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Abstract

Experiments with diblock co-polymer melts display undulated bilayers that emanate from defects
such as triple junctions and endcaps, [6]. Undulated bilayers are characterized by oscillatory per-
turbations of the bilayer width, which decay on a spatial length scale that is long compared to the
bilayer width. We mimic defects within the functionalized Cahn-Hillard free energy by introducing
spatially localized inhomogeneities within its parameters. For length parameter ¢ < 1, we show
that this induces undulated bilayer solutions whose width perturbations decay on an 0(5’1/ 2) inner
length scale that is long in comparison to the O(1) scale that characterizes the bilayer width.
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1 Defect structures in amphiphilic morphology

The Functionalized Cahn Hilliard free energy models the interaction of amphiphilic molecules with
solvent. It traces its origins back to bilinear models of microemulsions of oil, water, surfactant derived
from scattering data by Tubner and Strey, [10]. Their model represents the free energy through the
density u of the surfactant phase, and incorporates forth derivatives of this variable to match the
decay of the scattering intensity with respect to wave number. Crucially, the coefficient of the second
derivative term is negative, while the zeroth-order derivative term is positive. Quadratic energies have
linear variations, hence this model captures the linear response of the system to departures from spatial
uniformity. Surfactant systems are strongly phase separated, and not spatially homogeneous. Gompper
and Schick, [4] and later Gompper and Goos, [11] proposed nonlinear extensions of the energy that
modulate the coefficients depending upon the local density, with the sign of the quadratic coefficient
positive at very large or small densities of surfactant and negative a intermediate densities. This
generically makes this coefficient a good candidate for the second derivative of a double-well potential.
Indeed, considering a domain © C R? subject to zero-flux or periodic boundary conditions, the energy
introduced by Gompper and Goos can be written as a perturbation of a completed square in the highest
order derivatives,

Fac(u) == /Q % (e Au — I/V/(u))2 + fiW(u) dz. (1.1)



Here 0 < ¢ <« 1 is a ratio of molecular and domain length scales, W is a smooth double well potential
with two local minima and f; is a bifurcation parameter that can take small positive or negative values.
The quadratic term is often referred to as the Willmore energy, since for codimension one interfaces it
generically reduces to the surface integral of the square of mean curvature.

In [7] the model of Gompper-Goos was scaled and generalized into the functionalized Cahn-Hillard
(FCH) energy

From(u) == / % (e Au — W/(u))2 —&P (UIZ‘VUP + ngW(u)) dz. (1.2)

Q
Here ¢ < 1 characterizes the ratio of the characteristic length of the surfactant molecules to the domain
size and W is an double well with unequal minima at v = 0 and v = u4 > u° and a local maximum
at u = u°. These satisfy W (0) = 0 > W (uy), and are non-degenerate in the sense that W”(0) > 0,
W"(uy) > 0, and W”(u®) < 0. This form emphasizes the nearly “perfect-square” structure of the
energy corresponding to 71 = 12 = 0, or equivalently to p — co. Indeed the value of p represents a
distinguished limit that slaves the Gompper’s bifurcation parameter fi = —ePno to €. The parameter
11 > 0 incorporates the strength of the hydrophilicity of the solvent head groups. The choice p = 2
yields an asymptotic balance between the functionalization terms, controlled by n; and 79, and the
residual of the dominant Willmore term. For p = 1 these terms dominate the residual of the Willmore
term. We remark that the ePn;e?|Vu|? functionalization term can be replaced with a ePmuW’(u)
potential, up to terms O(¢?) by redefining the well shape W at O(&P).

The FCH free energy supports spatially extended structures that have a dimensional reduction. Posed
in R3 these include codimension one bilayers and codimension two filaments; the codimension three
micelles are not spatially extended in R3. A defining feature of the nanoscale morphology produced
by amphiphilic diblock polymers is a tendency for these spatially extended structures to undulate in
the neighborhood of defects. Defects are defined as localized structures that break the dimensional
reduction and include endcaps that terminate filaments or bilayers and Y junctures. Undulations are
long-range modulations of the thickness of the extended structure. Experiments reported in [5, 6] show
that the modulations have wave-lengths that are comparable to the thickness of the structure and have
amplitudes that attenuate on a length scale that is long compared to the interfacial thickness. Undula-
tions can be seen in in Figure 1.1 behind the end-cap defects that terminate the filament morphologies,
particularly in the region within the red boxes near the endcaps labeled ‘2’ and ‘3’.

