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As seen by an observer in the rotating frame, the earth’s small spheroidal deformations neutralize
the centrifugal force, leaving only the smaller Coriolis force to govern the “inertial” motion of objects
that move on its surface, assumed smooth and frictionless. Previous studies of inertial motion employ
weakly spheroidal equations of motion that ignore the influence of the centrifugal force and yet treat
the earth as a sphere. The latitude dependence of these equations renders them strongly nonlinear.
We derive and justify these equations and use them to identify, classify, name, describe, and illustrate
all possible classes of inertial motion, including a new class of motion called circumpolar waves, which
encircle both poles during each cycle of the motion. We illustrate these classes using Corio Vis, our
freely available Coriolis visualization software. We identify a rotational/time-reversal symmetry for
motion on the earth’s surface and use this symmetry to develop and validate closed-form small-
amplitude approximations for the four main classes and one degenerate class of inertial motion. For
these five classes, we supply calculations of experimentally relevant frequencies, zonal drifts, and

latitude ranges.

The nonlinear dynamics of an object that moves
over large distances on the earth’s surface is fun-
damental to meteorology, oceanography, aviation,
and ballistics. This motion is complicated by the
earth’s equatorial bulge, the inertial forces expe-
rienced by an earthbound observer in the frame
of the rotating earth, and the nonlinear depen-
dence of these forces on latitude. There are four
main classes of such motion, three of which have
been described previously. We use symmetry ar-
guments and visualizations to identify and de-
scribe all four main classes and twelve degener-
ate classes. The new main class, called circumpo-
lar waves, encircles both poles during each cycle
of the motion. The degenerate classes cross one
or both poles, approach the equator asymptoti-
cally, or remain at a fixed latitude. We show that
these sixteen classes completely characterize the
motion of an object on the earth’s spheroidal sur-
face, assumed smooth and frictionless.

I. INTRODUCTION

The Coriolis force plays important roles in meteorol-
ogy [1], oceanography [2], ballistics [3], sniping [4], avia-
tion [5], space stations [6], and playgrounds [7], and has
a long history of study. In 1679, Sir Isaac Newton and
Robert Hooke discussed the possibility that the horizon-
tal deflection of falling objects could serve as proof of
the Earth’s rotation; this possibility was confirmed in
an 1803 measurement that agreed with calculations by
Gauss and Laplace [8]. In 1835, Gaspard Gustave Cori-

olis showed that the total inertial force on an object as
seen by an observer in a rotating frame is the sum of two
forces, the centrifugal force and a “deflective force” that
is now known as the Coriolis force [8-10]. The Corio-
lis force applies only when the object moves relative to
this frame, whereas the centrifugal force applies with or
without such motion [11, 12].

As seen by an observer in the inertial frame, a puck
sliding on the surface of a frictionless rotating sphere ex-
periences opposing but unbalanced gravitational and nor-
mal forces, and executes uniform circular motion in great
circles. As seen by an observer in the rotating frame, the
puck also experiences the Coriolis and centrifugal forces,
which complicate the motion in this frame [13]. For mo-
tion on a sphere, the speed of the puck and its axial
angular momentum are conserved in the inertial frame.

The earth’s small spheroidal deformations play an out-
sized role in motion on its spheroidal surface, assumed
smooth and frictionless. These deformations neutralize
the centrifugal force, leaving only the smaller Coriolis
force to govern the motion, as seen by observers in the
rotating frame [14, 15]. Because the Coriolis force is per-
pendicular to the puck velocity, the puck speed is con-
served in the rotating frame, while its axial angular mo-
mentum is conserved in the inertial frame [16]. Conse-
quently, “inertial” motion on the spheroidal earth differs
profoundly from motion on a sphere.

Theoretical investigations of inertial motion are based
on a weakly spheroidal approximation that ignores the
influence of the centrifugal force and yet treats the earth
as a sphere [17-28]. This approximation seems paradoxi-
cal because it is the earth’s spheroidal deformations that
are responsible for neutralizing the centrifugal force.
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FIG. 1. Screenshots of CorioVis visualizations of the four
main classes of inertial motion of a puck that slides on the
earth’s stably rotating spheroidal surface, assumed friction-
less, as seen by an observer in the rotating frame, labeled by
their CorioVis demonstration numbers [32]. Puck trajecto-
ries are shown in yellow. Red dots denote final puck positions
and red arrows denote final puck velocities.

In this paper, we derive and justify the weakly
spheroidal approximation by applying exact equations of
motion for an object moving on the surface of a stably
rotating uniform spheroid of arbitrary eccentricity [28] to
the reference spheroid that is used in terrestrial cartog-
raphy, geodesy, satellite navigation, and the global posi-
tioning system (GPS) [29-31]. On the reference spheroid,
the weakly spheroidal approximation agrees with exact
solutions to within 1%. We assume throughout that puck
velocities are horizontal, tangent to the earth’s surface,
and that the puck remains in frictionless contact with
this surface at all times. The latitude dependence of
the weakly spheroidal equations of motion renders these
equations strongly nonlinear.

The purpose of this paper is to use the weakly
spheroidal equations to identify, classify, name, describe,
and illustrate all of the classes of inertial motion on the
earth’s spheroidal surface, as seen by an observer in the
rotating frame. We show that there are four topolog-
ically distinct main classes. For all four classes, the
puck oscillates between two fixed latitudes and generally
drifts either west or east; “nonpolar circles” do not cross
the equator or encircle a pole; “circumpolar circles” do
not cross the equator but do encircle a pole; “nonpolar
waves” cross the equator and do not encircle any poles;

and “circumpolar waves” cross the equator and encircle
both poles (Fig. 1). The essential topological difference
between circumpolar and nonpolar motion is that the
zonal velocity component for circumpolar motion is al-
ways toward the west.

Three of these four classes have been described previ-
ously. Nonpolar circles are often referred to as “inertial
circles” [19, Fig. 2], and are the only class to have been
observed in ocean and atmospheric currents [8, 33-39].
Circumpolar circles have been described as “westward
motion, oscillating in latitude” [22, Fig. 2b]. Nonpolar
waves are sometimes referred to as “inertial oscillations”
[19, Fig. 2]. Cushman-Roisin describes just two main
classes of inertial motion, conflating nonpolar and cir-
cumpolar circles into “mid-latitude oscillation and drift
in a zonal band” and conflating nonpolar and circumpo-
lar waves into “oscillation and drift in an equatorial zonal
band” [17, Table I]. We find no descriptions of circumpo-
lar waves in the literature.

In addition to the four main classes, we study eight de-
generate classes and four doubly degenerate classes that
are described, in words, by Cushman-Roisin [17, Table I].
Although these degenerate classes are needed for topolog-
ical completeness and might be observable with carefully
chosen initial conditions, random initial conditions and
naturally occurring motion will always fall into one of the
four main classes.

Trajectories of seven of the sixteen classes of inertial
motion have been illustrated previously. Paldor and as-
sociates use Cartesian plots of latitude vs. longitude to
illustrate six classes [22-25]. They also use polar plots
of colatitude (radius) and longitude (azimuthal angle) to
further illustrate three of these six classes. Such Carte-
sian and polar plots distort the trajectories because these
plots do not account, respectively, for converging longi-
tude lines toward the poles and parallel longitude lines at
the equator. Similarly, Wiin-Nielsen uses Cartesian plots
to illustrate two classes and uses polar plots to illustrate
four [40]. Cushman-Roisin and Whipple use Cartesian
plots to illustrate the same three classes [17, 26]. Ripa
and Early use screenshots of trajectories on the earth’s
surface to illustrate two classes and three classes, respec-
tively [18, 19]. Missing in all these illustrations are one
main class (circumpolar waves), five degenerate classes,
and three doubly-degenerate classes.

We illustrate all sixteen classes of inertial motion with
sixteen CorioVis demonstrations that show the motion
of the puck on the reference spheroid from any view-
ing angle and in any of three reference frames (rotating
frame, inertial frame, and counter-rotating frame). We
use screenshots of these sixteen demonstrations as the
basis for our classification scheme and to illustrate time-
reversal symmetries. Our illustrations convey immediate
understanding of class topologies that is lacking in the
word descriptions of Cushman-Roisin [17, Table I]. Cori-
oVis is our robust freely available web-based Coriolis vi-
sualization software that animates the motion of a puck
on the surface of a planet of arbitrary spheroidal eccen-



tricity and of arbitrary angular velocity of rotation, for
arbitrary initial puck positions and velocities [32].

Our classification scheme, our descriptive class names,
and our visualizations establish the uniqueness of each
class and clarify the relationships between classes, in-
cluding time-reversal symmetries on the counter-rotating
earth.

We derive and validate closed-form small-amplitude
mathematical descriptions for the four main classes and
for one degenerate class, “polar circles,” which pass di-
rectly over a pole but do not cross the equator. These de-
scriptions supply experimentally relevant analytical ex-
pressions for the frequencies, zonal drifts, and latitude
ranges of inertial motion that agree with our exact nu-
merical calculations of these quantities in the small-
amplitude limit. Small-amplitude nonpolar, polar, and
circumpolar circles have frequencies that are independent
of the amplitude, whereas small-amplitude nonpolar and
circumpolar waves have frequencies that are proportional
to the square root of the amplitude. This is because non-
polar and circumpolar waves oscillate about the equator,
where the horizontal components of the Coriolis force
vanish.

