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Abstract

Experiments with diblock co-polymer melts display undulated bilayers that emanate from defects
such as triple junctions and endcaps, [6]. Undulated bilayers are characterized by oscillatory per-
turbations of the bilayer width, which decay on a spatial length scale that is long compared to the
bilayer width. We mimic defects within the functionalized Cahn-Hillard free energy by introducing
spatially localized inhomogeneities within its parameters. For length parameter " ⌧ 1, we show
that this induces undulated bilayer solutions whose width perturbations decay on an O

�
"�1/2

�
inner

length scale that is long in comparison to the O(1) scale that characterizes the bilayer width.

Keywords: functionalized Cahn-Hilliard, dumb-bell, spatial dynamics, invariant manifold

1 Defect structures in amphiphilic morphology

The Functionalized Cahn Hilliard free energy models the interaction of amphiphilic molecules with

solvent. It traces its origins back to bilinear models of microemulsions of oil, water, surfactant derived

from scattering data by Tubner and Strey, [10]. Their model represents the free energy through the

density u of the surfactant phase, and incorporates forth derivatives of this variable to match the

decay of the scattering intensity with respect to wave number. Crucially, the coe�cient of the second

derivative term is negative, while the zeroth-order derivative term is positive. Quadratic energies have

linear variations, hence this model captures the linear response of the system to departures from spatial

uniformity. Surfactant systems are strongly phase separated, and not spatially homogeneous. Gompper

and Schick, [4] and later Gompper and Goos, [11] proposed nonlinear extensions of the energy that

modulate the coe�cients depending upon the local density, with the sign of the quadratic coe�cient

positive at very large or small densities of surfactant and negative a intermediate densities. This

generically makes this coe�cient a good candidate for the second derivative of a double-well potential.

Indeed, considering a domain ⌦ ⇢ R3 subject to zero-flux or periodic boundary conditions, the energy

introduced by Gompper and Goos can be written as a perturbation of a completed square in the highest

order derivatives,

FGG(u) :=

Z

⌦

1

2

�
"2�u�W 0(u)

�2
+ f1W (u) dx. (1.1)
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Here 0 < "⌧ 1 is a ratio of molecular and domain length scales, W is a smooth double well potential

with two local minima and f1 is a bifurcation parameter that can take small positive or negative values.

The quadratic term is often referred to as the Willmore energy, since for codimension one interfaces it

generically reduces to the surface integral of the square of mean curvature.

In [7] the model of Gompper-Goos was scaled and generalized into the functionalized Cahn-Hillard

(FCH) energy

FFCH(u) :=

Z

⌦

1

2

�
"2�u�W 0(u)

�2
� "p

✓
⌘1
"2

2
|ru|2 + ⌘2W (u)

◆
dx. (1.2)

Here "⌧ 1 characterizes the ratio of the characteristic length of the surfactant molecules to the domain

size and W is an double well with unequal minima at u = 0 and u = u+ > u� and a local maximum

at u = u�. These satisfy W (0) = 0 > W (u+), and are non-degenerate in the sense that W 00(0) > 0,

W 00(u+) > 0, and W 00(u�) < 0. This form emphasizes the nearly “perfect-square” structure of the

energy corresponding to ⌘1 = ⌘2 = 0, or equivalently to p ! 1. Indeed the value of p represents a

distinguished limit that slaves the Gompper’s bifurcation parameter f1 = �"p⌘2 to ". The parameter

⌘1 > 0 incorporates the strength of the hydrophilicity of the solvent head groups. The choice p = 2

yields an asymptotic balance between the functionalization terms, controlled by ⌘1 and ⌘2, and the

residual of the dominant Willmore term. For p = 1 these terms dominate the residual of the Willmore

term. We remark that the "p⌘1"2|ru|2 functionalization term can be replaced with a "p⌘1uW 0(u)

potential, up to terms O("2p) by redefining the well shape W at O("p).

The FCH free energy supports spatially extended structures that have a dimensional reduction. Posed

in R3 these include codimension one bilayers and codimension two filaments; the codimension three

micelles are not spatially extended in R3. A defining feature of the nanoscale morphology produced

by amphiphilic diblock polymers is a tendency for these spatially extended structures to undulate in

the neighborhood of defects. Defects are defined as localized structures that break the dimensional

reduction and include endcaps that terminate filaments or bilayers and Y junctures. Undulations are

long-range modulations of the thickness of the extended structure. Experiments reported in [5, 6] show

that the modulations have wave-lengths that are comparable to the thickness of the structure and have

amplitudes that attenuate on a length scale that is long compared to the interfacial thickness. Undula-

tions can be seen in in Figure 1.1 behind the end-cap defects that terminate the filament morphologies,

particularly in the region within the red boxes near the endcaps labeled ‘2’ and ‘3’.

examples throughout th is paper and elsewhere;39 how-
ever , none are as conspicuous as those depicted in th is
blend. These beadlike deformat ions occur with a char -
acter ist ic per iodicity, which appears to be damped in
the long central port ions of the cylinders. Short cylinders
with one and two beads can be seen in Figure 8A (shor t
and long ar row, respect ively). Cylinders with one, two,
and three undula t ions are marked in Figure 8A. Figure
8B show branched por t ions of a cylindr ica l micelle with
quant ized undula t ions apparen t ly dicta t ing the arm

lengths. Mult iple undula t ing branches in Figure 8C
highligh t the loca liza t ion of such fea tures near the
junct ions and ends. These aggrega tes are stable, as
hea t ing the sample to 50 °C for a few days did not
produce any not iceable change in the assembled mor-
phologies. A compar ison of OB9-1/OB1-3 shown in
Figure 4B and OB9-1/OB1-5 presented in Figure 8
shows a t ransit ion from main ly spher ica l micelles to
mainly cylindr ical micelles over a very narrow composi-
t ion range.
Blends around w PEO*. Recen t ly, we discovered

network format ion in aqueous dispersions of OB9-4
(wPEO ) 0.34 and N PB ) 170) (see Figure 9A). As a par t
of the present study, we at tempted to mimic th is
network st ructure by blending OB9 diblock copolymers
with grea ter (wPEO > 0.34) and lesser (wPEO < 0.34)
composit ions. For example, we blended equimolar mix-
tures of OB9-1 and OB9-6, resu lt ing in an average
composit ion of 〈wPEO ) 0.34〉, ident ica l to OB9-4. To our
surpr ise th is premixed blend self-assembles in to a
potpourr i of delica te looking objects with bilayer , cylin-
dr ica l, and complex junct ion st ructura l elements, fre-
quent ly mixed with in individua l moiet ies. These un-
usual st ructures are evident in all the cryo-TEM images
taken from this mixture; F igure 9C displays many of
the prevalent fea tures. Perhaps the most st r iking is the
octopus (or jelly fish)-like micelles, which are composed
of a fla t bilayer with prot ruding cylindr ica l micelles
along the edges. These octopus-like ent it ies are common,
a lthough they occur with a var iable number of cylindr i-
ca l a rms. Severa l examples are shown in Figure 10
conta in ing 4, 5, 6, 7, 8, 9, 10, and 14 arms a t tached to
the fla t cen t ra l por t ion . In a ll these octopus-like ag-
grega tes the cylindr ica l a rms are symmetr ica lly dis-
t r ibu ted a long the circumference of the cent ra l fla t
bilayer as is evident in Figures 9C and 10. Occasionally,
these objects appear to be folded on a side with the
cylindr ica l a rms prot ruding from a hemispher ica l bi-
layer cap. Obviously, the confinement crea ted by the

Figure 8. Cryo-TEM images from mixture OB9-1/OB1-5
depict ing undula t ions and distended spher ica l end caps on
wormlike cylindr ical micelles. Short cylinders with an undula-
t ion (shor t a r row) and two undula t ions (long ar row) and
cylinder ends with one, two, and three beads are marked
cor respondingly in (A). Panels B and C show branching with
quant ized undula t ions fixing the segment length between
junct ions. Two types of hyperbolic (saddle) surfaces character-
ize these morphologies (see Figure 13).

Figure 9. Cryo-TEM micrographs from three dispersions with ident ica l composit ions, 〈w PEO ) 0.34〉; the molecula r weight
dist r ibu t ion broadens from A to B to C. (A) A network fragment from OB9-4, a single component dispersion . This picture is
reproduced from ref 7. (B) Blend OB9-11/OB9-15. A bimodal dist r ibut ion of component composit ions (w PEO ) 0.39 and 0.30) breaks
the network. (C) A broader dist r ibt ion (w PEO ) 0.24 and 0.42, OB9-6/OB9-1) produces a var iety of morphologies including vesicles,
wormlike micelles, and a new type of hybr id par t icle refer red to as an octopus. Two of these objects, compr ised of cylindr ica l a rms
radia t ing from a single bilayer , a re evident in th is image, one with 11 and one with 4 arms.

