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Abstract. The micropulse differential absorption lidar
(MPD) was developed at Montana State University (MSU)
and the National Center for Atmospheric Research (NCAR)
to perform range-resolved water vapor (WV) measurements
using low-power lasers and photon-counting detectors. The
MPD has proven to produce accurate WV measurements
up to 6 km altitude. However, the MPD’s ability to produce
accurate higher-altitude WV measurements is impeded by
the current standard differential absorption lidar (DIAL) re-
trieval methods. These methods are built upon a fundamental
methodology that algebraically solves for the WV using the
MPD forward models and noisy observations, which exacer-
bates any random noise in the lidar observations.

The work in this paper introduces the adapted Poisson to-
tal variation (PTV) specifically for the MPD instrument. PTV
was originally developed for a ground-based high spectral
resolution lidar, and this paper reports on the adaptations that
were required in order to apply PTV on MPD WV observa-
tions. The adapted PTV method, coined PTV-MPD, extends
the maximum altitude of the MPD from 6 to 8 km and sub-
stantially increases the accuracy of the WV retrievals starting
above 2 km. PTV-MPD achieves the improvement by simul-
taneously denoising the MPD noisy observations and infer-
ring the WV by separating the random noise from the non-
random WV.

An analysis with 130 radiosonde (RS) comparisons shows
that the relative root-mean-square difference (RRMSE) of
WV measurements between RS and PTV-MPD exceeds
100 % between 6 and 8 km, whereas the RRMSE between
RS and the standard method exceeds 100 % near 3 km. In ad-

dition, we show that by employing PTV-MPD, the MPD is
able to extend its useful range of WV estimates beyond that
of the ARM Southern Great Plains Raman lidar (RRMSE
exceeding 100 % between 3 and 4 km); the Raman lidar has
a power-aperture product 500 times greater than that of the
MPD.

1 Introduction

Water vapor (WV) is one of the fundamental thermodynamic
variables that defines the state of the atmosphere and influ-
ences many important processes related to weather and cli-
mate. The importance of continuously monitoring lower tro-
pospheric WV is underscored in the National Aeronautics
and Space Administration (NASA) decadal survey (National
Academies of Sciences, Engineering, and Medicine, 2018b)
and in National Research Council (NRC, 2009, 2010, 2012)
and National Academy of Sciences (National Academies of
Sciences, Engineering, and Medicine, 2018a) reports. In par-
ticular, continuous range-resolved measurements of WV are
needed at large scales to improve severe weather and precipi-
tation predictions (Weckwerth et al., 1999; Wulfmeyer et al.,
2015; Geerts et al., 2016; Jensen et al., 2016).

To fulfill this observational need, Montana State Univer-
sity (MSU) and the National Center for Atmospheric Re-
search (NCAR) have developed a micropulse differential
absorption lidar (MPD) that continuously measures range-
resolved WV in the lower (150 m to 6 km) atmosphere
(Spuler et al., 2015, 2021; NCAR/EOL MPD Team, 2020).
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The MPD is designed for unattended network deployment,
using low-power, low-cost, high-reliability diode lasers that
enable class 1M eye-safe transmitted lasers. The MPD em-
ploys the narrowband differential absorption lidar (DIAL)
technique on a WV absorption line with low temperature
sensitivity, whereby approximate knowledge of atmospheric
temperature and pressure allow for a first-principles-based
retrieval (Nehrir et al., 2009). An immediate benefit of the
MPD is that it provides continuous WV measurements in-
dependent of radiosonde WV measurements, which can pro-
vide additional information to numerical weather prediction
(NWP) data assimilation systems.

1.1 Problem statement – extending capability of MPD

The MPD has proven to produce accurate WV measure-
ments up to 6 km altitude, depending on aerosol loading,
clouds, and solar background. However, in high solar back-
ground conditions, MPD water vapor retrievals can be noisy
as low as 2 km. The MPD’s ability to produce precise mea-
surements above 2 km and accurate higher-altitude WV mea-
surements is impeded by the current standard WV DIAL
retrieval methods. These methods are built upon a funda-
mental methodology that algebraically solves the WV vari-
able through operations that exacerbate any random noise in
the lidar observations (Marais et al., 2016). To suppress the
noise the standard method applies low-pass filters on the al-
gebraically computed WV using a Gaussian smoothing ker-
nel or Savitzky–Golay filter (Schafer, 2011). The signal-to-
noise ratio (SNR) of the WV measurements can be further
improved upon by reducing the vertical and horizontal reso-
lutions of the photon-counting observations. However, reduc-
ing the resolutions introduces systematic biases in the WV
due to the nonlinearity of the single-scatter lidar equation.
Smoothing operations are limited in their benefits because
optimal averaging is generally localized to patches of corre-
lated structure in a lidar profile. Invariably, parts of the profile
are over-smoothed (resulting in biases), while other parts are
under-smoothed (resulting in random error) (Hayman et al.,
2020).

Figure 1 illustrates the shortcomings of low-pass filtering,
where Fig. 1b and e show the standard method estimated
WV image and profile obtained using low-pass filtering. The
profile is juxtaposed with a coincident radiosonde (RS) WV
profile. Although the bandwidth of the low-pass filter is rel-
atively well suited for low altitude ( 4 km) WV measure-
ments, Fig. 1i shows that the filter is not sufficient to mean-
ingfully reduce the noise at higher altitudes. Furthermore,
Fig. 1ii illustrate that the low-pass filter also over-smooths
rapidly changing WV features such as embedded dry regions.

1.2 Proposed approach to extending MPD capability

Advances have been made in denoising photon-counting
medical images where the photon detection methodologies

Figure 1. The (a) attenuated-backscatter cross section (atten.
backs.) and the water vapor (WV) measurements of the (b) stan-
dard (STND) and (c) PTV-MPD methods. Panel (a) is not masked
to show what atmospheric features have been masked out in (b) and
(c) by the gray areas. The dashed vertical white lines in (b) and
(c) show the launch time of the radiosonde (RS), where (e) and (f)
show the RS WV profile. Panel (e) compares the standard method
WV measurements with RS WV profile, whereas (f) shows the same
comparison for the PTV-MPD method. The horizontal dashed lines
in (e) to (f) show the altitude at which the RS was horizontally 5 km
away from the MPD. The dashed boxes in (e) and (f) highlight re-
gions that are discussed in the text.

and forward modeling are similar to that in atmospheric li-
dar (Fessler, 2020; Oh et al., 2013; Harmany et al., 2012;
Willett and Nowak, 2003; Ahn and Fessler, 2003). Basi-
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cally, these methods quantitatively separate the image being
estimated from the random noise by making a distinction
between the (1) vertical and horizontal correlations among
the pixels of the underlying image and (2) the uncorrelated
photon-counting noise. The work of Xiao et al. (2020), Hay-
man and Spuler (2017), and Marais et al. (2016) have demon-
strated that the medical denoising methods can be adopted
and adapted to dramatically improve the inference of the
extinction cross section from ground-based photon-counting
high spectral resolution lidar (HSRL).

Inspired by the medical image denoising methods and the
Poisson total variation (PTV) method for inferring extinc-
tion from HSRL observations (Xiao et al., 2020; Hayman and
Spuler, 2017; Marais et al., 2016), we explore how the PTV
method can be adapted for the MPD instrument to extend its
capability for measuring WV. Figure 1c and f show an exam-
ple WV measurement of the adapted PTV method, labeled
as PTV-MPD, of the same scene and profile of Fig. 1c and
e; using the range intervals indicated by Fig. 1i and ii, the
PTV-MPD WV measurements are more accurate at higher
altitudes and at the embedded dry region compared to the
standard method.

The PTV-MPD method we present in this paper differs
from PTV by three adaptations that are necessary for accu-
rate WV measurements (Marais et al., 2016).

– Forward models for DIAL. The first adaptation of PTV
requires that we develop MPD forward models to fit the
estimated parameters on to the observed photon counts;
while the objective is to estimate the WV, to accom-
modate the forward model, the attenuated backscatter
is also an estimated product. To accurately model what
the MPD observes, a convolution operator is included
in the forward model that represents the oversampling
of the laser pulse (Spuler et al., 2021); the MPD uses
relatively long laser pulses to increase the SNR, with
the trade-off of blurring the backscatter optical signal
described by the standard single-scatter lidar equation
(SSLE).

– Simultaneous inference. PTV for the HSRL infers the
backscatter and extinction cross sections with a two-
step approach in order to isolate geometric overlap cal-
ibration biases to the extinction cross section. However,
with PTV-MPD a two-step approach is not necessary
to infer the WV and attenuated backscatter since the
DIAL employs a differential measurement technique,
which decouples the WV measurement from the geo-
metric overlap. Hence, the second adaptation of PTV is
that PTV-MPD infers the WV and attenuated backscat-
ter simultaneously instead of separately. The simultane-
ous inference approach produces WV estimates that are
more faithful to the MPD observations compared to the
two-step inference approach.

