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Spatiotemporal trends of black
walnut forest stocking under
climate change
Aziz Ebrahimi, Akane O. Abbasi, Jingjing Liang and
Douglass F. Jacobs*

Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States

Basal area is a key measure of forest stocking and an important proxy of forest

productivity in the face of climate change. Black walnut (Juglans nigra) is

one of the most valuable timber species in North America. However, little is

known about how the stocking of black walnut would change with differed

bioclimatic conditions under climate change. In this study, we projected the

current and future basal area of black walnut. We trained different machine

learning models using more than 1.4 million tree records from 10,162 Forest

Inventory and Analysis (FIA) sample plots and 42 spatially explicit bioclimate

and other environmental attributes. We selected random forests (RF) as the

final model to estimate the basal area of black walnut under climate change

because RF had a higher coefficient of determination (R2), lower root mean

square error (RMSE), and lower mean absolute error (MAE) than the other

two models (XGBoost and linear regression). The most important variables

to predict basal area were the mean annual temperature and precipitation,

potential evapotranspiration, topology, and human footprint. Under two

emission scenarios (Representative Concentration Pathway 4.5 and 8.5), the

RF model projected that black walnut stocking would increase in the northern

part of the current range in the USA by 2080, with a potential shift of

species distribution range although uncertainty still exists due to unpredictable

events, including extreme abiotic (heat, drought) and biotic (pests, disease)

occurrences. Our models can be adapted to other hardwood tree species to

predict tree changes in basal area based on future climate scenarios.

KEYWORDS

forest, climate change, black walnut (Juglans nigra L.), random forest (bagging) and
machine learning, basal area, tree migration

Introduction

In recent decades, climate change has modified the growth of forests, mainly due
to increasing temperature and altered precipitation patterns (Kirilenko and Sedjo,
2007; Li et al., 2015). Several biogeographical models demonstrate a poleward shift
of boreal and hardwood tree species distribution at a higher rate than in past glacial
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times (Solomon and Kirilenko, 1997; Woodall et al., 2009).
Due to climate change, some models project a 50% loss in
the geographic range of some tree species by 2100 (Iverson
et al., 2019), resulting in diversity loss and impact on forest
productivity. In addition, rising air temperatures decrease cloud
covers and increase solar radiation, which may enhance several
critical constraints to plant growth (Li et al., 2015). In eastern
U.S. forests, environmental variability owing to climate change
could potentially affect temporal changes in species richness,
demographic rates, and biomass (Fei et al., 2017; Iverson et al.,
2019; Ma et al., 2020). Despite that prediction, more profound
knowledge of which climate variables might have the most
significant impact on tree growth is needed.

A primary step to predicting the impacts of climate change
on tree growth is to understand how a particular species’
performance (growth or dispersal) is influenced by climate
variables (Li et al., 2015). Climate, soils, topography, and
anthropogenic factors could influence tree growth directly (Ares
and Brauer, 2004; Ashraf et al., 2015). Climate change affects soil
water content and increases the growing season length (Ashraf
et al., 2015). Subsequently, unpredictable environmental factors
such as high temperature and severe drought, pests, disease, and
anthropogenic activities affect forest ecosystems, transforming
forestland into cropland or municipalities. Present-day forests
cannot be replaced quickly, especially with significant climate
changes that endanger tree habitats and their environments.
Consequently, existing forest development should be monitored
and measured using efficient models while considering current
climate data to predict growth changes and future bioclimatic
variables.

Evaluating tree growth is used to establish a norm for
forest management, reforestation, harvest time estimation,
and prediction of forest production (Ares and Brauer, 2004;
Schlamadinger et al., 2007; Da Cunha et al., 2016) since
functional traits such as tree growth directly affect its
performance under environmental changes (Li et al., 2015).
Thus, many forestry programs’ goals are to enhance tree growth
and develop more timber (Ares and Brauer, 2004; McKenna
and Coggeshall, 2018) and strengthen the adaptability of trees
to cope with climate change consequences (Brang et al., 2014).
Traditionally, tree growth is predicted by measuring tree height
and DBH (Diameter at Breast Height) (Stage, 1975; Myers and
Fischer, 1991; Ares and Brauer, 2004; Ercanlı , 2020). However,
with increasing forest complexity, quantifying basal area metrics
is critical for measuring forest productivity (Schmidt, 1998;
Jevšenak and Skudnik, 2021) and predicting future changes as
a result of climate change.