Macrom olecules, Vol. 37, No. 4, 2004 PEO-PB Micella r Dispersions 1517

Figure 1.1: Cryo-TEM images of blends of amphiphilic diblock polymer in water. A mixture of diblocks with
hydrophobic/hydrophillic chain lengths of 170/110 and 46/58, respectively. This mixture produces visible un-
dulations behind the endcaps, see the red boxes outlining the structures labeled ’2’ and ’3’. Reprinted with
permission from Figures 7&8 of [6].
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In this work we argue that breaking the perfect-square formulation of FCH free energy provides a

mechanism that triggers the onset of undulations that decay on a slow, O(
p
"), length scale in the

tangential direction. We focus on flat bilayer critical points of the FCH in R2. In the spatial dynamics

formulation we identify two pairs of purely imaginary eigenvalues within the linearization of the FCH

in the perfect-square form. We show that these eigenvalues merge and either remain purely imaginary

or bifurcate into four complex-conjugate eigenvalues with O(
p
") real part when the perfect-square

structure is broken at O("), see Figure 2.1. The former case, when the eigenvalues remain purely

imaginary, was addressed in [8], and corresponds to the creation of a family of bilayer profiles whose

width is modulated by spatially periodic pearled patterns. In the current work we address the the

latter case, showing that the complex eigenvalues lead to the formation of undulations that form in

presence of localized defects. Specifically we induce the defects by inserting spatial inhomogenities

in ⌘2 = ⌘2(x). We establish that the bilayer solution persists under this perturbation, leading to

an undulated equilibrium characterized by quasi-periodic oscillations with an O(") wavelength whose

amplitude decays on an longer O(
p
") length scale.

Bilayer solutions of the functionalized Cahn-Hilliard free energy. We study the strong regime

of the FCH, (1.2), with p = 1 and subject to zero-flux boundary conditions and a mass constraint
Z

⌦
u dx = M.

The critical points satisfy the Euler-Lagrange equation

("2��W 00(u) + "⌘1)("
2�u�W 0(u)) + "⌘dW

0(u) = "�, (1.3)

where ⌘d := ⌘1 � ⌘2 and � 2 R is the Lagrange multiplier associated to conservation of mass of the

FCH equation. We assume the well W is smooth and simplify the system, moving it to the plane,

⌦ = R2,

and fixing a flat interface �f := {(x1, 0) | x 2 R} so that we may rewrite the Euler-Lagrange equation

(1.3) in the in-plane/scaled-normal coordinates (⌧, r) = (x1, x2/"), for which it takes the form

�
@2r �W 00(u) + "2@2⌧ + "⌘1

� �
@2ru�W 0(u) + "2@2⌧u

�
+ "⌘d(⌧)W

0(u) = "�. (1.4)

We view the PDE as an infinite-dimensional dynamical system with ⌧ = x1 playing the role of the

evolution variable. The defect is induced by a spatial variation which we take in the form ⌘2 =

⌘20 + �⌘21(⌧) through the in-plane variable. This is made explicit in (1.9).

In this scaling, the " = 0 version of (1.4) possesses bilayer solutions. Both the in-plane variable ⌧ and

the functionalization parameters with their spatial variation are eliminated from the problem. The

bilayers are the solutions of the second-order ODE

@2ru�W 0(u) = 0, (1.5)

that are homoclinic to origin, u = 0, corresponding to the left local minimum of the well W. The

existence follows from classical planar dynamical systems techniques. We denote the unique (up to

translations) orbit homoclinic to the origin, by uh = uh(r; 0), with the zero denoting the " = 0
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reduction. The linearization of the system (1.5) at u0(r) := uh(r; 0) yields a Sturm-Liouville operator

on the real line,

L0 := @2r �W 00(u0) : H
2(R) �! L2(R), (1.6)

whose spectrum, according to standard Sturm-Liouville theory, consists of a simple positive eigenvalue

�0 and the simple eigenvalue �1 = 0 with the remainder lying strictly on the negative real axis. We

denote the associated L2(R) normalized eigenfunctions as  0 and  1, respectively. We also note that,

unless otherwise noted, the notation L2(R) is reserved for function of r and h·, ·iL2(R) denotes an

integration over r.

In the case of spatially homogeneous ⌘1 and ⌘2 one may drop the ⌧ derivatives and study the persistence

of these homoclinic orbits for 0 < "⌧ 1. The work [3] considered a flat interface and constructs bilayer

profiles which are homoclinic to the far-field value

u1 = "
�

(W 00(0))2
+O("2), (1.7)

which is the unique small solution of the far-field equation

(W 00(u1)� "⌘2)W
0(u1) = "�.

Introducing the constant ⌘d,0 = ⌘2,0�⌘1, they establish the persistence of bilayer profiles for " su�ciently

small.

Theorem 1 ([3]-Theorem 3.1) Fix �0 > 0, then there exists "0 > 0 such that for all |�| < �0 and

all " 2 [0, "0), the constant coe�cient bilayer ODE
�
@2r �W 00(u) + "⌘1

� �
@2ru�W 0(u)

�
+ "⌘d,0W

0(u) = "�, (1.8)

admits, up to translation, a unique solution uh(r; "), called the bilayer solution to the FCH, that is

homoclinic to u1("; �).

Undulated bilayer interfaces induced by amphiphilic inhomogeneity. The FCH parameter

⌘2 is well-known to tune the energetic preference of the system for various codimensional morphologies,

[2] and is the central bifurcation parameter in the formulation in [11]. Our central result is that if the

key parameter ↵0 defined in (2.16) is negative, then spatially inhomogeneity in the parameter ⌘2 will

induce long oscillations characteristic of the structures observed experimentally behind endcap defects

in Figure 1.1. Specifically for 0 < � ⌧ 1 we consider inhomogeneity’s

⌘2(⌧ ; �) = ⌘2,0 + �⇠
⇣p

�0
⌧

"

⌘
, (1.9)

where ⇠ has compact variation: ⇠0 is a smooth function satisfying

⇠0(t) = 0, |t| > T. (1.10)

If ⇠0 has zero mass, then ⇠ has identical limits as t ! ±1 and we say ⇠ is a localized inhomogeneity.

Conversely, if ⇠0 has non-zero mass, then ⇠(±1) di↵er and we say ⇠ is a transitional inhomogeneity.

The impact of ⇠ on the perturbed solution to (1.4) is characterized by the Fourier coe�cients

⌅o,1 :=

Z

R
⇠0(t) cos(t)dt,

⌅e,1 := �

Z

R
⇠0(t) sin(t)dt.

(1.11)
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We establish the continuous bifurcation of undulated bilayer interfaces out of bilayer solutions for " > 0

and � > 0 su�ciently small. The main significance is the appearance of the slow O("�1/2) decay of the

undulations induced by the localized inhomogeneity in ⌘2.

Theorem 2 Assume that the pearling bifurcation parameter ↵0, defined in (2.16), is negative; that is,

↵0 < 0. If in addition the following generic conditions hold

(i) The Fourier coe�cients ⌅1 := (⌅e,1,⌅o,1) are not identically zero, |⌅1| > 0;

(ii) The scaled inner-product �0 := h 0,W 0(u0)iL2(R) is non-zero. Here u0 is the bilayer solution

of (1.5) and (�0, 0) is the ground state eigen-pair of the associated linearization L0, defined in

(1.6).

Then for any q > 3/4 there exist �0, "0 > 0, such that for all (�"�q, ") 2 (��0, �0) ⇥ (0, "0), the

stationary FCH equation (1.3) with amphiphilic inhomogeneity ⌘d(x1, �) = ⌘2,0 � ⌘1 + �⇠(
p
�0

x1
"
),

admits an undulated bilayer solution

un(x) =uh
⇣x2
"
; ", ⌘d(x1, �)

⌘
+

�0|⌅1|

4�20
p
�↵0

�
p
"e

�
p
�↵0�0

x1p
" cos

⇣
k(")

x1
"

+⇥1

⌘
 0

⇣x2
"

⌘
+

O(�"3/4 + �2"�1/2),

(1.12)

where uh is the x2 dependent bilayer solution of Theorem 1 modulated by the x1 variation in ⌘d, see

also equation (3.5). The scaled wavenumber k(") :=
p
�0A(") =

p
�0 +O("), with A defined in (3.43).

