights that maximize cluster
catalog completeness and minimize contamination.

To fit for an optimal weighting scheme, we first compile a set
of “expert” ratings to use as a reference when computing
completeness and contamination metrics for a given set of
weighting parameters. A group of four coauthors visually
inspected clusters and scored them on a scale of 1–3: 1 is a
definite cluster, 2 is a possible cluster, and 3 is a non-cluster.
The four coauthors ranked all marginal cluster candidates
(0.35< fcluster< 0.5) where we expect the greatest variety in
quality. Additionally, one coauthor ranked a broader range of
candidates ( fcluster 0.25) to confirm that objects with
fcluster< 0.35 were low-quality identifications. The average of
these ranks, Sexpert, is then used to categorize clusters and

contaminants. Clusters with Sexpert< 1.5 were declared good
clusters, and Sexpert> 2.5 were considered contaminants.
Using the expert ratings, we construct a completeness versus

contamination curve for our unweighted sample by varying the
fcluster threshold from 0 to 1, as shown in Figure 5. We define
the minimum distance from the curve to the lower left corner of
this plot (i.e., an optimal sample with 100% completeness and
no contaminants) as doptimal, and use this metric to evaluate,
rank, and optimize the adjustable weighting parameters.
We conduct an iterative, grid-based search for an optimal set

of detection and non-detection weighting function parameters
that minimize the doptimal metric for the completeness versus
contamination curve. For each grid point, we calculate
detection and non-detection user weights from fcluster and
fconsensus user metrics, respectively, using logistic functions
with specified values of mlogistic and blogistic parameter values to
make the metric-to-weight transformation. We then compute
user-weighted fcluster values, fcluster,W, for each cluster candi-
date, construct a completeness versus contamination curve, and
calculate the associated doptimal.
We identify the set of logistic function parameters that

minimize doptimal, and thus produce an optimal cluster catalog
that maximizes completeness and minimizes contamination. We
find that the following weighting parameters produce the best
weighted catalog: detection weight parameters of (mlogistic,
blogistic)= (30.0, 0.45); non-detection weight parameters of
(mlogistic, blogistic)= (30.0, 1.1). The optimally weighted catalog
has significantly lower contamination as a function of complete-
ness than the unweighted catalog, as shown in Figure 5,
demonstrating that the application of user weights improved the
quality of the cluster catalog we produced.

Figure 4. Left: fconsensus and fcluster user metric scores used for weighting. Circular points represent metrics for individuals with >20 classifications; point shading
denotes the volunteer classification count, where darker colors highlight individuals with more classifications. Star markers represent the average metrics for a group of
users, binned in groups according to classification count. The blue dashed line represents the maximum fcluster a volunteer can achieve based on the fraction of high-
quality consensus clusters identified. Right: star markers correspond to the same binned user groups presented in the left panel, but now showing the average number
of classifications for each group on the x-axis. The red number next to each star is the number of users represented in each respective bin. For volunteers with <20
classifications (gray shaded region) users were weighted according to aggregate user metric values calculated for the binned group rather than using individual values.
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3.1.1. Catalog Threshold Selection

With the user weighting parameters fixed, we move on to
selecting a catalog threshold. J15 choose a fcluster,W cutoff that
corresponds to the point on the completeness versus contam-
ination curve where doptimal is minimized. The minimum
doptimal point corresponds to a fcluster, W threshold of 0.568,
94.8% completeness, and 7.1% contamination, indicated by the
orange lines in Figure 5.

We note two key differences between the J15 and LGCS
completeness versus contamination curves: fcontamination values for
LGCS are smaller by approximately a factor of 2, and the original
unweighted curve (and the weighted curve to a lesser degree)
shows a distinct change in slope behavior at fcompleteness∼ 0.9 in
Figure 5. In addition, a qualitative evaluation of the doptimal-based
threshold concluded that the resulting cluster sample includes a
higher number of contaminants than desired, leading us to
reevaluate our choice of fcluster,W threshold.

Based on the poor assessment of the initial fcluster,W
threshold, we seek an alternative, more conservative catalog
limit. We target a greater fcluster,W value that corresponds to a
point on the weighted completeness versus contamination
curve near the transition in slope at fcompleteness∼ 0.9. We find
that by applying a factor of 2 scaling to the fcontamination

component of the doptimal distance calculation, motivated by the
∼2× scaling difference between the LGCS and J15 curves, we

identify a viable threshold that meets all the above criteria. The
resulting fcluster,W catalog threshold is 0.674, which corresponds
to 90.5% completeness and 4.4% contamination, indicated by
the green lines in Figure 5.
We demonstrate the impacts of our weighting system in

Figure 6 for the expert-classified subsample of cluster
candidates with 0.35� fcluster� 0.5 where weighting and
threshold selection has the greatest impact. Expert-identified
good clusters (Sexpert< 1.5) are plotted in blue, and expert-
identified bad clusters (Sexpert> 2.5 ) are shown in red. This
plot shows how the weighted fcluster system is more effective at
separating good candidates from bad candidates than the
unweighted system, due to the improved separation of blue and
red points by horizontal lines of constant fcluster,W over vertical
lines of constant fcluster. We can also see that the number of bad
candidates that are rejected by the higher, adopted fcluster,W
threshold is larger than the number rejected by the original,
unscaled doptimal-based fcluster,W threshold, justifying our choice
of the more conservative catalog threshold.

4. PHATTER Star Cluster Catalog

We apply the catalog construction techniques and user
weighting described in Section 3 to derive a final cluster
catalog. We present a sample of 1214 clusters that were
selected using an fcluster,W threshold of 0.674, which reflects a
conservative selection of clusters that minimizes contamination
by non-cluster candidates. Table 1 reports cluster position,
radius, and classification metrics (including weighted fcluster,W)
for each of our cataloged clusters. We show the spatial
distribution of the clusters in Figure 7.
We also present information for an additional 3566 candidate

identifications with fcluster,W< 0.674 and fview� 0.1 in Appendix A,
allowing catalog users to make alternative choices of catalog
fcluster,W thresholds based on the specific needs and requirements of
a particular science use case.
We present an example cluster, PHATTER 22, in Figure 8 to

illustrate the data available for the PHATTER cluster sample.

Figure 5. Top: catalog completeness vs. contamination for the original,
unweighted sample (dashed black line), and the optimal user weighting system
(solid black line). The orange dashed line represents the doptimal threshold,
where doptimal is the distance from this point to the bottom right corner of the
plot. The green line shows the adopted threshold chosen to reduce catalog
contamination. Bottom: catalog completeness vs. fcluster,W, which provides
reference to where each threshold is drawn.

Figure 6. Weighted and unweighted fcluster values are plotted for the subset of
expert-ranked clusters. The blue dots are expert-identified good clusters, and
the red dots are expert-identified contaminants. The dashed green line
represents the fcluster,W catalog threshold of 0.674, while the orange dashed
line represents the fcluster,W catalog threshold of 0.568. We prefer the higher
adopted fcluster,W threshold as it rejects a larger number of expert-identified bad
cluster candidates, as seen by the larger number of red points that that fall
below the green horizontal line.
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Table 1
PHATTER Cluster Catalog

ID R.A. (J2000) DECL. (J2000) Rap (″) Reff (″) fview fcluster fgalaxy femission fcluster,W Flags mapcor m275 σ275 m336 σ336 m475 σ475 m814 σ814 m110 σ110 m160 σ160

1 23.553754 30.479462 1.90 0.23 1.0000 0.9667 0.0000 0.0333 1.0000 L −0.00 L L L L 18.39 0.02 17.70 0.04 L L L L
2 23.611876 30.696172 1.66 0.48 1.0000 1.0000 0.0000 0.0000 1.0000 L −0.11 >21.01 L >21.10 L 19.63 0.06 18.73 0.08 L L L L
3 23.606064 30.699199 1.54 0.36 1.0000 1.0000 0.0000 0.0000 1.0000 L −0.05 20.09 0.18 20.42 0.01 20.21 0.10 19.41 0.25 L L L L
4 23.434333 30.514082 1.90 0.49 1.0000 0.9833 0.0000 0.0167 0.9999 L −0.07 >21.12 L >22.39 L 19.84 0.11 18.25 0.05 17.41 0.05 16.61 0.05
5 23.583846 30.659212 1.86 0.37 0.9836 0.9016 0.0000 0.0820 0.9772 L −0.02 19.29 0.10 19.00 0.06 18.76 0.02 18.00 0.06 17.64 0.12 17.21 0.16

Note. Note that the Rap parameter gives the median of the user-clicked radii, which we use as the aperture for the photometry measurements (see Section 4.1).