Our small-amplitude descriptions of nonpolar circles
and waves apply for small puck speeds as seen by an
earthbound observer in the “rotating” frame of a nor-
mally rotating earth that rotates toward the east. Our
small-amplitude descriptions of circumpolar circles and
waves apply for small puck speeds as seen by an earth-
bound observer in the “counter-rotating” frame of a
counter-rotating earth that rotates toward the west. We
show that circumpolar circles and waves in the rotating
frame become nonpolar circles and waves when viewed in
the counter-rotating frame, and show that this rotational
symmetry is equivalent to a time-reversal symmetry. Our
small-amplitude descriptions are written in terms of ele-
mentary functions and offer simpler and more accessible
treatments of the physics of inertial motion than solu-
tions written in terms of elliptic integrals [27].

Contributions of this paper include: (a) derivation and
justification of the weakly spheroidal approximation, (b)
complete identification, classification, naming, descrip-
tion, and illustration of the sixteen classes of inertial mo-
tion, including one new class (circumpolar waves), (c)
discussion of the rotational/time-reversal symmetry rela-
tionships between classes, (d) derivation and validation of
small-amplitude approximations for the four main classes
and one degenerate class, and (e) calculations of exper-
imentally relevant frequencies, zonal drifts, and latitude
ranges of these five classes.

II. EQUATIONS OF MOTION
A. Normally Rotating Earth

To describe motion on the earth’s spheroidal surface,
we adopt the geodetic coordinate system (Fig. 2) that de-
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FIG. 2. Geodetic coordinates used to specify points on the
surface of the earth, treated as a spheroid with equatorial
radius a and polar radius b. As viewed by an observer in
the rotating frame, the unit vectors X, ¥, and Z are station-
ary, with X and §y marking specific geographical points on the
equator and Z marking the north pole. Shown for a point on
the surface are its position vector r, its geodetic latitude 0,
its geocentric latitude @', its longitude ¢, and its distance p
from the axis of rotation, with orthogonal unit vectors ¢, 0,
and fi respectively pointing east, north, and up, and the unit
vector p directed along the equatorial projection of r. The
difference between a and b is exaggerated to illuminate the
difference between the geocentric and geodetic latitudes.

scribes the reference spheroid used in terrestrial cartog-
raphy, geodesy, satellite navigation, and the global posi-
tioning system (GPS) [29-31]. This spheroid has equa-
torial radius a = 6378.137 km, polar radius b = 6356.752
km, eccentricity

N )
e= GT = 0.08182, (1)

angular velocity of rotation © = Q2, and angular speed
Q) = 7.292x107° rad/s. Here, the unit vector % is aligned
with the earth’s rotation axis and points toward the north
pole [28]. The orthogonal unit vectors b, 0, and fi respec-
tively point horizontally east, horizontally north, and ver-
tically up (normal to the surface).

The geodetic coordinates of a point on the earth’s sur-
face are its longitude ¢, measured eastward from the
prime meridian, and its geodetic latitude #, measured
northward between the equatorial plane and the normal
direction (Fig. 2). The geodetic latitude 6 differs from
the geocentric latitude ', the angle measured northward
between the equatorial plane and the position vector r.
The word “latitude,” when used without qualification,
refers to the geodetic latitude 6.

As seen by an observer in a reference frame S that
rotates with the earth, the velocity of a hockey puck that
slides horizontally along the earth’s surface is given by

(v)s = vs + vgb. (2)



This velocity has eastward and northward components
that are given respectively by [28]

vy = pd (3a)
vg = R, (3b)
where the overdot denotes a time derivative,
B a cos 6
SRV T
is the distance from the earth’s axis of rotation, and
B (1 — 62) a
- (1—e? sin? 9)3/2

(4a)

(4b)

is the earth’s meridional radius of curvature, measured
along a line of longitude.

In the rotating frame S, four forces act on a puck
that moves without friction on the surface of a smooth
spheroidal planet; the gravitational force, the normal
force, the centrifugal force, and the Coriolis force. For
spheroidal planets that rotate at their stable angular
speeds, as the earth does, the vector sum of the grav-
itational and centrifugal forces, called the apparent grav-
itational force, is normal to the planet’s surface. The
normal, Coriolis, and apparent gravitational forces are
perpendicular to vg and do no net work on the puck. The
kinetic energy measured in the rotating frame is therefore
conserved [16],

1 2

(T)s = §m(v)5, (5)

where m is the puck’s mass and

(v)s = y/v5 + v} (6)

is its constant speed in this frame.

For a rotating spherical planet, the apparent gravita-
tional force is not normal to the planet’s surface and ki-
netic energy is conserved instead in the inertial frame Sy,
which leads to essential differences between the motion on
spherical and spheroidal earths [16]. Correct conclusions
regarding the conservation of kinetic energy and correct
descriptions of motion on the earth’s surface therefore
rely crucially on the earth’s spheroidal deformations.

The axial angular momentum of a puck that moves
without friction on the surface of a spheroidal planet is
conserved in the inertial frame Sy because the torques
on the puck have no axial components. As seen by an
observer in this frame, the puck’s velocity is

(V)so = (V)s + Q¢ (Ta)
= (Qp + vg) ¢ + v, (7h)

where the eastward component includes the earth’s east-
ward tangential velocity, Q2p¢. Therefore, the axial an-
gular momentum in the inertial frame is given by [16]

(Lz)g, =mp (S2p + vg) - (8)

4

We now use Eqs. (5) and (8) to construct equations
of motion. We define a dimensionless puck speed in the
rotating frame by

(v)s
€= 9a
Oa (9a)
where Qa is the earth’s tangential speed at the equator.
We also define the puck’s dimensionless axial angular mo-
mentum in the inertial frame as
(LZ)SO

L= 20 (9b)

where ma?Q) is the angular momentum in the inertial
frame for a puck that is at rest at the equator in the
rotating frame. As will be seen below, the values of the
dimensionless constants € and £ determine the behavior
of the puck. Combining Egs. (3) with Eqs. (6)-(9) gives
equations of motion for ¢(t) and 6(t) for a stably rotating
planet of arbitrary eccentricity e,

2 .
L= a’;—ﬂ (Q+¢>) (10a)
2 _ M (10b)

a2Q)?

According to Egs. (4), the eccentricity corrections to
Egs. (10) are of relative order e? = 0.0067 for the earth’s
eccentricity of Eq. (1). Ignoring these corrections reduces
Egs. (10) to [18-26, 28]

L= (1 + (b) cos? 0 (11a)
Q
) 12 ) 92
I @COS 9+ @ (11b)

These coupled ordinary first-order nonlinear differential
equations describe the latitude 6(¢) and longitude ¢(t) for
a wide variety of behaviors for a puck that slides with-
out friction on the surface of a weakly spheroidal planet
that rotates at its stable angular speed, with ¢ and £
serving as convenient constants of the motion. Solutions
to Egs. (11) agree with solutions to Egs. (10) to within
1%, consistent with the neglect of terms of relative order
e? = 0.0067. Such eccentricity corrections can also be ig-
nored in the metric coefficients in spheroidal coordinates
[41, Sec. 4.12]. Ignoring these corrections in Egs. (3) gives
the associated velocity components

(12a)
(12b)

vy = agcosf

vg = ab.

Although we have omitted spheroidal corrections of or-
der €2 in Eqgs. (11), and although the eccentricity e ap-
pears nowhere in these equations, they do not describe
motion on a spherical planet. They instead describe mo-
tion on a weakly spheroidal planet whose spheroidal de-
formations neutralize the centrifugal force and demand



conservation of kinetic energy in the rotating frame, as
expressed in Eq. (11b). To account for the influence of
the centrifugal force on a rotating spherical planet, this
equation must be modified to conserve kinetic energy in
the inertial frame, which leads to profound differences
in the motion [16]. Thus, although Egs. (11) ignore
spheroidal corrections of order e?, they do account for
spheroidal deformations through energy conservation.
Equations (11) can be rearranged to produce equations
of motion that are convenient for numerical integration,

% = Lsec?d — 1 (13a)
9'2

REhe e2 — (Lsech — cos ). (13b)

Rearranging Eq. (11a) gives Eq. (13a), and substituting
this result into Eq. (11b) gives Eq. (13b), a first-order
ordinary nonlinear differential equation for the latitude
6(t). This equation agrees with Eq. (11a) of Ripa [19],
with Eq. (6) of Pennell and Seiter [27], and with Eq. (5.1)
of Paldor & Sigalov [23], apart from an additive con-
stant that can be absorbed into the (constant) energy
term (£2). Once a solution for §(¢) has been found from
Eq. (13b), the longitude ¢(t) follows from Eq. (13a).

In the following sections, we use three measures to
characterize the puck’s motion. For both periodic and
nonperiodic motions, we consider the latitude range
A0 = Onax — Omin, defined as the difference between
the maximum and minimum latitudes. For periodic mo-
tions with period 7, we also consider the zonal drift
A¢p = ¢(1) — ¢(0) in the rotating frame [24, 25] and
the angular frequency w = 27/7 of oscillations.