Figure 1.1: Cryo-TEM images of blends of amphiphilic diblock polymer in water. A mixture of diblocks with
hydrophobic/hydrophillic chain lengths of 170/110 and 46/58, respectively. This mixture produces visible un-
dulations behind the endcaps, see the red boxes outlining the structures labeled 2’ and '3’. Reprinted with
permission from Figures 7&8 of [6].



In this work we argue that breaking the perfect-square formulation of FCH free energy provides a
mechanism that triggers the onset of undulations that decay on a slow, O(y/¢), length scale in the
tangential direction. We focus on flat bilayer critical points of the FCH in R2. In the spatial dynamics
formulation we identify two pairs of purely imaginary eigenvalues within the linearization of the FCH
in the perfect-square form. We show that these eigenvalues merge and either remain purely imaginary
or bifurcate into four complex-conjugate eigenvalues with O(y/¢) real part when the perfect-square
structure is broken at O(e), see Figure2.1. The former case, when the eigenvalues remain purely
imaginary, was addressed in [8], and corresponds to the creation of a family of bilayer profiles whose
width is modulated by spatially periodic pearled patterns. In the current work we address the the
latter case, showing that the complex eigenvalues lead to the formation of undulations that form in
presence of localized defects. Specifically we induce the defects by inserting spatial inhomogenities
in 72 = m2(x). We establish that the bilayer solution persists under this perturbation, leading to
an undulated equilibrium characterized by quasi-periodic oscillations with an O(g) wavelength whose
amplitude decays on an longer O(,/¢) length scale.

Bilayer solutions of the functionalized Cahn-Hilliard free energy. We study the strong regime
of the FCH, (1.2), with p = 1 and subject to zero-flux boundary conditions and a mass constraint

/udac—M.
Q

The critical points satisfy the Euler-Lagrange equation
(2A — W (u) + em) (2 Au — W' (u)) + engW' (u) = 7, (1.3)

where 14 := n1 — 12 and v € R is the Lagrange multiplier associated to conservation of mass of the
FCH equation. We assume the well W is smooth and simplify the system, moving it to the plane,

Q =R?,

and fixing a flat interface I'y := {(21,0) | € R} so that we may rewrite the Euler-Lagrange equation
(1.3) in the in-plane/scaled-normal coordinates (7,r) = (x1,x2/¢), for which it takes the form

(02 = W"(u) + €202 + em) (07u — W' (u) + 523311) +eng(T)W'(u) = ev. (1.4)

We view the PDE as an infinite-dimensional dynamical system with 7 = z; playing the role of the
evolution variable. The defect is induced by a spatial variation which we take in the form 7y =
n20 + 6121 (7) through the in-plane variable. This is made explicit in (1.9).

In this scaling, the ¢ = 0 version of (1.4) possesses bilayer solutions. Both the in-plane variable 7 and
the functionalization parameters with their spatial variation are eliminated from the problem. The
bilayers are the solutions of the second-order ODE

0% — W' (u) =0, (1.5)

that are homoclinic to origin, u = 0, corresponding to the left local minimum of the well W. The
existence follows from classical planar dynamical systems techniques. We denote the unique (up to
translations) orbit homoclinic to the origin, by w; = wup(r;0), with the zero denoting the ¢ = 0



reduction. The linearization of the system (1.5) at ug(r) := uy(r;0) yields a Sturm-Liouville operator
on the real line,

Lo:= 0% —W"(u) : HY(R) — L*(R), (1.6)
whose spectrum, according to standard Sturm-Liouville theory, consists of a simple positive eigenvalue
Ao and the simple eigenvalue A; = 0 with the remainder lying strictly on the negative real axis. We
denote the associated L?(R) normalized eigenfunctions as 19 and 1, respectively. We also note that,
unless otherwise noted, the notation L*(R) is reserved for function of r and (-,-)72(r) denotes an
integration over r.