– Mitigate DIAL sensitivity to initial attenuated backscat-
ter. The simultaneous inference of the WV and at-
tenuated backscatter requires initial estimates of both
the WV and attenuated backscatter. Our experiments
show that PTV-MPD is sensitive to near-range inaccura-
cies in the initial attenuated-backscatter estimate, which
induces inaccuracies in the near-range WV measure-
ments. Therefore, the third adaptation involves making
PTV-MPD more robust against inaccuracies in the ini-
tial attenuated backscatter.

1.3 Contributions

The immediate contributions of this paper are the

1. adaptation of the PTV method (i.e., PTV-MPD) for the
DIAL technique and

2. the first rigorous validation of the PTV method using in
situ measurements.

This work also serves as an example of how development
of advanced signal processing can provide insights into im-
proving hardware design and trades. By leveraging advances
in signal processing, lidar hardware costs might be reduced
whilst maintaining or improving the retrieval precision.

1.4 Outline, notation, and symbols

We introduce the MPD forward models in Sect. 2. Thereafter,
in Sect. 3 we discuss the noise model of the MPD and how
saturated photon counts are masked. The standard and PTV-
MPD methods are discussed in Sects. 4 and 5. The paper
ends with experiment results in Sect. 6 and the conclusion
thereafter.

Geophysical variables and the lidar forward models are
written as matrices. When we introduce a geophysics-related
variable we immediately indicate the units of the variable us-
ing the notation [·]; for example [W]. Table 1 lists the pri-
mary matrices and index variables used throughout this pa-
per. The nth row and kth column element of a matrix is de-
noted, for example, by 'n,k . We use the superscript index
(◆) to indicate whether a matrix or vector is specific to lidar
channel (i.e., wavelength).

Table 2 lists commonly used acronyms that are being used
throughout this paper.

2 The MPD forward models

To date NCAR has five experimental MPD instruments
where each instrument transmits laser pulses at a rate of 7 to
8 kHz at two wavelengths sequentially. The first wavelength
is tuned on a WV absorption line near 828.2 nm, whereas
the second wavelength is off an WV absorption line near
828.3 nm (Spuler et al., 2015); these wavelengths are indexed
by ◆ 2 {on,off}. The MPDs transmit laser pulses that are
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Table 1. Commonly used symbols.

Symbol Type Description

n,n0,n00 Index Matrix row index

k,k0,k00 Index Matrix column index

◆ Index Online and offline channel index where ◆ 2 {on,off}

1N Scalar The number of vertical sampling intervals that fit in the length of the laser
pulse duration minus one

rn0 Vector Range axis of the single scatter lidar equation and the geophysical variables

r̃n Vector Range axis of the observations as modeled by the MPD forward models:
r̃n = rn+d1N/2e

�n0,k Matrix Uncalibrated attenuated backscatter [m�1 sr�1] of size (N + 1N) ⇥ K

'n0,k Matrix Absolute water vapor [g m�3] of size (N + 1N) ⇥ K

S̃(◆)
n0,k

(� ,') Matrix MPD channel ◆ single scatter lidar equation matrix function [W] of size
(N + 1N) ⇥ K

An,n0 Matrix Model for laser energy distribution over sampling intervals

S(◆)
n,k(� ,') Matrix MPD channel ◆ forward model matrix function [J] of size N ⇥ K

Y(◆)
n,k Matrix Accumulated photon count of channel ◆ where its expected value is modeled

by S(◆)
n,k(� ,')

b
(◆)
k Vector Solar and dark background rate [W] of size K

Mn,k Matrix A binary mask value for accumulated photon count Y(◆)
n,k , where a value of

zero indicates that the photon count is contaminated by saturation

Uk Vector The number of laser shots per column index k

Table 2. Commonly used abbreviations.

Abbreviation Elaboration

atten. backs. Attenuated backscatter [m�1 sr�1]
CV Cross-validation
MPD Micropulse differential absorption lidar
P-NLL Poisson negative log likelihood
PTV Poisson total variation
RS Radiosonde
RMSE Root-mean-square error
RRMSE Relative RMSE
SNR Signal-to-noise ratio
SSLE Single scatter lidar equation [W]
TV Total variation
WV Water vapor [g m�3]

longer than the sampling interval 1t = 250 ns to increase the
SNR of the WV measurements; the laser pulse duration was
1 µs during a Southern Great Plains (SGP) field campaign
and has recently been decreased to 625 ns for the next gen-
eration of MPDs (Spuler et al., 2021). The integer 1N � 0

quantifies how many vertical sampling intervals 1t , minus 1,
fit in the duration of a laser pulse; for example, for the SGP
data 1N = (10�6/1t) � 1 = 3.

The MPD instrument photon detector observes the
weighted sum of the lidar equation and the laser pulse, since
the laser pulse spans multiple range sampling intervals. We
define the SSLE on the measurement range axis, which are
denoted by rn0 where n0 = 1,2, . . .,N +1N . The MPD sam-
ples the photon rates mid-duration of the laser pulse, and
therefore the range axis of the observations is shifted relative
to the measurement range axis. Specifically, the observation
range axis is denoted by r̃n, where n = 1,2, . . .,N indexes
the observation range axis; the relation between the observa-
tion r̃n and measurement rn0 range axes is

r̃n = rn+d1N/2e. (1)

The SSLE is a function of the unknown WV 'n0,k [g m�3]
and uncalibrated attenuated backscatter �n0,k [m�1 sr�1],
where the columns of the matrices are indexed by k =

1,2, . . .K . We write the SSLE as a matrix function since our
attention is on inferring an image of the WV. The single-
scatter lidar matrix function at measurement range rn0 for
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channel ◆ is denoted by

S̃(◆)
n0,k(',�) =

Cn0,k

1t r2
n0

On0�n0,k (2)

⇥exp

 

�21r
n0X

n00=0
�

(◆)
n00,k'n00,k

!

, (3)

and its unit is [W]. The calibration parameters are the
range resolution 1r = c1t/2 ⇡ 37.5 m, backscatter calibra-
tion constant Cn0,k [J sr m3], and geometric overlap On0 . The
WV absorption [m2 g�1] of channel ◆ is denoted by � (◆)

n0,k
and is pre-computed using (1) an assumed lapse rate with
which the temperature and pressure profiles are approxi-
mated, (2) the mass of a water molecule per mole, and (3) the
Avogadro number (Spuler et al., 2015; Nehrir et al., 2009).

The weighted sum of the SSLE with the laser pulse is mod-
eled by

1t
n+1NX

n0=n

An,n0 S̃(◆)
n0,k(',�), (4)

where the matrix An,n0 models the laser energy distribu-
tion over the multiple range sampling intervals; the fac-
tor 1t models the integration of the observed photon rate
by the photon detectors. The first 1N + 1 columns (n0 =

1,2, . . .,1N + 1) of the first row (n = 1) of the matrix An,n0

is the fractional laser energy distribution over the duration of
the pulse such that the sum of the first row is equal to one,
and the remaining N columns are equal to zero. The nth row
of matrix An,n0 is the first row of An,n0 shifted circularly to
the right n times. Hence, the MPD forward model at range
r̃n for channel ◆ is defined by

S(◆)
n,k (',�) = U k1t

 

b
(◆)
k +

n+1NX

n0=n

An,n0 S̃(◆)
n0,k(',�)

!

, (5)

where U k is the number of laser shots per column index k.
The vector b

(◆)
k is the dark and solar background photon rate

[W] of channel ◆.
The MPD instrument photon detectors are saturated over

several range bins after each laser shot due to internal scat-
tering in the co-axial optical configuration. Consequently, the
first WV estimate starts at 125 m or 500 m depending on the
hardware configuration. To model the unobserved WV from
range 0 up to r1, the lowest water absorption cross section
�

(◆)
1,k is the range axis sum of the absorption cross sections

from range 0 up to r1. Hence, the WV '1,k at range r1 rep-
resents the range-average WV from range 0 up to r1.

3 The MPD photon-counting noise model and masking

3.1 Photon-counting noise probability mass function

The photon-counting observations at range r̃n and profile k

of the online and offline channels are denoted by Y(◆)
n,k . Each

photon count represents temporally accumulated counts of
multiple laser shots as indicated by U k . The noise of the pho-
ton counts are modeled by the Poisson probability mass func-
tion (PMF) if the corresponding photon rates are below the
saturation limit of the MPD photon detectors (Donovan et al.,
1993; Müller, 1973). The expected values of these unsatu-
rated photon counts is modeled by the MPD forward model
Eq. (5), and we assume that

Y(◆)
n,k ⇠ Poisson

⇣
S(◆)

n,k

⌘

⌘ exp
⇣
�S(◆)

n,k + Y(◆)
n,klogeS(◆)

n,k � logeY(◆)
n,k!

⌘
, (6)

where

S(◆)
n,k ⌘ S(◆)

n,k (',�) . (7)

3.2 Masking saturated photon counts

The instantaneous backscattered photon rates, corresponding
to each laser shot, of clouds and precipitation can exceed the
MPD photon detector saturation limit. Moreover, the accu-
mulated photon counts Y(◆)

n,k consists of a combination of un-
saturated and saturated photon counts within and at the edges
of clouds and precipitation. Photon counts that are saturation
contaminated cannot be accurately modeled by the Poisson
PMF (Donovan et al., 1993). Hence, saturated photon counts
and corresponding forward model pixels are excluded from
our inference methodology using a mask matrix Mn,k .