Tree growth modeling facilities adaptive forest management
in the face of climate change (Iverson et al., 2019). For this type
of application, machine learning-based models are often tested
to be more accurate than linear regression and other statistical
models (Jevšenak et al., 2018; Ma et al., 2020). For basal area (a
measure of the cross-sectional area of a single tree at diameter

breast height), machine learning was used to develop a model
to evaluate the feasibility/capability of machine learning for tree
species (Kindermann et al., 2008). Machine learning, especially
using random forests, has also been applied to predict basal area,
stem density, and habitat or land suitability in order to facilitate
adaptive forest management in response to climate change in
eastern USA forests (Iverson et al., 2019; Vahdati et al., 2019).

Black walnut (Juglans nigra) is a native species of eastern
North America, widespread in various climates of riparian
zones from the southern part of Ontario to northern Florida
and central Texas. Black walnut is one of the most valuable
timber species in North America. It provides habitat to several
wildlife species, including squirrels, raccoons, and bears, and it
is used for commercial nut production for human consumption
(Michler et al., 2009). Black walnut covers 5,600 ha across its
range, which constitutes approx. 13% of the forest area (Michler
et al., 2009) in the United States. Black walnut is distributed in a
broad range of habitats, and its variability in growth can be used
as an ideal model to evaluate growth and climate relationship.
Black walnut is known for its premium timber quality, with a
timber value of 6,500 $/mbf (Log Dia > 28) that dwarfs the
value of most other hardwood timber species in North America
(Michler et al., 2009; Nicolescu et al., 2020).1 The cost of saw-
timber (stumpage) increased from 150$/m3 in 2000 to 480$/m3

in 2020 (Nicolescu et al., 2020). Eleven states currently have
the most significant volume of black walnut growing stock
on timberland (Shifley, 2004), with 126.7 million m3, 1.0% of
total US hardwood growing stock (Nicolescu et al., 2020). The
United States is exporting walnut lumber to 67 countries (on
average $40 million per year) and walnut logs to 49 countries
(on average $37 million per year) (USDA-FAS, 2004) and the net
volume is increasing by 3.0 million m3 per year.2

Little is known, however, about the future of stocking of
this ecologically and commercially important species under
climate change. Black walnut is sensitive to warmer-drier
summers and extreme weather events (Gauthier and Jacobs,
2011). In addition, the threat of thousand-canker disease in
black walnut may be increased under future climate scenarios
(Williams and Ginzel, 2021). Therefore, developing a model
to predict the stocking of black walnut with current and
future climate data is important for prioritizing adaptive forest
management in response to climate change. To do this, we tested
different machine-learning models to (i) estimate the current
black walnut basal area to identify the important predictor
variables and (ii) predict future basal areas under two emission
scenarios (RCP 4.5 and 8.5). The findings of this study provide
meaningful recommendations/methodology for black walnut
species management in the future.

1 https://www.treefarmsystem.org

2 https://www.americanhardwood.org/en/american-hardwood/
American-walnut
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Materials and methods

Tree and forest data

We compiled black walnut basal area data from the Forest
Inventory and Analysis (FIA) (Burrill et al., 2018). FIA is
a nationwide strategic forest survey, providing periodically
collected information on trees and species data from permanent
sample plots. The plot design uses 7.30-m radius subplots in
which trees with a diameter at breast height (DBH) greater
than 12 cm are measured. The age of the trees is not recorded.
The data was collected from a 1968 to 2020 cycle of inventory.
This study extracted 12,499 plots of black walnut (Juglans nigra)
information as the first approach. Black walnut is the only
dominant species of the Juglans genus that grows in the eastern
forest in the United States and does not hybridize naturally
with other native species (Ebrahimi et al., 2019). Black walnut
grows almost exclusively in natural forests with plantations
(afforestation) making up a small fraction of black walnut
growing stock (Shifley, 2004). Black walnut occurs in mixed
hardwood stands and typically comprises about 11% of the total
volume in stands where it occurs (Shifley, 2004).