In the case of spatially homogeneous 71 and 72 one may drop the 7 derivatives and study the persistence
of these homoclinic orbits for 0 < ¢ <« 1. The work [3] considered a flat interface and constructs bilayer
profiles which are homoclinic to the far-field value
v 2
Uso = E————5 + O(e7), 1.7

which is the unique small solution of the far-field equation
(W (uco) — em2) W (uco) = 7.

Introducing the constant 140 = 72,0—n1, they establish the persistence of bilayer profiles for e sufficiently

small.

Theorem 1 ([3]-Theorem 3.1) Fiz vy > 0, then there exists €9 > 0 such that for all |y| < v and
all e € [0,e0), the constant coefficient bilayer ODE

(82— W"(u) +em) (BFu — W' () + enagW'(w) = e, (18)

admits, up to translation, a unique solution up(r;e), called the bilayer solution to the FCH, that is

homoclinic to ux(g;7).

Undulated bilayer interfaces induced by amphiphilic inhomogeneity. The FCH parameter
19 is well-known to tune the energetic preference of the system for various codimensional morphologies,
[2] and is the central bifurcation parameter in the formulation in [11]. Our central result is that if the
key parameter g defined in (2.16) is negative, then spatially inhomogeneity in the parameter ne will
induce long oscillations characteristic of the structures observed experimentally behind endcap defects
in Figure 1.1. Specifically for 0 < § < 1 we consider inhomogeneity’s
T
ma(7i8) =m0 + 96 (VAT ) | (1.9)
where £ has compact variation: £ is a smooth function satisfying
git)y=0, |t|>T. (1.10)

If ¢ has zero mass, then £ has identical limits as ¢t — oo and we say £ is a localized inhomogeneity.
Conversely, if ¢’ has non-zero mass, then £(4o00) differ and we say ¢ is a transitional inhomogeneity.
The impact of & on the perturbed solution to (1.4) is characterized by the Fourier coefficients

Eo1 ::/f cos(t
Beq = —/ ¢ (t) sin(t)dt
R

4

(1.11)



We establish the continuous bifurcation of undulated bilayer interfaces out of bilayer solutions for € > 0
and ¢ > 0 sufficiently small. The main significance is the appearance of the slow 0(5*1/ 2) decay of the
undulations induced by the localized inhomogeneity in 7.

Theorem 2 Assume that the pearling bifurcation parameter oy, defined in (2.16), is negative; that is,
ag < 0. If in addition the following generic conditions hold

(i) The Fourier coefficients =1 := (Zc1,Z0,1) are not identically zero, |Z1| > 0;

(i) The scaled inner-product o := (1o, W'(uo)) 12wy s non-zero. Here ug is the bilayer solution
of (1.5) and (\o,%0) is the ground state eigen-pair of the associated linearization Ly, defined in
(1.6).

Then for any q > 3/4 there exist dp,c0 > 0, such that for all (0679,e) € (—dp,d0) % (0,e0), the
stationary FCH equation (1.3) with amphiphilic inhomogeneity ng(x1,6) = n20 — m + 0§(VAo™),
admits an undulated bilayer solution

o (22, _BolEal 5 o vEaoRett il 22
Un () =up < . ,e,nd(:cl,(S)) + 4)\[2)\/—70405\/(;6 cos <k(6) - + @1> Yo ( - ) +

O(6e%/4 4 §2e71/2),

(1.12)

where up, is the xo dependent bilayer solution of Theorem 1 modulated by the x1 variation in ng, see
also equation (3.5). The scaled wavenumber k(e) := \/AgA(e) = /Ao + O(e), with A defined in (3.43).
The phase shift ©1 is the angle of the vector Z1. In addition, the error terms are taken in H*(R?) as

functions of the inner coordinates (t,r) := (vVAo2, 2).