The saturated photon count mask Mn,k has to be con-
structed via proxy data that indicate whether the instanta-
neous backscattered photon rates exceed the photon detector
saturation limit. Since we know a priori that dense aerosol
layers, clouds, and precipitation have large backscatter cross
sections, the matrix Mn,k masks out these atmospheric fea-
tures.

We used a sliding window standard deviation filter on
the photon counts Y(◆)

n,k , with a fixed threshold, to identify
the large backscatter cross sections of dense aerosol layers,
clouds, and precipitation; the threshold was set by qualita-
tively validating whether these large backscatter cross sec-
tions have been masked out.

3.3 Photon-counting noise negative log likelihood

The Poisson negative log likelihood (P-NLL) is used by the
PTV-MPD method to quantify the fitting of the WV and
attenuated backscatter onto the noisy observations via the
MPD forward model Eq. (5). The P-NLL function of channel
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◆ is denoted by

Lp

⇣
S(◆) (',�) ;Y(◆)

⌘
=

N,KX

n=1,k=1
Mn,k

⇥

h
pS(◆)

n,k (',�) � Y(◆)
n,kloge

⇣
pS(◆)

n,k (',�)
⌘i

, (8)

where p is a normalization factor that is used in conjunc-
tion with the photon counts. The saturated photon counts are
masked out with the matrix Mn,k . The factorial term of the
Poisson PMF is omitted in Eq. (8) since it is a constant value.

4 The MPD standard method

A detailed discussion of the standard processing technique
employed for MPD is provided in Spuler et al. (2021).
Nonetheless, we will provide a brief overview of the method
here as outlined in Alg. 1.

Algorithm 1 The MPD standard method.

Require: The noisy observations Y(on)
n,k and Y(off)

n,k .
1: {Low pass filter background subtracted photon counts}

Ỹ(◆)
n,k = lowpass � filter

⇣
Y(◆)

n,k � Uk1tb
(◆)
k

⌘
(9)

2: {Compute differential optical depth}

⌧n,k = �
1
2

loge

✓ Ỹ(off)
n,k

Ỹ(on)
n,k

◆

3: {Compute the absolute water vapor}

⌧0,k = 0, '̃n,k =
⌧n,k � ⌧n�1,k

�
(on)
n00,k

� �
(off)
n,k

4: {Low pass filter the computed water vapor}

'̂n,k = lowpass � filter('̃n,k)

5: return the water vapor estimate '̂n,k .

The photon count profiles first undergo low-pass filtering
to suppress the random noise (Hayman et al., 2020). The
ratio of the online and offline channels cancels the attenu-
ated backscatter in each forward model, which allows us to
solve directly for the optical depth resulting from WV. At this
stage, the WV estimate has residual noise that is low-pass-
filtered with Gaussian kernels, with 5 to 10 min by 170 m
bandwidths, to further reduce the noise in the observation.
The smoothing kernel of the low-pass filter is fixed across
the scene. Thus, the WV estimates are often over-smoothed
in highly dynamic, high-SNR regions and under-smoothed

at higher altitudes. Due to the direct nature of the inversion,
there are also no constraints imposed on the retrieval, there-
fore nonphysical WV estimates are frequently obtained in
noisy regions. The nonphysical WV values, in turn, can cre-
ate problems in further downstream scientific analysis where
nonphysical state variables present a challenge. Nonphysical
quantities are generally not easily included in such analysis,
but the selective omission or limiting of nonphysical noise
will also create biases.

Finally, the lengths of the laser pulses are not accounted
for in the standard method. Specifically, inclusion of the
laser pulse in the forward model prevents the attenuated-
backscatter term from directly canceling out when dividing
the offline with the online channel, and a direct inversion be-
comes no longer possible. However, failing to account for the
laser pulse length can create biases in some cases, for exam-
ple at WV dry regions.

5 The PTV-MPD method

The PTV method, originally developed for photon-counting
HSRL (Marais et al., 2016), is an adaptation of the SPIRAL
method, which is a regularized maximum likelihood tech-
nique (Oh et al., 2013; Harmany et al., 2012); the technique
and derivations of it have be applied in wide range of inverse
problems in different domains, such as in medical imaging
and astronomy (Roelofs et al., 2020; Harmany et al., 2012).

5.1 Overview of PTV

With PTV the assumptions are that

1. the photon-counting noise can be accurately modeled by
the Poisson PMF in Eq. (6),

2. the expected value of the photon counts can be accu-
rately modeled with a forward model (i.e., Eq. 5), and

3. the geophysical variable (i.e., WV) image that we want
to estimate can be accurately approximated with a two-
dimensional (2D) piecewise constant (PC) function.

An accurate noise model is important in inverse problems,
since with Poisson noise the noise variance is signal depen-
dent, and modeling the photon-counting noise as a Gaus-
sian distribution will lead to inversion inaccuracies (Harmany
et al., 2012). The 2D PC approximation induces spatial corre-
lations on the estimated geophysical variable while preserv-
ing any discontinuities; such correlations are expected from
the true unobserved geophysical variable of which WV and
attenuated backscatter are examples.

By making a distinction between the random noise and the
geophysical variable having spatial correlation, PTV is capa-
ble of separating the noise from the geophysical variable that
is being estimated. PTV achieves this separation by (1) us-
ing the P-NLL from Eq. (8) to quantify how close of a fit the
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forward model is relative to the noisy observations and by
(2) employing the total variation (TV) penalty function that
regularizes the geophysical variable to be approximately 2D
PC.

The approach used by PTV is formulated as a mathemati-
cal optimization framework where we search over all candi-
date geophysical variables and choose the geophysical vari-
able that minimizes the sum of the (1) P-NLL composited
with the forward model and (2) the TV penalty functions.
The P-NLL composite is called the “loss function” and the
loss summed with the penalty functions is called the “objec-
tive function”. The optimization framework is conceptually
illustrated by the equation

min
X

�
Objective function

z }| {
˜̀(X;Y)| {z }

Loss function

+ �̃|{z}
Tuning parameter

⇥ TV(X)| {z }
TV penalty function

 
, (10)

where X ⌘ geophysical variable, Y ⌘ photon-counting obser-
vations, ˜̀(X;Y) ⌘ P-NLL composited with forward model,
e.g., Eq. (8).

The (anisotropic) TV penalty function is defined as (Har-
many et al., 2012)

TV(X) =

N�1
KX

n=1
k=1

��Xn,k � Xn+1,k

��+

N
K�1X

n=1
k=1

��Xn,k � Xn,k+1
�� , (11)

and is weighted with a tuning parameter �̃ � 0 that sets
the degree to which the 2D PC regularization is pro-
moted. The tuning parameter is quantitatively determined
through a cross-validation methodology (Friedman et al.,
2001, chap. 7)(Oh et al., 2013), and the parameter is not set
by “expert opinion”.

5.2 PTV-MPD: adaptation required for MPD

We adopt the PTV method to infer the WV from the MPD
observations, where we approximate both the WV and atten-
uated backscatter as 2D PC functions. In contrast, the stan-
dard method of Alg. 1 divides out the attenuated backscatter,
which is not feasible with PTV-MPD since it is unclear how
to model the noise of the ratio of background subtracted pho-
ton counts.

In order to apply PTV on MPD observations the following
adaptations are required:

(A1) use of the MPD forward models of Eq. (5),

(A2) allowing for the simultaneous inference of the WV and
attenuated backscatter.

(A3) prevention of the degradation of the WV measurement
due to inaccuracies in the initial attenuated-backscatter
value.

Adaptations (A1) and (A2) are achieved by redefining the
PTV loss and objective functions, as discussed in the next
section. Specific to adaptation (A2) in the original HSRL for-
mulation of PTV, (1) the backscatter cross section was com-
puted from the denoised photon counts, and (2) the lidar ratio
was inferred using the computed backscatter cross section.
This two-step sequence isolates calibration biases due to the
geometric overlap function from the inferred lidar ratio and
the extinction cross section. With a DIAL instrument such as
MPD, the geometric overlap does not induce a bias in the in-
ferred WV, in part because both measurements use the same
photon detector (Spuler et al., 2015, 2021). Therefore, the
two-step sequence used for HSRL observations is not neces-
sary.