The phase shift ⇥1 is the angle of the vector ⌅1. In addition, the error terms are taken in H4(R2) as

functions of the inner coordinates (t, r) := (
p
�0

x1
"
, x2

"
).

This result requires that �0 6= 0. The homoclinic orbit u0 solves (1.5) while  0 > 0 is the ground-

state eigenfunction of L0, defined in (1.6), corresponding to eigenvalue �0 > 0. Moreover, the first

excited-state eigenfunction  1 = u00 has eigenvalue �1 = 0. Consequently we may write

�0 := h 0,W
0(u0)iL2(R) = h 0, @

2
ru0iL2(R) = �h@r 0, 1iL2(R). (1.13)

The operator L0 is Sturmian, so by classical Sturm-Liouville theory all eigenvalues are simple and  0

has even parity about r = 0. Moreover  1 has odd parity about r = 0, with a simple zero at r = 0

and is positive on r > 0 and r < 0. If  0 is monotonic on r > 0 then we may deduce that �0 6= 0.

The results of [9] shown that as W approaches an equal-depth well, then u0 approaches a heteroclinic

connection and  0 ! | 1|. In this limit we have �0 ! 0, thus a non-zero value of �0 is not immediate.

The following result shows that for a significant class of wells W , the inner product �0 is negative.

Lemma 1.1 Assume that the ground state eigenvalue  0 of L0 is scaled so that  0 > 0. Let umax 2

(u�, u+) denote the smallest positive zero of W . If W 000(u) < 0 for u 2 (0, umax) then the inner product

�0 is strictly negative, in particular it is non-zero.

Remark 1.2 It is straight-forward to construct tilted double-well potentials W satisfying the conditions

imposed after (1.2) for which �0 defined in Lemma 1.1 is negative. Indeed the function

W (u) = u2(u� umax)(u� cumax),

does so for all umax > 0 and all c > 3.

5



Proof. We take @r of the eigenvalue equation for  0 and use u00 =  1 to obtain the identity,

L0 
0
0 = W 000(u0) 0 1 + �0 

0
0.

By the Fredholm alternative the right-hand side of this identity is orthogonal to  1, which spans the

kernel of L0. Taking the inner product of the right-hand side with  1, and using (1.13) we find

�0 =
1

�0

Z

R
W 000(u0) 0 

2
1 dr.

By assumption W 000(u0) < 0 while  0 > 0, and we conclude that �0 6= 0. Since �0 > 0 we establish the

result.

Remark 1.3 The inhomogeneity ⇠0 is chosen to have compact support as this allows for a simplification

of the leading order terms in (1.12). For ⇠0 2 L1(R) a similar asymptotic form holds with an adjusted

scaling with respect to "; see Lemma 3.9 and the estimate (3.66) in the proof of Theorem 2 for details.

Remark 1.4 For ↵0 > 0 the unperturbed system supports pearled solutions that are perturbations of

bilayers with spatially periodic variations in the bilayer width, see [8]. For the perturbed system the

presence of the spatial inhomogeneity in ⌘2 generically excites resonant modes in the linear system

that lead to secular growth of the underlying perturbation as measured in distance along the bilayer.

Such growth is often saturated by the higher-order nonlinear terms. Consequently the inhomogenous

system may support pearled patterns with defects, but this analysis is outside the scope of our current

framework.

2 Center manifold reduction of bilayer profiles

For the flat interface � and spatially constant parameters ⌘1 and ⌘2, the bilayer profiles constructed in

Theorem1 naturally extend to functions defined on the whole spatial domain. We call these functions

bilayer interfaces, and their dynamic stability has been studied in [3, 8], which showed that they may

be unstable to either pearling or meandering bifurcations depending upon parameter values. Pearling

bifurcations correspond to high-frequency, periodic modulations of the through-plane on the fast O(")

length scale. Meander bifurcations modulate the shape of the center line bilayer interface, perturbing

it from its the flat shape. These are generically long-wave e↵ects with O(1) spatial variation.

A complete center manifold reduction that characterizes the possible pearled equilibrium local to the

flat bilayer interface was developed in [8] via a spatial dynamics analysis. We summarize these results

as they provide a framework that motivates the genesis of the undulated bilayer interfaces constructed

in section 3. Recalling uh constructed in Theorem1, we introduce the perturbation

v := u� uh,

and the linear operator

Lh := @2r �W
00
(uh). (2.1)

We change variables to ⌧ = "t/
p
�0, where �0 > 0 is the ground state eigenvalue of L0. This is

equivalent to

(t, r) = (
p
�0x1/", x2/"), (2.2)
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for which (1.4) takes the form

(@2r �W 00(u) + �0@
2
t + "⌘1)(@

2
ru�W 0(u) + �0@

2
t u) + "⌘d,�(t)W

0(u) = "�. (2.3)

We now apply the spatial dynamics approach to rewrite (2.3) as an infinite-dimensional dynamical

system, where the rescaled in-plane variable t is viewed as the evolution variable, bilayer solutions

as equilibria and pearled bilayers as periodic temporal oscillations to these bilayer equilibria. More

specifically, we denote · = d
dt , introduce the variables

V =

0

BBB@

v1
v2
v3
v4

1

CCCA
:=

0

BBB@

v

@tv

Lhv + �0@2t v

@t
�
Lhv + �0@2t v

�

1

CCCA
, (2.4)

and rewrite (2.3) as an infinite-dimensional dynamical system

V̇ = L(")V + F(V, "), (2.5)

where the linear and strictly nonlinear terms are

L(") :=

0

BBB@

0 1 0 0

�Lh/�0 0 1/�0 0

0 0 0 1

M 0 �(Lh + "⌘1)/�0 0

1

CCCA
, F(V, ") :=

0

BBB@

0

0

0

F(V, ")

1

CCCA
, (2.6)

the (4, 1) entry of L takes the form

M := �["⌘dW
00(uh)�

�
@2ruh �W 0(uh)

�
W 000(uh)]/�0,

and the nonlinearity F is given by

F(V, ") :=W 000(uh + v) (@tv)
2 + 2

�
W 00(uh + v)�W 00(uh)

�
@2t v+⇥

Lh + "⌘2 �
�
W 00(uh + v)�W 00(uh)

�⇤ �
W 0(uh + v)�W 0(uh)�W 00(uh)v

�
/�0+�

W 00(uh + v)�W 00(uh)
�
Lhv �

�
@2ruh �W 0(uh)

� �
W 00(uh + v)�W 00(uh)�W 000(uh)v

�
/�0.

The spectrum of L(") in (2.6) is determined from the eigenvalue problem

L(")V = �V.

The operator L(") is the vectorized version of the scalar operator

L(",�) :=
�
Lh + "⌘1 + �0�

2
� �

Lh + �0�
2
�
+ "(⌘dW

00(uh)�W 000(uh)wh), (2.7)

where we have introduced wh :=
�
@2ruh �W 0(uh)

�
/". Accordingly the spectrum of L(") agrees, up to

multiplicity to the nontrivial solutions � of

L(",�)v = 0. (2.8)

Since L(·, ·) is connected to the Hessian of the FCH energy, it is natural that for " = 0 it becomes a

square of a second order operator, and the eigenvalue problem reduces to

L(0,�)v = (L0 + �0�
2)2v = 0.

These observations imbue the spectrum of L(") in (L2(R))4, denoted �(L(")), with the following prop-

erties:
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(i) �(L(")) is symmetric with respect to the real and imaginary axis.

(ii) �(L(0)) = {±
p
�� 2 C | � 2 �(L0/�0)} = {0,±i} [ {±

p
�� | � < 0,� 2 �(L0/�0)}.

(iii) The eigenvalue � = 0, called the meandering eigenvalue of L(0), has algebraic multiplicity 4;

� = ±i are the pearling eigenvalues of L(0), each has algebraic multiplicity 2.

(iv) The eigenfunction  0 and  1 of L0, defined in (1.6), satisfy L(0, 0) 1 = 0 and L(0,±i) 0 = 0.

In the sequel we show that the continuation of the pearling eigenvalues ±i as " increases from zero

determines much of the structure of the perturbed problem we study in section 3. The double multi-

plicity of the pearling modes precludes a direct application of the implicit-function-theorem argument.