Due to management practices, misnamed or overlapped
plots were removed from the analysis. Finally, 10,162 plots were
used to evaluate the basal area for each plot and inventory year.
We calculated the total black walnut basal area (m2/ha) based on
DBH. The basal area value outside the 99th percentile range was
removed to avoid plots with substantial measurement errors.
Dead and harvested trees were excluded, and only growing trees
were used for the analysis. We then aggregated the FIA plot data
into a hexagon-based map. The hexagons are 2,700 ha in size,
covering the entire eastern USA based on the ecoregions defined
by Olson et al. (2001) (Supplementary Table 1).

Climate and environmental data

We compiled 42 predictor variables to train machine
learning models (see section “Basal area modeling and model
evaluation”). We obtained 21 climate variables (Hijmans et al.,
2005; Trabucco and Zomer, 2009), 12 topographic variables
(Amatulli et al., 2018), five soil variables (Batjes, 2016), and four
anthropogenic variables (Venter et al., 2016). These predictor
variables are all derived from open-source satellite-based remote
sensing and were extracted to the centroids of hexagons.
Detailed information about each variable is available in Table 1.
The data was extracted using the SP, SF, raster, and rgdal R
packages (Bucklin and Basille, 2018).

We also obtained future bioclimate variables to predict
future black walnut basal areas. For the 19 bioclimate
variables (C1–C19) (Table 1), we obtained predicted values
under two emission scenarios [Representative Concentration
Pathways (RCP) 4.5 and 8.5] averaged between 2061 and 2080

(Karger et al., 2017). The RCP 4.5 is a stabilization scenario in
which total radiative forcing is stabilized shortly after 2100,
without overshooting the long-run radiative forcing target
level. The RCP 8.5 is characterized by increasing greenhouse
gas emissions over time, representing the high greenhouse
gas concentration levels (Bernstein et al., 2008). All future
bioclimate data are in 1 km-resolution and capture spatially
specific trends of future climates. In this study, we took the
average of five climate models developed during the phase 5
of CMIP (CMIP5): CESM1-BGC, MPI-ESM-MR, ACCESS 1.0,
MIROC5, and IPSL-CM5A-MR (Sanderson et al., 2015; Karger
et al., 2017). We selected these five models to minimize the
interdependency between models (Sanderson et al., 2015).

Basal area modeling and model
evaluation

To estimate the current black walnut basal area across the
eastern USA, we considered three candidate machine learning
models based on 42 predictor variables. The three candidate
models were random forests, XGBoost, and multiple linear
regression. Random forests are a non-parametric ensemble
learning approach (Breiman, 2001), which generates a variant
of regression trees to add an additional level of randomness
by bootstrapping sub-data and using different sets of predictor
variables to mitigate the multicollinearity issues. The XGBoost
model is a decision-tree-based ensemble machine learning
algorithm that uses a gradient boosting framework (Nielsen,
2016). To assess the performance of candidate models in
estimating black walnut basal area, we used Monte Carlo cross-
validation, which creates multiple random splits of the dataset
into training (90%) and validation data (10%). We calculated
the R2 (coefficient of determination), MAE (mean absolute
error), and RMSE (root mean square error) as indicators of the
explained variance to compare the performance of the three
models. These indices were calculated based on Wang et al.
(2018). We tuned two hyperparameters for random forests to
maximize the performance while minimizing the computational
time: the number of regression trees to grow (ntree) and the
number of randomly selected evidential features at each node
(mtry). We used RMSE to determine the optimal ntree and
mtry values (Supplementary Figure 1). We determined the
optimal ntree = 20 and mtry = 10. With random forests, we also
quantified the importance value of all the predictor variables
based on Gini impurity (Grabmeier and Lambe, 2007). Finally,
future basal area was predicted using the final model and
future climate projection data as a new dataset. Non-bioclimate
variables were maintained the same as current values for future
prediction due to lack of data under future emission scenarios.
Nevertheless, the impact of this is minimal as changes in
topography and soil are not expected to be as drastic as changes
in climate.
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TABLE 1 Definition and units of the environmental and bioclimatic covariates (Hijmans et al., 2005) extracted to the FIA plot locations.