Regarding adaptation (A3), the simultaneous inference of
the WV and attenuated backscatter requires an initial value
of the attenuated backscatter. During our investigation of
adapting PTV for the MPD instrument we noticed that the
adapted PTV method is sensitive to inaccuracies in the initial
attenuated-backscatter value. Specifically, when computing
the initial value of the attenuated backscatter algebraically
from the photon-counting observations, the contributions to
the inaccuracies in the initial attenuated backscatter originate
from the small SNR at close ranges and the long laser pulses
that convolve with the SSLE (see Eq. 4). Hence, for adapta-
tion (A3) we propose that PTV-MPD employ a coarse-to-fine
image resolution framework when inferring the WV (Marais
and Willett, 2017). With the coarse-to-fine framework, we
first infer the WV and attenuated backscatter at a coarse im-
age resolution, which allows for reducing inaccuracies in the
initial attenuated backscatter. In other words, at the coarse
image resolution the long laser pulses are deconvolved from
the initial attenuated backscatter and the SNR of close-range
observations are implicitly increased. In a sequence from
coarse-to-fine image resolution, we use the coarse-resolution
WV and attenuated-backscatter estimates as initial values
when inferring the finer image resolution WV and attenuated
backscatter.

5.3 PTV-MPD method algorithmic details

Using the conceptual optimization framework in Eq. (10)
as a reference, the PTV-MPD method is formulated as an
optimization problem where the minimizers of the objec-
tive function are the estimates of the WV ' and attenuated
backscatter � . The objective function used by PTV-MPD is
introduced in Sect. 5.3.1, which addresses adaptations (A1)
and (A2); Sect. 5.3.1 serves as a preliminary section before
elaborating on the coarse-to-fine image resolution frame-
work. Minimizing an objective function requires initial val-
ues of the WV ' and attenuated backscatter � and can have
a significant impact on the estimate of these variables (Har-
many et al., 2012; Kelley, 1999); to this effect, in Sect. 5.3.2
we discuss the initial values of the WV ' and attenuated
backscatter � . Finally, Sect. 5.3.3 discusses how the objec-
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tive function is minimized through the coarse-to-fine image
resolution framework that addresses adaption (A3).

The formulation of the PTV-MPD includes tuning parame-
ters that are computed using a cross-validation (CV) method-
ology; the CV involves calculating a validation error that in-
dicates the optimality of the tuning parameters and is dis-
cussed in Sect. 5.3.4. Related to the tuning parameters and
validation error, we require a way to test the hypothesis that
the coarse-to-fine image resolution framework will improve
the accuracy of inferring the WV '. To test the hypothesis,
we compare the test errors from inferring the WV ' at only
the finest image resolution versus from a coarse-to-fine im-
age resolution. The test error computation is also discussed
in Sect. 5.3.4.

Figure 2 gives a broad pictorial overview of how each part
of the PTV-MPD framework is implemented with modular-
ized sub-algorithms; the purposes of the sub-algorithms are
as follows.

Fig. 2a, Alg. 2 performs the necessary preparations to infer
the WV ' and attenuated backscatter � which includes
computing the initial attenuated backscatter.

Fig. 2b, Alg. 3 employs a CV methodology to choose the
optimum tuning parameters for inferring the WV ' and
attenuated backscatter � .

Fig. 2c, Alg. 4 infers the WV ' and attenuated backscatter
� for a fixed tuning parameter via a coarse-to-fine image
resolution framework.

These algorithms are outlined in Sect. 5.3.5, which in-
cludes specific details about the SPIRAL method adapta-
tions.

5.3.1 Preliminary for coarse-to-fine framework: the
loss and objective functions

The PTV-MPD loss function differs from the PTV loss func-
tion in two respects; cf. Eq. (23) in Marais et al. (2016).
First, the loss function of PTV-MPD is defined such that
we infer the loge of the attenuated backscatter denoted by
�̃n,k ⌘ loge�n,k , since previous work suggests that more ac-
curate inference can be achieved by inferring the loge of
a linear variable with methods similar to PTV (Oh et al.,
2013, 2014). Second, we define the PTV-MPD loss function
as the sum of the normalized P-NLL function of each chan-
nel, where the normalization ensures that each P-NLL func-
tion is equally weighted; this weighting is done since the ac-
cumulated photon counts of the offline channels are generally
larger than that of the online channel. Hence, the PTV-MPD
loss function is defined by

`p

⇣
', �̃;Y(on),Y(off)

⌘

=

X

◆2{on,off}
Lp

⇣
S(◆) (',exp(�̃)) ;Y(◆)

⌘

| {z }
channel ◆ P-NLL Eq. (8)

⇥

channel ◆ weight
z}|{
!(◆) , (12)

which is the weighted sum of the P-NLL of each channel
where each P-NLL is normalized by the root sum square
(i.e., Frobenius norm) of the photon counts that have not been
masked out. The Frobenius norm of the mask photon counts
is defined by

!(◆)
=

���MY(◆)
���

�1

F
=

2

64
N,KX

n=1,
k=1

⇣
Mn,kY(◆)

n,k

⌘2

3

75

�1/2

. (13)

The objective function that is minimized by PTV-MPD is
defined as

F̃p,�w,�a

⇣
', �̃;Y(on),Y(off)

⌘

⌘ `p

⇣
', �̃;Y(on),Y(off)

⌘

| {z }
Loss function, Eq. (12)

+

Regularize WV
z }| {
�wTV(')

+ �aTV(�̃),| {z }
Regularize atten. backs.

, (14)

which is parameterized with the WV ' and attenuated
backscatter �̃ and their respective tuning parameters �w and
�a. The WV �w and attenuated backscatter �a tuning param-
eters set the degree to which these parameters should be reg-
ularized to be 2D PC. While minimizing the objective func-
tion (14), the WV ' is constrained to be non-negative, which
is denoted by the set W . The objective function (14) is min-
imized using the alternating minimization method in con-
junction with adaptations of SPIRAL (Beck and Tetruashvili,
2013; Harmany et al., 2012); the alternating minimization is
elaborated in Sect. 5.3.5 and outlined by Alg. 4.

5.3.2 Initial values of objective function

In Appendix B we show that for low-SNR regions of the
photon-counting images there can be multiple estimates of
the WV ' or attenuated backscatter �̃ that minimizes the ob-
jective function (14). The dark and solar background photon
rates b(◆) are the primary factors that determine the domains
over which the objective function has a unique minimizer.
Consequently, we expect that PTV-MPD will require accu-
rate initial values of the WV ' and attenuated backscatter �̃
whenever the photon count SNRs are dominated by the back-
ground rate b(◆) such as at close range and in high-altitude
regions.
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Figure 2. Pictorial overview of Alg. 2 and its sub-algorithms (Algs. 3 and 4) for inferring the water vapor (WV) and uncalibrated attenuated-
backscatter cross section (atten. backs.). The corresponding algorithm line numbers for each block in the flow diagrams are indicated by the
vertical text Lx-y. The blue, violet, and red text is meant to highlight statistically independent datasets generated using Poisson thinning.

It will be advantageous for the MPD to make WV mea-
surements that are statistically independent of RS for the pur-
pose of providing additional statistically independent infor-
mation for NWP data assimilation. Thus, in this paper we set
the initial WV to zero [g m�3]; this WV initial value reflects
that we assume no a priori information about the WV other
than (1) the assumed lapse rate1 of the atmosphere and (2) the
assumption that the WV can be accurately approximated with
2D PC functions. This initial WV value is denoted by '̂init.

The offline channel is less sensitive to WV absorption
compared to the online channel. Hence, the initial value of
the attenuated backscatter, denoted by ˆ̃� init, is computed
from the offline channel with the initial WV '̂init via

ˆ̃� init
n0,k = loge

0

@
PN

n=1AT
n0,n

⇣
Y(off)

n,k � U k1tb
(◆)
k

⌘

U k1t S̃(off)
n0,k ('̂init,1)

1

A . (15)

The matrix AT maps the observations to the measurement
space; the matrix is the adjoint (i.e., transpose) of the laser
energy distribution matrix A. The vector U is the number of
accumulated laser shots, and 1t models the integration of the
observed photon rate by the photon detectors (see Sect. 2).

1From the lapse rate, the WV absorption cross section is com-
puted; see Sect. 2.

5.3.3 The coarse-to-fine inference framework

With the coarse-to-fine image resolution inference frame-
work, we start with estimating a coarse-resolution WV image
and use the coarse-resolution estimate as an initial WV value
at a finer image resolution; this technique has proven useful
to more accurately denoising and inverting images for low-
SNR photon-limited application (Marais and Willett, 2017;
Azzari and Foi, 2017). The coarse image resolution estima-
tion is akin to downsampling the noisy observations to in-
crease the SNR, though the difference is that with the pro-
posed methodology the downsampling in the coarse-to-fine
framework takes into account the MPD forward model (5).

Following the approaches delineated in Marais and Willett
(2017) and Azzari and Foi (2017), we define the following
variables and linear operators.

1. A series of values h = h1 > h2 > .. . > hL = 1 that rep-
resents the downsampling factors of the coarse-to-fine
image resolutions at which the WV will be inferred; h

represents the coarsest image resolution.

2. The downsampling operator is denoted by D#

h and its
corresponding upsampling operator D"

h .
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The downsampled image D#

h' will have approximately N/h

rows and K/h columns, depending on how the downsam-
ple operator handles boundary pixels. The coarse-resolution
WV image is denoted by �h, and its relationship with the
finest image resolution WV image ' is governed by the up-
sampling operator D"

h where ' = D"

h�h. The corresponding
attenuated backscatter is denoted by  h and is not down-
sampled like the WV; the subscript h in  h indicates that it
is paired with the downsampled WV �h estimate.