A remedy, based on the observation that (2.8) admits the expansion

L(",�)v =
⇥
(L0 + �0�

2)2 +O(")
⇤
v, (2.9)

is to unfold the degeneracy through the change of variable

�2 = �1 +
p
"⇤, v =  0 + " , where h , 0iL2(R) = 0.

This allow us to recast (2.8) as the search for the zeros of F defined by

F (⇤, ;
p
") := "�1L

✓
",
q
�1 +

p
"⇤

◆
( 0 + " ) = 0. (2.10)

In the limit "! 0+ it is straightforward to calculate that F reduces to

F (⇤, ; 0) = (L0 � �0)
2 + �20⇤

2 0 + (L0 � �0)(W
000(u0)u1 0) + (⌘dW

00(u0)�W 000(u0)w0) 0, (2.11)

where we have introduced

u1 := lim
"!0+

uh � u0
"

,

w0 := lim
"!0+

wh = lim
"!0+

@2ruh �W 0(uh)

"
= L

�1
0 (� � ⌘dW

0(u0)).
(2.12)

The quantity L
�1
0 (� � ⌘dW 0(u0)) is well-defined since the operator L0, is invertible on functions with

even parity. Indeed expanding uh
uh = u0 + "u1 +O("2), (2.13)

in (1.8), we deduce that

L
2
0u1 = � � ⌘dW

0(u0), (2.14)

and hence

w0 = L0u1. (2.15)

The eigenvalue �0 of L0 is geometrically simple with corresponding normalized eigenfunction  0. The

pearling parameter

↵0 :=
1

4�20

⌦
(W 000(u0)w0 � ⌘dW

00(u0)) 0, 0
↵
L2(R) =

Z

R

�
W 000(u0)L0u1 � ⌘dW

00(u0)
�
 2
0dr, (2.16)
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is a zero of F , satisfying

F (±2
p
↵0, 0; 0) = 0,

where

 0 := (L0 � �0)
�2
h
� 4�20↵0 0 � (L0 � �0)(W

000(u0)u1 0) + (W 000(u0)L0u1 � ⌘dW
00(u0)) 0

i
,

see [8] for details.

Remark 2.1 From (2.14) the pearling parameter ↵0 can be written as

↵0 = ↵01� � ↵02⌘d,

where

↵01 :=
1

4�20

Z

R
W 000(u0)(L

�1
0 1) 2

0dr,

↵02 :=
1

4�20

Z

R

�
L
�1
0 W 0(u0) +W 00(u0)

�
 2
0dr.

(2.17)

The constants ↵01 and ↵02 depend only upon the form of the double well potential, W .

Moreover, the derivative r⇤, F (±2
p
↵0, 0; 0) is bounded and invertible, and for 0 < " ⌧ 1 the

implicit function theorem shows that (2.10) admits solutions (⇤±, ±) with following expansions

 ±(r;
p
") =  0(r) +O("), ⇤±(

p
") = ±2

p
↵0 +O(

p
").

These results are a reformulation of Lemma 2.9 in [8] and summarized in the following proposition.

Proposition 2.2 For " > 0 su�ciently small, the operator L(") admits four eigenvalues ±�p(
p
"),

±�p(
p
") with the expansion

�p(
p
") =

q
�1 + 2

p
↵0

p
"+O(") = i +

p
�↵0

p
"+O(").

The corresponding eigenfunction with respect to �p, denoted as  p, takes the form

 p(r;
p
") =  0(r) + " 0(r) +O("3/2),

where we recall that  0 is the normalized eigenfunction of L0 with respect to �0 and

 0 := (L0 � �0)
�2
h
� 4�20↵0 0 � (L0 � �0)(W

000(u0)u1 0) + (W 000(u0)L0u1 � ⌘dW
00(u0)) 0

i
.

Moreover, we have the following distinctive scenarios.

(i) (Pearling) If ↵0 > 0, then the four eigenvalues ±�p, ±�p are pure imaginary, giving rise to

pearling bifurcation; see [3, 8] and Fig. 2.1.

(ii) (Undulations) If ↵0 < 0, then Re�p =
p
�↵0

p
" +O(") > 0 and the four eigenvalues ±�p, ±�p

are geometrically simple. The eigenvalues �p and �p are the leading modes of the unstable spectra

of L(") while the eigenvalues ��p and ��p are the leading modes of the stable spectra of L(");
see Fig. 2.1 for an illustration.

In the case ↵0 < 0 we will show that, in the presence of defects, the eigenspace associated to {±�p,±�p}

generates slowly decaying undulations depicted in Figure 1.1.
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Figure 2.1: The operator L(") admits two purely imaginary eigenvalues (blue crosses) with algebraic multiplicity
2 when " = 0. Given " > 0, for ↵0 > 0 they remain purely imaginary while for ↵0 < 0 they split into four
geometrically simple modes (red crosses).

Weakly stable and unstable manifolds In [8] a center manifold reduction of the spatial dynamics

formulation of the stationary, constant coe�cient FCH equation was used to classify all solutions that

remain close to a bilayer profile as t ! ±1. Excluding the meander modes through a symmetry

assumption, a series of normal form transformations were used to recast the four-dimensional pearling

center manifold in the form

Ċ1 = i(1 + !1")C1 + C2 + iC1
⇥
↵7C1C̄1 + ↵8i(C1C̄2 � C̄1C2)

⇤
,

Ċ2 = i(1 + !1")C2 + iC2
⇥
↵7C1C̄1 + ↵8i(C1C̄2 � C̄1C2)

⇤
+ C1

⇥
�↵0"+ i↵2(C1C̄2 � C̄1C2)

⇤
,

(2.18)

where C1, C2 2 C, the constants !1,↵j 2 R, and the conjugate equations are omitted. So that (C1, C2)

lie on the stable manifold of the bilayer solution we impose the necessary condition

lim
t!1

C1(t) = lim
t!1

C2(t) = 0.

Noting that

K = i(C1C̄2 � C̄1C2), H = |C2|
2
� (�↵0"+ 2↵2K)|C1|

2,

are two first-integrals of (2.18), we conclude that the stable manifold lies within

K = H = 0.

Introducing the polar coordinates,

(
C1 = r1ei((1+!1")t+✓1),

C2 = r2ei((1+!1")t+✓2),
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the equation K = H = 0 can be rewritten as

(
✓1 � ✓2 = k⇡, k 2 Z,
r22 = �↵0"r21.

In addition, we have (
2r1ṙ1 = Ċ1C̄1 + C1

˙̄C1 = 2(�1)kr1r2,

2r2ṙ2 = Ċ2C̄2 + C2
˙̄C2 = 2(�1)k(�↵0")r1r2,

or simply, (
ṙ1 = (�1)kr2,

ṙ2 = (�1)k(�↵0")r1,

which yields  
r1(t)

r2(t)

!
= C

 
1

(�1)k+1p
�↵0"

!
e�

p
�↵0"t.

Since r1, r2 > 0, we deduce that k is odd. Plugging the polar coordinates into the first equation of

(2.18), we have

✓̇1 = ↵7r
2
1,

which implies that

✓1 = ✓1,0 �
↵7C2

2
p
�↵0"

e�2
p
�↵"t,

for some ✓1,0 2 R. We conclude that limt!1C1(t) = limt!1C2(t) = 0 if and only if,
8
<

:
C1 = Cs exp

n
�
p
�↵0"t+ i

h
(1 + !1")t�

↵7C
2
s

2
p
�↵0"

exp(�2
p
�↵"t) + ✓s

io
,

C2 = �
p
�↵0"C1,

(2.19)

where Cs, ✓s parameterize the stable manifold associated to the bilayer solution. Similarly, all solutions

satisfying limt!�1C1(t) = limt!�1C2(t) = 0 admit the form
8
<

:
C1 = Cu exp

n
p
�↵0"t+ i

h
(1 + !1")t+

↵7C
2
u

2
p
�↵0"

exp(2
p
�↵"t) + ✓u

io
,

C2 =
p
�↵0"C1,

(2.20)

where Cu, ✓u parameterize the unstable manifold associated to the bilayer solution.

It is straightforward to see that the unstable and stable manifolds (2.19),(2.20) intersects with each

other only at the Cu = Cs = 0, which implies that the only orbit whic is homoclinic orbits to the

bilayer is the trivial bilayer solution.

Lemma 2.3 For ↵0 < 0 the system (2.18), characterizing the stable manifold of the bilayer solution of

the constant coe�cient stationary equation FCH does not admit any nontrivial orbit that is homoclinic

to the bilayer solution.