Variable Definition Unit Source Minimum Maximum

Vegetative and survey attributes

B Basal area, total cross-sectional area of live trees
measured at 1.3-m above ground

m2/ha Ground measured 0.00203 2082

Y Measurement year year Ground measured

Climate covariates

C1 Annual mean temperature 0.1◦C WorldClim v.1
(Hijmans et al.,
2005)

41 197

C2 Mean diurnal range 0.1◦C WorldClim v.1 93.0 158.0

C3 Isothermality, the ratio of the mean diurnal
temperature range to the annual range, multiply by 100

Unitless WorldClim v.1 25.00 45.00

C4 Temperature seasonality 0.01sd WorldClim v.1 5974 12423

C5 Max temperature of warmest month 0.1◦C WorldClim v.1 241 355

C6 Min temperature of coldest month 0.1◦C WorldClim v.1 −215.00 40.00

C7 Temperature annual range 0.1◦C WorldClim v.1 290.0 486.0

C8 Mean temperature of wettest quarter 0.1◦C WorldClim v.1 29.0 268.0

C9 Mean temperature of driest quarter 0.1◦C WorldClim v.1 −130 276

C10 Mean temperature of warmest quarter 0.1◦C WorldClim v.1 17.4 28

C11 Mean temperature of coldest quarter 0.1◦C WorldClim v.1 −13 11.5

C12 Annual precipitation mm WorldClim v.1 458 1969

C13 Precipitation of wettest month mm WorldClim v.1 80.0 198.0

C14 Precipitation of driest month mm WorldClim v.1 8.00 144.00

C15 Precipitation seasonality Unitless WorldClim v.1 8.00 67.00

C16 Precipitation of wettest quarter mm WorldClim v.1 222.0 525.0

C17 Precipitation of driest quarter mm WorldClim v.1 32.0 458.0

C18 Precipitation of warmest quarter mm WorldClim v.1 189.0 508.0

C19 Precipitation of coldest quarter mm WorldClim v.1 32 498

C20 Indexed annual aridity Unitless index·10−4 CGIAR-CSI
(Trabucco and
Zomer, 2009)

4133 17888

C21 Global potential evapotranspiration mm/year CGIAR-CSI 851 1495

Topographic covariates

T1 Aspect cosine Unitless EarthEnv −0.343 0.994

T2 Aspect sine Unitless EarthEnv −0.313 0.976

T3 First order partial derivative (E-W slope) Unitless EarthEnv −0.347 0.283

T4 Second order partial derivative (E-W slope) Unitless EarthEnv −9.193e-04 1.171e-03

T5 First order partial derivative (N-S slope) Unitless EarthEnv −0.329 0.303

T6 Second order partial derivative (N-S slope) Unitless EarthEnv −7.486e-04 8.410e-04

T7 Profile curvature Unitless EarthEnv −1.042e-03 9.087e-04

T8 Roughness Unitless EarthEnv 0.00 212

T9 Slope Unitless EarthEnv 0.00 19.095

T10 Tangential curvature Unitless EarthEnv −5.612e-0 8.151e-04

T11 Topographic position index Unitless EarthEnv −21.57 22.734

T12 Terrain ruggedness index Unitless EarthEnv 0.00 72.609

Soil covariates

O1 Bulk density g/cm3 WISE30sec v.1
(Batjes, 2016)

−1.000 1.530

O2 pH measured in water Unitless WISE30sec v.1 −1.00 8.00

O3 Electrical conductivity dS/m WISE30sec v.1 −1.00 2.00

O4 C/N ratio Unitless WISE30sec v.1 1.00 21.00

O5 Total nitrogen g/kg WISE30sec v.1 −1.00 9.93

(Continued)
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TABLE 1 (Continued)

Variable Definition Unit Source Minimum Maximum

Anthropogenic covariates

H1 The Human Footprint (HF), a measure of the
cumulative impact of direct human pressure on nature

Unitless Venter et al., 2016 0.275 48.00

H2 HF change from 1993 to 2009 Unitless Venter et al., 2016 −18.00 17.00

H3 Roadless areas km2 Ibisch et al., 2016 0.00 67.39

H4 Protected areas km2 Lysenko et al., 2007 0.00 555614127

Geographic
coordinates and
classification

x Longitude in WGS84 datum Degree −102.57 −70.9

y Latitude in WGS84 datum Degree 27.89 47.71

We used “randomForest” package to conduct random
forests and predict future basal area in R (Liaw and Wiener,
2002), “xgboost” package to conduct XGBoost (Nielsen, 2016),
and ‘corrplot’ package to create a correlation matrix of the
predictor variables (Wei et al., 2017).