Let l = 1,2, . . .,L represent the coarse-to-fine image reso-
lution index. The coarse-to-fine process repeats the following
steps for each l until the finest image resolution WV estimate
is obtained.

Step 1. Define the current image resolution WV estimate
�hl

and its paired attenuated-backscatter estimate  hl
. In ad-

dition, define the current image resolution objective function.

Fp,�w,�a

⇣
D"

hl
�hl

, hl
;Y(on),Y(off)

⌘

⌘ `p

⇣
D"

hl
�hl

, hl
;Y(on),Y(off)

⌘
+ �wTV

�
�hl

�

+ �aTV
�
 hl

�
. (16)

Step 2. If l = 1, use the provided initial value of the
WV �hl

and attenuated backscatter  hl
when minimizing

the objective function (16). Otherwise, use the previous im-
age resolution estimates as initial values for the current im-
age resolution. Specifically, the initial value for the WV is
D#

hl
D"

hl�1
�̂hl�1 , and for the attenuated backscatter it is  ̂hl�1 .

Step 3. Estimate the current image resolution WV �hl
and

its paired attenuated backscatter  hl
by minimizing the ob-

jective function (16):

�̂hl
,  ̂hl

= arg min
�hl

2W, hl

Fp,�w,�a

0

BB@

Fitting is performed on native resolution...
z }| {

D"

hl|{z}
...by upsampling coarse resolution WV image.

�hl
, hl

;Y(on),Y(off)

1

CCA, (17)

where W is the set of non-negative numbers.
Final step. If l = L, the final WV and attenuated-

backscatter estimates are denoted by '̂h,�w,�a
and ˆ̃�h,�w,�a

meaning

'̂h,�w,�a
= �̂hL

and

ˆ̃�h,�w,�a
=  ̂hL

. (18)

The subscripts h, �w and �a indicate that the estimates of
the WV ' and attenuated backscatter �̃ are the specific to
coarse-to-fine image resolution configuration parameterized
by h and the tuning parameters �w and �a.

In practice, the minimization of the objective function (16)
is done by alternating minimization between the WV and at-
tenuated backscatter as indicated in Fig. 2c and outlined by
Alg. 4.

5.3.4 Computing validation error to choose optimum
tuning parameters and computing test error

The validation and test errors are computed by basically
comparing the WV ' and attenuated backscatter �̃ esti-
mates against noisy observations that are statistically inde-
pendent of these estimates. This is achieved by thinning the
non-masked offline Y(off) and online Y(on) photon counts
through the Poisson thinning technique (Marais et al., 2016;
Oh et al., 2013; Hayman et al., 2020); these thinned pho-
ton counts are statistically independent of each other and are
Poisson distributed (Cinlar, 2013, chap. 4). Specifically, for
each non-masked pixel in a photon-counting image Y(◆), the
Poisson thinning technique randomly samples the individual
photon counts, and the sampled photon counts are placed
in three photon-counting images. We call these three im-
ages the training Y(◆)

trn, validation Y(◆)
vld, and test Y(◆)

tst photon-
counting images. The expected value of the training, vali-
dation, and test photon counts relative to the original photon
counts are expressed by the scalars ptrn+pvld+ptst = 1, such
that E

h
Y(◆)

trn

i
= ptrnE

⇥
Y(◆)

⇤
, where E

h
Y(◆)

vld

i
and E

h
Y(◆)

tst

i
are

similarly defined.

Training photon counts

The training photon counts Y(◆)
trn are used to infer the WV

'̂h,�w,�a
and attenuated backscatter ˆ̃�h,�w,�a

for specific WV
�w and attenuated backscatter �a tuning parameters and
coarse-to-fine configuration h. Specifically, when using the
training photon counts the objective function in Eq. (16) will
be equal to

Fptrn,�w,�a

⇣
D"

hl
�hl

, hl
;Y(on)

trn ,Y(off)
trn

⌘
, (19)

where p in Eq. (16) has been replaced with ptrn.

Validation photon counts

The validation error of the estimates per tuning parameter is
computed with the P-NLL (8) and the forward model (5) and
is denoted by

errvld,�w,�a

= Lpvld

⇣
S(on)

⇣
'̂h,�w,�a

,exp( ˆ̃�h,�w,�a
)
⌘
;Y(on)

vld

⌘

+Lpvld

⇣
S(off)

⇣
'̂h,�w,�a

,exp( ˆ̃�h,�w,�a
)
⌘
;Y(off)

vld

⌘
. (20)

The optimum tuning parameters corresponds to the small-
est validation error, and this give us the WV and attenuated
backscatter estimates

'̂h,
ˆ̃�h = arg min

�w,�a
errvld,�w,�a . (21)
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Test photon counts

The test error for the estimates '̂h and ˆ̃�h are also computed
with the P-NLL (8) and the forward model (5) and is denoted
by

errtst,h = Lptst

⇣
S(on)

⇣
'̂h,exp

⇣
ˆ̃�h

⌘⌘
;Y(on)

tst

⌘

+Lptst

⇣
S(off)

⇣
'̂h,exp

⇣
ˆ̃�h

⌘⌘
;Y(off)

tst

⌘
. (22)

To test the hypotheses as to whether the coarse-to-fine image
resolution framework does improve the WV measurements,
we evaluate the inequality

errtst,h=9 < errtst,h=1. (23)

5.3.5 The PTV-MPD algorithm

Algorithm 2 and its sub-algorithms (Algs. 3 and 4) outline
the PTV-MPD algorithms as described by Fig. 2. Algorithm 2
takes as input the photon counts and the coarse image reso-
lution at which PTV-MPD will start inferring the WV; the
starting image resolution is expressed as a downsampling
factor h � 1. Algorithm 3 outlines the CV methodology, and
Alg. 4 outlines the coarse-to-fine WV inference image reso-
lution framework.

The alternating minimization of the objective function (17)
(Beck and Tetruashvili, 2013), employed by Alg. 4, is
achieved by adaptations of SPIRAL where each adaptation
is specific to the WV and attenuated backscatter variable (Oh
et al., 2013; Harmany et al., 2012). The adaptation of SPI-
RAL includes replacing the original objective function and
gradient matrix of the loss function; Appendix A presents
the loss function gradient matrix along with the Jacobian ma-
trix of the MPD forward model. The stopping criteria that is
employed to stop the alternating minimization iterations in
Alg. 4 uses the relative distance between consecutive esti-
mates at the specific coarse image resolution. In more detail,
if between iterations t + 1 and t the relative distance, i.e.,

1
2

0

B@

���(t+1)
��(t)

��
F���(t+1)

��
F

+

��� (t+1)
� (t)

���
F��� (t+1)

���
F

1

CA , (24)

is less than 10�5 then the loop in Alg. 4 terminates, where

k�kF =

 
N,KX

n=1,k=1
�2

n,k

!1/2

. (25)

6 Experiment results

In this section we quantify the accuracy of the PTV-MPD
WV measurements juxtaposed with the standard method;

Algorithm 2 The PTV-MPD method.

Require: (1) The noisy observations Y(on) and Y(off), (2) (manda-
tory) the coarsest resolution downsampling factor h, (3) (op-
tional) initial values of the WV '̂init, (4) (optional) tuning pa-
rameters for WV �w and atten. backs. �a.

1: if �a and �w are not provided then

2: 3�̃ = 3'̃ =

n
10�2+i/11

o11

i=0
=

n
10�2,10�1.91, . . .,102

o

3: else
4: 3�̃ = {�a} and 3'̃ = {�w}.
5: end if
6: If WV '̂init is not provided, set '̂init = 0
7: {Split photon counts in training, validation and test counts}
8: Y(◆)

trn,Y(◆)
vld,Y(◆)

tst = Poisson Thinning
⇣

Y(◆)
⌘

9: {Compute the atten. backs. initial value}
10: ˆ̃� init = plug initial WV '̂init into Eq. (15) using scaled training

photon counts Y(off)
trn /ptrn

11: {Infer the WV and atten. backs.}
12:

'̂h, ˆ̃�h = Algorithm 3
✓
'̂init, ˆ̃� init,h,3�̃ ,3'̃,

Y(on)
trn ,Y(on)

vld ,Y(off)
trn ,Y(off)

vld

◆
(26)

13: {Compute the atten. backs.}
14: �̂h = exp

⇣
ˆ̃�h

⌘

15: Compute test error errtst,h via Eq. (22)
16: return '̂h, �̂h,errtst,h

we use the mnemonics STND and PTV to make a distinc-
tion between the standard and PTV methods. We use RS
WV measurements as an independent reference to estimate
WV accuracies. The MPD with coincident RS observations
was stationed (1) in proximity of the Atmospheric Radiation
Measurement (ARM) SGP atmospheric observatory during
spring and summer of 20192 and (2) at the NCAR Marshall
field site in Boulder, Colorado, during winter and spring of
2020 and 2021 (Spuler et al., 2021). During the SGP MPD
deployment, the ARM Raman lidar was making continuous
WV measurements; Table 3 compares the laser power and
telescope diameters of the Raman lidar and MPD.