(This table is available in its entirety in machine-readable form.)
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Optical cutout images display individual cluster identifications
made by LGCS volunteers as well as the final cluster aperture for
the cluster, and the images show that star clusters appear as
collections of individually resolved members stars in the
PHATTER imagery. The survey’s panchromatic images produce
six-band spectral energy distributions (SEDs) from integrated light
photometry (see Section 4.1) and cluster CMDs from resolved star
photometry catalogs, both of which are used to fit for cluster
properties (see Section 6 and Wainer et al. 2022).

4.1. Cluster Photometry

Aperture photometry for candidate clusters and other objects are
measured using the same techniques and code employed by J15,
which we summarize here. Photometric apertures for an object are
centered at the mean position and extend to the median radius (Rap)
drawn by LGCS participants. The sky background is measured in
10 annuli, each with an area equal to that of the photometric
aperture, extending from 1.2–3.4 Rap. These sky annuli facilitate
robust determinations of the sky flux levels and associated
uncertainties, which are important given that background variations
often dominate the photometry error budget. Photometry is
reported in the VEGAMAG system for the native HST bandpasses
and calibrated using zeropoints obtained from relevant instrument
websites for ACS14 (Bohlin 2016), WFC3/UVIS15 (2017
values; Deustua et al. 2017) and WFC3/IR16 (2012 values).

We note that these adopted zeropoints are consistent to within
1% (2%) to alternative “2020 values” for ACS and WFC3/
UVIS (WFC3/IR).
Six-band integrated photometry for the final cluster sample is

presented in Table 1, and equivalent photometry for ancillary
cluster candidates is presented in Appendix A. Measured
magnitudes are reported for detections with a signal-to-noise
ratio (S/N) � 3 and 3σ upper limits are reported for non-
detections. Blank entries denote cases of incomplete image
coverage in that photometric passband.
The radial light profile of each cluster is measured from the

F475W image, and the half-light radius, Reff, is derived through
interpolation of the radial profile. Aperture corrections are
computed assuming a King (1962) light profile with a fixed
concentration ( = =c R R 7tidal core ), scaled to match the
measured Reff. When applied to the aperture magnitudes,17

these corrections yield an estimate of the total cluster light that
accounts for the flux that falls outside the photometric aperture,
Rap. The median correction is −0.04 mag and the 25th-to-75th
interquartile range spans from −0.09 to −0.01. We report the
F475W Reff measurements and aperture corrections in Table 1.
We flag objects with large Reff (�0 8 or ∼3pc) that are also

bright (mF475W< 19.0) and blue (mF336W−mF475W<−0.5) as
possible associations. Eight such objects are identified in Table 1.
We plot a UV–optical color–color diagram for the

PHATTER cluster sample in Figure 9. As expected, many of
the clusters are quite blue (F336W − F475W < 0.5), indicating
young ages. When compared to the color–color distribution of
PHAT clusters from M31 (J15), we see the difference between
the younger and bluer cluster population from M33 that hosts
ongoing star formation versus the quiescent cluster population
from M31 that hosts relatively larger numbers of globular
clusters and other older clusters (>1–3 Gyr).

5. Catalog Completeness

We determine the completeness of our cluster sample by
analyzing synthetic clusters inserted into the LGCS images. We
analyze the classification metrics and catalog inclusion status of
the synthetic cluster sample as a function of cluster luminosity,
age, and mass. We also examine the impact of cluster size and
environment on cluster detection and catalog completeness.
We process classification results for the synthetic clusters

through the same catalog creation pipeline used for the real
LGCS cluster candidates, applying the same classification
weighting and fcluster,W detection threshold. We present the
synthetic cluster sample and detection results as an ancillary
table in Appendix A. The synthetic cluster results are shown in
the left panels of Figure 10, where black points indicate
detected clusters and red points indicate non-detections. The
middle-left panel shows a 2D binned representation of the
results. At higher luminosities and masses, a larger fraction of
clusters are detected, and at the highest masses, nearly all
synthetic clusters are detected.
The behavior of completeness with age is somewhat more

complicated. Clusters at a fixed mass are more frequently
detected at young ages due to their brighter luminosities. At
fixed luminosity, clusters are more frequently detected at
older ages due to their broader distribution of light across
member stars, in contrast to young clusters that typically have
a small number of very bright massive stars.

Figure 7. Spatial distribution of PHATTER star clusters (blue) overlaid on a
F475W survey-wide mosaic image.

14 https://acszeropoints.stsci.edu/
15 https://www.stsci.edu/hst/instrumentation/wfc3/data-analysis/
photometric-calibration/uvis-photometric-calibration
16 https://www.stsci.edu/hst/instrumentation/wfc3/data-analysis/
photometric-calibration/ir-photometric-calibration 17 mtotal = map + mapcor.
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To characterize these observed trends in completeness on the
age–magnitude and age–mass planes, we derive analytic
formulae that can be easily applied in future modeling work.

The goal here is to characterize the average completeness
properties for the entire catalog, reasoning that detailed studies
of specific cluster subpopulations may require a more complex
completeness model than the one we present here.
In addition to age, luminosity, and mass, dust extinction, and

effective radius (or, surface brightness) may also play a role.
We find no need to truncate the cluster effective radius
distribution, but choose to omit synthetic clusters in the high AV

tail (>1.5 mag) when fitting for the average model behavior.
We note that the cluster environment also has an impact on

completeness (J15). However, because the spatial distribution
of half the synthetic clusters was designed to replicate the
correlation between young clusters and high NMS regions, we

Figure 8. An example cluster: PHATTER 22. Top: two 12″ × 12″ F475W
+F814W color images, where the pink circles represent user cluster
identifications, and the green circle represents the final cluster aperture (Rap

of 2 04) derived from the median radius of the individual user apertures.
Middle: the PHATTER 22 SED (blue) created from six-band integrated
photometry. The results of SLUG SED fitting for PHATTER 22 are printed in
the lower right (50th percentile value with the 16th–84th percentile confidence
interval), and gray lines show the 100 best-fit SLUG models. Bottom: the
PHATTER 22 cluster CMD, where stellar photometry for sources within the
cluster aperture (blue) are accompanied by surrounding photometry of field
stars (red). CMD fitting results from Wainer et al. (2022) are listed in the lower
right, and a stellar isochrone (black) depicting the cluster’s best-fit properties is
overplotted.

Figure 9. Top: color–color diagram of 729 PHATTER clusters with three-band
photometric detections. Bottom: comparison of the color–color distributions for
PHATTER clusters in M33 and PHAT clusters in M31 (J15), which shows that
the PHATTER clusters are significantly bluer, denoting younger cluster age.
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expect our overall distribution of synthetic cluster environ-
ments to be comparable to the true cluster sample. We revisit
the impact of cluster environment later in this section.