Results

Basal area modeling and model
evaluation

Random forests model outperformed multiple linear
regression and XGBoost models in terms of the coefficient of
determination (R2), root mean square error (RMSE), and mean
absolute error (MAE) (Figure 1 and Table 2). Therefore, we
chose random forests as a final model to estimate black walnut
basal area. The R2 of random forests model was 2,450% and 6.3%
higher than multiple linear regression and XGBoost models,
respectively (Figure 1 and Table 2). Furthermore, random
forests showed 27.4% lower MAE and 32.6% lower RMSE than
multiple linear regression and 3.9% lower MAE and 3.2% lower
RMSE than XGBoost (Figure 1 and Table 2), which indicates the
highest accuracy of random forests among the three candidate
models. The proportion of variation explained in our final
random forests was 75%. Random forests was also used to
predict future basal area.

Important variables to predict the basal
area

Based on our random forests model, some topography
and climate variables had a profound influence on the
prediction of basal area in black walnut species (Figure 2).
Aspect sine and cosine (T1, T2), topographic position index
(T11), temperature seasonality (C4), annual Precipitation

(C12), indexed annual aridity (C20), global potential
evapotranspiration (C21), and human footprint (H1) were
the most important predictor variables for black walnut basal
area (Figure 2 and Supplementary Figure 2). Black walnut
grows in areas/regions with annual precipitation varied from
500 to 2,000 mm (Table 1 and Supplementary Figure 3). The
annual precipitation (C12) from 500 to 1,000 mm increased
the basal area of black walnut across its range. The amount
of precipitation above 1,000 mm can decrease the basal area.
Global potential evapotranspiration (C21) can decrease the
basal area if the amount of evapotranspiration is high. The
human footprint plays a significant role in increasing basal
area, revealing that managed forests can increase the basal
area in black walnut. Soil variables, maximum and minimum
temperature of the warmest and coldest month (C5, C6), mean
temperature of warmest quarter (C10), precipitation of wettest
and driest month (C13, C14), and precipitation seasonality
(C15) had the lowest impact on the basal area (Figure 2).

Future changes in black walnut basal
area

We predicted the current and future distribution of basal
area of black walnut over the study region based on the
FIA database (Figure 3) and the random forests model. The
estimated basal area of black walnut was on average 3.99 m2/ha
across the eastern USA (with a maximum of 43.01 m2/ha)
with current climate data, 24.55 m2/ha (with a maximum of
116.45 m2/ha) with RCP 4.5, and 29.26 m2/ha (with a maximum
of 119.53 m2/ha) with RCP 8.5 (Table 3). While current basal
area was estimated to be distributed between 35 and 42 degrees
latitude (Figure 4A), future distribution was estimated to shift
up to 50 degrees (Figures 4B,C). In some parts of the eastern
USA, basal area was estimated to exceed 100 m2/ha—more than
double the current basal area—such as in western Midwest with
RCP 4.5 (Figure 4B) and in eastern Midwest with RCP 8.5
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FIGURE 1

Cross-validation of random forests model (A) versus multiple Linear Regression (B) and XGBoost (C). Scatter plots show observed (vertical axis)
vs. predicted (horizontal axis) basal area values (m2/ha), from which we calculated mean absolute error (MAE), root-mean-squared error (RMSE),
and the coefficient of determination (R2) of the trendlines (red) between the predicted and observed values. The broken lines represent the
perfect fit where predicted values match observed values.
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(Figure 4C). In contrast, we estimated that basal area will largely
decline in lower latitudes (Figures 4B,C).