This result requires that Gy # 0. The homoclinic orbit ug solves (1.5) while ¥y > 0 is the ground-
state eigenfunction of Ly, defined in (1.6), corresponding to eigenvalue \g > 0. Moreover, the first
excited-state eigenfunction ¢ = u(, has eigenvalue A\; = 0. Consequently we may write

Bo = (0, W' (u0)) 2m)y = (Y0, Ou0) L2y = — (b, V1) L2(w)- (1.13)

The operator Ly is Sturmian, so by classical Sturm-Liouville theory all eigenvalues are simple and g
has even parity about r = 0. Moreover ¥; has odd parity about r = 0, with a simple zero at r = 0
and is positive on r > 0 and r < 0. If g is monotonic on r > 0 then we may deduce that Sy # 0.
The results of [9] shown that as W approaches an equal-depth well, then ug approaches a heteroclinic
connection and 1y — [11]. In this limit we have Sy — 0, thus a non-zero value of fj is not immediate.

The following result shows that for a significant class of wells W, the inner product S5y is negative.

Lemma 1.1 Assume that the ground state eigenvalue g of Ly is scaled so that Yo > 0. Let upmax €
(u®,uy) denote the smallest positive zero of W. If W (u) < 0 for u € (0, umax) then the inner product
Bo is strictly negative, in particular it is non-zero.

Remark 1.2 [t is straight-forward to construct tilted double-well potentials W satisfying the conditions
imposed after (1.2) for which By defined in Lemma 1.1 is negative. Indeed the function

W (u) = u?(u — Umax) (U — Climax),

does so for all umax > 0 and all ¢ > 3.



Proof. We take 0, of the eigenvalue equation for ¢y and use u{, = 1; to obtain the identity,

Loy = W (ug)voth1 + Aoty

By the Fredholm alternative the right-hand side of this identity is orthogonal to 1, which spans the
kernel of Ly. Taking the inner product of the right-hand side with 17, and using (1.13) we find

1 nn
Bo = >\()/RW (uo)otpi dr.

By assumption W"”'(ug) < 0 while 1y > 0, and we conclude that 5y # 0. Since A\g > 0 we establish the
result. [ |

Remark 1.3 The inhomogeneity & is chosen to have compact support as this allows for a simplification
of the leading order terms in (1.12). For & € LY(R) a similar asymptotic form holds with an adjusted
scaling with respect to e; see Lemma 3.9 and the estimate (3.66) in the proof of Theorem 2 for details.

Remark 1.4 For ag > 0 the unperturbed system supports pearled solutions that are perturbations of
bilayers with spatially periodic variations in the bilayer width, see [8]. For the perturbed system the
presence of the spatial inhomogeneity in ny generically excites resonant modes in the linear system
that lead to secular growth of the underlying perturbation as measured in distance along the bilayer.
Such growth is often saturated by the higher-order nonlinear terms. Consequently the inhomogenous
system may support pearled patterns with defects, but this analysis is outside the scope of our current
framework.

2 Center manifold reduction of bilayer profiles

For the flat interface I and spatially constant parameters 1; and 72, the bilayer profiles constructed in
Theorem 1 naturally extend to functions defined on the whole spatial domain. We call these functions
bilayer interfaces, and their dynamic stability has been studied in [3, 8], which showed that they may
be unstable to either pearling or meandering bifurcations depending upon parameter values. Pearling
bifurcations correspond to high-frequency, periodic modulations of the through-plane on the fast O(¢)
length scale. Meander bifurcations modulate the shape of the center line bilayer interface, perturbing
it from its the flat shape. These are generically long-wave effects with O(1) spatial variation.

A complete center manifold reduction that characterizes the possible pearled equilibrium local to the
flat bilayer interface was developed in [8] via a spatial dynamics analysis. We summarize these results

as they provide a framework that motivates the genesis of the undulated bilayer interfaces constructed
in section 3. Recalling uj;, constructed in Theorem 1, we introduce the perturbation

vV I=u — Up,

and the linear operator

Ly =8 —W" (up). (2.1)
We change variables to 7 = et/y/Xg, where \g > 0 is the ground state eigenvalue of Ly. This is
equivalent to

(t,?”) = (\/%xl/gv'%?/g)? (2'2)



for which (1.4) takes the form
(02 — W (u) + N07 + em) (0%u — W (u) + NodPu) + enas()W' (u) = ev. (2.3)