We begin our modeling by characterizing completeness as a
function of mass and F475W magnitude for bins of log(Age/
yr). We use a bin width of 0.23 dex and a sliding two-bin
window to improve the number statistics. We use a logistic
function to model the completeness curve analytically, as
shown in Figure 11, where the black lines show the
completeness data and the green line shows the best-fit logistic
function. The functional form of the logistic function, C, is
given by:

= + - - -( ) ( )( )C e1 , 3k x M 150

where k is the slope of the logistic function, M50 is the 50%
completeness limit, and x is the physical input parameter—
either the F475W magnitude or ( )M Mlog .

Based on the initial fits, we find that the slope of the logistic
function, k, is quite similar at all ages. Therefore, we fix k to the
median fitted value across all age bins (−2.52 for F475W
magnitude, 5.84 for mass) and refit.

We find the age dependence of the 50% completeness
parameter, M50, is well fit by an exponential function over the
full synthetic cluster age range ( < <( )6.6 log Age yr 10.1) for
both mass and F475W magnitude, following the form:

t = ´ +t t-( ) ( )( )M a e c, 4b
50 min

where t º ( )log Age yr and tmin is the median τ for the
youngest bin, which is 6.71 for the full LGCS synthetic cluster
sample and binning used here. We note that in this formulation,
the 50% completeness in mass at tmin is given by a+c. We fit
for constants a, b, and c by minimizing χ2 for the full 2D
binned histogram shown in the middle-left panels of Figure 10.
We find the best-fit exponential parameter values for mass are
(a, b, c)= (0.1455, 0.7870, 2.7810). For F475W magnitude the

best-fit values are (a, b, c)= (−2.6767, −0.6154, 21.6834).
The reduced χ2 for the exponential fit to the mass and F475W
magnitude planes is 1.06 and 1.18, respectively. The fitted 50%
completeness exponential is presented as a dashed blue line in
Figure 10, while the full completeness model (assuming fixed k
values) and its residuals relative to the synthetic cluster results
are shown in the middle-right and rightmost panels of
Figure 10.
The mass completeness behavior in the fiducial age range of
< <( )7.0 log Age yr 8.5 has useful application in follow-up

science analyses of young clusters, so we derive an alternate
completeness model specific to this fiducial age range.
Adopting a fixed median k of 6.02 and tmin of 7.09, we find
the best-fit M50 exponential parameters are (a, b, c)= (0.0303,
1.9899, 2.9770), with a reduced χ2 of 0.82. We recommend
this alternative completeness model for any applications that
exclude old clusters.
We note that careful inspection of the binned F475W

magnitude data in Figure 10 (top middle-left panel) and its
model residuals (top right panel) show that the youngest age
bins do not neatly follow the large scale trends of the age–
magnitude plane. The fact that the age–mass plane is more well
behaved at these same ages suggests this difference is likely
due to stochasticity impacting the F475W magnitudes due to
small number statistics of the brightest cluster members (e.g.,
Fouesneau & Lançon 2010; Beerman et al. 2012). As a result,
we recommend use of the mass-based completeness model
whenever feasible, as we find it more reliable than our
luminosity model in describing these youngest clusters.

5.1. Additional Completeness Dependencies

In addition to age, mass, and F475W magnitude, the spatial
distribution of the cluster’s member stars is another physical
property that effects completeness. Here, we use the synthetic
cluster’s effective radius, Reff, to parameterize the cluster size

Figure 10. Completeness results based on an analysis of synthetic clusters. The top panels present results as a function of F475W magnitude, the bottom panels as a
function of mass. The leftmost panels present results for individual synthetic clusters: detections in black, non-detections in red. The left-middle panels show a binned
version of the same results, where the shading denotes the fraction of clusters detected in each bin. The middle-right panels show the completeness model fit, and the
rightmost panels showing the data–model residuals. The vertical gray dashed lines in each panel highlight the age bins whose data are presented in Figure 11. The blue
dotted–dashed line in each panel represents the fitted exponential 50% completeness model fit to the full synthetic data.
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and central density. For synthetic clusters with Reff> 3 pc
(33% of sample), we find a 50% completeness limit mass that is
0.2 dex higher than for smaller clusters. This shows that larger,
diffuse clusters are systematically more challenging to detect
due to the reduced central density of cluster members, which
tends to reduce the cluster’s contrast against the field
background. As discussed in Section 2.4, we sampled the
synthetic cluster radii from the observed cluster radii of the
PHAT M31 cluster sample, but biased the distribution toward
larger objects. If we remove synthetic clusters with Reff> 3 pc,
the mass completeness presented here improves by a median of
0.05 dex. We note that for our final cluster sample, only 14% of
the clusters have Reff> 3 pc.

Additionally, local cluster environment plays a role in
detection and catalog completeness. At a basic level, when the
contrast between a cluster and field is reduced due to an
increasing density of nearby field stars of similar color, cluster
detection becomes more difficult. For the PHATTER images,
we can characterize the local stellar density according to the
number of main-sequence stars per LGCS search image, NMS,
calculated from counts of PHATTER photometric sources
selected according to their optical CMD location. NMS ranges
between < <( )log N2.0 3.75MS across the PHATTER foot-
print. As NMS increases, we see a systematic 0.7 dex increase in
the 50% mass completeness limit for the young blue star
clusters, whose members are also predominately main-
sequence stars. As such, we recommend that future population

analyses take care to account for spatial variation in catalog
completeness due to stellar density, especially for trends with
respect to galactocentric radius. In particular, we point to the
investigation of environmental influence on catalog complete-
ness performed by Wainer et al. (2022) as an example.

5.2. Completeness Comparison: PHATTER versus PHAT

We find that the 50% mass and luminosity completeness
limits for the PHATTER M33 cluster catalog are worse relative
to the similar PHAT M31 cluster catalog presented by J15;
fractional completeness is lower in M33 at a fixed mass or
F475W magnitude. At younger ages, the 50% mass complete-
ness limit for the M33 catalog is ∼0.3 dex higher than what
was found for M31, and correspondingly ∼0.5 mags brighter in
F475W magnitude.
While M33ʼs larger distance can account for a 0.2 mag

difference in luminosity, we believe the completeness differ-
ences are primarily due to the PHATTER footprint’s central
disk location and M33ʼs higher star formation surface density,
which together lead to a higher average density of young field
stars stars (i.e., high NMS) and worse catalog completeness.
Thanks to the use of an analogous NMS definition by J15 for
PHAT cluster work, we can confirm that the PHATTER
median NMS is a factor of 5 (0.7 dex) larger than the PHAT
median NMS. We also note that unlike for PHAT, using an
alternative F475W−3 metric, which subtracts the contribution
of the three brightest stars from the integrated F475W
magnitude, does not remove the age-dependent trend in
luminosity completeness.

6. Cluster SED Fitting

In this section we discuss our method for deriving the cluster
properties (age, mass, and extinction) from their integrated light
photometry. We use the public source code Stochastically
Lighting Up Galaxies (SLUG; Krumholz et al. 2015a) to build
a set of 107 model star clusters that we use to estimate the M33
cluster properties in Section 6.1. We discuss fitting of various
filter combinations and discuss the reliability of this integrated
light fitting in Section 6.2 based on comparison to CMD-based
results for a similar sample of M31 clusters presented in
Appendix B. We derive SLUG-based estimates for the cluster
sample and present the results in Section 6.3.