B. Counter-rotating Earth

Consideration of motion on a counter-rotating earth
facilitates understanding of circumpolar circles and waves
(Secs. VII and IX). We consider an earth that rotates
westward instead of eastward, with Z still pointing north
and with the earth’s angular velocity €2 = —{)Z pointing
south. We consider an observer in the frame S’ of this
counter-rotating earth (Fig. 2). As seen by an observer
in this frame, the puck’s velocity is

(14a)
(14b)

(V)sr = (V)so + Q¢
= (QQp + 1)45) QAS + Ugé,

where the second equality follows from Eq. (7b).
In frame S’, it is convenient to define the longitude by

¢\ =20t — ¢, (15)

with ¢ increasing toward the west (in contrast with
¢, which increases toward the east) and with ¢’ mark-
ing specific geographic locations on the counter-rotating
earth. Combining Eqs. (14b) and (15) and imposing

the weakly spheroidal approximation gives the associated
puck velocity

(v)s = —ad cos 0 ¢ + abl (16a)
and puck speed
(v)s = a\/ 2 cos? O + 62, (16Db)

In the counter-rotating frame S’, we also define a di-
mensionless puck speed
U)Sr

p_ (
€ =5, (17a)

and a dimensionless angular momentum about the —z
axis,
L =-L. (17b)

The resulting weakly spheroidal equations in the counter-
rotating frame are

L= (1 + ¢l> cos® 0 (18a)
N Q
172 9'2
2 = ﬁ COS2 0 + @7 (].Sb)

where Eq. (18a) follows from Eq. (1la) and where
Eq. (18b) follows from Egs. (16b) and (17a). Equations
(11), (15), and (18b) imply the relationship

e? =e? +4L. (19)

Equations (18) have the same form as Egs. (11). Con-
sequently, the transformations given by Eqgs. (15), (17b),
and (19) allow solutions of Egs. (11) to be mapped to
solutions of Egs. (18).

Reversing the direction of the earth’s rotation, revers-
ing the sign of the axial angular momentum, measuring
longitude westward instead of eastward, and leaving the
latitude unchanged yields the same equations of motion
on the earth’s surface, Eqgs. (18), as the equations for
the normally rotating earth, Egs. (11). On the counter-
rotating earth, the horizontal component of the Coriolis
force acts toward the left in the northern hemisphere and
toward the right in the southern hemisphere, which is op-
posite to its behavior on the normally rotating earth.

III. MOTION CLASSIFICATION

The purpose of this paper is to classify the inertial mo-
tions of a puck that moves without friction on the surface
of a weakly spheroidal earth that rotates normally at its
stable angular speed. This classification relies on the val-
ues of two conserved quantities, the puck’s dimensionless
speed ¢ in the rotating frame and the puck’s dimension-
less angular momentum £ in the inertial frame. Figure 3



shows the associated 2D state space that forms the basis
for the classification. In contrast with Fig. 7 of Cushman-
Roisin [17] and Fig. 3 of Ripa [19], Fig. 3 conveniently
considers £ as a function of € and includes information
about the specific extrema that apply in each region.

The initial conditions 6(0), 6(0), ¢(0), and ¢(0) deter-
mine the values of the conserved quantities € and £ [28].
These values determine the point in state space in Fig. 3
and the associated class of motion. Each point in Fig. 3
represents motion of a single class. Although a particular
set of values of € and L is generally shared by a family of
related initial conditions, once the values of € and L are
established by the initial conditions, the associated class
of motion is uniquely determined by Fig. 3.

As a first step in constructing Fig. 3, we use Egs. (11)
to determine the allowed range of L for fixed € > 0. The
maximum value £ = 1+ ¢ occurs for eastward motion at
the equator, with § = 0 = 0 and ¢ = £Q (Fig. 3, EF).
The minimum value of £ occurs for westward motion
with 0 = 0, ¢ = —eQ/cos®, and L = cos?§ — ecosf. To

find this minimum, we set

dg =sinf (¢ — 2cosf) = 0. (20)
Setting sinf = 0 gives £ = 1 — ¢ (Fig. 3, EF’). Setting
£ —2cosf = 0 gives a lower minimum £ = —e2/4 that

is valid for € < 2 to ensure that cosf =¢/2 <1 (Fig. 3,
CE’). Thus, the range of £ is —e%/4 < £ < 1+ ¢ for
e<2and1—-e<L<1+4e¢fore>2 (Fig. 3).

The next step in constructing the state space is to ex-
amine latitude extrema 6 = 6* given by setting # = 0 in
Eq. (13b), which yields a quartic polynomial equation in
cos 6* with four solutions,

€ g2

cos 0 = —&—5 +1/L+ T (21a)
€ g2

0089§=—§+\1E+Z (21b)
€ g2

cos; = +§ —\/ L+ T (21c)
€ / g2

cos 0} =-3- £+Z. (21d)

These extrema must be real and must satisfy 0 < cos 8* <
1 over the latitude range —7/2 < 6* < /2.

We now determine the ranges of £ that satisfy these
two conditions for fixed ¢ > 0 for the extrema 67, 65, and
03, noting that 0} fails to satisfy these conditions except
for the degenerate case ¢ = £ = 0, which is covered
by the other extrema. We take 6}, 65, and 03 to be
positive, corresponding to northern latitudes. Because
cos(—0*) = cos 6*, the southern latitudes —67, —63%, and
—03 also satisfy Eqs. (21a)-(21c).

To ensure that 07 is real, we must have £ > —e2/4,
for which cos 07 > 0. To ensure that cos 07 < 1, we must
have £ <1 —¢ and € < 2. Hence, the extrema 6 = £67
apply for —e2/4 < £ <1 —¢ and ¢ < 2 (Fig. 3, diagonal
shading).

F I
3\
€

FIG. 3. State space of values of the dimensionless axial angu-
lar momentum £ in the inertial frame [Eq. (9b)] and the di-
mensionless speed ¢ in the rotating frame [Eq. (9a)] for a puck
that moves on the frictionless surface of a weakly spheroidal
planet that rotates at its stable angular speed. Regions of di-
agonal, horizontal, and vertical cyan shading respectively in-
dicate where latitude extrema 07, 65, and 03 apply [Egs. (21)].
Two extrema (07, 65) apply in region A, two (67, 63) in region
A’; one (63) in region B, and one (03) in region B’. Red dots
denote junctions C, D, E, and E’. Green traces denote region
boundaries. Green dots and arrows denote extension points
F, F/, and G, where regions B and B’ and region boundaries
EF, E'F’, and DG extend indefinitely beyond the frame of
the diagram. The regions, boundaries, and junctions com-
prise sixteen classes of inertial motion that are summarized
in Table I and illustrated in Fig. 4.

To ensure that cos 65 > 0, we must have £ > 0, which
also ensures that 65 is real. To ensure that cos 65 < 1, we
must have £ <1+ ¢. Hence, the extrema 0 = £03 apply
for 0 < L <1+¢and e >0 (Fig. 3, horizontal shading).

To ensure that 03 is real, we must have £ > —e2/4.
To ensure that cos#3 > 0, we must have £ < 0. At
a particular value of ¢, the maximum value of cos#j is
reached for £ = —¢2?/4, for which cos#} = /2. Thus
cosf; <1 for ¢ <2. To ensure that cos@; <1 for e > 2,
we must instead have £ > 1 — . Thus, for € < 2, the
extrema § = +£63 apply for —e2/4 < £ < 0, and for
€ > 2, these extrema apply for 1 —e < £ < 0 (Fig. 3,
vertical shading).

Figure 3 identifies sixteen classes of inertial motion:
four main classes corresponding to regions A, A’, B, and
B’; eight degenerate classes corresponding to regional
boundaries CD, CE, CE/, DE, DE’, EF, E'F’, and DG;



TABLE I. List of sixteen classes of inertial motion labeled by their CorioVis demonstration numbers [32], together with their
locations in state space (Fig. 3) and latitude ranges. Main classes, degenerate classes, and doubly-degenerate classes are listed
respectively in bold, italic, and Roman typefaces. The latitude extrema 67, 05, and 03 are defined in Egs. (21). The sixteen

classes are illustrated in Fig. 4.

Inertial Motion Class

State Space

Latitude Range

C1. Stationary at pole Junction C 0 ==+m/2

C2. Stationary at midlatitude Boundary CE 0 =cos VL
C3. Nonpolar circles Region A 01 < 10| <03
C4. Polar circles Boundary CD cosTle < 0] < /2
C5. Circumpolar circles Region A’ 01 <10] <63

C6. Westward at midlatitude

Boundary CE’

0 = cos ' (g/2)

C7. Stationary at equator Junction E 0=0
C8. Nonpolar asymptote Boundary DE 0< 0] <03
C9. Polar asymptote Junction D 0< 0] <m/2
C10. Circumpolar asymptote Boundary DE’ 0< 6] <03
C11. Westward at equator Junction E’ 0=0
C12. Eastward at equator Boundary EF 0=0
C13. Nonpolar waves Region B 0] <03
C14. Polar waves Boundary DG 0] < 7/2
C15. Circumpolar waves Region B’ 0] <65
C16. Fast westward at equator Boundary E'F’ 0=0

and four doubly degenerate classes corresponding to junc-
tions C, D, E, and E’. We assign labels C1-C16 to these
sixteen classes, which are listed in Table I, are illustrated
in Fig. 4, are described in the text below, and are visu-
alized in sixteen CorioVis demonstrations numbered C1-
C16 [32]. Main classes, degenerate classes, and doubly-
degenerate classes are listed respectively in bold, italic,
and Roman typefaces.