6.1 Radiosonde comparison methodology

Although the MPD instrument was in close proximity of the
ARM site during the SGP deployment, the MPD, Raman li-
dar, and RS instruments all observe different atmospheric
volumes at different altitudes, especially in highly convec-
tive conditions. Furthermore, the Raman lidar uses some RS
observations for calibration, and therefore the instrument is

2Information about the project is available at https://www.arm.
gov/research/campaigns/sgp2019mpddemo (last access: 26 August
2022).
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Algorithm 3 Cross-validation methodology in choosing op-
timum tuning parameters when inferring WV ' and attenu-
ated backscatter � .

Require: (1) WV '̂init and atten. backs. ˆ̃� init initial values, (2) the
coarsest resolution downsampling factor h, (3) tuning param-
eter sets 3�̃ and 3'̃ , (4) training Y(on)

trn ,Y(off)
trn and validation

Y(on)
vld ,Y(off)

vld photon counts.
1: {Choose tuning parameters via cross-validation}
2: for (�w,�a) 2 3�̃ ⇥ 3'̃ do
3: {Infer WV and atten. backs. using redefined objective func-

tion}
4: '̂h,�w,�a

, ˆ̃�h,�w,�a
=

Algorithm 4
⇣
'̂init ˆ̃� init,�w,�a,Y(on)

trn Y(off)
trn ,h

⌘

5: Compute the validation error errvld,�w,�a via Eq. (20)
6: end for
7: {Choose tuning parameter that has smallest validation error}

�⇤
w,�⇤

a = arg min
�w,�a

�
errvld,�w,�a

 
(27)

8: {With chosen tuning parameters select estimates}
9: '̂h = '̂h,�⇤

w,�⇤
a
, ˆ̃�h = ˆ̃�h,�⇤

w,�⇤
a

10: return '̂h, ˆ̃�h

Table 3. The first column indicates the lidar instrument and where
the instrument was located. SGP refers to the Southern Great Plains
in Oklahoma, and Marshall refers to Marshall field in Boulder, Col-
orado. The second and third column show the corresponding laser
power and telescope diameter.

Lidar (location) Laser Telescope
power diameter

Raman (SGP, OK) 9 W 61 cm
MPD (SGP, OK) 45 mW 40.6 cm
MPD (Marshall, CO) 24 mW 40.6 cm

not entirely independent of the RS (Newsom and Sivaraman,
2018). Therefore, we indicate the altitude at which the RS
is horizontally more than 5 km away from the MPD, and we
also show the ARM Raman lidar WV retrievals during the
SGP deployment. In contrast to the Raman lidar, the MPD
retrievals or calibrations do not employ RS observations. In-
stead, the MPD retrievals depend on approximate tempera-
ture and pressure profiles that are computed via an assumed
lapse rate, and this rate is computed from a surface observa-
tion (Spuler et al., 2015; Nehrir et al., 2009).

6.2 Data selection methodology

For the experiments we created datasets that span over spe-
cific months given (1) the high variability of WV across dif-
ferent months and (2) that the MPD WV measurement ca-
pability is dependent on the low-altitude WV two-way trans-

Algorithm 4 Coarse-to-fine image resolution framework for
inferring WV ' and attenuated backscatter � .

Require: (1) WV '̂init and atten. backs. ˆ̃� init initial values, (2) WV
�w and atten. backs. �a tuning parameters and training photon
counts Y(on)

trn and Y(off)
trn , (3) coarsest resolution downsampling

factor h.
1: '(h+2) = '̂init, �̃ (h+2) = ˆ̃� init{Set initial values}
2: h = h {Iterate over the coarse-to-fine downsampling factors}
3: while h � 1 do
4: {Set initial values for current image resolution; downsam-

ple the initial WV estimate to the image resolution at which
inference is done}

5: t = 0,�(t) = D#

h'
(h+2), (t)

= �̃ (h+2)

6: {Find minimizer of objective function (19) by alternating the
minimization between the WV � and atten. backs.  .}

7: repeat
8: {Solve for WV via adapted SPIRAL by minimizing

Eq. (19); W is the set of non-negative numbers}

�(t+1)
= arg min

�2W
Fptrn,�w,�a

✓
D"

h�, (t)
;

Y(on)
trn ,Y(off)

trn

◆
(28)

9: {Solve for atten. backs. via adapted SPIRAL by minimiz-
ing Eq. (19)}

 (t+1)
= argmin

 
Fptrn,�w,�a

✓
D"

h�
(t+1), ;

Y(on)
trn ,Y(off)

trn

◆
(29)

10: t = t + 1
11: until stopping criteria is Eq. (24) met
12: {Set initial values for finer image resolution}
13: '(h) = D"

h�
(t), �̃ (h) =  (t), h = max(h � 2,1)

14: end while
15: {Set final estimates of WV and atten. backs.}
16: '̂h,�w,�a

= '(1), ˆ̃�h,�w,�a
= �̃ (1)

17: return '̂h,�w,�a
, ˆ̃�h,�w,�a

mittance. For all the datasets presented here, the observed
photon counts are binned at range and time bins of 37.5 m
and 5 min, respectively. The analyzed data from SGP are not
comprehensive, and we instead selected a variety of chal-
lenging cases in an effort to identify potential issues in the
PTV-MPD algorithm. Specifically, much of the data targeted
instances where clouds and precipitation created challenging
scenes to processes.

Specific to the MPD at SGP, the WV measurements start
at 500 m range due to the poor geometric overlap below this
range. The next-generation MPD deployed at the Marshall
field site employed optically combined telescopes with nar-
row and wide fields of view to improve low-altitude geomet-
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ric overlap, and as a result the WV measurements start at
150 m range (Spuler et al., 2021).

The first column of Table 4 lists the datasets, where the
name of each dataset encodes the location with the year and
month interval that each dataset covers. The second column
lists the specific dates that are included in each dataset. The
third and fourth columns list the number of days in each
dataset and the total number of coincident RS profiles.

6.3 PTV-MPD tuning parameters and the
coarse-to-fine (PTV-CF) configuration

The PTV-MPD method has the following input parameters,
as indicated in Alg. 2:

1. the initial WV value '̂init;

2. the WV �w and attenuated backscatter �a tuning param-
eters that set the degree to which the 2D piecewise con-
stant regularization is promoted for the WV '̂ and atten-
uated backscatter �̂ geophysical variables (see Eq. 12);

3. the coarsest-resolution downsampling factor h, which
controls at what image resolution the WV inference
starts at.

In addition, the PTV-MPD method depends on an input cloud
mask, which in itself is set by photon rate threshold (see
Sect. 3.2). As discussed in Sect. 5.3.2, the initial WV value
is set to zero [g m�3]. The WV �w and attenuated backscat-
ter �a tuning parameters are determined through a cross-
validation methodology (Friedman et al., 2001, chap. 7)(Oh
et al., 2013); see Sect. 5.3.4 for more detail. For all of the
experiments PTV-MPD uses the default set of TV regular-
izer tuning parameters, which are set between lines 1 to 5 in
Alg. 2.

In regards to the resolution downsampling factor h, we
juxtapose the PTV-MPD method with (h > 1) and without
(h = 1) the coarse-to-fine configuration to test the hypoth-
esis of whether the PTV-MPD coarse-to-fine image resolu-
tion framework does improve the WV due to inaccuracies in
the initial attenuated backscatter value. The test error (22)
is used to quantify the hypotheses testing, as indicated in
Eq. (23). We use mnemonics, as indicated in Table 5, to make
a distinction between the two PTV-MPD configurations and
the standard method. The coarse-to-fine PTV-MPD method,
PTV-CF, starts at a coarse image resolution, which is 9 times
(h = 9) coarser than the finest image resolution.

In the following subsection we show individual PTV-MPD
WV measurement results, and thereafter we present the WV
measurement error statistics.

6.4 Individual retrieval results

Figures 3 and 4 show the WV measurements obtained using
the standard and PTV-MPD methods (see Table 5) when the
MPD was at SGP on 11 and 10 June 2019. Figure 5 show

the WV measurements when the MPD was at Marshall on
10 December 2020. These examples have been selected to
highlight instances of improvement and ongoing challenges
for the PTV-CF and PTV methods. For all of these figures,
panel (a) shows the attenuated backscatter � . Panels (b) to (d)
show the WV ' measurements of the STND, PTV-CF, and
PTV methods. The rest of the panels, i.e., (e) and beyond,
show the WV profiles of the different methods compared
with that of the RS and Raman lidar; the vertical dashed
white lines in panels (b) to (d) show the launch times of the
RSs. Panel (a) is not masked to show what atmospheric fea-
tures have been masked out in panels (b) to (d) by the gray
areas.