In the undulating regime, ↵0 < 0, the stable and unstable manifolds display the slow, undulated decay

associated to defect solutions. However, in the absence of defects there are no stationary homoclinic

solutions on the center manifold of the bilayer profile, at least for the system truncated beyond cubic
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nonlinear terms. In the following section we show that localized perturbations to ⌘2 trigger undulated

responses that decay on the slow "�1/2 length scale. The inhomogeneity in ⌘2(⌧) renders the infinite-

dimensional dynamical system non-autonomous, which in turn makes the direct application of center

manifold reduction cumbersome, if not impossible. As a remedy we pursue a functional analytic route

via a Lyapunov-Schmidt reduction.

3 Existence of undulated bilayer interfaces

The center manifold analysis presented in Section 2 highlights the role played by the sign of the pearling

parameter ↵0, defined in (2.16). When ↵0 > 0 this framework supports the construction of pearled

bilayers via a spatial dynamics analysis. In this section, we consider the complementary case, ↵0 < 0,

and show that the stationary FCH (1.4) with inhomogeneous ⌘2 coe�cient supports undulated bilayers.

More specifically, for a su�ciently strongly localized inhomogeneity we show that the constant width

bilayer deforms to a solution of (1.4) that has long wavelength width-oscillations that decay like 1/
p
"

in the fast variables away from the defect. We call these solutions undulated bilayers.

Definition 3.1 For � > 0 an undulated bilayer with flat interface, denoted un(x; �), is a solution to the

inhomogeneous stationary FCH equation (1.4) with ⌘2 as in (1.9) subject to the boundary conditions

lim
x1!±1

un(x; �) = uh(x2/"; ", ⌘
±
d,�

),

lim
x2!±1

un(x; �) = u1(", ⌘2(x1)).
(3.1)

For fixed value of ⌘d the flat bilayer interface uh(r; ", ⌘d) is given by Theorem1, while the far-field value

u1 is given in (1.7) and ⌘±
d,�

:= lim
x1!±1

⌘d,�(x1).

As in section 2, we rewrite the inhomogeneous stationary FCH equation (1.4) in the inner coordinates

(t, r) = (
p
�0x1/", x2/"), (3.2)

where it takes the form

(@2r �W 00(u) + �0@
2
t + "⌘1)(@

2
ru�W 0(u) + �0@

2
t u) + "⌘d,�(t)W

0(u) = "�, (3.3)

and introduce the modulated bilayer interface

uh,�(t, r; ") := uh(r; ", ⌘d,�(t)). (3.4)

In the inner coordinates ⇠ = ⇠(t) varies on an O(1) length scale, in particular its support is O(1). The

modulated bilayer interface satisfies both the t-modulated family of ODEs,

�
@2r �W 00(uh,�) + "⌘1

� �
@2ruh,� �W 0(uh,�)

�
+ "⌘d,�(t)W

0(uh,�) = "�, (3.5)

and the boundary conditions (3.1), but not the full system (3.3). We construct the undulated bilayer

interface as a perturbation of the modulated bilayer interface,

u(t, r; �, ") = uh,�(t, r; ") + v(t, r; �, "). (3.6)
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Inserting the expansion (3.6) into (3.3) and subtracting the t-modulated ODEs from both sides defines

the residual

F(v; �, ") :=
⇣
@2r �W 00(uh,� + v) + �0@

2
t + "⌘1

⌘⇣
@2rv �

�
W 0(uh,� + v)�W 0(uh,�)

�
+ �0@

2
t (uh,� + v)

⌘
+

⇣
�
�
W 00(uh,� + v)�W 00(uh,�)

�
+ �0@

2
t

⌘⇣
@2ruh,� �W 0(uh,�)

⌘
+

"⌘d,�(t)
⇣
W 0(uh,� + v)�W 0(uh,�)

⌘
,

(3.7)

which is zero precisely when u satisfies (3.3).

We construct solutions of the system F(v; �, ") = 0 through the implicit function theorem. Since the

� = 0 problem is homogeneous we have

F(0, 0, ") = 0. (3.8)

Introducing the linearization of (1.5) about the modulated bilayer,

Lh,� := @2r �W 00(uh,�), (3.9)

and the scaled residual of (1.5) at the modulated bilayer

wh,� :=
@2ruh,� �W 0(uh,�)

"
,

it is straightforward to verify that
@F

@v
(0, �, ") = L�,", (3.10)

where the operator

L�," =
�
Lh,� + "⌘1 + �0@

2
t

� �
Lh,� + �0@

2
t

�
+ "

�
⌘d,�W

00(uh,�)�W 000(uh,�)wh,�

�
+ �0@

2
t uh,�W

000(uh,�),

(3.11)

plays a fundamental role in the analysis. Our analysis is perturbative from the case " = � = 0 for

which we have the simple operator studied in section 2,

@F

@v
(0, 0, 0) = L0 := (L0 + �0@

2
t )

2. (3.12)

Here L0 = @2r �W 00(u0) is defined in (1.6) and has eigenpairs {(�j , j(r))}1j=0 with �0 > �1 = 0 and

the remainder of its spectrum strictly negative.

Remark 3.2 We note that the operator Lh,�, defined in (3.9), when � = 0, coincides with the operator

Lh defined in (2.1); that is, Lh,0 = Lh.

Remark 3.3 The Lyaponov-Schmidt reduction is markedly simpler in the case � = " = 0 as compared

to the case � = 0, 0 < " ⌧ 1. The operator L0 admits nontrivial invariant spectral spaces that are

separable in L2(R2) as L0. Conversely the linear operator

@F

@v
(0, 0, ") = L0," =

⇣
Lh,0 + "⌘1 + �0@

2
t

⌘⇣
Lh,0 + �0@

2
t

⌘
+ "

⇣
⌘d,0W

00(uh,0)�W 000(uh,0)wh,0

⌘
,

does not admit such spaces. More specifically, L0," has the decomposition

L0," = Rh,0 + �20@
4
t + "⌘1�0@

2
t + 2�0@

2
t Lh,0,
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where

Rh,0 :=
⇣
Lh,0 + "⌘1

⌘
Lh,0 + "

⇣
⌘d,0W

00(uh,0)�W 000(uh,0)wh,0

⌘
.

The term 2�0@2t Lh,0 makes the invariant subspaces of L0," non-separable. On the other hand, since

L0 = @2r�W 00(u0) is a Sturm-Louiville operator admitting eigenpairs {(�j , j(r))}1j=0, we may conclude

by analytical continuation that Rh,0 is a self-adjoint operator admitting eigenpairs {(�j,", j,"(r))}1j=0

with
�0," = �20 +O(") > �1," = O("),

�2," = �22 +O(") < �3," = �23 +O(") < · · · , lim
j!1

�j," = +1,

and the eigenfunctions { j,"}
1
j=1 which form a complete orthonormal basis of L2(R).

We exploit the fact that for j = 0, 1 the subspaces

Xj :=
�
 j(r)�(t) | � 2 L2(R)

 
⇢ L2(R2),

are invariant under the resolvent operator associated to L0. We introduce the L0-invariant central and

hyperbolic subspaces

Vc := { 0(r)�0(t) +  1(r)�1(t) | �0,�1 2 L2(R)}, Vh := V ?
c ,

and denote by P the L2(R2) orthogonal projection onto Vc with Q := Id � P . We decompose v

v = vc + vh, (3.13)

where vc := Pv and vh := Qv, and write the residual equation in the projected form

(
PF(vc + vh, �, ") = 0,

QF(vc + vh, �, ") = 0.

The following Lemma solves the Q equation for vh given a fixed vc.

Lemma 3.4 There exists an open neighborhood B0 of the origin in H4(R)⇥H4(R)⇥ R⇥ R+, and a

smooth mapping

H : B0 �! H4(R2) \ Vh,

such that the decomposition (3.13) of v with vc =  0�0 +  1�1 and vh = H(�0,�1; �, ") satisfies

QF(vc +H(�0,�1; �, "); �, ") = 0, (3.14)

for all (�0,�1, �, ") 2 B0.

Proof. We denote eVh := H4(R2) \ Vh, take �0, "0 > 0 su�ciently small and introduce the C1-smooth

mapping

eF : eVh ⇥ L2(R)⇥ L2(R)⇥ (0, �0)⇥ (0, "0) �! Vh

(vh,�0,�1; �, ") 7�! QF ( 0�0 +  1�0 + vh; �, ").
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From its construction eF (0, 0, 0; 0, 0) = 0. It is easy to verify that

@ eF
@vh

(0, 0, 0; 0, 0) = QL0Q : fVh ! Vh.