Because the degenerate and doubly degenerate classes
lie along lines and points in the 2D state space (Fig. 3)
and because these lines and points occupy no area in this
space, randomly chosen initial conditions will never pro-
duce a degenerate or a doubly degenerate class of motion.
Although these degenerate classes are needed for com-
pleteness and might be observable with carefully chosen
initial conditions, random initial conditions and naturally
occurring motion will always fall into one of the four main
classes, which occupy regions in state space.

Figure 4 is our 2D classification scheme for inertial
motions. We call classes that cross the equator “waves”
(row 4), classes that asymptotically approach the equator
“asymptotes” (row 3), and classes that avoid the equa-
tor “circles” (row 2). The axial angular momentum £
decreases from left to right along each row; the middle
column is for £ = 0. This classification scheme empha-
sizes the uniqueness of each class and its relationship with
other classes. We now summarize the properties of each
of the sixteen classes.

C1. Stationary at pole: At junction C in Fig. 3, the
values ¢ = £ = 0 imply that the puck is stationary at the
north or south pole.

C2. Stationary at midlatitude: Along boundary CE,

the puck is stationary in the rotating frame (¢ = 0). The
puck resides at latitude ¢ = cos~ ' VL, found by setting
¢ = 0 in Eq. (11a). In moving from C (£ = 0) to E
(L = 1) along boundary CE, the puck’s latitude moves
from a pole (# = +7/2) to the equator (f = 0). This
movement reflects the increase in the angular momentum
in the inertial frame that is associated with increasing the
distance between the puck and the earth’s rotation axis,
for a puck of fixed angular speed §2.

C3. Nonpolar Circles: Region A is the interior of tri-
angle CDE. In this region in the rotating frame, the puck
is confined either to the northern hemisphere, where it
executes westward-drifting clockwise circles in the lati-
tude range 07 < 0 < 63, or to the southern hemisphere,
where it executes westward-drifting counterclockwise cir-
cles in the latitude range —605 < 6 < —07; the latitude
extrema are given in Egs. (21). Nonpolar circles do not
pass through or around a pole and are confined to a sin-
gle hemisphere. Referred to as “inertial circles,” they are
the best known example of inertial oscillations and have
been observed in ocean currents [8, 33-38].

C4. Polar circles: On the CD boundary in the rotat-
ing frame, £ = 0 and the puck executes westward-drifting
circles that are confined to a single hemisphere and are
similar to nonpolar circles except that each circle crosses
directly over a pole. As discussed in Sec. VI, when viewed
in the inertial frame, polar circles become polar oscil-
lations along a great circle. CorioVis supplies views
in both frames by using the “f” key to toggle between
frames.

C5. Circumpolar Circles: Region A’ is the interior
of region CDE’. In this region in the rotating frame, the




C1. Stationary at pole
(0,0

C2. Stationary at
midlatitude
(0, +0.8)

C3. Nonpolar circles
(0.4, +0.4)

C4. Polar circles
(0.9, 0)

C5. Circumpolar circles
(1.3, —0.4)

C6. Westward at
midlatitude
(1.7, —.8)

C7. Stationary at equator

C8. Nonpolar asymptote

C9. Polar asymptote

C10. Circumpolar

C11. Westward at equator

(0, 1) (0.5, +0.5) (1,0) asymptote (2, -1)
(1.5, —0.5)
- % L &= -

C12. Eastward at equator
(0.5, +1.5)

C13. Nonpolar waves
(0.4, +0.7)

C14. Polar waves
(12, 0)

C15. Circumpolar waves
(1.7, —=0.7)

C16. Fast westward at
equator
(2.5, —1.5)

FIG. 4. Our 2D classification scheme for inertial motions of a puck that slides on the earth’s stably rotating spheroidal surface,
assumed frictionless, as seen by an observer in the rotating frame. Shown are screenshots of CorioVis visualizations labeled by
their CorioVis demonstration numbers [32] and values of (g, £). Puck trajectories are shown in yellow. Red dots denote final
puck positions and red arrows denote final puck velocities. Typefaces mirror those in Table 1.

puck executes westward-drifting circles that are confined
to a single hemisphere and are similar to nonpolar circles

except that each circle circumscribes a pole.

C6. Westward at midlatitude: Along boundary CE/,

L = —c?/4 and the puck travels due west in the rotating

frame.

C7. Stationary at equator: At junction E, ¢ = 0 and
L =1 and the puck is stationary at the equator in the
rotating frame.

C8. Nonpolar asymptote: Along boundary DE, £ =




(a) Nonpolar circles,
rotating frame

(b) Circumpolar circles,
rotating frame

(¢) Circumpolar circles,
counter-rotating frame

(d) Nonpolar circles,
counter-rotating frame

FIG. 5. CorioVis screenshots of nonpolar circles (a) and cir-
cumpolar circles (b) as seen in the rotating frame (Fig. 4,
classes C3 and C5) and their respective trajectories (c) and
(d) as seen in the counter-rotating frame. Panels (a) and
(c) are the same trajectories and have the same initial condi-
tions. The difference is that they are viewed from two different
frames of reference. CorioVis demo C3 supplies both views
by using the “f” key to toggle between reference frames [32].
Similarly with panels (b) and (d) (CorioVis demo C5). The
circumpolar circles of panel (c) follow from a time reversal of
the circumpolar circles of panel (b) and the nonpolar circles
of panel (d) follow from a time reversal of the nonpolar circles
of panel (a).

1—e¢ and the puck approaches the equator asymptotically
traveling west in the rotating frame after completing at
most one loop. Whether it executes a complete loop or
only a part of a loop depends on the initial conditions.
The loop is clockwise in the northern hemisphere and
counterclockwise in the southern hemisphere, and does
not pass through or around a pole.

C9. Polar asymptote: At £ = 0, junction D is the
€ — 1 limit of the nonpolar asymptote, so in the rotating
frame, the puck executes at most one loop that passes
through a pole, then approaches the equator asymptoti-
cally traveling west.

C10. Circumpolar asymptote: Along boundary DE/,
L =1 — ¢ and the puck approaches the equator asymp-
totically traveling west in the rotating frame after com-
pleting at most one loop that circumscribes a pole.

C11. Westward at equator: At junction E/, e = 2 and
L = —1, and the puck is confined to the equator. It
travels west in the rotating frame and is stationary in

the counter-rotating frame.

C12. Eastward at equator: At boundary EF, L =1+¢
and the puck is confined to the equator traveling east. At
E, the puck is stationary at the equator in the rotating
frame. As e increases, the eastward speed of the puck
increases in this frame.

C13. Nonpolar Waves: In region B in the rotating
frame, the puck visits both hemispheres and oscillates
symmetrically across the equator, executing loops in
both hemispheres. These loops circulate clockwise in the
northern hemisphere and counterclockwise in the south-
ern hemisphere, and do not pass through or around a
pole.

Cl4. Polar waves: At junction DG in the rotating
frame, the puck’s behavior is similar to nonpolar waves
except that the puck passes through both poles. Because
L = 0 for these waves, their motion is along a great circle
when viewed in the inertial frame, but with non-constant
speed, in a manner similar to the behavior of polar circles
when viewed in the inertial frame.

C15. Circumpolar Waves: In region B’, the puck’s
behavior is similar to nonpolar waves except that the
puck passes around both poles.

C16. Fast westward at equator: At boundary E'F’, the
puck moves westward at the equator in both the rotating
and counter-rotating frames.

All of the trajectories shown in the center column of
Fig. 4 (classes C1, C4, C9, and C14) have £ = 0. For
all of these trajectories, the puck either resides at a pole
or passes through at least one pole. The reason is that
setting § = £7/2 in Eq. (11a) gives £ = 0. Since L is a
conserved quantity, any trajectory that resides at a pole
or passes through at least one pole must have £ = 0.

All of the trajectories shown to the left of the center
column of Fig. 4 have £ > 0 and all of the trajectories to
the right have £ < 0. To illustrate the rotation symmetry
of Sec. II B, we substitute values of (g, £) for each £ > 0
trajectory in Fig. 4 into Egs. (17b) and (19) to find the
values of (g, L) for the corresponding £ < 0 trajectory in
Fig. 4. Each resulting pair of trajectories shares the same
latitude range, and paired periodic trajectories share the
same period of motion.

For example, we substitute the values (0.4, +0.4) for
the nonpolar circles of Fig. 4, class C3 into Egs. (17b)
and (19) to find the values (1.3, —0.4) for the circumpolar
circles of Fig. 4, class C5. Both share the same latitude
range A = 33° and period 7 = 18 hr.