6.4.1 Comparing PTV and PTV-CF with STND

When comparing the PTV and PTV-CF WV measurements
with that of the STND method, the STND method exhibits
higher residual noise, particularly at higher altitudes, as in-
dicated by Figs. 3i, ii, 4i, and 5i. These oscillatory resid-
ual noise artifacts in the STND WV measurements are due
to the low-pass filter that is designed for high-fidelity WV
measurements up to 4 km. In contrast, the PTV-CF and PTV
methods produce more accurate WV measurements at higher
altitudes, and these measurements do not exhibit large resid-
ual noise artifacts. The reasons why PTV-CF and PTV make
more accurate high-altitude WV measurements are as fol-
lows:

1. PTV-CF and PTV employ the Poisson noise model with
the MPD forward models to fit WV estimates onto the
noisy observations, and

2. the PTV-CF and PTV methods, via the TV regulariza-
tion, exploit the spatial and temporal correlations of the
WV to separate the WV from the random noise.

In some cases, residual noise in the STND method may
falsely appear to capture RS observed WV structure. An ex-
ample of this is shown in Fig. 4ii, where an elevated WV
layer appears to be better captured by the STND method than
PTV-CF, where PTV-CF identified an elevated layer that
consists of lower density and greater vertical extent than the
RS and Raman lidar. The uncertainty analysis available with
the standard method (i.e., STND), however, shows that the
noise standard deviation in the WV estimate is greater than
2 g m�3, indicating that the apparent structure is not statis-
tically significant and is predominantly noise. This fact also
becomes more apparent when viewing the time-resolved plot
in Fig. 4b.

Figure 4ii demonstrates the challenge in validating the
MPD profiles, particularly for regions exhibiting significant
structure at higher altitudes. In this instance, the Raman lidar
starts to struggle measuring WV at 3.5 km altitude during the
daytime, due to the high solar background radiation noise.
In order to validate such cases, the MPD, Raman lidar, and
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Table 4. The first column shows the names of the datasets used in the experiments. The second column lists the specific dates that are
included in each dataset. The third and fourth columns list the number of days in each dataset and the total number of coincident RS profiles.

Dataset Months and days (month/day) Number Number of
(location, year/month) of days radiosonde

profiles

SGP 2019/04 4/19, 4/20, 4/25, 4/27, 4/28 5 32
SGP 2019/05 5/10, 5/12, 5/13, 5/14, 5/15, 5/16, 5/19 7 52
SGP 2019/06 6/10, 6/11, 6/24, 6/29 4 31
Marshall 2020/10 to 2020/11 10/16, 11/6, 11/12, 11/20, 11/25 5 5
Marshall 2020/12 to 2021/01 12/10, 12/21, 12/30, 1/4, 1/13, 1/22, 1/29 7 7
Marshall 2021/03 to 2021/04 3/1, 3/31, 4/2 3 3

Figure 3. The (a) attenuated-backscatter cross section and the water vapor (WV) measurements of the (b) standard method (STND) and
the PTV-MPD method (c) with (PTV-CF) and (d) without (PTV) the coarse-to-fine configuration. Panel (a) is not masked to show what
atmospheric features have been masked out in (b) to (d) by the gray areas. The dashed white vertical lines in (b) to (d) show the launch
times of the radiosondes (RSs), where (e) to (h) show the RS and Raman lidar WV profiles. Panels (e) and (g) compare the course-to-fine
PTV-MPD WV measurements against those of the RS and the standard method, whereas (f) and (h) show the same comparison for the
PTV-MPD method without the course-to-fine configuration. The horizontal dashed lines in (e) to (h) show the altitude at which the RS was
horizontally 5 km away from the MPD. The dashed boxes in (e) and (g) highlight regions that are discussed in the text.
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Figure 4. The (a) attenuated backscatter cross section and the water vapor (WV) measurements of the (b) standard method (STND) and
the PTV-MPD method (c) with (PTV-CF) and (d) without (PTV) the coarse-to-fine configuration. Panel (a) is not masked to show what
atmospheric features have been masked out in (b) to (d) by the gray areas. The dashed vertical white lines in (b) to (d) show the launch
times of the radiosondes (RSs), where (e) to (h) show the RS and Raman lidar WV profiles. Panels (e) and (g) compare the course-to-fine
PTV-MPD WV measurements against those of the RS and the standard method, whereas (f) and (h) show the same comparison for the
PTV-MPD method without the course-to-fine configuration. The horizontal dashed lines in (e) to (h) show the altitude at which the RS was
horizontally 5 km away from the MPD. The dashed boxes in (e) and (g) highlight regions that are discussed in the text.

Table 5. The mnemonics used to indicate the algorithm that was
used to produce a water vapor estimate. The corresponding test er-
rors are also shown.

Algorithm Alg. 1 Alg. 2 with h = 9 Alg. 2 with h = 1

Mnemonic STND PTV-CF PTV

RS instruments should ideally make WV measurements of
the same atmospheric volume, which is not always possible.
For the purposes of the statistical analysis presented in the
next section, we will nevertheless treat the RS observations

as “truth” despite possible discrepancies resulting from dif-
ference in atmospheric volume.

6.4.2 Comparing PTV-CF with PTV

Comparing Fig. 3c and d we see that the PTV WV mea-
surement appears to be larger than that of PTV-CF be-
tween 09:00 and 12:00 UTC at 3 km. Figure 3iii quantita-
tively shows the large PTV WV measurement, which appears
to be an artifact. In contrast, the corresponding PTV-CF WV
measurement in Fig. 3e is closer to RS WV. The likely cause
of the artifact produced by PTV is inaccuracies in the initial
attenuated backscatter that are induced by
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Figure 5. The (a) attenuated backscatter cross section and the water vapor (WV) measurements of the (b) standard method (STND) and
the PTV-MPD method (c) with (PTV-CF) and (d) without (PTV) the coarse-to-fine configuration. Panel (a) is not masked to show what
atmospheric features have been masked out in (b) to (d) by the gray areas. The dashed vertical white lines in (b) to (d) show the launch times
of the radiosondes (RSs), where (e) and (f) show the RS WV profiles. Panel (e) compares the course-to-fine PTV-MPD WV measurements
against those of the RS and the standard method, whereas (f) show the same comparison for the PTV-MPD method without the course-to-fine
configuration. The horizontal dashed lines in (e) to (f) show the altitude at which the RS was horizontally 5 km away from the MPD. The
dashed box in (e) highlights a region that is discussed in the text.
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1. the assumed WV value when computing the initial value
of the attenuated backscatter (see Sect. 5.3.2) and

2. long laser pulse, denoted by operator A in Eq. (5), that
is not deconvolved from initial attenuated backscatter.

Figure 4ii and iii show another distinct WV measurement dif-
ference between the PTV-CF and PTVmethods. The tenuous
WV identified by PTV-CF correlates more with the RS WV
measurement in magnitude and shape compared to the PTV
method.

The higher accuracy of the PTV-CF WV measurements
corresponding to Figs. 3iii and 4iii is because the initial val-
ues of the attenuated backscatter and WV are systematically
improved with the coarse-to-fine image resolution frame-
work. Specifically, while inferring the attenuated backscatter
and WV from both the online and offline channels simultane-
ously at the coarsest image resolution, the PTV-CF method

1. implicitly deconvolves the long laser pulse from the ini-
tial attenuated backscatter

2. and constrains the inference of the WV to be at a coarse
image resolution, which implicitly increases the SNR of
the observations.

6.5 Water vapor measurement error statistics

The RS WV measurements are used as a reference to pro-
duce WV measurement error statistics of the different meth-
ods discussed in the following subsection. Next, we discuss
the test errors between the PTV-CF and PTV methods. We
then summarize the results of the error statistics.

6.5.1 Radiosonde comparisons

For each dataset we compute the root-mean-squared “error”
(RMSE) per range and the relative RMSE per range; all the
methods use the same mask to exclude the same WV pix-
els when computing the RMSE. The RMSE and relative
RMSE were computed as follows. Let '̂(1)

n , '̂
(2)
n , . . ., '̂

(L)
n de-

note the WV profiles inferred by one of the methods, and let
'

(1)
n ,'

(2)
n , . . .,'

(L)
n denote coincident RS WV profiles. The

common mask profiles are denoted by eM(1)
n , eM(2)

n , . . ., eM(L)
n ;

for example, eM(1)
n = 0 indicates that the WV measurement

at row index n is masked out by either the standard or PTV-
MPD method. The RMSE and relative RMSE (RRMSE) per
dataset are computed by

N(l)
=

NX

n=1

eM(l)
n (30)

RMSE =

 
1
L

L,NX

l=1,n=1

eM(l)
n
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⇣
'̂(l)

n �'(l)
n
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⇥
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n
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!�1/2

. (32)

Figures 6a and 7a show the RMSE over the whole SGP
and Marshall datasets, respectively, whereas Figs. 6e and 7e
show the corresponding RRMSE. Figures 6b–d and 7b–d
show the RMSE for each SGP and Marshall dataset (see Ta-
ble 4), whereas Figs. 6f–h and 7f–h show the corresponding
RRMSE.