Moreover, since Q is a spectral projection for L0, L0 is strictly negative on Vh, and �0 > 0 we deduce

that �(QL0Q) is bounded away from zero and QL0Q has a bounded inverse. We may apply the implicit

function theorem to solve eF = 0, and concluded the proof.

With this reduction of v the P equation may be written in the form
8
<

:

⌦
 0,F

�
 0�0 +  1�1 +H(�0,�1; �, "); �, "

�↵
L2(R) = 0,

h 1,F( 0�0 +  1�1 +H(�0,�1; �, "); �, ")iL2(R) = 0,
(3.15)

where the left hand sides depend on t via �0, �1 and H. The inhomogeneity in ⌘2 does not break

the x2 even parity of the stationary FCH equation. Without loss of generality we restrict ourselves to

functions with even parity in r for each fixed t. More specifically, we introduce

v 2 L2
even(R2) := {v 2 L2(R2) | v(r, t) = v(�r, t)},

and remark that �1(t) ⌘ 0 for v 2 L2
even(R2) since  1 has odd parity. The second equation in (3.15)

holds trivially since F (v; �, ") has even parity, and the first equation simplifies to

K(�0; �, ") :=
⌦
 0, F

�
 0�0 +H(�0, 0; �, "); �, "

�↵
L2(R) = 0. (3.16)

In the sequel we fix �1 = 0 and drop references to it. We assume that |�|, " > 0 are su�ciently small

and use the contraction mapping principle to construct the solution �0 of (3.16) and identify is leading

order form, establishing Theorem2.

The map K is smooth,

K : fB0 := {(�0; �, ") 2 H4(R)⇥ R⇥ [0,1) | (�0, 0; �, ") 2 B0} 7! L2(R),

and admits the expansion

K(�0; �, ") = K(0; �, ") +
@K

@�0
(0; �, ")�0 +O(k�0k

2
H4(R)). (3.17)

The equality (3.8) suggests that the leading order term in (3.17) is small, correspondingly we introduce

K0(·; �, ") :=
K(0; �, ")

�"
=

h 0,F(H(0; �, "); �, ")iL2(R)
�"

2 L2(R). (3.18)

Lemma 3.5 The function K0 2 L2(R) defined in (3.18) has the leading order expansion

K0(t; �, ") =
D
 0,W

0(u0)
E

L2(R)

⇣
⇠(4)(t) + 2⇠00(t)

⌘
+O

⇣
|"|+ |�"|

⌘
, (3.19)

where the inhomogeniety ⇠ is defined in (1.10) and the error is measured in L2(R).
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Proof. It is convenient to write the modulated bilayer interface uh,� of (3.4) as a perturbation of the

flat bilayer; that is, the Taylor expansion of uh,� with respect to �, which reads

uh,�(t, r) = uh,0(r) + �"⇠(t)
⇣
L(", 0)�1W 0(u0)

⌘
(r) +O(|�"|2),

where the one-dimensional operator L(",�) is defined in (2.8). Similarly, the residual F, from (3.7),

admits the expansion

F (v; �, ") = F (0, �, ") + L�,"v +O(kvk2
H4(R)), (3.20)

where the modulated residual is given by

F (0, �, ") =
�
@2r �W 00(uh,�) + �0@

2
t + "⌘1

� �
�0@

2
t uh,�

�
+ �0@

2
t

�
@2ruh,� �W 0(uh,�)

�

="�F0," +O(|�"|2).
(3.21)

Here, using the expansion of uh,�, we have introduced

F0," := �20⇠
(4)(t)

⇣
L�1(", 0)W 0(u0)

⌘
(r) + �0⇠

00(t)
h
(2Lh,0 + "⌘1)L

�1(", 0)W 0(u0)
i
(r). (3.22)

The result (3.14) holds with �0 = 0, which implies that

QF
�
H(0; �, "); �, "

�
= 0. (3.23)

Using (3.20) and (3.21) to expand (3.23), yields the asymptotic result

H(0; �, ") = ��"H0(") +O

⇣
|�"|2

⌘
, (3.24)

where we have introduced

H0(") :=
⇣
QL0,"Q

⌘�1⇣
QF0,"

⌘
. (3.25)

Combining the expansions for F�," and H (3.20-3.24) we simplify K0 as

K0 =
D
 0, F0," � L0,"H0

E

L2(R)
+O

⇣
|�"|

⌘

=
D
 0, F0,0 � L0,0

⇣
QL0,0Q

⌘�1⇣
QF0,0

⌘E

L2(R)
+O

⇣
|"|+ |�"|

⌘
.

(3.26)

Since Q commutes with L0,0 and Q 0 = 0 the second term in the inner product is zero and we are left

with the inner product with F0,0. From (3.22) with " = 0 we arrive at (3.18). Since the derivatives of

⇠ are compactly supported K0 is too, at least at leading order.

To simplify the second term on the right-hand side of (3.17) we introduce the constant coe�cient

operator

G := (1 + @2t )
2 + "c1(1 + @2t )� 4"↵0, (3.27)

that acts purely through the tangential variable. Here the constant c1 2 R is defined by

c1 :=
⌘1 � 2h 0,W 000(u0)u1 0iL2(R)

�0
,

where  0 is normalized to have L2 norm 1 and u1 is the "-scaled leading order term of uh � u0 as

defined in (2.12). Significantly the quantity ↵0 is the key bifurcation parameter defined in (2.16) that

establishes the positivity of G for ↵0 < 0.
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Lemma 3.6
@K

@�0
(0; �, ")�0 = �20G�0 +O

⇣
(�"+ "2)k�0kH4(R)

⌘
. (3.28)

Proof. Recalling (3.10, 3.16), a straightforward calculation shows that

@K

@�0
(0; �, ")�0 =

⌧
 0, L�,"

✓
 0�0 +

@H

@�0
(0; �, ")�0

◆�

L2(R)

=

⌧
 0, L0,"

✓
 0�0 +

@H

@�0
(0; 0, ")�0

◆�

L2(R)
+O

✓
|�"|k�0kH4(R)

◆
,

(3.29)

where the latter equality is simply the leading order expansion in �. From (3.11) with � = 0, the

operator L0," takes the form

L0,"v =
⇣
Lh,0 + "⌘1 + �0@

2
t

⌘⇣
Lh,0 + �0@

2
t

⌘
v + "

⇣
⌘d,0W

00(uh,0)�W 000(uh,0)wh,0

⌘
v

=L0v + "L1v +O("2),
(3.30)

where the last expression gives the Taylor expansion of L0," in " with L0 = (L0 + �0@2t )
2 as in (3.12)

and the first order operator

L1v :=
⇣
⌘1 �W 000(u0)u1

⌘⇣
L0 + �0@

2
t

⌘
v �

⇣
L0 + �0@

2
t

⌘⇣
W 000(u0)u1v

⌘
+
⇣
⌘d,0W

00(u0)�W 000(u0)w0

⌘
v.

Using (3.27) and the expansion (3.30), the first term on the right-hand side of (3.29) is expressed as

D
 0, L0," ( 0�0)

E

L2(R)
=
D
 0,

h
L0 + "L1

i
( 0�0)

E

L2(R)
+O

⇣
"2k�0kH4(R)

⌘
,

=
D
 0,


�20

⇣
1 + @2t

⌘2
+ �0"

⇣
⌘1 � 2W 000(u0)u1

⌘⇣
1 + @2t

⌘
+

"
⇣
⌘d,0W

00(u0)�W 000(u0)w0

⌘i
( 0�0)

E

L2(R)
+O

⇣
"2k�0kH4(R)

⌘
,

=�20 G�0 +O

⇣
"2k�0kH4(R)

⌘
.

(3.31)

To estimate the second, lower-order term on the right-hand side of (3.29) we first expand @H

@�0
(0; 0, ").

When �1 = 0 and � = 0 equation (3.14) reduces to

QF ( 0�0 +H(�0; 0, "), 0, ") = 0.

Linearizing this relation with respect to �0 at �0 = 0, yields

QL0,"

✓
 0�0 +

@H

@�0
(0; 0, ")�0

◆
= 0. (3.32)

Since Q commutes with L0 and Q 0�0 = 0, applying Q to the expansion (3.30) yields

QL0,"( 0�0) = "QL1( 0�0) +O("2k�0kH4(R)).