6.1. Building the SLUG Cluster Library

SLUG is a stellar population synthesis code that incorporates
stochastic modeling of stellar mass and luminosity distribu-
tions. More information and details about SLUG can be found
in Krumholz et al. (2015a), and examples of its use include
Krumholz et al. (2015b, 2019). Using SLUG, we build a grid of
107 model star clusters assuming Padova stellar evolution
models that include thermally pulsing AGB stars (Girardi et al.
2000), which are distributed with Starburst99 (Vázquez &
Leitherer 2005). We use a Kroupa (2001) stellar IMF which
spans from 0.01 Me to 120 Me with the “stop after” sampling
method, which allows for some of the more massive stars to be
included in our simulated sample (Krumholz et al. 2015a). We
generate models with SLUG by drawing ages from a t−1

distribution over a range of 106 to 1010 years, encompassing the
majority of clusters in the PHATTER catalog. We draw cluster
masses from an M−2 distribution and draw dust extinction
values from a lognormal centered at an AV of 1 mag, width of

Figure 11. Logistic function fits to catalog completeness as a function of
F475W magnitude (top) and mass (bottom) for synthetic clusters with ages

< <( )7.3 log Age yr 7.77. Dashed lines represent the Agresti–Coull binomial
proportion confidence interval for each bin.
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0.33 mag, and min/max breakpoints of 10−6 and 5 mag,
respectively. We apply extinction according to a Milky Way
extinction curve (Fitzpatrick 1999), compute photometry in
Vega magnitudes for the six HST filters (ACS: F475W and
F814W; WFC3: F275W, F336W, F110W, and F160W), and
convert from model magnitudes to observed magnitudes using
an adopted distance modulus of 24.67 (de Grijs & Bono 2014).

6.2. Filter Selection and Fitting

The reliability of SLUG cluster property determinations
depends on the number of filters we are able to include in the
fitted SEDs. Therefore, we begin by analyzing the fraction of
clusters with good photometry in various combinations and
numbers of filters for the PHATTER sample. Specifically, we
choose filter combinations in increasing order of photometric
detectability, and present the results for the M33 sample in
Table 2.

We compute SLUG fits for each filter combination listed in
Table 2 and the corresponding sample of clusters that are
detected in all of the combination’s selected passbands. The
SLUG model grid is trimmed for each passband combination to
omit the magnitudes of any filters that are not selected. Once
the cluster fits from each filter combination are compiled, we
adopt the fit for each cluster that results from the filter
combination with the largest number of filters. This ensures
that we are not fitting incomplete SEDs and that we obtain fits
for a maximum number of total clusters.

We execute each iteration of SLUG fitting, and process each
set of results using a fixed set of parameters and assumptions.
We adopt the following settings that relate to the specifics of
the fitting process: a photometric bandwidth of 0.02, a physical
properties bandwidth of 0.05, and a Gaussian kernel for
probability density function (PDF) estimation. And same as for
the underlying set of models, we assume a t−1 age prior, M−2

mass prior, and lognormal AV prior. The code returns
marginalized PDFs for age, mass, and dust extinction of each
cluster, from which we can derive the 16th, 50th, and 84th
percentile values. These percentiles yield median estimates for
each physical property accompanied by an associated 1σ
uncertainty. We also flag and exclude highly uncertain fits,
such that any cluster with a 16th to 84th percentile range
greater than 1.2 dex in age or 1.3 dex in mass is identified by an
error flag in the fitting results.

We present an example of a fitted cluster SED in the middle
panel of Figure 8 for PHATTER 22. The 100 best-fit SEDs
from the SLUG library are plotted along with the observed
SED, which show good agreement between models and
observations. The median, 16th, and 84th percentiles of the
marginalized posterior PDF for cluster age, mass, and dust

extinction, computed over the full library of model SEDs, are
derived using functions from the cluster_slug package
that is included as part of the SLUG code. We find good
agreement between SED and CMD fitting results for
PHATTER 22.

6.3. SLUG Results

We derive cluster properties using SLUG for 729 objects
with detections in at least one of the filter combinations listed in
Table 2; we report the fitting results in Table 3. We note that
the limited number of fitted clusters (729 out of 1214; 60%) is
due to a minimum three-filter (F336W, F475W, and F814W)
detection criteria for SED fitting. As a result, the completeness
of this fitted sample of clusters is worse than the overall catalog
completeness, and is biased toward younger and brighter
clusters.
Excluding flagged cases with broad PDFs, the median ages

from the cluster PDFs range from < <( )6.08 log Age yr 8.91
with a median value of 7.96 for our cluster sample. The median
cluster PDF masses range from < <( )M M2.14 log 4.59
with a median value of 3.29. The median 16th to 84th
percentile range in mass is 0.46 dex, and the median 16th to
84th percentile range in age is 0.41 dex.
To gauge the reliability of the SLUG fits for the PHATTER

cluster sample, we compare newly derived SLUG results to
high-quality CMD-based cluster fits for a similar sample of
clusters in M31. We find that the masses are reliably
determined via SLUG integrated light fitting, but that SLUG
age and dust results suffer from large uncertainties and
artifacts. In particular, the SLUG fits tend not to reliably
recover ages for clusters younger than ∼100Myr, which
instead are often fit with older ages; see Appendix B for full
details of the comparison analysis and results. Due to these
results, we recommend that the CMD-based fits for the younger
clusters in the PHATTER cluster sample presented in Wainer
et al. (2022) should be preferred over the SLUG fits reported
here. At older ages, there are fewer resolved stars, making the
SLUG age estimates the better (and sometimes the only)
option.

7. Discussion

7.1. Comparison to Existing M33 Cluster Catalogs

We crossmatch the full PHATTER candidate list (clusters,
galaxies, emission regions, and remaining ancillary objects; see
Appendix A) to five different catalogs from the literature:
Sarajedini & Mancone (2007), San Roman et al. (2009, 2010),
Sharma et al. (2011), and Corbelli et al. (2017). These
references are chosen to facilitate three types of comparisons:
to comprehensive catalogs (Section 7.1.1), to HST-based
catalogs (Section 7.1.2), and to infrared catalogs
(Section 7.1.3). We compile the crossmatching results in
Table 4 where we list identifiers (and object classes, where
relevant) for each catalog, as well as additional alternate names
and accompanying references. These matches are based on a
one arcsecond matching radius between cataloged positions,
after applying a mean astrometric offset of 0 609 to the
Sarajedini & Mancone (2007) cluster sample before
crossmatching.

Table 2
Detection Statistics for Passband Combinations

Passband N(Detections)

F275W+F336W+F475W+F814W+F110W+F160W 349 (28.7%)
F336W+F475W+F814W+F110W+F160W 414 (34.1%)
F275W+F336W+F475W+F814W 612 (50.4%)
F336W+F475W+F814W 729 (60.0%)

Note. The number and percentage of PHATTER clusters with photometric
detections in each of the listed combinations of three, four, five, and six filter
passbands.
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7.1.1. Primary Catalog Comparisons: Sarajedini & Mancone (2007)
and San Roman et al. (2010)

We compare the PHATTER cluster catalog to two key M33
cluster catalogs in the literature: Sarajedini & Mancone (2007)
and San Roman et al. (2010). We focus on these catalogs for
our primary literature comparison due to their comprehensive
compilation of published M33 cluster catalogs and their
complete, uniform spatial coverage, respectively.

We summarize the recovery of clusters from the optically
selected catalogs of Sarajedini & Mancone (2007) and San
Roman et al. (2010) in Figure 12. We recover a large fraction
of the cataloged cluster candidates that fall within the spatial
coverage of the PHATTER survey. Specifically, for objects that
Sarajedini & Mancone (2007) classify as “cluster” and lie
within the PHATTER footprint, 89% are present in the
PHATTER cluster catalog. We also classify 85% of their
“unknown” objects as clusters.