Figure 5 emphasizes the rotation symmetry of these
states by showing that nonpolar circles in the rotating
frame (a) become circumpolar circles when viewed in the
counter-rotating frame (c¢) and circumpolar circles in the
rotating frame (b) become nonpolar circles when viewed
in the counter-rotating frame (d). Thus, a set of ini-
tial conditions that produces clockwise, westward drift-
ing, nonpolar inertial circles when viewed by an earth-
bound observer in the northern hemisphere of a normally
rotating earth (a) produces counterclockwise, eastward
drifting, circumpolar inertial circles when viewed by an
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FIG. 6. Latitudes visited (shaded regions) bounded by latitude extrema [solid traces, Eqgs. (21)] as a function of ¢ for selected
values of £. The associated class or classes of inertial oscillations are listed below each panel, with typefaces mirroring those

in Table 1.

earth-bound observer in the northern hemisphere of a

counter-rotating earth (c).

Figure 5 also shows that circumpolar circles in the
counter-rotating frame (c) follow from circumpolar cir-
cles in the rotating frame (b) by reversing the flow of

time - that is, by following the same trajectory at the
same speed but in the reverse direction, on an earth
that rotates backwards. Similarly, nonpolar circles in the
counter-rotating frame (d) follow from nonpolar circles in
the rotating frame (a) by reversing the time. Thus, the



rotation symmetry is a time-reversal symmetry.

IV. TRANSITIONS

To better understand the transitions between these
sixteen classes of inertial motion, we consider latitude
ranges as a function of ¢ in Fig. 6.

For £ = 2, Fig. 6(a) reflects eastward motion at the
equator (boundary EF) for ¢ = 1 and nonpolar waves
(region B) of increasing range for € > 1.

For £ = 1, Fig. 6(b) reflects a stationary puck at the
equator (junction E) for ¢ = 0 and nonpolar waves (re-
gion B) of increasing range for ¢ > 0.

For £ = 0.25, Fig. 6(c) reflects a stationary puck at
midlatitude (£60°, boundary CE) for e = 0, nonpolar
circles (region A) of increasing range for 0 < ¢ < 0.75,
a nonpolar asymptote (junction DE) for ¢ = 0.75, and
nonpolar waves (region B) of increasing range for £ >
0.75.

For £ = 0, Fig. 6(d) reflects a stationary puck at a
pole (junction C) for € = 0, polar circles (boundary CD)
of increasing range for 0 < ¢ < 1, a polar asymptote
(junction D) for € = 1, and polar waves (boundary DG)
for e > 1.

For £ = —0.25, Fig. 6(e) reflects westward motion at
midlatitude (£60°, boundary CE') for ¢ = 1, circumpolar
circles (region A’) of increasing range for 1 < & < 1.25,
a circumpolar asymptote (boundary DE’) for ¢ = 1.25,
and circumpolar waves (region B’) of increasing range for
€ > 1.25.

For £ = —1, Fig. 6(f) reflects westward motion at the
equator (junction E’) for ¢ = 2 and circumpolar waves
(region B’) of increasing range for & > 2.

For £ =1+ ¢, Fig. 6(g) reflects a stationary puck at
the equator (junction E) for € = 0 and eastward motion
at the equator (boundary EF) for £ > 0.

For £ =1 — ¢, Fig. 6(h) reflects a stationary puck at
the equator (junction E) for e = 0, nonpolar asymptotes
(boundary DE) of increasing range for 0 < € < 1, a polar
asymptote (junction D) for € = 1, circumpolar asymp-
totes (boundary DE’) of decreasing range for 1 < & < 2,
westward motion at the equator (junction E’) for ¢ = 2,
and fast westward motion at the equator (boundary E'F’)
for e > 2.

For £ = 1 — €%/4, Fig. 6(i) reflects a stationary puck
at a pole (junction C) for e = 0, westward motion at
midlatitude (boundary CE’) for 0 < e < 2, and westward
motion at the equator (junction E’) for e = 2.

V. NONPOLAR CIRCLES

In this section, we investigate small-amplitude nonpo-
lar circles for the westward launch of Fig. 4, class C3.
Small-amplitude nonpolar circles occur in region A of
Fig. 3 near the CE boundary, where ¢ is small and the
puck makes small westward-drifting circles about a line of
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latitude. We expand ¢, 6, and £ in powers of € according
to

o(t) = go + e (t) +2da(t) +--- (22a)
0(t) = 0o + €01 (t) + 20o(t) + - - - (22b)
L=Lo+ely +e2Lo+ -+, (22c)

where ¢(0) = ¢¢ is the initial longitude and 6y is the
midlatitude, as discussed below.
We use the Taylor expansion

£(0) = F(00) ' (80)(6—60) 3 (60) (6~60)*+ - (23)
to expand f(#) = cos? 0, yielding

cos? 0 = cos? By — e6; sin 26,
— &% (02 5in 20y + 67 cos260p) + - - . (24)

To order €%, Eq. (11a) gives
Lo = cos® bp. (25)

To order !, Eq. (11a) yields
P
1= —01sin26y + q <08 6o. (26)
To order €2, Eq. (11b) yields

0% = ¢2 cos? 0, + 6. (27)

The oscillatory solutions

coswt (28a)

. Q
o(t) = - cos by

01(t) = Qsinwt (28b)
satisfy Eq. (27), and describe motion for a westward
launch. Integrating Eqgs. (28) and imposing ¢1(0) = 0
and 61(0) = —Q/w gives

o1(t) o cos 0 sinwt (29a)
Q
0,(t) = - cos wt. (29Db)
Inserting these into Eq. (26) gives
202 sin 6
L1 = cos b cos wt (smo - 1) . (30)
w

Since L is a constant of the motion, £ must also be a
constant of the motion. Consequently, Eq. (30) implies

L1=0 (31)
and an angular frequency of oscillations

w = 2Qsinby. (32)



This angular frequency is called the Coriolis parameter,
and is positive in the northern hemisphere (6p > 0) and
negative in the southern hemisphere (6y < 0) [19].

To order €2, Eq. (11a) yields

Lo = —9% cos 20¢ — 05 sin 20y — %91 sin 26 + % cos? By
(33)
To order €3, Eq. (11b) yields
- .. 1.
(251¢2 COS2 90 + 9192 = §¢%91 sin 290. (34)

Equations (28), (29), (33), and (34) yield

P U S (S 2 ot
cos2 0y | 2 4sin?6, coswtl
(35)

G =

2
cos by

and

. QO 2
0 tan wt — why = (E + cos” wt > . (36)
cos by

> 4gin? 0o
Imposing the initial condition 65(0) = 0 on Eq. (36) gives
1

Lo=——F—, 37
2 4sin? 6, (37)
whence Eq. (36) can be written as
. 02 sin? wt
Oy tanwt — wlhy = ———————. 38
2ranwt — W w sin 26, (38)

This is a first-order linear non-homogeneous ordinary dif-
ferential equation in 05(t). Its particular solution is

02 sin? wt
0s(t) = —————
2(1) w?sin 260y’ (39)
whence
. 02 sin 2wt
0:(t) = —————. 40
2(t) w sin 26, (40)

Inserting Eqgs. (37) and (39) into Eq. (35) gives
Q in” wi
— <C082 wt — s%n d ) . (41)

Integrating Eq. (41) and imposing the initial condition
¢2(0) = 0 gives
Ot Q sin 2wt

t) = —
2(t) = — 50 0o | 2wsin’ 20,
Combining results gives the longitude, latitude, and

axial angular momentum of nonpolar circles to second
order in the amplitude,

(L+sin*6p)  (42)

Q) sin wt 20t
t) = o — -
(b( ) d)O W COS 90 4 sin2 00
£2Q sin 2wt 9
——————— (1 +sin“ 6 43
2w sin? 26, ( S 0) (43a)
eQ 202 sin? wt
0(t) =0y — — t— ————— 43b
®) 0~ T 0¥ w? sin 20, (43b)
2
L = cos® 0 — c (43c¢)

VY
4sin” 0,
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with angular frequency w given by Eq. (32) and period
given by 7 = 27/|w|. Equations (43), which are valid
to order £2, describe clockwise circles in the northern
hemisphere (g > 0, w > 0) and counterclockwise circles
in the southern hemisphere (6y < 0, w < 0).

The time derivative of Eq. (43b),

€202 sin 2wt

O(t) = eQsinwt — 44

(t) = eQsinw wsin26y ’ (44)

vanishes at times t = 0, 7, 27,..., when the puck travels
west at latitude

Owest = 0o — eQ/w. (45a)

This time derivative also vanishes at times ¢t =
7/2, 37/2,..., when the puck travels east at latitude

Beast = 0o +Q/w, (45Db)

with |feast| > |Owest|- The latitude range is given by

e

Al = |eeast - ewestl = (46)

\sin90| ’

The strength of the horizontal component of the Cori-
olis force increases with increasing |f|. The puck there-
fore experiences a stronger horizontal Coriolis force at
0 = Ocast than at 0 = Oys¢. The puck’s speed is constant
in the rotating frame, where it spends more time travel-
ing west than east, and drifts westward during each cycle
of its motion (Fig. 7). The third term on the right side
of Eq. (43a) is responsible for this westward zonal drift,
which is given by

me?