We expand @�0H as
@H

@�0
(0; 0, ") = H0 + "H1 +O("2), (3.33)
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and plug this into (3.29), and equate orders of ". At first and second order we find

(
QL0H0�0 = 0,

QL0H1�0 +QL1H0�0 +QL1( 0�0) = 0,
(3.34)

for any �0 2 H4(R). The operator @H

@�0
(0; 0, ") maps H4(R) to Vh \H4(R2) while QL0Q is "-uniformly

invertible, on Vh which is the range of Q. Since the expansion holds for all �0 2 H4 the first equation

in (3.34) implies

H0 = 0, (3.35)

and the second equation in (3.34) reduces to

QL0QH1�0 = �QL1( 0�0),

or, equivalently,

H1�0 = �

⇣
QL0Q

⌘�1⇣
QL1( 0�0)

⌘
. (3.36)

With these formulations the expansion (3.33), reduces to

@H

@�0
(0; 0, ")�0 = �"

⇣
QL0Q

⌘�1⇣
QL1( 0�0)

⌘
+O("2k�0kH4(R)) 2 Vh, (3.37)

and together with (3.30) we rewrite the second term on the right-hand side of (3.29) as

⌧
 0, L0,"

✓
@H

@�0
(0, ; 0, ")�0

◆�

L2(R)
=� "

⌧
 0, L0

⇣
QL0Q

⌘�1⇣
QL1( 0�0)

⌘�

L2(R)
+O("2k�0kH4(R)),

=� "
D
 0, QL1

⇣
 0�0

⌘E

L2(R)
+O("2k�0kH4(R)),

=O

✓
"2k�0kH4(R)

◆
.

(3.38)

Together (3.31) and (3.38) establish (3.28).

Remark 3.7 In section 2 the stationary FCH equation was rewritten as an infinite-dimensional dy-

namical system (2.5),

V̇ = L(")V + F(V, ").

The eigenvalue problem L(")V = �V is equivalent to (2.8),

L(",�)v :=

 �
Lh + "⌘1 + �0�

2
� �

Lh + �0�
2
�
+ "(⌘dW

00(uh)�W 000(uh)wh)

�
v = 0,

which, restricted to the central mode v =  0(r), leads to a quartic polynomial in �,

p(�) := h 0, L(",�) 0iL2(R).

The characteristic polynomial of G equals ��2
0 p(�) to O(").
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With Lemmas 3.5 and 3.6 we may rewrite the expansion (3.17) of K as

K(�0; �, ") = �"K0(·; �, ") + �20G�0 +R(�0; �, "), (3.39)

where K0 2 L2(R), with expansion given in (3.19), is independent of �0 and the remainder satisfies

R(�0; �, ") = O
�
("2 + |�|")k�0kH4 + k�0k

2
H4

�
. (3.40)

In particular �0 satisfies K(�0; �, ") = 0 if and only if

G�0 = ��"��2
0 K0(·; �, ") +R(�0; �, "), (3.41)

where we have rescaled the remainder.

The operator G, given in (3.27) is constant coe�cient. Its Green’s function G can be determined

explicitly, see for example [1]. Indeed, G 2 H3(R) has two continuous derivatives and satisfies

G(t) :=
e�B|t|

h
A cos(At) +B(�(t)� �(�t)) sin(At)

i

4AB(A2 +B2)
=

AEe(Bt) cos(At) +BEo(Bt) sin(At)

4AB(A2 +B2)
, (3.42)

where � is the standard step function and

A =

rp
1 + "c1 � 4"↵0

2
+

2 + "c1
4

= 1 +O("),

B =

rp
1 + "c1 � 4"↵0

2
�

2 + "c1
4

=
p
�↵0"+O("3/2),

Ee(x) =

(
e�x, x > 0,

ex, x < 0,
Eo(x) =

(
e�x, x > 0,

�ex, x < 0.

(3.43)

Inverting G, the relation (3.41) reduces to a fixed point problem

�0 = T (�0),

where the map
T : H4(R) �! H4(R)

�0 7�! G ⇤ (��"��2
0 K0 +R),

(3.44)

is defined through convolution with the Green’s function G over t 2 R.

Lemma 3.8 Fix "0, �0 > 0 su�ciently small, then for each q 2 [1, 2] there exists C0 > 0 such that for

all " 2 (0, "0) and � 2 (��0, �0) we have the estimate

kG ⇤ fkH4(R) 6 C0"
� 5q�2

4q
�
kfkLq(R) + kfkL2(R)

�
, (3.45)

for all f 2 Lq(R) \ L2(R).

Proof. From Young’s convolution inequality we may estimate

kG ⇤ fkL2(R) 6 kGkLp(R)kfkLq(R),
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for conjugate exponents p�1 + q�1 = 3
2 . In particular we need q 2 [1, 2] so that p > 1. From the

expression (3.42) and asymptotic expansions (3.43) we have

kGkLp(R) 6
A+B

4AB(A2 +B2)

���e�B|·|
���
Lp(R)

6 A+B

2AB(A2 +B2)
B�p

�1 6 C0"
� 5q�2

4q .

Since G 2 H3(R) we may take two derivatives of G point-wise and estimate

k@2tGkLp 6 C0"
� 5q�2

4q .

This estimate, and the convolution identity @2t (G ⇤ f) = (@2tG) ⇤ f , implies an H2(R) bound on G ⇤ f

of the form (3.45). Expanding the operator G in (3.27), denoting u = G ⇤ f , and taking the L2 norm

of both sides we have

k@4t ukL2 6 C
�
k@2t ukL2 + kukL2 + kfkL2

�
.

Here the constant C may be chosen independent of " and � su�ciently small. This extends the estimate

to H4(R) as in (3.45).

Lemma 3.9 Let the function K0 be as defined in (3.18). Fix "0, �0, su�ciently small, then there exists

a constant C1 > 0 such that

kG ⇤K0kH4(R) 6 C1"
�3/4, (3.46)

holds for all (�, ") 2 (��0, �0)⇥ (0, "0).

Proof. From the expansion (3.19) the leading order behaviour of K0(·; �, "), which we denote by K0,

is given by

K0 :=
D
 0,W

0(u0)
E

L2(R)

⇣
⇠(4)(t) + 2⇠00(t)

⌘
,

while the remainder K1 := K0 �K0 satisfies

K1 = O("+ �"),

in L2(R). The function K0 inherits compact support from the perturbation ⇠, however the estimate

(3.46) only requires K0 2 L1(R) \ L2(R), for which Lemma 3.8 with q = 1 implies

kG ⇤K0kH4(R) 6 C0kK0kL1(R)"
�3/4. (3.47)

Similarly, Lemma 3.8 with q = 2 applied to G ⇤K1, yields

kG ⇤K1kH4(R) 6 eC0(1 + |�|), (3.48)

for some eC0 > 0. We take C1 := max{C0kK0kL1(R), eC0(1 + |�0|)"
3/4
0 } and deduce (3.46).

In the sequel we fix

q > 3/4

and rescale � and �0, introducing

� = e�"q, �0 = �"1/4e�0, (3.49)
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and the associated operators

T (�0) = �"1/4 eT (e�0), R(�0; �, ") = �"1/4 eR(e�0; e�, "). (3.50)

The rescaled fixed point equation takes the form

e�0 = eT (e�0) = G ⇤

⇣
� "3/4��2

0 K0 + eR
⌘
, (3.51)

where, expanding (3.40), the residual term satisfies

k eR(e�0; e�, ")kL2(R) = O(|"|2ke�0kH4 + |e�"q+1
| ke�0kH4 + |e�"q+1/4

| ke�0k2H4) (3.52)

The following proposition establishes that eT is a contraction mapping.

Proposition 3.10 There exist �0, "0, R > 0 such that for any given (e�, ") 2 (��0, �0) ⇥ (0, "0), the

mapping
eT : B0(R) := {� 2 H4(R)|k�kH4(R) 6 R} �! B0(R)

is a well-defined contraction and admits a unique fixed point, e�⇤0(t; e�, ").