For the portion of the San Roman et al. (2010) catalog that
falls within the PHATTER footprint, 92% of their “confirmed
star cluster” (class 3) objects and 67% of their “highly probable
star cluster” (class 2) objects are present in the PHATTER
cluster catalog. Most of the remaining class 2 and 3 San Roman
et al. (2010) objects are recovered by the LGCS search, but lie
in a long tail at low-fcluster,W values, as shown in the top left
panel of Figure 12. Additionally, 41% of their less certain
cluster identifications (class 1 “candidate star cluster” and class

0 “unknown”) are also identified as clusters in this work. More
surprisingly, we find that half of the “background galaxy”
(class −1) objects that lie within the PHATTER footprint are
classified as clusters by the LGCS search. Visual inspection of
the HST images of these objects confirm they are in fact
clusters, and thus were misclassified by the ground-based San
Roman et al. (2010) effort.
Finally, we note that a small fraction of the Sarajedini &

Mancone (2007) and San Roman et al. (2010) sources that fall
within the PHATTER footprint were not recovered in the
LGCS search. We show the class distribution of these objects
in the right panels of Figure 12.

7.1.2. Space-based Comparisons: HST Catalogs

We compare the PHATTER cluster catalog to three HST-
based cluster catalogs from the literature: Chandar et al.
(1999, 2001, hereafter, collectively CBF), Bedin et al. (2005),
and San Roman et al. (2009). We note that CBF and Bedin
et al. (2005) were crossmatched as members of the Sarajedini &
Mancone (2007) compilation, and San Roman et al. (2009) was
matched individually. While these literature catalogs were
derived from imaging data sets with relatively small spatial
footprints, they serve as useful points of comparison for
analyzing catalog-specific differences in the visual cluster
identification of HST imagery.

Table 4
Literature Crossmatching Results

ID SM07 ID SM07 Classa SR10 ID SR10 Classb SR09 ID S11 ID C17 ID C17 Classc Alternate Names & Referencesd

1 L L 1849 3 157 L L L L
2 391 Unknown 2039 0 L L L L CS U80
3 L L 2025 0 L L L L L
4 L L 1441 −1 L L L L L
5 372 Cluster 1959 3 L L L L CBF 58; MKKSS 50; CS U91

Note. Literature references: SM07 (Sarajedini & Mancone 2007), SR10 (San Roman et al. 2010), SR09 (San Roman et al. 2009), S11 (Sharma et al. 2011), and C17
(Corbelli et al. 2017).
a Sarajedini & Mancone (2007) Classes: cluster, stellar, galaxy, unknown.
b San Roman et al. (2010) Classes: −1 = galaxy; 0 = unknown extended object; 1 = candidate cluster; 2 = highly probable cluster; and 3 = confirmed cluster.
c Corbelli et al. (2017) Classes: b = associated with clouds, no optical counterpart; c1 = associated with clouds, coincident Hα, and mid-infrared peaks;
c2 = associated with clouds: coincident Hα, mid-infrared, and UV peaks; c3 = not associated with clouds but optically detected; d = ambiguous; e = not associated
with clouds, mostly mid-infrared peaks only.
d Reference Abbreviations for Alternate Names (from Sarajedini & Mancone 2007): Hilt (Hiltner 1960), MD (Melnick & D’Odorico 1978), CS (Christian &
Schommer 1982), MKKSS (Mochejska et al. 1998), CBF (Chandar et al. 1999, 2001), BEA (Bedin et al. 2005), SBGHS (Sarajedini et al. 2007).

(This table is available in its entirety in machine-readable form.)

Table 3
SLUG Results

ID Error Cut Flag Filters Available log(Mass/Me) log(Age/yr) AV

P16 P50 P84 P16 P50 P84 P16 P50 P84

3 F 4 2.47 3.23 3.43 7.72 8.25 8.41 0.24 0.43 0.69
5 F 6 3.99 4.07 4.16 8.41 8.49 8.57 0.23 0.41 0.57
7 F 6 3.97 4.05 4.12 8.40 8.49 8.58 0.38 0.58 0.74
8 F 6 4.53 4.59 4.65 8.17 8.23 8.28 0.20 0.26 0.32
11 F 6 2.45 3.46 3.56 7.71 8.31 8.38 0.10 0.23 0.32

Note. The error cut flag identifies cases where fits have large uncertainties (16th to 84th percentile range >1.2 dex in age or >1.3 dex in mass) and should be excluded
from uses where uncertainties are not factored in explicitly.

(This table is available in its entirety in machine-readable form.)
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A comparison between the PHATTER catalog and the CBF
catalog shows that the PHATTER catalog recovers nearly all
previously identified objects (103 out of 110 that lie within the
PHATTER footprint). However, the PHATTER catalog
includes an additional 445 clusters within the spatial footprint
searched by CBF, resulting in a total catalog that is a factor of 5
larger. This discrepancy is expected due to CBF’s use of
WFPC2 images whose wide field cameras have significantly
lower spatial resolution (pixel scale of 0 1) than the ACS and
WFC3 instruments used by the PHATTER survey (pixel scales
of 0 05 and 0 04 , respectively). Lower spatial resolution
images make the identification of faint, low-mass clusters much
more difficult, leading to worse luminosity and mass
completeness limits for the CBF catalog and significantly
fewer cluster identifications as a result.

Next we compare the PHATTER catalog to the work of
Bedin et al. (2005), who used a single ACS pointing located
within the PHATTER survey footprint to identify 33 clusters.
Within this spatial region, the PHATTER catalog includes 33
clusters, where 22 entries are shared between the two works.
The 11 unmatched clusters from the Bedin et al. (2005) catalog
break down into two categories: (1) six objects are explained
by object definition differences, where PHATTER categorized
these objects as emission regions or loose non-cluster
associations; (2) five objects are identified by the PHATTER
search, but are excluded from the cluster catalog due to low
fcluster,W. For the 11 PHATTER clusters not recovered by Bedin
et al. (2005), we believe the mismatch is due to their use of a
singleband F775W ACS image. These clusters have lower

fcluster,W and fainter mF475W than most of the 22 matched
clusters. Faint, low-mass clusters are identified in PHATTER
via a small clustering of blue main-sequence stars, and
therefore it is expected that these objects would be missed in
a search of only red wavelength imagery.
Finally, we compare the PHATTER catalog to the work of

San Roman et al. (2009), who searched multiband ACS
imagery that partially overlaps with the PHATTER survey
footprint and identified 86 clusters in the overlapping region.
The PHATTER cluster catalog includes 75 of these previously
identified objects, leaving 11 objects that were excluded by the
PHATTER catalog selection threshold. Importantly, the
PHATTER catalog includes 119 clusters not identified by
San Roman et al. (2009), resulting in a total catalog that is a
factor of 2.3 larger. Upon examination, this significant
difference is due to a more conservative selection threshold,
where the PHATTER catalog tends to probe to lower fcluster,W
and fainter mF475W. Imagery wavelength may also play a role
here, as more than half of the PHATTER overlapping fields
were only imaged in two redder bands (F606W and F814W)
without bluer F475W coverage.