From Figs. 6 and 7, we see that above 1.5 km the PTV-CF
and PTV RMSEs and RRMSEs are comparable. Except for
the lowest altitudes in Fig. 6c and d, the PTV-CF RMSEs are
approximately less than 1 g m�3 for all altitudes, whereas the
STND RMSE degrades with increasing altitude. For the SGP
datasets, the PTV-CF and PTV RRMSEs are less than 100 %
in most of the profiles up to 8 km altitude, where for the
SGP 2019/04 dataset in Fig. 6f the RRMSE peaks at 125 %
near 6 km altitude. The PTV-CF and PTV RRMSEs for the
Marshall datasets in Fig. 7 are similar to the SGP RRMSEs
below 8 km altitude.

The Raman lidar outperforms the PTV-CF and PTV when
its observations have sufficiently high SNR. Otherwise, in
high solar background conditions (i.e., lower SNR) the Ra-
man lidar’s effective range is diminished. By employing
PTV-CF or PTV, the MPD, which had a power-aperture
product approximately 500 times lower than the Raman lidar,
is able to obtain higher-accuracy WV measurements above
4 km compared to the Raman lidar.

From Figs. 6a and 7a we see that the lowest-altitude WV
measurements of the PTV-CF method are more accurate on
average compared to the PTV and STND methods. These
lower WV accuracies of the PTV and STND methods are due
to lower near-range SNR observations and inaccuracies in the
initial attenuated backscatter. As explained in Sect. 6.4.2, the
course-to-fine methodology employed by PTV-CF mitigates
the inaccuracies of the initial attenuated backscatter.

6.5.2 Test error comparisons

Table 6 shows that for five out of the six datasets the
PTV-CF test errors

⇣
errtst,h=9

⌘
are less than the PTV test

error
⇣

errtst,h=1

⌘
. The lower test errors of PTV-CF correlate

with the higher WV accuracy that PTV-CF is able to achieve
compared to PTV at the lower altitudes.

7 Conclusion and future work

PTV-MPD employs the photon-counting noise model to
quantitatively fit the MPD forward models on the noisy ob-
servations, while encouraging accurate spatial and tempo-
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Figure 6. For the all the SGP datasets, (a) shows the root-mean-square “error” (RMSE) relative to the radiosonde (RS) water vapor (WV)
measurements for the standard method (STND) and the PTV-MPD method with (PTV-CF) and without (PTV) the coarse-to-fine configura-
tion, and (e) shows the corresponding relative RMSE. Panels (b) to (d) show the RMSE for each individual SGP dataset, and (f) to (h) show
the corresponding relative RMSE.

Table 6. This table shows for which datasets the test error
of the PTV-MPD method with the coarse-to-fine configuration⇣

errtst,h=9

⌘
is smaller (i.e., better) than PTV-MPD without the

coarse-to-fine configuration
⇣

errtst,h=1

⌘
. The first two rows of the

table, before the horizontal divider line, correspond to the total test
error comparison over all the SGP and Marshall datasets. The rest
of the rows correspond to the test error comparison over the specific
SGP and Marshall datasets.

Dataset errtst,h=9 < errtst,h=1

SGP 2019/04 to 2019/06 True
Marshall 2020/10 to 2021/04 True

SGP 2019/04 True
SGP 2019/05 True
SGP 2019/06 True
Marshall 2020/10 to 2020/11 False
Marshall 2020/12 to 2021/01 True
Marshall 2021/03 to 2021/04 True

ral correlations across all WV estimate pixels via the total
variation regularizer function. This holistic approach allows
for accurately measuring highly structured and varying WV
fields at different altitudes and varying SNRs. In compari-
son, the standard method employs low-pass filters to reduce
the residual noise in the WV estimate, and the low-pass fil-
ter bandwidth is optimized for lower-altitude ( 4 km) WV
measurements. Therefore, the standard method, which uses
high-altitude WV measurements, contains residual noise that
degrades the measurements. By applying PTV-MPD to WV
retrievals from the MPD, we have been able to extend the
maximum altitude of the retrieval from 6 to 8 km, enabling a
maximum coverage (after hardware improvements described
in Spuler et al., 2021) from 150 m to 8 km by the instrument.
In addition, the WV retrieval accuracy is substantially in-
creased above 2 km. It is also notable that by employing the
PTV-MPD method, the MPD WV measurement range ex-
tends beyond the that of the ARM-SGP Raman lidar, which
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Figure 7. For the all the Marshall datasets, (a) shows the root-mean-square “error” (RMSE) relative to the radiosonde (RS) water vapor
(WV) measurements for the standard method (STND) and the PTV-MPD method with (PTV-CF) and without (PTV) the coarse-to-fine
configuration, and (e) shows the corresponding relative RMSE. Panels (b) to (d) show the RMSE for each individual Marshall dataset, and
(f) to (h) show the corresponding relative RMSE. Note that the scale of the horizontal axes in (a) to (d) are smaller than those shown in
Fig. 6.

has nearly 500 times the power-aperture product of the MPD
(Newsom and Sivaraman, 2018).

We also demonstrated that without careful consideration
of how PTV is adapted for the MPD instrument, low-altitude
biases can be introduced in the PTV-MPD WV measure-
ments. PTV-MPD requires an initial value of the attenuated
backscatter, and any inaccuracies can induce biases in the
PTV-MPD WV estimates. PTV-MPD can be made more ro-
bust against such biases by inferring the WV via a coarse-
to-fine image resolution framework. By inferring the atten-
uated backscatter and WV at a coarse image resolution, in-
accuracies in the initial attenuated backscatter are reduced,
and subsequent finer image resolution attenuated backscatter
estimates are more accurate, which allows for more accurate
WV estimates.

As of now, PTV-MPD is computationally expensive since
inferring the WV requires estimating the WV with several
tuning parameters, and the optimal tuning parameter is se-

lected through a cross-validation methodology. For example,
with 144 CPU cores it takes 1 to 2 h to infer the WV using
the PTV-MPD coarse-to-fine image resolution framework for
24 h of data; each CPU core estimates the WV for a spe-
cific tuning parameter. We are working towards developing a
methodology to infer the optimal tuning parameter from the
photon-counting observations, which will reduce the number
of required CPU cores to 12 or less. In addition, adapting the
PTV-MPD code to use a GPU instead of a CPU might reduce
the computational time by at least 10-fold (Lee and Wright,
2008).

An additional benefit of decreasing the computational de-
mands of PTV-MPD is that it would be able to process multi-
ple days of consecutive observations and not just 24 h scenes
as demonstrated in the results. A current workaround to pro-
cess multiple-day scenes is to use a horizontal sliding win-
dow when inferring the WV. Specifically, the WV is inferred
for consecutive overlapping 24 h periods, and the final mul-
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tiple day WV image is obtained by averaging together the
overlapping 24 h period WV estimates.

Future work includes the following goals.

1. The first is working towards quantifying the uncertain-
ties of the PTV-MPD WV measurements using a boot-
strapping methodology (Friedman et al., 2001). The un-
certainty quantification will quantify how PTV-MPD
WV measurements behave at the edges of scenes where
less spatial information is available.

2. The second is investigating how PTV-MPD can be made
more robust against saturated photon counts.

Appendix A: Jacobian matrix of MPD forward models
(Eq. 5) and gradient matrix of loss function (Eq. 12)

Define the indicator function as

I{k = l} =

⇢
1 if k = l

0 if k 6= l.
(A1)

The MPD forward model derivatives relative to WV and at-
tenuated backscatter are

@
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The P-NLL loss function derivatives relative to WV and at-
tenuated backscatter are
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Appendix B: Poisson negative log likelihood Eq. 8
properties

Here we show that for high solar background radiation (i.e.,
lower SNR) of the photon-counting images there can be mul-
tiple estimates of the WV ' or attenuated backscatter �̃ that
minimize the objective function (14). Specifically, we show
that the P-NLL (8) has more the one minimizer. Without loss
of generality we assume here that

1. the laser pulse duration is equal to the sampling inter-
vals, meaning that 1N = 0 and the matrix A is just an
identity matrix,

2. none of the photon counts are masked out by matrix M,

3. and p = 1.

With these assumptions the Hessian matrix for observation
column k of the P-NLL (8) relative to WV ' for given atten-
uated backscatter � equals
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If this Hessian matrix is positive definite, meaning all its
eigenvalues are positive, then it implies that for a fixed at-
tenuated backscatter � there is a unique WV ' estimate
that minimizes the P-NLL and therefore the objective func-
tion (14) (Boyd and Vandenberghe, 2004). The Hessian ma-
trix is not positive definite if

S̃
(◆)
l0,k(',�) 

h
Y(◆)

l0,kU k1tbk

i 1
2
. (B4)

Whether this inequality is met is dependent on the attenu-
ated backscatter, WV transmittance, and laser energy. For
example, for humid summer days the WV transmittance will
significantly decrease the SSLE relative to the solar back-
ground radiation, consequently limiting PTV-MPD’s ability
to uniquely infer the WV at higher altitudes.

In the cases where the backscattered photons are compara-
ble to the observed background counts according to Eq. (B4),
we leave it to future work to determine the altitudes at which
PTV-MPD can uniquely infer the WV.
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