We now apply the spatial dynamics approach to rewrite (2.3) as an infinite-dimensional dynamical
system, where the rescaled in-plane variable ¢ is viewed as the evolution variable, bilayer solutions
as equilibria and pearled bilayers as periodic temporal oscillations to these bilayer equilibria. More

specifically, we denote - = %, introduce the variables
U1 v
V9 O
V = = 5 2.4
VU3 Lpv + )\083 v ( )
V4 Oy ([,hv + )\08?2))

and rewrite (2.3) as an infinite-dimensional dynamical system
V =L(e)V +F(V,e), (2.5)

where the linear and strictly nonlinear terms are

0 1 0 0 0
L(e) = | TEn/P0 O 1/%0 O rwe=| (2.6)
0 0 0 i W o |
M 0 _(£h+5n1)/)\0 0 .F(V,E)

the (4, 1) entry of L takes the form
M = —[engW" (up) — (02w, — W' (up,)) W (up,)]/ Mo,

and the nonlinearity F is given by
F(Vye) :=W" (up, +v) (8p)® + 2 (W (up, +v) — W (up)) dFv+

(L +eng — (W (up +v) = W (up)] (W (up +v) = Wup) — W (up)v) Ao+

(W (up, +v) = W (up)) Lov — (OFup, — W (up)) (W (up +v) — W (up) — W (up)v) /Xo.
The spectrum of L(¢) in (2.6) is determined from the eigenvalue problem

L(e)V = AV.
The operator L(e) is the vectorized version of the scalar operator
L(g,A) = (Lp +em + AoA?) (Ln + AoA?) + (W (up) — W (up)wy), (2.7)

where we have introduced wy, := (02up, — W'(uy)) /e. Accordingly the spectrum of L(e) agrees, up to
multiplicity to the nontrivial solutions A of

L(g,\)v=0. (2.8)

Since L(-,-) is connected to the Hessian of the FCH energy, it is natural that for ¢ = 0 it becomes a
square of a second order operator, and the eigenvalue problem reduces to

L0, \)v = (Lo + XoA?)?v = 0.

These observations imbue the spectrum of L(e) in (L?(R))*, denoted o(LL(¢)), with the following prop-
erties:



(i) o(L(g)) is symmetric with respect to the real and imaginary axis.
(ii) o(L(0)) ={tv-AeC|Xea(Lo/Xo)} ={0, £} U{EV-A| A <0,X € (Lo/No)}-

(iii) The eigenvalue A = 0, called the meandering eigenvalue of IL(0), has algebraic multiplicity 4;
A = +i are the pearling eigenvalues of I.(0), each has algebraic multiplicity 2.

(iv) The eigenfunction ¢y and ¢ of Ly, defined in (1.6), satisfy L(0,0)y1 = 0 and L(0, i)y = 0.

In the sequel we show that the continuation of the pearling eigenvalues +i as € increases from zero
determines much of the structure of the perturbed problem we study in section 3. The double multi-
plicity of the pearling modes precludes a direct application of the implicit-function-theorem argument.
A remedy, based on the observation that (2.8) admits the expansion

L(g, \)v = [(Lo + XoA?)? + O(g)] v, (2.9)
is to unfold the degeneracy through the change of variable
AN =—14++EA, v=1+e¥, where(¥,tg)2m =0.

This allow us to recast (2.8) as the search for the zeros of F' defined by

F(A,U;\e) =1L (5, \/ =1+ ﬁA) (1o +e¥) = 0. (2.10)

In the limit ¢ — 0T it is straightforward to calculate that F' reduces to
F(A,0;0) = (Lo — X0)*T + N3A%o + (Lo — Xo) (W (uo)urtho) + (naW" (uo) — W (ug)wo)tbo, (2.11)

where we have introduced

. Up — UQ
Uy = 11%1+ pa—
E—
2.12)
| W) , (
wo = lim wp = lim =—————= = Ly (v —naW'(uo)).