7.1.3. Infrared Comparisons: Alternative Catalogs

Studies in the literature have also made use of infrared
images to assess M33ʼs cluster population. Sharma et al. (2011)
uses Spitzer 24 μm images to construct a catalog of young
stellar clusters, where it is assumed these objects are still
embedded in their natal molecular clouds. Of the 240 Sharma

Figure 12. A comparison of LGCS classifications for objects in the San Roman et al. (2010) and Sarajedini & Mancone (2007) catalogs that fall within the PHATTER
footprint. Top: left and center panels show fcluster,W distributions for the San Roman et al. (2010) catalog, where object classes include “confirmed star cluster” (class
3), “highly probable star cluster” (class 2), “candidate star cluster” (class 1), “unknown” (class 0), and “background galaxy” (class −1). The dashed line represents the
fcluster,W threshold we use for cluster catalog inclusion. The right panel shows the San Roman et al. (2010) classes for objects located in the PHATTER footprint that
did not match to a LGCS identification. Bottom: same as top, but for matched (left and center) and unmatched (right) objects from the Sarajedini & Mancone (2007)
catalog and its different sets of object classes.
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et al. (2011) objects that fall within the PHATTER footprint,
we only identify 41 crossmatches, of which we only classify
five as star clusters while the remainder are mostly low-fview
candidates. The poor correspondence between these two
catalogs corroborates the conclusions of Sun et al. (2016),
who advocate against the use of the Sharma et al. (2011)
catalog for star cluster population studies due to contamination
by non-cluster objects, as we noted in Section 1.

The catalog of Sharma et al. (2011) was used as a starting
point for compiling a sample of young cluster candidates for
use in a cross-comparison with CO molecular clouds by
Corbelli et al. (2017). Of the 291 objects from Corbelli et al.
(2017) within the PHATTER footprint, we match 91 objects
and find just 12 to be star clusters identified in our catalog. As
with the Sharma et al. (2011) sample, these cluster candidates
are generally not associated with optical star clusters, and
caution should be taken when using this catalog for the purpose
of star cluster population work.

To provide a visual example of optical versus infrared cluster
candidates, we present Spitzer 24 μm and HST F475W
+F814W color cutout pairs for three Corbelli et al. (2017)
and Sharma et al. (2011) objects in Figure 13. The first is an
example of a region where there is a bright 24 μm source, and
in the color image there is visible extinction, indicative of
molecular gas, and an emission region. These indicators
confirm the presence of a young embedded star-forming region
and potentially (but not certainly) a young star cluster. In the
absence of certainty on the presence of a bound star cluster, this
object is not identified as a cluster in the PHATTER catalog.

The second example is an object where, even though there is a
24 μm source, the background field in the optical image is fully
visible with no sign of dust obscuration. Therefore, we
conclude the probability of an embedded cluster is low. The
third example is an object that is a classified as a cluster in our
catalog. Examination of the PHATTER imaging around these
positions suggests that for at least 30% of Corbelli et al.
(2017)’s objects, we can rule out the presence of an embedded
star cluster based on the uniformity of the background at the
location of the Corbelli et al. (2017) cluster candidates. Thus it
appears that a significant fraction of these candidates are neither
young embedded star-forming regions nor optically visible star
clusters.

7.1.4. Catalog Comparison Summary

Overall, the PHATTER cluster catalog significantly
enhances the population of known clusters in the inner disk
region of M33. Out of 1214 total clusters, 810 (67% of the
catalog) are identified here for the first time. We compare the
luminosity distributions of the PHATTER clusters and
previously identified objects from the literature in Figure 14,
showing that PHATTER’s sample probes fainter, lower-mass
clusters than the previous works. The superior spatial resolution
of the HST images facilitates this marked increase, as tight
groups of stars can be differentiated from a single, barely or
unresolved source. In addition, the ability to identify small
groupings of faint resolved stars in the PHATTER images leads
to our ability to probe further down the cluster mass function in
M33 than ever before.

Figure 13. Spatially matched Spitzer 24 μm (top) and HST F475W−F814W (bottom) color cutouts for three Corbelli et al. (2017) and Sharma et al. (2011) objects
that represent three scenarios for the objects: an object which shows evidence of being a young embedded star-forming region (left; Corbelli YSCC 225), an object
where there is sufficient background visible to rule out an embedded cluster (middle; Corbelli YSCC 215), and a rare object which we classify as a star cluster in the
PHATTER catalog (right; Corbelli YSCC 297, PHATTER 529).
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7.2. M33 Catalog in Context: Expectations from the Γ and Mc

Correlations

We examine whether the PHATTER sample size of 1214
clusters matches expectations based on our knowledge of M33
and the relation between galaxies and their cluster populations.
An easy comparison we can make is to the PHAT M31 catalog
(J15) and its 2753 clusters. We might naively expect M31ʼs
sample to outnumber M33ʼs based on the number of bricks in
the survey footprint (23 versus 3) or the total galaxy stellar
mass (6× 1010 Me versus 3× 109 Me; Patel et al. 2017). In
this context, it seems there should be a much larger than factor
of ∼2 difference in cluster count. However, differences in
ongoing star formation and spatial coverage fraction of the
HST imaging could plausibly provide an explanation, espe-
cially given that both cluster samples are dominated by young
star clusters. Therefore, in this section we endeavor to make an
SFR-based accounting of the M33 cluster sample to test
whether we can explain the sample size differences we see
between M33 and M31. We will use observed relations with
respect to galaxy ΣSFR to predict cluster formation efficiency
(Γ) and Schecter trunctation mass (Mc), and use these inputs to
infer a prediction for cluster sample size.

To begin, we derive a SFR and ΣSFR measurement for the
PHATTER survey region in M33. Following the methodology
laid out in Appendix A of Johnson et al. (2017), we use
GALEX FUV and Spitzer 24 μm images and the ΣSFR

prescription from Leroy et al. (2008). We find log(〈ΣSFR〉/
M☉ yr−1 kpc−2) of - -

+2.04 0.18
0.16 for M33 within the PHATTER

survey footprint. We also extract the total SFR within the
survey region, which we find is 0.12 M☉ yr−1, approximately
46% of M33ʼs total SFR.

Next, we can use the PHATTER ΣSFR value to derive an
estimate of the cluster formation efficiency, Γ, based on the
Γ-ΣSFR relation from Johnson et al. (2016). This relation
predicts a cluster formation efficiency of 15%. We can also
derive an estimate for the cluster mass function by assuming a
Schechter function form with a −2 power-law slope and
trunctation mass, Mc estimate based on the Mc–ΣSFR relation

from Johnson et al. (2017). This relation predicts a Schechter
Mc of 4.3× 104 M☉.
When we combine the determinations of M33 SFR and Γ,

we derive a cluster formation rate (CFR) of 0.0180 M☉ yr−1.
Interestingly, this is very similar to the PHAT M31 CFR of
0.0186 (Γ= 6.4% via Johnson et al. 2016 and SFR= 0.29 via
Lewis et al. 2015). Although the PHATTER M33 SFR is 2.4
times smaller then the PHAT M31 survey SFR (0.12 M☉ yr−1

versus 0.29 M☉ yr−1), M33ʼs ΣSFR is almost 4 times higher,
which leads to a 2.4× higher Γ (15% versus 6.3%) that cancels
out the SFR difference.
Based on the well-matched M31 and M33 CFRs, the relative

difference in size between the two cluster catalogs (2753 versus
1214; 2.3×) seems unexpected. Note that the variation in Mc

(8.5× 103 M☉ versus 4.3× 104M☉) is only expected to make a
few percent difference in the number statistics due to the small
number of clusters at the high-mass end, so that does not
explain the difference. However, catalog completeness differ-
ences likely play a role. M33ʼs high stellar density within the
PHATTER footprint in the central region of the disk leads to a
higher mass for the 50% completeness limit than in M31:
log(M/M☉) of 3.2 versus 3.0 for a nominal 100–300Myr age
range. However, this 0.2 dex offset only affords a 1.3×–1.7×
correction to M33 Ncluster, leaving another factor of 1.3×–1.7×
still unexplained. This remaining discrepancy could be due to
our assumption of a constant SFH, or perhaps we will find that
Γ is not as high in M33 as predicted.
Overall, this exercise shows that the star formation

differences between M31 and M33 are likely significant
enough to impact cluster populations. We look forward to
using robust star formation history fitting (Lazzarini et al. 2022)
to inform recent SFR and ΣSFR determinations for M33, and
aid future Γ determinations for the PHATTER cluster sample.