Ap=¢(1) — ¢(0) = *m- (47)

Because of this westward drift, the meridional latitude
Om, defined as the latitude at which the puck travels due
north and due south (¢ = 0), differs from the midlatitude
fo, which is midway between Oyes; and Ocas;.  Setting
Eq. (11a) equal to Eq. (43¢) with ¢ = 0 and 6 = 6., gives

2
cos? O, = cos? By — 872 (48)
4sin” 0y
To lowest order in €, this gives
&2
am = 90 + (49)

4sin? Oy sin 26,

Therefore, starting at the equator, one encounters @yest,
0o, Om, and Beast, in that order. This ordering applies
to nonpolar circles in the northern and southern hemi-
spheres, which are mirror images of each other on either
side of the equator (Fig. 7).

Equations (43), describing small-amplitude nonpolar
circles for a westward launch, are algebraically simpler
than small-amplitude nonpolar circles for a northward
launch [19]. The first reason is that, for a westward
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FIG. 7. Trajectories of nonpolar circles in the northern (a)
and southern (b) hemispheres in the rotating frame showing
the latitude @ vs. longitude ¢ obtained by integrating Eqgs. (11)
for a puck launched due west at dimensionless speed € = 0.5
from initial latitude Owest = £30° and initial longitude ¢(0) =
0. Shown are the latitudes ¢(7) = —29° after one period
7 = 17 h of the motion, the midlatitudes 6y = +49° where
the puck is halfway between Oeast and Owest, the meridional
latitudes 6., = 4+56° where the puck travels due north and
due south, and the maximum latitudes Oeast = £69° where
the puck travels due east. The images are distorted because
they do not account for the convergence of longitude lines
toward the poles (0 = +90°).

launch, the latitude extrema given by Egs. (45) occur
at integer and half-integer multiples of the period 7. The
second reason relates to the definition of the reference an-
gle. The reference angle in Eqs. (43) is the midlatitude
0o, midway between the latitude extrema. Using this ref-
erence angle, there are no second-order corrections to the
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FIG. 8. Angular frequency w, latitude range A6 in radians,
and zonal drift A¢ in radians vs. dimensionless speed ¢ for
nonpolar circles in the rotating frame, where € is the earth’s
angular speed of rotation. Solid traces are numerical solutions
of Egs. (11) and dashed traces are small-amplitude approxi-
mations given by Egs. (32), (46), and (47).

latitude extrema of Egs. (45). In Ref. [19], the puck is
launched northward from the meridional latitude, which
is used as the reference angle. This requires second-order
corrections to the latitude extrema.

Figure 8 compares the angular frequency w, latitude
range Af, and zonal drift A¢ obtained from numeri-
cal integrations of Egs. (11) (solid traces) with small-
amplitude approximations given by Egs. (32), (46), and
(47) (dashed traces), vs. the dimensionless speed e of
nonpolar circles.

For the numerical integrations in Fig. 8, the puck is
placed initially at latitude Oyes; = 30° and is launched
due west with initial speed €af), where ¢ is its dimension-
less speed, a is the earth’s equatorial radius, and €2 is the
earth’s angular speed of rotation (Sec. II). Accordingly,
the puck’s initial velocity components are

v5(0) = —eaf) (50)
Vg (0) =0. (51)

Using the Fortran Numerical Recipes implementation of
the fourth-order Runge Kutta algorithm [42], the integra-
tions are carried out with a time step of At =1 s except
near latitude extrema and pole crossings, where smaller
time steps are used [28]. The time at which the puck re-
turns to its initial latitude is the period 7 of its motion,
and its angular frequency follows from w = 27 /7 (solid
trace). The puck’s zonal drift during that time is given
by A¢ = &(r) — ¢(0) (solid trace). Its latitude range
A = Ooast — Owest (solid trace) is the difference between
the puck’s maximum latitude 0,5, Where it travels east,



and its minimum latitude Oyest, where it travels west. Its
midlatitude is given by the average of these latitudes,

60 — eeast + ewest ) (52)
2
This midlatitude is used to calculate w, Af, and A¢ from
Egs. (32), (46), and (47) (dashed traces in Fig. 8).

The numerical integrations and the small-amplitude
approximations of Fig. 8 agree as € — 0. This agreement
helps to validate both the integrations and the approxi-
mations. The upper limit € = 0.86 shown in Fig. 8 yields
Ocast = 89.7°, meaning that the puck just misses pass-
ing over or around the north pole. Thus, the range of
values of ¢ in Fig. 8 represents the full range of values
for nonpolar circles (region A in Fig. 3) for the initial
conditions considered. The agreement between numeri-
cal and small-amplitude results is good over this entire
range. This agreement justifies our definition of the ref-
erence angle as the midlatitude 6y and indicates that the
second-order amplitude expansion of Egs. (43) captures
the basic physics of nonpolar circles.

VI. POLAR CIRCLES

In this section, we investigate small-amplitude polar
circles. These occur on boundary CD of Fig. 3 near
junction C, where ¢ is small and the puck makes small
westward-drifting circles that pass through a pole.

We consider a puck launched southward from a pole,
at initial latitude 6(0) = £ /2, which implies £ = 0 by
Eq. (11a). Since L is conserved, Eq. (11a) demands that

$=-9 (53)
throughout the motion. Thus, the longitude satisfies
o(t) = o — 2, (54)

where ¢ = ¢(0) is the initial longitude of the puck.
Substituting Eq. (53) into Eq. (11b) gives an equation
of motion governing the latitude 6,
62
e? = cos? 0 + RER (55)

It is convenient to define a small polar angle § by

9:1(5—5), (56)
2

with the “+” sign pertaining to motion near the north

pole and the “—” sign pertaining to motion near the
south pole. Then Eq. (55) becomes
52

e? = sin? 6 + ek (57)

We seek solutions to Eq. (57) that satisfy the initial

condition 6(0) = 0, which places the puck initially at
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a pole. As will be seen below, these solutions feature
both positive and negative values of §. Positive values
satisfying 0 < § < 7 correspond to the usual latitude
range —7/2 < 6 < /2, while negative values satisfying
—m < 6 < 0 correspond to superpolar latitudes 7/2 <
] < 37/2. Setting § = 0 in Eq. (57) gives bounds on
the allowed range of polar angles —0max < 0 < max,
where

Smax = Sin e (58)

is the maximum polar angle. This angle vanishes for
small €, implying that small-amplitude motion is confined
to the vicinity of a pole, where |§| is small. For small |§|,
Eq. (57) gives
2 2 8
Its solution is
§(t) = esin 4, (60)

where we have imposed the initial condition §(0) = 0.
Applying Eqgs. (12) and the foregoing yield a solution
through first order in ¢,

o(t) = ¢o — Qt (61a)
o(t) = + (g — esin Qt) (61D)
vy (t) = —afdesin Qt (61c)
vg(t) = Fafe cos Q. (61d)

These first-order equations ignore the westward drift of
polar circles and describe uniform circular motion with
angular frequency w = 29, period 7 = 27/w = 7/Q,
speed v = afle, and radius r = v/w. The upper sign
describes clockwise motion starting at the north pole
(6p = +7/2) and the lower sign describes counterclock-
wise motion starting at the south pole (6y = —7/2).

Because the argument of the trigonometric functions in
Egs. (61) is ¢, these equations might seem to describe
uniform circular motion with angular frequency €. To
explain why the angular frequency is w = 22 and the
period is 7 = 27/w, we consider the motion of a puck
launched southward from the north pole along the longi-
tude line ¢ = ¢g. The puck’s latitude and longitude both
decrease with time, so the puck deflects westward (to the
right) as it moves south. At time ¢ = 7/2 and at lon-
gitude ¢ = ¢ — 7/2, the puck reaches its southernmost
latitude of @ = 7/2—¢, where it travels due west. Its lon-
gitude continues to decrease with time while its latitude
increases, implying a northward deflection. Ast — 7, the
puck returns to the north pole along the longitude line
¢ = ¢o — m, which is on the same great circle as the line
¢ = ¢g. Thus, in a time ¢t = 7, the puck returns to its
initial position and velocity and completes one cycle of
the motion. The velocity components of Egs. (61c) and
(61d) ensure that this cycle is a clockwise circle executed
at constant speed v = aQde and radius r = v/w.
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(a) Rotating frame, t =0

(b) Rotating frame, t =13 h

(c) Rotating frame, t = 26 h

Vo

(d) Inertial frame, t =0

(e) Inertial frame, t =13 h

(f) Inertial frame, t =26 h

FIG. 9. CorioVis screenshots of a puck launched from the north pole southward along the prime meridian at 250 m/s on a
smooth, stably rotating, spheroidal earth, as seen by an observer above the north pole. Shown are screenshots at times ¢t = 0,
13 h, and 26 h, as seen by observers in the rotating (a)-(c) and inertial (d)-(f) frames. The puck’s position is denoted by a
red dot and its velocity by a red arrow. The position of Greenwich, London, United Kingdom is denoted by a black dot and
its velocity (due to the earth’s rotation) is denoted by black arrows in the inertial frame. Yellow and green traces show the
paths of the puck as seen by observers the rotating and inertial frames, respectively. In the rotating frame, the puck executes
westward-drifting polar circles with period 13 h. In the inertial frame, the puck oscillates about the north pole with period
26 h. Background stars are denoted by black circular streaks in the rotating frame and by black dots in the inertial frame.
CorioVis demo 8 supplies views in both frames by using the mouse to rotate the viewing angle and by using the “f” key to

toggle between reference frames [32].