The quantity £, 1(7 — ngW'(ug)) is well-defined since the operator Ly, is invertible on functions with
even parity. Indeed expanding uy

up, = ug + cuy + O(e?), (2.13)
in (1.8), we deduce that
Liur = v —naW’(uo), (2.14)
and hence
wo = Eoul. (215)

The eigenvalue Ag of Ly is geometrically simple with corresponding normalized eigenfunction ty. The
pearling parameter

ag = 41)\[2) {((W" (ug)wo — naW" (uo))to, ¢0>L2(R) = /R (W (uo) Louy — ngW" (uo)) wgdr,  (2.16)



is a zero of F', satisfying
F(£2/ag, ¥p;0) =0,

where

Wo = (Lo — Ao) %] = 4X§aotho — (Lo — o) (W (uo)urtho) + (W (uo) Lour — naW" (uo))tho |,
see [8] for details.
Remark 2.1 From (2.14) the pearling parameter oy can be written as

Qo = Q17 — @p27d,

where 1
@01 = 2 / W (ug) (L5 1)yidr,
10 R (217)
aps = 2/ (L5 W' (o) + W (uo)) ¥5dr.

The constants ag1 and gy depend only upon the form of the double well potential, W.

Moreover, the derivative V g F'(£2,/ag, ¥o;0) is bounded and invertible, and for 0 < ¢ < 1 the
implicit function theorem shows that (2.10) admits solutions (A4, ¥4 ) with following expansions

Vo (rsVE) = Wo(r) + 0e),  Ax(vE) = £2y/ag + O(V2).

These results are a reformulation of Lemma 2.9 in [8] and summarized in the following proposition.

Proposition 2.2 For ¢ > 0 sufficiently small, the operator L(e) admits four eigenvalues £X,(1/€),
+X,(v/2) with the expansion

M(VE) = \/~1+2y/@0vE + O(e) = i + v=aove + O(e).
The corresponding eigenfunction with respect to A\, denoted as ¥,,, takes the form
U, (75 v/E) = ho(r) + eWo(r) + O(e*?),

where we recall that g is the normalized eigenfunction of Lo with respect to Ay and

Wo = (Lo — Xo) "% | — 4Aaotho — (Lo — Ao) (W (uo)urtho) + (W (uo) Lour — naW” (uo))ho |-
Moreover, we have the following distinctive scenarios.

(i) (Pearling) If ag > 0, then the four eigenvalues +\,, +£)\, are pure imaginary, giving rise to
pearling bifurcation; see [3, 8] and Fig. 2.1.

(ii) (Undulations) If ag < 0, then Re\p, = v/—agv/e + O(g) > 0 and the four eigenvalues £\, £\,
are geometrically simple. The eigenvalues A, and X\, are the leading modes of the unstable spectra
of L(g) while the eigenvalues —\, and —X, are the leading modes of the stable spectra of L(e);
see Fig. 2.1 for an illustration.

In the case ap < 0 we will show that, in the presence of defects, the eigenspace associated to {£\,, :N:Xp}
generates slowly decaying undulations depicted in Figure1.1.
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Figure 2.1: The operator L(e) admits two purely imaginary eigenvalues (blue crosses) with algebraic multiplicity
2 when € = 0. Given € > 0, for ay > 0 they remain purely imaginary while for ag < 0 they split into four

geometrically simple modes (red crosses).

Weakly stable and unstable manifolds In [8] a center manifold reduction of the spatial dynamics
formulation of the stationary, constant coefficient FCH equation was used to classify all solutions that
remain close to a bilayer profile as ¢ — 4o0o0. Excluding the meander modes through a symmetry
assumption, a series of normal form transformations were used to recast the four-dimensional pearling
center manifold in the form

01 = i(l + w15)01 + Cy +1Cy [0470161 + Oégi(clég — 0102)},

. _ _ _ _ _ 2.18
Cy = i(l + W1E)CQ +1Cy [a70101 + agi(0102 . 0102)] + C1 [—Ozoé‘ + iOéQ(ClCQ — 0102)] , ( )

where C1, Cy € C, the constants wq, a; € R, and the conjugate equations are omitted. So that (C1,C2)
lie on the stable manifold of the bilayer solution we impose the necessary condition

lim C4(t) = 1tli}m Csy(t) = 0.