7.3. Cluster Affiliated Phenomena: X-Ray Sources & Planetary
Nebulae

One of the immediate uses of the PHATTER cluster catalog
is to crossmatch it with objects of interest in M33, such as
planetary nebulae (PNe), X-ray emitting sources, and other
stellar populations. Identifying associations between clusters
and these source populations can provide useful information
about the source, such as a cluster-based age or additional
information that assists in source classification.
We begin by searching for crossmatches between the

PHATTER cluster catalog and two M33 X-ray source catalogs
created from Chandra (ChASeM33 survey; Tüllmann et al.
2011) and XMM-Newton (Williams et al. 2015) observations.
We use an initial matching radius of 5″, but require the X-ray
source to fall within the aperture radius of the cluster center
(typically ∼1 5), resulting in two matches—one from each
X-ray catalog. The matched Chandra source ChASeM33 393 is
paired with PHATTER 675, a known globular cluster (ID: 275;
Sarajedini & Mancone 2007) whose association with an X-ray
source was identified by Tüllmann et al. (2011). The matched
XMM-Newton catalog entry Source 716 is associated with
PHATTER 29, a previously identified young cluster (ID: 260;
Sarajedini & Mancone 2007) with a CMD-estimated age of
10Myr (Wainer et al. 2022). Given the ages of the clusters, the
Chandra source in the globular cluster is likely to be a bright
low-mass X-ray binary, and the XMM-Newton source in the
young cluster is likely to be a bright high-mass X-ray binary.

Figure 14. Shown here are the F475W magnitude distributions of PHATTER
clusters (black) and previously identified literature objects (blue). Shown in
black are 1166 PHATTER clusters with F475W detections. In blue are 391
literature objects included in the PHATTER cluster catalog with F475W
detections. Literature objects not represented above: 13 objects lacking F475W
detections and 178 objects with low fcluster,W omitted from the PHATTER
cluster catalog.
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We also report the presence of a possible PN associated with
a PHATTER cluster. The candidate PN associated with the
PHATTER 4 cluster was discovered serendipitously while
reviewing sources with outlier optical colors in cluster CMDs.
PNe are known to appear as anomalous blue sources in F475W
−F814W color due to strong line emission in the F475W
bandpass (Veyette et al. 2014). PHATTER 4 has a very
uncertain SLUG integrated light age determination, most likely
due to the unmodeled contribution of nebular line emission
from the PN, however its CMD-fitted age estimate of ∼1 Gyr
(Wainer et al. 2022) is not unexpected for a PN-hosting star
cluster.

Given the serendipitous identification of the PN, we
conducted a search for additional candidates. We performed a
crossmatch of the PHATTER clusters with the PN catalog of
Ciardullo et al. (2004), but we found no candidates that lie
within the aperture radius from the cluster center. This lack of
matches is not unexpected, however, given that a cluster PN
would likely have been rejected by the Ciardullo et al. (2004)
search of ground-based narrowband imaging due to the
presence of coincident continuum emission from the cluster.
We also perform a search for other cluster members with
anomalous optical colors (F475W − F814W < −1), but find
no other reliable sources among the cluster members.

We will continue to expand the PHATTER cluster catalog
crossmatching and perform analyses of cluster membership to
additional source populations in future work. Following on
from work conducted for PHAT, cluster membership of AGB
stars (Girardi et al. 2020), Cepheid variables (Senchyna et al.
2015), and other populations are ripe for study in the
PHATTER data.

8. Summary

We present the results of a crowdsourced visual star cluster
search of M33 conducted as part of the LGCS citizen science
project using imaging from the PHATTER survey. The
resulting catalog of 1214 star clusters has well-characterized
completeness properties and a 50% completeness limit of
approximately 1500 M☉ at an age of 100Myr. We derive ages
and masses from SED fitting of the subset of clusters with
multiband detections in the catalog’s integrated aperture
photometry. We find the sample is composed primarily of
young, low-mass star clusters, although the SLUG-fitted
clusters are a biased subsample of the full PHATTER catalog.

This cluster catalog builds upon similar Local Group cluster
work in M31 (J15) and significantly increases the number of
known Local Group star clusters observed with HST. The
PHATTER cluster catalog samples higher ΣSFR galactic
properties than M31, which provides leverage for studying
how cluster properties like the cluster mass function, cluster
formation efficiency, and more depend on star formation
intensity. In accompanying work, we use the CMDs of
individually resolved stars to fit high-precision ages and
masses, and to constrain the mass function of young clusters
(Wainer et al. 2022). We also expect the sample will also be
useful for calibrating models of stellar evolution (e.g., Girardi
et al. 2020) and other future M33 cluster studies.
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Appendix A
Ancillary Catalogs

To accompany the primary PHATTER cluster catalog
described in Section 4 and presented in Table 1, we present
ancillary catalog results in this Appendix. First, we present an
ancillary catalog in Table 5, which contains 3566 candidate
identifications with fcluster,W< 0.674 and fview� 0.1. These
objects fall below the catalog threshold adopted for the primary
PHATTER cluster sample, however we publish these results to
enable investigators to make their own decisions regarding
completeness versus contamination, depending on their
science case.
Second, we present object-by-object synthetic cluster results in

Table 6. These results can be used to derive catalog completeness
for the case where a different catalog selection is adopted.
Third, we identify a sample of background galaxies using a

selection criteria of fgalaxy� 0.25. We present this sample of
203 background galaxies identified by LGCS participants in
Table 7. The adopted fgalaxy detection threshold was chosen via
visual inspection and ensures good sample purity. We find
seven crossmatches with San Roman et al. (2010), three
crossmatches with Sarajedini & Mancone (2007), and three
crossmatches with Corbelli et al. (2017) for the background
galaxy sample.
Fourth, we identify a sample of emission regions using a

selection criteria of femission� 0.25. We present this sample of
95 emission regions identified by LGCS participants in Table 8.
The adopted femission detection threshold was chosen via visual
inspection and ensures good sample purity. We urge caution
when interpreting this sample due to the fact that cluster
identification, not emission region identification, was the
primary goal of the LGCS search. As a result, we do not
expect this sample to be systematically complete, and instead
recommend that these objects be considered opportunistic
identifications. We note that three objects listed here are also
included in the PHATTER cluster catalog, but where we agree
with the cross-listing between the two classification categories:
objects 163, 275, and 652. Also, we find 41 crossmatches with
San Roman et al. (2010), 15 crossmatches with Sarajedini &
Mancone (2007), and 21 crossmatches with Corbelli et al.
(2017) for the emission region sample.
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Table 5
Ancillary Catalog

ID R.A. (J2000) DECL. (J2000) Rap (″) Reff (″) fview fcluster fgalaxy femission fcluster,W Flags mapcor m275 σ275 m336 σ336 m475 σ475 m814 σ814 m110 σ110 m160 σ160

37 23.474286 30.498702 2.10 0.89 0.9333 0.3583 0.4667 0.1083 0.4833 L −0.31 L L L L 20.48 0.12 18.86 0.01 L L L L
46 23.363899 30.699947 1.90 0.35 0.9667 0.3000 0.5833 0.0833 0.3108 L −0.01 19.49 0.21 19.28 0.13 19.23 0.06 17.69 0.08 L L L L
54 23.400054 30.709211 2.79 0.69 0.9667 0.2667 0.0000 0.7000 0.3235 L −0.06 17.33 0.14 17.41 0.07 18.73 0.11 18.56 0.14 17.93 0.12 >18.28 L
57 23.469856 30.730419 3.84 1.48 0.9583 0.3583 0.0000 0.6000 0.4373 L −0.25 16.49 0.07 16.60 0.11 17.62 0.12 17.24 0.10 L L L L
60 23.527783 30.815464 3.74 0.81 0.9667 0.2500 0.0000 0.7167 0.2552 L −0.03 16.11 0.02 16.34 0.05 17.48 0.02 17.56 0.08 17.13 0.06 >17.88 L

(This table is available in its entirety in machine-readable form.)