Proof. From (3.46) there exist �1, "1, R1 > 0 such that, for any |e�| < �1, 0 < " < "1,

kG ⇤ ("3/4��2
0 K0)kH4(R) 6 R1. (3.53)

Similarly, from Lemma3.8 and the estimate (3.52), we conclude that there exist �2, "2 > 0, C2 > 1 such

that, for any |e�| < �2, 0 < " < "2,

kG ⇤ eR(e�0)kH4(R) 6 C2

⇣
|"|ke�0kH4 + |e�"q|ke�0kH4 + |e�"q�3/4

|ke�0k2H4

⌘
. (3.54)

We choose �3, "3 > 0 su�ciently small that

C2 max
|e�|<�3,0<"<"3

{", |e�"q|, 4R1|
e�"q�3/4

|} 6 1

4
. (3.55)

Combining (3.53)-(3.55) and defining

�4 := min{�1, �2, �3}, "4 := min{"1, "2, "3}, R = 4R1,

Then for any |e�| < �4, 0 < " < "4, and all e�0 2 B0(R) we have the bound

k eT (e�0)kH4(R) 6kG ⇤ ("3/4��2
0 K0)kH4(R) + kG ⇤ eR(e�0)kH4(R)

6R1 +
1

4

⇣
2ke�0kH4 +

1

4R1
ke�0k2H4

⌘

6R1 +
1

4

⇣
2R+

R2

4R1

⌘
= R.

This establishes that eT : B0(R) ! B0(R). Taking e�0, e'0 2 B0(R), we bound k eT (e�0)� eT (e'0)kH4(R) in

terms of ke�0 � e'0kH4(R). Since K0 is independent of �0 we have

eT (e�0)� eT (e'0) = G ⇤

⇣
eR(e�0)� eR(e'0)

⌘
. (3.56)
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From the expansion (3.39) and the rescaling in (3.50), we conclude that

R =

R1z }| {
�G�0 +

1

�20

@K

@�0
(0; �, ")�0+

R2z }| {
1

�20

⇣
K(�0; �, ")�K(0; �, ")�

@K

@�0
(0, �, ")�0

⌘
(3.57)

where R1 is linear in �0 while R2 is genuinely nonlinear in �0. We rescale eR1\2 as in (3.50). The

linearity of R1, and the estimates (3.54) and (3.55) show that

kG ⇤

⇣
eR1(e�0)� eR1(e'0)

⌘
kH4(R) 6

1

2
ke�0 � e'0kH4(R). (3.58)

For the rescaled nonlinear term R2, we claim that there exists C3 > 0 such that
���G ⇤

⇣
eR2(e�0)� eR2(e'0)

⌘���
H4(R)

6 C3
e�"q�3/4

ke�0 � e'0kH4(R). (3.59)

Exploiting the integral remainder form of Taylor’s expansion we write

R2(�0) =
1

�20

Z 1

0

⇣ @K
@�0

(t�0; �, ")�
@K

@�0
(0; �, ")

⌘
�0dt,

which for the rescaled operator leads to

eR2(e�0)� eR2(e'0) =
1

�20

Z 1

0

⇣ @K
@�0

(t�"1/4e�0; �, ")�
@K

@�0
(0; �, ")

⌘⇣
e�0 � e'0

⌘
dt+

Z 1

0

⇣ @K
@�0

(t�"1/4e�0; �, ")�
@K

@�0
(t�"1/4 e'0; �, ")

⌘
e'0dt

�
,

=
�"1/4

�20

Z 1

0
t
⇣Z 1

0

@2K

@�20
(ts�"1/4e�0; �, ")e�0ds

⌘⇣
e�0 � e'0

⌘
dt+

Z 1

0
t
⇣Z 1

0

@2K

@�20
(t�"1/4(e'0 + s(e�0 �f'0)); �, ")

⇣
e�0 � e'0

⌘
ds
⌘
e'0dt

�
.

(3.60)

From (3.60) we derive the existence of a constant eC3 such that

k eR2(e�0)� eR2(e'0)kL2(R) 6 eC3�"
1/4

ke�0 � e'0kH4(R),

which, together with the Young’s inequality in Lemma 3.8 with q = 2, leads to the inequality (3.59).

Setting

"0 := "4, �0 := min

(
�4,

"3/4�q

0

4C3

)
,

the estimates (3.56-3.59) imply that for any |e�| < �0, 0 < " < "0, eT is a contraction in the sense that

k eT (e�0)� eT (e'0)kH4(R) = kG ⇤

⇣
eR(e�0)� eR(e'0)

⌘
kH4(R) 6

3

4
ke�0 � e'0kH4(R).

Since eT is a strict contraction from B0(R) back into itself it admits a unique fixed point in that set.
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Proof of Theorem 2. The existence of the undulated bilayer solution is a direct consequence of

Proposition 3.10. It remains to establish its asymptotic form. Denoting the unscaled fixed point by

�⇤0 := �"1/4e�⇤0, we conclude from (3.4), (3.6), (3.13), and (3.49) that the undulated solution, un, takes

the form

un = uh
⇣x2
"
; ", ⌘d(x1, �)

⌘
+  0�

⇤
0 +H(�⇤0; �, "), (3.61)

where from (3.24) and (3.37) we have the estimate

kH(�⇤0; �, ")kH4(R2) = O(|�"|+ |"|k�⇤0kH4(R) + k�⇤0k
2
H4(R)). (3.62)

It remains to identify the leading order form of e�⇤0 and quantify the size of the remainder terms. We

apply Lemma 3.8, together with the estimates (3.47), (3.48), and (3.52), to the right-hand side of the

rescaled fixed point equality (3.51) yielding,

ke�⇤0kH4(R) = O(1 + |"|3/4 + |"|ke�⇤0kH4 + |�| ke�⇤0kH4 + |�"�3/4
| ke�⇤0k2H4). (3.63)

From Young’s inequality we deduce that the fixed point is O(1). Returning to (3.51) we absorb factors

of ke�⇤0kH4(R) and eliminate � = e�"q to conclude that

e�⇤0 = �"3/4��2
0 G ⇤K0 +O(|"|3/4 + e�"q�3/4). (3.64)

Combining (3.61), (3.62), and (3.64), we have

un = uh
⇣x2
"
; ", ⌘d(x1, �)

⌘
� �"��2

0  0

⇣
G ⇤K0

⌘
+O(�"+ �2"�1/2). (3.65)

Taking advantage of similar arguments as in Lemma 3.8, together with the expansions A = 1 + O(")

and B =
p
�↵0"+O("3/2) from (3.43), the leading order term G ⇤K0 can be evaluated directly. More

specifically, we have

G ⇤K0(t) =

Z

R
G(t� s)K0(s)ds

=
1

4AB(A2 +B2)

Z

R

h
AEe

�
B(t� s)

�
cos

�
A(t� s)

�
+BEo

�
B(t� s)

�
sin

�
A(t� s)

�i
K0(s)ds,

=
1

4
p
�↵0"

Z

R
Ee(B(t� s)) cos(A(t� s))K0(s)ds+O("�1/4).

Using the double angle formula to break the cos term into s and t dependent parts gives the expression

G ⇤K0(t) =
1

4
p
�↵0"

⇣Z

R
Ee

�
B(t� s)

�
cos(As)K0(s)ds

⌘
cos(At)

+
⇣Z

R
Ee

�
B(t� s)

�
sin(As)K0(s)ds

⌘
sin(At)

�
+O("�1/4),

where the error estimate is in the H4(R2)-norm. The term Ee is slowly varying since B ⌧ 1. Since

K0 has O(1) compact support, localized near 0, we may approximate Ee by its value at s = 0, which

a↵ords the simplification

G ⇤K0(t) =
Ee(

p
�↵0"t)

4
p
�↵0"

⇣Z

R
K0(s) cos(s)ds

⌘
cos(At) +

⇣Z

R
K0(s) sin(s)ds

⌘
sin(At)

�
+O("�1/4).

(3.66)
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From the form (3.19) of K0 we may simplify,

Z

R
K0(s) cos(s)ds =h 0,W

0(u0)iL2(R)

Z

R

⇣
⇠(4)(s) + 2⇠00(s)

⌘
cos(s)ds = �h 0,W

0(u0)iL2(R)⌅e,1,
Z

R
K0(s) sin(s)ds =h 0,W

0(u0)iL2(R)

Z

R

⇣
⇠(4)(s) + 2⇠00(s)

⌘
sin(s)ds = �h 0,W

0(u0)iL2(R)⌅e,1,

where the Fourier coe�cients ⌅e/o,1 are defined in (1.11).

Returning these results to (3.66), we conclude that

G ⇤K0(t) =
h 0,W 0(u0)iL2(R)

4
p
�↵0"

e�
p
�↵0"|t|


⌅e,1 cos(At) + ⌅o,1 sin(At)

�
+O("�1/4), (3.67)

where the error estimate is in the H4(R2)-norm. Plugging (3.67) into (3.65), we obtain (1.12), which

concludes the proof.
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