t—o0

Noting that
K = 1(0102 — 0102), H = ’02|2 — (—OéoE + 20&2K)|01|2,

are two first-integrals of (2.18), we conclude that the stable manifold lies within
K=H=0.
Introducing the polar coordinates,

Cl — Tlei((1+wls)t+91),
02 — T2ei((1+wl8)t+92),

10



the equation K = H = 0 can be rewritten as

0y — 0 =km, keZ,
r3 = —ager?.
In addition, we have
2riry = C’161 + 0161 = 2(—1)k7“17“2,
2r9r9 = CQCQ + 0262 = 2(—1)k(—a05)r1r2,

or simply,

which yields

n)) _ o 1 o—v/—a0et
ro(t) (—1)k+1\/—a05 '

Since r1,79 > 0, we deduce that k is odd. Plugging the polar coordinates into the first equation of
(2.18), we have
01 = 0477“%,

which implies that

a7C2 —2y/—ast
91 = 91,0 - ﬁe ’

for some 67 o € R. We conclude that lim; o C1(t) = lim;_o Ca2(t) = 0 if and only if,

C1 = Cgexp {—\/—aost +i|(14wie)t— 23% exp(—2y/—aet) + «95] } ,
Cy = —/—aeCh,

where Cj, 0 parameterize the stable manifold associated to the bilayer solution. Similarly, all solutions

(2.19)

satisfying limy_,_ oo C1(t) = limy—,_ oo Co(t) = 0 admit the form

Cy= Cyexp {\/—aost +i|(14+wie)t+ \/7 exp(2y/—act) + 6 } }
Cy = /—apeCh,

where C,,, 8,, parameterize the unstable manifold associated to the bilayer solution.

(2.20)

It is straightforward to see that the unstable and stable manifolds (2.19),(2.20) intersects with each
other only at the C,, = Cs = 0, which implies that the only orbit whic is homoclinic orbits to the
bilayer is the trivial bilayer solution.

Lemma 2.3 For ay < 0 the system (2.18), characterizing the stable manifold of the bilayer solution of
the constant coefficient stationary equation FCH does not admit any nontrivial orbit that is homoclinic
to the bilayer solution.

In the undulating regime, ag < 0, the stable and unstable manifolds display the slow, undulated decay
associated to defect solutions. However, in the absence of defects there are no stationary homoclinic
solutions on the center manifold of the bilayer profile, at least for the system truncated beyond cubic

11



nonlinear terms. In the following section we show that localized perturbations to 7y trigger undulated
responses that decay on the slow e~1/2 length scale. The inhomogeneity in 12(7) renders the infinite-
dimensional dynamical system non-autonomous, which in turn makes the direct application of center
manifold reduction cumbersome, if not impossible. As a remedy we pursue a functional analytic route
via a Lyapunov-Schmidt reduction.

3 Existence of undulated bilayer interfaces

The center manifold analysis presented in Section 2 highlights the role played by the sign of the pearling
parameter ag, defined in (2.16). When ag > 0 this framework supports the construction of pearled
bilayers via a spatial dynamics analysis. In this section, we consider the complementary case, ag < 0,
and show that the stationary FCH (1.4) with inhomogeneous 7 coefficient supports undulated bilayers.
More specifically, for a sufficiently strongly localized inhomogeneity we show that the constant width
bilayer deforms to a solution of (1.4) that has long wavelength width-oscillations that decay like 1/4/¢
in the fast variables away from the defect. We call these solutions undulated bilayers.

Definition 3.1 Foré > 0 an undulated bilayer with flat interface, denoted u,(x;9), is a solution to the
inhomogeneous stationary FCH equation (1.4) with n2 as in (1.9) subject to the boundary conditions

. LS\ . +
xlgrriloo Un(iL', 6) - uh($2/€, & nd,6)7

(3.1)

IQE\IEOO Un (23 0) = Uoo(g,m2(71)).