The second cycle of motion described by Egs. (61) is
fascinating. Between times ¢ = 7 and t = 27, the longi-
tude decreases from ¢ = ¢g — 7 to ¢ = ¢y — 27, while
the latitude 6 > 7/2 is superpolar. Consequently, the
puck resides on the opposite side of the north pole than
is indicated by its longitude, and the puck traces out
the same path as the first cycle. The transformations
¢ — ¢+ mand § — m — 0 map the values of ¢ and 0
during the second cycle onto the values for the first cy-
cle. Thereafter, odd-numbered cycles have latitudes in
the usual range, while even-numbered cycles have super-
polar latitudes and consequently replicate the motion of
the odd-numbered cycles.

Figure 9 illustrates the motion of a puck launched

southward from the north pole at 250 m/s (¢ = 0.54),
a typical cruising airspeed for commercial passenger air-
craft [43]. As seen by an observer in the rotating frame
(stationary earth, rotating stars), the puck executes polar
circles with period 7 = 13 h and zonal drift A¢ = —16°,
meaning that it drifts westward by 16° during each pe-
riod of its motion. This drift is evident in the veloc-
ity vectors in frames (b) and (¢). As discussed above,
odd-numbered cycles, such as the cycle between frames
(a) and (b), have subpolar latitudes § < /2 and even-
numbered cycles, such as the cycle between frames (b)
and (c), have superpolar latitudes 6 > 7/2. These su-
perpolar latitudes are evident in the numerical latitudes
displayed in CorioVis, demo 8 [32].
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FIG. 10. Angular frequency w, latitude range A6 in radians,
and zonal drift A¢ in radians vs. dimensionless speed ¢ for
polar circles in the rotating frame, where 2 is the earth’s an-
gular speed of rotation. Solid traces are numerical solutions
of Egs. (11) and dashed traces are small-amplitude approxi-
mations given by Egs. (62).

As seen by an observer in the inertial frame (rotat-
ing earth, stationary stars), the puck of Fig. 9 oscillates
about the north pole, tracing out the same path again
and again as the earth rotates beneath it. In this frame,
the puck completes only half a cycle in time of 13 h and
requires a time of 26 h to complete an entire oscillatory
cycle. Thus, polar circles of period 7 in the rotating
frame correspond to polar oscillations of period 27 in the
inertial frame.

Equations (61) describe small-amplitude polar circles
in the rotating frame with frequency, latitude range, and
zonal drift given respectively by

w =20 (62a)
Af=¢ (62b)
A¢ =0, (62¢)

valid to first order in . Figure 10 compares these ap-
proximations with numerical solutions of Egs. (11). The
agreement is excellent for small €.

VII. CIRCUMPOLAR CIRCLES

In this section, we investigate small-amplitude circum-
polar circles. These occur in region A’ of Fig. 3 near the
CE’ boundary, where €’ is small and the puck circles west-
ward around a pole while making small excursions about
a line of latitude. To describe these trajectories, we ex-
ploit the rotational/time-reversal symmetry of the earth
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FIG. 11. Angular frequency w, latitude range A6 in radians,
and zonal drift A¢ in radians vs. dimensionless speed &’ in the
counter-rotating frame for circumpolar circles in the rotating
frame, where () is the earth’s angular speed of rotation. Solid
traces are numerical solutions of Egs. (11) and dashed traces
are small-amplitude approximations given by Eqs. (63e), (64),
and (65).

(Secs. IIB and III). Since Egs. (43) satisfy Egs. (11)
to order €2, making the replacements ¢ — ¢', £L — L',
and ¢ — &’ in Eqgs. (43) satisfies Egs. (18) to order &2.
Applying Egs. (15) and (17b) immediately yields

20

4sin? 6,

'Q sinwt
O(t) = do — 200+ =

w cos By
€2 sin 2wt

- 1 +sin®0 63
2w sin® 20, (1+5in” o) (63a)
e’ €202 sin? wt
0(t) =0 — — t— —
(8) =% w Y w? sin 26, (63b)
9 6/2
L =—cos* Oy + ———, 63
o8 v 4sin® 6, (63¢)
where
e? =2 +4L (63d)
w = 2Qsin b (63e)

from Egs. (19) and (32). Equations (63) describe cir-
cumpolar circles with £ < 0 on the normally rotating
earth to second order in the counter-rotating amplitude
¢’. Like the nonpolar circles of Egs. (43), these circum-
polar circles run clockwise in the northern hemisphere
(Bp > 0, w > 0), and counterclockwise in the southern
hemisphere (fy < 0, w < 0). Unlike the nonpolar circles
of Egs. (43), these circumpolar circles go around a pole
and the puck always travels west, oscillating between lat-
itudes 01 = 6y —e'Q/w (at times t =0, 7, 27,..., where
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FIG. 12. Scaled puck trajectories for nonpolar waves obtained by integrating Egs. (71a) and (71c). Shown are the scaled
latitude @ vs. the scaled longitude ¢ for launches from the equator at various values of the launch angle «, measured north of

east. A single period of the motion is shown for each value of a.

7 = 27/|w| is the period) and 0 = 0y + £’Q/w (at times
t=7/2, 37/2,...). The latitude range is given by

6’

AG = |05 — 01 (64)

- | sin 6|

During one period 7 of the motion, the puck migrates
westward through a longitude range

2 me’?

Ap=¢(T) — ¢(0) = _|sin90‘ T 4\sin390‘.

(65)

Setting ¢’ = 0 in Eq. (63d) gives £ = —¢?/4, the angu-
lar momentum for westward motion at constant latitude
o at a constant angular speed ¢ = —2Q (boundary CE'
of Fig. 3). Such motion corresponds to stationary states
on the counter-rotating earth.

To test the validity of Egs. (63), we first observe that
circumpolar circles in the rotating frame [Fig. 5(b)] cor-
respond to nonpolar circles in the counter-rotating frame
[Fig. 5(d)], with the puck traveling east when it is near-
est the equator. For an eastward launch from latitude
6 = 6y in this frame, Eq. (14b) allows us to relate the
puck’s dimensionless speed (v)s: in the counter-rotating
frame to its initial eastward velocity component v4(0) in
the normally rotating frame,

(v)sr = 2Qa cos b + v4(0), (66)

where we have set p = acos#; in the weakly spheroidal
approximation. Inserting this result into Eq. (17a) gives

vg(0) = Qa (' —2cosby). (67)

For small €', v4(0) < 0 and an eastward launch in the
counter-rotating frame corresponds to westward launch
in the normally rotating frame, with vg(0) = 0.

Figure 11 compares the predictions of Eqgs. (63e), (64),
and (65) with numerical solutions of Egs. (11) for west-
ward launches at initial latitude 6; = 30° for various
values of ¢’. Equation (67) gives the initial westward ve-
locity of the puck in the rotating frame. The maximum
latitude 65 is found by integrating Eqgs. (11) and the mid-
latitude is determined by

01 + 6,
2

6o = . (68)
This value is used to determine the small-amplitude ap-
proximations for w, A, and A¢ from Egs. (63e), (64),
and (65). Results for w and A6 in Fig. 11 are identical to
those in Fig. 8 because the initial conditions for these fig-
ures were chosen to exploit the rotational/time-reversal
symmetry of Fig. 5.

VIII. NONPOLAR WAVES

In this section, we investigate small-amplitude nonpo-
lar waves, which occur in region B of Fig. 3 near junc-
tion E, where € is small. The puck is stationary at the
equator at junction E, so we can expect small-amplitude
polar waves to move slowly near the equator. Because
the Coriolis force vanishes at the equator, the amplitude
expansion of Egs. (22) fails for these waves and the wave
frequency w turns out to be proportional to +/e.
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FIG. 13. Scaling results from Egs. (71a) and (71c) (dashed
traces) and exact results for ¢ = 0.1 from Egs. (11) (solid
traces) for the scaled frequency @, zonal drift A¢, and latitude

range A vs. the horizontal launch angle « for nonpolar waves.
Dotted traces give the v — 0 limits of Egs. (77b), (79), and
(82) for eastward nonpolar waves.

The latitude 6 is small for small-amplitude motion near
the equator, and we assume 6 and ¢ to be small as well.
Employing the small-§ approximation cos?f = 1 — 62 in
Egs. (11) and keeping the 62 contribution only where it
does not multiply ¢ yields

%:£—1+02 (69a)
q'52 9‘2
e = ot (69b)

It is convenient to define a scaled longitude ¢(f), a
scaled latitude (f), and a scaled dimensionless time ¢ by

() = Ve o(i) (70a)
0(t) = VEO() (70b)

t

{l;l')
<

et. (70¢)

Inserting these definitions into Egs. (69) yields scaled
equations of motion

% = cosa + 02 (71a)

do ? i\’
(%) + (7).