Table 6
Synthetic Cluster Results

SYNID R.A. (J2000)
DECL.
(J2000) log(M/Me)

log
(Age/yr) Z AV

Reff,in

(pc) F475Win F814Win fview fcluster fgalaxy femission fcluster,W NMS NRGB Detected

1 23.638290 30.781798 2.79 7.50 0.0152 0.44 1.09 20.64 20.59 0.0 0.0 0.0 0.0 0.0 3184 163 False
2 23.630015 30.783396 2.86 7.35 0.0152 0.28 7.62 19.93 20.04 0.0 0.0 0.0 0.0 0.0 2186 180 False
3 23.620705 30.785866 3.25 6.85 0.0152 2.75 9.64 20.66 19.43 0.05 0.05 0.0 0.0 0.0397 778 191 False
4 23.629348 30.790771 2.43 6.85 0.0152 0.15 1.17 18.80 15.64 0.1833 0.1167 0.0167 0.05 0.0478 839 120 False
5 23.624151 30.789617 3.22 8.95 0.0152 0.85 2.09 22.44 21.27 0.1475 0.1475 0.0 0.0 0.1740 676 167 False

Note. Synthetic clusters 1–848 are the first batch of randomly distributed tests, and clusters 849–1696 are the second batch of tests spatially distributed to place young clusters in regions with higher NMS. The boolean
“detected” column reflects whether the synthetic cluster is selected by the final cluster catalog selection criteria: fcluster,W > 0.674.

(This table is available in its entirety in machine-readable form.)
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Appendix B
SLUG Integrated Light Fitting: Comparison to CMD-

based Fits for M31 Clusters

To determine the reliability of SLUG integrated light fits, we
use previous CMD-based cluster fits for M31 clusters observed
by PHAT (Johnson et al. 2016) and compare to SLUG results
for these clusters. Specifically, we identify a sample of clusters
with good CMD fits and best-fit log(Age/yr) < 8.5. To
compute the SLUG fits for the M31 clusters, we adopt the same
fitting techniques we use for M33 that are described in
Section 6. We use the same model grid for fitting, but we adopt
a different assumed distance: 24.47 for M31. We report the
SLUG fitting results for a sample of 885 M31 star clusters in
Table 9.

We observe that a significant number of M31 SLUG fits
have large quoted uncertainties. We consider a SLUG fit to
have a large error if its 84th percentile minus 16th percentile
value is �1.2 dex in age or �1.3 dex in mass. This selection
identified 122 clusters from the M31 sample with large SLUG
uncertainties. We opt to flag these most uncertain fits in the
results table and omit them from the CMD versus SLUG
comparison below.

Figure 15 compares results in mass, age, and AV from the
cluster’s CMD and SLUG fits. The reliability of the integrated
light SLUG values for mass is demonstrated on the top panel.
The mass values for previous CMD estimates follow a 1:1
relationship with the new SLUG mass values. The same cannot
be clearly stated for the SLUG age and AV values based on our
comparison to CMD derived properties.
The comparison of fitted ages reveals a gap in SLUG ages

between log(Age/yr) of 7.0 and 7.5, whereas the previous
CMD ages are consistent with a continuous distribution for the
last 300Myr (Johnson et al. 2016). The gap seems to be due to
SLUG fitting clusters in this age range with either younger
(<107 yr) or older (>107.5 yr) ages. Given this significant gap
in the age distribution, similar to a known artifact in
deterministic integrated light fitting at this same age that
coincides with the age of emergence for evolved supergiant
stars (e.g., see Fouesneau & Lançon 2010), we do not consider
the SLUG ages to be as reliable as the CMD ages. At older ages
(>108.5 yr), however, the SLUG ages become the sole option
for age determination due to the difficulty of fitting CMDs in
the case where the main-sequence turnoff lies below the
completeness limit for the resolve star photometry catalogs.

Table 7
Background Galaxy Catalog

ID R.A. (J2000) DECL. (J2000) Rap (″) fview fcluster fgalaxy femission fcluster,W m814 σ814

24 23.647657 30.805648 6.40 0.9833 0.1000 0.8833 0.0000 0.0855 18.03 0.07
37 23.474286 30.498702 2.10 0.9333 0.3583 0.4667 0.1083 0.4833 18.86 0.01
46 23.363899 30.699947 1.90 0.9667 0.3000 0.5833 0.0833 0.3108 17.69 0.08
108 23.557170 30.482706 2.27 0.9500 0.0833 0.8667 0.0000 0.1116 20.16 0.37
126 23.484892 30.491225 2.64 0.9344 0.0656 0.8525 0.0164 0.1497 17.00 0.05

(This table is available in its entirety in machine-readable form.)

Table 8
Emission Region Catalog

ID R.A. (J2000) DECL. (J2000) Rap (″) fview fcluster fgalaxy femission fcluster,W

54 23.400054 30.709211 2.79 0.9667 0.2667 0.0000 0.7000 0.3235
57 23.469856 30.730419 3.84 0.9583 0.3583 0.0000 0.6000 0.4373
60 23.527783 30.815464 3.74 0.9667 0.2500 0.0000 0.7167 0.2552
114 23.491020 30.818007 2.37 0.9344 0.3771 0.0000 0.5574 0.4062
163 23.495319 30.819708 2.80 0.9344 0.6167 0.0000 0.3167 0.8384

(This table is available in its entirety in machine-readable form.)
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Figure 15. A comparison between the SLUG integrated light fits and CMD-based fits for 763 clusters in M31. The panels show the distribution of results relative to
the one-to-one relation (dashed red line) for cluster mass (left), age (middle), and AV (right).

Table 9
SLUG Results for PHAT M31 Clusters

APID Error Cut Flag Filters Available log(Mass/Me) log(Age/yr) AV

SLUG16 SLUG50 SLUG84 SLUG16 SLUG50 SLUG84 SLUG16 SLUG50 SLUG84

CMD16 CMD50 CMD84 CMD16 CMD50 CMD84 CMD16 CMD50 CMD84

2 T 4 2.39 3.61 3.78 7.62 8.26 8.70 0.31 0.66 1.16
3.95 3.98 3.98 8.4 8.4 8.4 1.1 1.15 1.15

5 F 6 3.52 3.62 3.70 8.32 8.55 8.68 0.30 0.54 0.91
3.40 3.41 3.45 8.3 8.4 8.4 0.44 0.45 0.65

6 F 6 3.66 3.77 3.89 8.17 8.29 8.42 0.39 0.64 0.85
3.81 3.83 3.83 8.4 8.5 8.5 0.5 0.5 0.65

7 F 4 2.74 3.17 3.34 7.81 8.11 8.29 0.36 0.63 0.98
3.12 3.16 3.16 7.9 8.2 8.2 0.4 0.45 0.55

14 F 4 3.28 3.77 3.93 7.62 7.99 8.29 0.49 0.81 1.15
4.08 4.08 4.13 8.2 8.2 8.3 1.15 1.25 1.25

Note. The 16th, 50th, and 84th percentile values extracted for the mass, age, and AV PDFs from SLUG and CMD fitting results are reported. The filer count of the best
available passband combination is listed, along with a boolean flag identifying cases of high uncertainty.

(This table is available in its entirety in machine-readable form.)
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