Discussion

Black walnut is distributed in a wide range of climates,
making it an important species to evaluate the climate-stocking
relationship with random forests models. Black walnut grows
in regions with a minimum temperature between −45 and 4◦C

TABLE 2 Statistical comparison of random forests (RF) model, Linear
Regression (LR), and XGBoost model to predict random forests using
bioclimatic variables statistics characteristics show the coefficient of
determination (R2), root means square error (RMSE), and mean
absolute error (MAE).

Model type R2 RMSE MAE

LR 0.02 2.24 1.35

XGBoost 0.48 1.56 1.02

RF 0.51 1.51 0.98

(Williams, 1990), representing growth variation, inheritance
variability, and natural adaptation across latitudes. Additionally,
the regions of black walnut distribution have experienced a
common land disturbance history, leading to an equal or higher
abundance of trees for large vs. small diameter classes across
regions and suggesting that the age distribution in our models
was relatively similar (Shifley, 2004). Our study shows black
walnut basal area starts to decline in regions of lower than 35◦

and higher than 45◦ latitude in the northern part of Wisconsin
and Minnesota due to severe cold temperatures. Therefore,
black walnut is absent in the northern part of Wisconsin,
Michigan, New York, Minnesota, and Maine based on the plot
measured by FIA. Other studies reported that black walnut
could not grow at less than −45◦C (Williams, 1990).

In our study, some covariates, such as aspect and
topography, had the greatest impact on the basal area of black
walnut. Topography was previously determined as a key factor
of black walnut growth in natural stands (Schultz and DeLoach,
2004). The positive interaction of aspect and the topology on
basal area was previously reported by Jevšenak and Skudnik
(2021). However, another study reported a negative effect of
slope on basal area (Rohner et al., 2018). Since black walnut

FIGURE 2

Variable importance of the predictor of the basal area in black walnut based on the Gini model (IncNodePurity: variables that split at each node)
using random forests machine learning The value was calculated based on the Gini model for each of the 42 independent variables. See Table 1
for definitions of each predictor variable.
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FIGURE 3

The distribution of black walnut in the United States (A) and associated basal area (BA, m2/ha) frequency distribution (B).

TABLE 3 Absolute basal area (m2/ha) and prediction of the basal area with current and future prediction of two scenarios (RCP 45 and RCP 8.5).

Variables Minimum 1st Qu Median Mean 3rd Qu Maximum

Absolute (BA) 0.051 32.58 56.24 75.35 107.35 225.86

Current (BA) 0.00 0.1951 3.0364 3.99 5.93 43.01

RCP4.5 (BA) 0.00 6.737 20.93 24.55 38.75 116.45

RCP8.5 (BA) 0.00 10.31 28.87 29.26 44.60 119.53

is a wind-pollinated species, the topology can ease the pollen
movement and increase the regeneration of this species.

Temperature and precipitation influence black walnut basal
area. In a provenance test of black walnut, the annual mean
temperatures of seed resource’s location play a significant role in
the accumulation of tree growth in a common garden (Onofrio
et al., 2021). Jevšenak (2019) reported a significant climate-
growth relationship on the European tree-ring network. Hence,
increasing temperature and changing precipitation patterns due
to rapid climate change could influence black walnut basal area
in the future. The impact of temperature seasonality and annual
precipitation in our study on basal area represents how climate
change can influence future black walnut regeneration and
stocking. A study evaluating five tree species in the eastern USA
showed that seasonal temperature and precipitation positively
impact growth rate compared to annual mean temperature
(Rollinson et al., 2016), which is consistent with our study’s
findings.