(71b)
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where Eq. (71a) ensures conservation of angular momen-
tum in the inertial frame and Eq. (71b) ensures conserva-
tion of kinetic energy in the rotating frame. The square
root of Eq. (71b) gives the net scaled dimensionless an-
gular speed of the puck as it slides along the earth’s
frictionless surface. This speed is constant, and equals
unity. Inserting Eq. (71a) into Eq. (71b) gives a conve-
nient equation in 6 only,

df \2
— ::I:\/l— (cosa—|—92) .
dt
In Egs. (71), all dependencies on € and £ are subsumed
into a dimensionless constant « defined by
L-1

cos . (72)

(71c)

Its range 0 < a < 7 corresponds to the range 1 —¢ < £ <
1 4 € of nonpolar waves (region B) of Fig. 3 for ¢ < 1.
To interpret o, we consider equator crossings by setting
6 =0 in Egs. (71a) and (71c);

d

= 73
T = cosa (73a)
d—? = +sina. (73b)
dt

Here the “+” sign gives northward crossings and the “—”
sign gives southward crossings. Adopting the “+” sign
and dividing Eq. (73b) by Eq. (73a) gives

d—? = tana. (74)
de

The left side of this equation gives the slope of the tra-
jectory at northward equator crossings, the ratio of the
northward angular displacement df to the eastward an-
gular displacement d¢. Accordingly, o can now be inter-
preted as the angle of the puck’s trajectory during north-
ward equator crossings, measured north of east. At such
crossings, the puck has an eastward velocity component
for 0 < a < 7/2, has a westward velocity component for
m/2 < a < m, and has a velocity that is directly north-
ward for o = 7/2. Taking £ = 0 at such crossings, a
becomes the initial launch angle of the puck, measured
north of east, for a horizontal launch at the equator.

Setting df/dt = 0 and § = +0* in Eq. (71c) yields the
scaled amplitude of the oscillations

§* = /2sin % (75)

The puck oscillates between 6 = +6* (just north of the
equator) and 6 = —6* (just south of the equator). Its
scaled latitude range is

Af = 20* = 2v/2sin % (76)

We integrate Eqgs. (71a) and (71c) using the fourth-
order Runge-Kutta algorithm starting from the initial
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FIG. 14. Angular frequency w, latitude range A6 in radians,
and zonal drift A¢ in radians vs. dimensionless speed ¢ for
eastward nonpolar waves in the rotating frame for a launch
angle of a = 10° north of east, where 2 is the earth’s angu-
lar speed of rotation. Solid traces are numerical solutions of
Eqgs. (11) and dashed traces are small-amplitude approxima-
tions given by Egs. (84).

northward equator crossing at ¢ = 0. Shown in Fig. 12
are resulting trajectories for various values of a. For
a = 130.71°, the trajectory is a figure eight that closes
on itself. For o < 130.71°, the puck drifts eastward, and
for av > 130.71°, the puck drifts westward.

The time £ of the second northward equator crossing
(after the initial northward crossing at ¢ = 0) is the
scaled period 7 of the motion, obtained by integrating
Egs. (71a) and (71c). Shown as dashed traces in Fig. 13
are the scaled angular frequency & = 27/7, the scaled
latitude range of Eq. (76), and the scaled zonal drift
Aj = ¢(7) — ¢(0) obtained by integrating Eqs. (71a)
and (71c), as functions of a. Shown as solid traces in
Fig. 13 are exact numerical results for ¢ = 0.1 obtained
by integrating Eqs. (11). The exact and scaling results
agree to within 3% over the range 0 < a < 180°.

A. Eastward Nonpolar Waves

It is instructive to consider small-amplitude nonpolar
waves with small o, which are described by simple east-
ward sinusoidal motion. In Fig. 3, this motion occurs in
region B (nonpolar waves), near junction E (stationary at
equator), and near boundary EF (eastward at equator).

To lowest order in a and 6, Egs. (71c), (75), and (76)
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give

%Zi = +1/a? — 262 (77a)

~ «
0" = — 77b
NG (77b)
Af = 20* =/2a. (77¢)

The solution

0(t) = 0*sin(wf) (78)

satisfies the initial condition §(0) = 0, where
©=V2 (79)

is the dimensionless angular frequency and

F="=2r (80)
@
is the scaled period. Because Eq. (71a) gives d(z)/ dt =1
to lowest order, demanding ¢(0) = 0 gives
o(f) =1 (81)
and
Ap =7 =+2m. (82)

In summary, small-amplitude eastward nonpolar waves
have the sinusoidal form

o(t) = Qet (83a)
o(t) = a\@ sin(wt), (83b)
with angular frequency
w=V2eQ, (84a)
latitude range
Af = V2¢a, (84b)
and (eastward) zonal drift
Ap = V2em. (84c)

Evidently, the frequency w of these oscillations vanishes
with vanishing amplitude ¢.

Given values of the dimensionless speed ¢ and the
launch angle «, the puck’s constant speed (v)s = £Qa
follows from Eq. (9a) and the initial velocity becomes

(v)s(0) = eQa (cos ¢+ sina é) . (85)

Setting this equal to Eq. (2) gives the initial velocity
components in the rotating frame,

14(0) = eQacosa (86)

vg(0) = eQasin a. (87)

Figure 14 compares the small-amplitude approxima-
tions of Eqgs. (84) (dashed traces) with numerical solu-
tions of Egs. (11) (solid traces) as a function of e, for

a = 10°. The small-amplitude approximations converge
to the exact results as ¢ — 0.
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FIG. 15. Angular frequency w, latitude range A6 in radians,
and zonal drift A¢ in radians vs. counter-rotating dimension-
less speed €’ for westward circumpolar waves in the rotating
frame for a launch angle of @ = 10° north of west in the
counter-rotating frame, where 2 is the earth’s angular speed
of rotation. Solid traces are numerical solutions of Eqs. (11)
and dashed traces are small-amplitude approximations given
by Egs. (90).

IX. WESTWARD CIRCUMPOLAR WAVES

In this section, we investigate small-amplitude west-
ward circumpolar waves that occur in region B’ of Fig. 3,
near junction E’ and boundary E'F’. These waves cir-
cle around both poles and remain close to the equator,
traveling westward. To describe these waves, we ex-
ploit the rotational/time-reversal symmetry of the earth
(Secs. II B and I1I) to transform eastward nonpolar waves
in the rotating frame (Sec. VIII A), with the equatorial
launch angle o measured north of east, into westward
nonpolar waves in the counter-rotating frame, with «
measured north of west. When viewed in the rotating
frame, these become westward circumpolar waves.

Making the replacements ¢ — ¢', L — L', and £ — ¢’
in Egs. (83) and applying Eqgs. (15) and (17b) yields

o(t)=-Q2+¢)t (88a)
o(t) = a\/g sin(wt), (88b)

where
e? =2 +4L (89)

is the counter-rotating amplitude,

w=V2€
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is the angular frequency,

AG = V2 a, (90Db)

is the latitude range, and

Ap = —\/571’(24-8/).

is the (westward) zonal drift. This drift becomes un-
bounded as & — 0, reflecting the unbounded period of
motion in this limit.

For a launch from the equator at an angle o measured
north of west in the counter-rotating frame, the initial
velocity in this frame is given by

(90c¢)

(v)s/(0) =€'Qa (f cosa g+ sinaé) , (91)

where Eq. (17a) gives the puck’s constant speed (v)g =
e'Qa. Setting Eq. (91) equal to Eq. (14b) and setting
p = a for an equatorial launch in the weakly spheroidal
approximation gives the corresponding components of
the initial velocity in the normally rotating frame

(92a)
(92Db)

v4(0) = —Qa (2 + &’ cos a)
vp(0) = £'Qasin a.

Figure 15 compares the predictions of Egs. (90) with
numerical solutions of Eqgs. (11) with this initial veloc-
ity, with initial position #(0) = ¢(0) = 0, and with
a = 10°, as a function of /. Results for w and Af in
Fig. 15 are identical to those in Fig. 14 because the ini-
tial conditions for these figures were chosen to exploit the
rotational /time-reversal symmetry.

X. CONCLUSIONS

We have identified, named, and described sixteen
classes of trajectories that are possible for motion on the
surface of a frictionless spheroidal earth. We have ex-
ploited our CorioVis visualization software [32] and the
earth’s rotational /time-reversal symmetry to develop and
validate small-amplitude descriptions for the four main
classes and one degenerate class. These efforts illumi-
nate the rich variety of motions that are possible on the
earth’s surface.

Small-amplitude nonpolar circles have been observed
in ocean currents [8, 33-38]. It would be interesting to
see if other classes might be observable in ocean or at-
mospheric currents. Of particular interest are nonpolar
waves, which might be observable in ocean currents near
the equator. This is a challenging observation, though,
because small-amplitude nonpolar waves have low fre-
quencies and might therefore be overwhelmed by other
oceanic forces such as pressure gradients, mean currents,
or continental or bottom barriers.
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