In this study, annual precipitation of 500–1,000 mm
can increase the basal area; in contrast, precipitation above
1,000 mm can decrease the basal area in black walnut. Therefore,
given the increase of flood events in the Midwestern USA in
the last decades and the prospective continuation of this trend,
black walnut stocking may be affected in the future. Extreme or
higher precipitation in specific seasons negatively affected basal

area in various tree species in Europe (Jevšenak and Skudnik,
2021) or caused severe seedling mortality in black walnut
(Coggeshall and Schlarbaum, 2007). This reveals that changing
precipitation patterns, especially frequent flooding events, can
negatively affect the future survival rate and basal areas in
black walnut. A provenance study of black walnut planted in
Indiana, USA revealed that partial flooding events increase the
rate of seedling mortality compared with other sites without
flooding events (Onofrio et al., 2021). Evapotranspiration and
index annual aridity were the other two important variables
in our study. Above 1,100 mm/year can influence basal area
since the water content of soils is positively correlated with
water uptake and evapotranspiration, especially in the summer.
Evapotranspiration is highly correlated with mean annual
temperature (Liang et al., 2016), which indicates that increasing
temperatures in the future can influence basal areas in black
walnut. Rollinson et al. (2016) identified evapotranspiration and
temperature as the main factors influencing basal area in several
tree species.

Soil variables did not impact basal area, which is not
surprising since the soil type in the Midwestern USA could
be consistent or at least provides enough minerals for black
walnut to grow across its range. Some studies showed that soil
nutrients do not significantly influence black walnut growth but
can be slightly influenced by soil texture, soil depth, and pH

Frontiers in Forests and Global Change 08 frontiersin.org

https://doi.org/10.3389/ffgc.2022.970379
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-970379 September 15, 2022 Time: 8:31 # 9

Ebrahimi et al. 10.3389/ffgc.2022.970379

FIGURE 4

Predicted local basal area (m2/ha) of black walnut based on current climate (A) and future climate scenario RCP4.5 (B) and RCP8.5 (C). Right
panels map the geographic distribution of the predicted basal area, with latitudinal occurrences (gray points) and associated latitudinal
trendlines (blue curves) shown in the left panels.

(Geyer and Ponder, 2004; Schultz and DeLoach, 2004). Another
study reported that other tree species growing in poor or rocky
soil types or distributed across different continents do not have
consistent growth potential in a random forests model (Jevšenak
and Skudnik, 2021). Some studies reported that soil content
was the least important variable for pine forest richness (Jin
et al., 2021). This suggests that black walnut stocking may not

be affected by soil content or nutrition, although the depth of
the soil can be an important factor. Black walnut prefers loamy,
moist, but well-drained soils typically found in riparian zones
(McKenna and Coggeshall, 2018). Evaluating four tree species
in the Amazon rain forests, Da Cunha et al. (2016) suggested
that similar R2 values for all species represent the consistent soil
conditions for increasing the accuracy of the models to predict
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basal area. Based on our studies and a previous report (Iverson
et al., 2019), black walnut will migrate to the northern range in
the future. Therefore, the type of soils in areas like northern
Wisconsin, Minnesota, Northern Michigan, New York, and
Maine need to be considered in future studies. Black walnut
cannot tolerate dry, rocky, limestone soils and even ruderal sites
(Pike et al., 2021). The northern range of black walnut has more
hills and rocky soils that may not be suitable for black walnut
and may threaten the habitat of this species in the future.

Our results showed that the human footprint is an important
variable in predicting basal area. Black walnut has been used
for gunstocks, bowls, and furniture because of its high-quality
logs, beautiful grain, and ease of working with veneer. Therefore,
black walnut has a higher prize timber quality than other
hardwood tree species (McKenna and Coggeshall, 2018), which
encourages foresters to remove competitors to increase tree
growth and timber quality of shade-intolerant black walnut.
Thinning/harvesting had a positive effect on the basal area for
other tree species (Rohner et al., 2018). The history of human
influence on modern tree species goes back to millions of years
ago when they tried to conserve specific species and harvest
unwanted/undesirable trees (Rohner et al., 2018).

The CO2 concentration of air is expected to increase
exponentially by 2080 (Kirilenko and Sedjo, 2007), affecting
forest productivity (Kirilenko and Sedjo, 2007; Arab et al., 2020).
The basal area can be affected due to elevated temperature or
changing precipitation patterns as a result of climate change.
Our study found that the basal area may increase under
both emission scenarios compared with the projection under
constant climate. Albert and Schmidt, 2010 reported that
in conditions where the precipitation is not limited, rising
temperatures in the growing season would positively affect
forest productivity. Thus, increasing the basal area in our
study RCP 8.5 scenarios could result from rising temperatures
in the future and changing precipitations patterns. Increasing
growth with elevated CO2 was previously reported in other
plant species (Polley et al., 2003). In addition, elevated CO2

could affect the chilling requirement of tree species (Hajinia
et al., 2021). Responses to climate change are, however, a result
of complex interactions among multiple factors, which require
future interpolation specific to black walnut.

Based on future climate data, black walnut may migrate
to a northern range and gain a higher value of basal area
mainly based on the RCP 8.5 scenario. This finding agrees
with the climate change atlas published by the USDA Forest
Service (Iverson et al., 2019), which showed that under RCP
4.5 and RCP 8.5 scenarios, trees can migrate to a northern part
of the region within 100 years. Tree migration to a northern
range will induce range shifts, bottlenecks, fragmentation of
populations, or changes in the habitat of other species. However,
with increasing temperature and precipitation patterns in the
last 30 years, black walnut may migrate more than 100 km
to a northern range to grow in a more favorable condition

(Iverson et al., 2019). Fei et al. (2017) also reported at least
25 km per decade of tree migration of black walnut to the
northern range, which is 250 times faster than the past-
glacial migration time reported for two American hardwood
species (McLachlan et al., 2005). Therefore, with the rapidly
changing climate, black walnut distribution may shift in the
future to its northern range, especially in northern Wisconsin,
Minnesota, Northern Michigan, New York, and Maine through
the Canadian border. Consequently, in the face of climate
change, migrating black walnut populations may be threatened
by climate-related stressors, including extraordinarily high or
cold temperatures, late spring frost, or drought events that have
become more frequent in the last decade. The role of adaptive
responses to climate change should therefore be considered for
tree migration since evolution occurs more slowly than climate
change (Davis et al., 2005). In addition, local, regional, and
global changes in temperature and precipitation can influence
the occurrence, frequency, and intensity of disturbances,
significantly enhancing massive insects and pathogen outbreaks
(Dale et al., 2001). Thus, since temperature and precipitation
directly and indirectly affect forest disturbances and forest
range expansion, the interaction of temperature-precipitation
variability with other factors such as disease or pest outbreaks
and anthropogenic changes should be considered in future
studies.

Our results also showed black walnut abundance would
decline in southern and central latitudes under RCP 4.5 and 8.5
scenarios. This result is consistent with a study in Europe that
reported a remarkable decrease in tree species’ abundance and
genetic diversity in southern and central forests and increasing
abundance and genetic diversity in the northern range (Buras
and Menzel, 2019). Since black walnut is currently distributed
mainly in the center of the eastern USA forest, a declining
abundance of black walnuts might endanger the habitat of this
species.

In summary, we developed machine learning models
to study the future of black walnut stocking across the
United States and assess the impact of climate change on basal
area. We selected random forests (RF) as a final model to
estimate the basal area of black walnut under climate change,
because RF had a higher coefficient of determination (R2),
lower root mean square error (RMSE), and lower mean absolute
error (MAE) than the other two models (XGBoost and linear
regression). The most important variables to predict basal
area were the mean annual temperature and precipitation,
global evapotranspiration, topology, and human footprint.
Under two emission scenarios (Representative Concentration
Pathway 4.5 and 8.5), the RF model projected that black
walnut stocking would increase in the northern part of the
current range in the USA, with a potential shift of species
distribution range. This model can be adapted to predict tree
stocking for other hardwood tree species based on future
climate scenarios.
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SUPPLEMENTARY FIGURE 1

The number of regression trees (ntree) and the number of randomly
selected evidential features at each node (mtry) based on the fine-tuned
model to predict basal area in black walnut.

SUPPLEMENTARY FIGURE 2

Pearson correlation coefficients between all pairs of bioclimate
variables across the black walnut range in the eastern USA (see the
details of variables in Table 1).

SUPPLEMENTARY FIGURE 3

Partial dependence plot of the most important environment,
topography, and anthropogenic covariates affecting the basal area in
black walnut in the eastern USA (For the units, please see Table 1).
A partial dependence plot shows the effect of one predictor variable
(horizontal axis) on predicted basal area of black walnut (vertical axis),
while all other predictors are kept constant at their sample mean.
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