For fized value of ng the flat bilayer interface up(r;e,mq) is given by Theorem 1, while the far-field value
Uso 18 given in (1.7) and 776:;5 = lim ngs(x1).
> xr1—Foo

As in section 2, we rewrite the inhomogeneous stationary FCH equation (1.4) in the inner coordinates
(t,1) = (V/ dow1/e, 32 /€), (3.2)
where it takes the form
(02 — W (u) + N07 + em) (0%u — W (u) + NodPu) + enas()W' (u) = v, (3.3)
and introduce the modulated bilayer interface
up,5(t, 7€) == up(r;e,mq5(t)). (3.4)

In the inner coordinates £ = £(t) varies on an O(1) length scale, in particular its support is O(1). The
modulated bilayer interface satisfies both the t-modulated family of ODEs,

(02 = W (uns) +em) (Puns — W ung)) + enas(OW (un5) = €7, (3.5)

and the boundary conditions (3.1), but not the full system (3.3). We construct the undulated bilayer
interface as a perturbation of the modulated bilayer interface,

u(t,r;0,e) = ups(t,r;e) +v(t,r;d,¢). (3.6)

12



Inserting the expansion (3.6) into (3.3) and subtracting the t-modulated ODEs from both sides defines
the residual

F(v;d,¢) :z(@f — W (ups + v) + X007 + 5771) (8,?11 — (W' (ups +v) — W (unes)) + M0; (uns + v)>+
( — (W”(uhﬁ +v) — W”(uhyg)) + )\083) (331%75 — W’(um))%—

€n¢6@)<”ﬂ(Um5-Fv)—-VVTUhﬁ))v
(3.7)
which is zero precisely when u satisfies (3.3).

We construct solutions of the system F(v;d,¢) = 0 through the implicit function theorem. Since the
6 = 0 problem is homogeneous we have
F(0,0,e) = 0. (3.8)

Introducing the linearization of (1.5) about the modulated bilayer,
ﬁh,g = 63 — W”(uhyls), (3.9)
and the scaled residual of (1.5) at the modulated bilayer

 Dups — W (uny)
Wh,5 = c )

it is straightforward to verify that
—(0,9,¢) = Ly, (3.10)

where the operator

Lse = (,C}us +em + )\08152) (ﬁh,é + )\03152) + € (nd,(SW”(Uh,é) — W/”(uh’g)wh?g) + )\Qafuhﬁwm(uh’(;),
(3.11)
plays a fundamental role in the analysis. Our analysis is perturbative from the case ¢ = § = 0 for
which we have the simple operator studied in section 2,

OF
A%m@m:gw4@+M&ﬂ (3.12)

Here Lo = 02 — W"(up) is defined in (1.6) and has eigenpairs {(\;,1; (r))}}zo with Ao > A\ = 0 and
the remainder of its spectrum strictly negative.

Remark 3.2 We note that the operator Ly, 5, defined in (3.9), when 6 = 0, coincides with the operator
Ly, defined in (2.1); that is, Lno = Lp.

Remark 3.3 The Lyaponov-Schmidt reduction is markedly simpler in the case 6 = ¢ =0 as compared
to the case 6 = 0,0 < € <« 1. The operator Lo admits nontrivial invariant spectral spaces that are
separable in L?(R?) as Lo. Conversely the linear operator

oF
%(0, 0,¢) = Loe = (Eh,o +en + Ao@?) (ﬁh,o + Aoaf) + 5<77d,0WH(uh,0) - W/”(Uh,o)wh,o)>

does not admit such spaces. More specifically, Lo has the decomposition

LO,E = Rh70 + )\36? + 6771/\0(9t2 + 2)\0836}170,

13



where
R = (ﬁh,o + 6771>£h,0 + 5(77d,oW"(uh,o) - Wm(“hﬂ)“’h,o)-

The term 2)\03t2£h,0 makes the invariant subspaces of Lo, non-separable. On the other hand, since
Lo = 02—W"(ug) is a Sturm-Louiville operator admitting eigenpairs {();, Y;(r))}520, we may conclude
by analytical continuation that Ry is a self-adjoint operator admitting eigenpairs {(Nje, ¥je(r))}520
with

Xoe = AF+0(e) > M. = O(e),

)\2,5 = )\% + O(E) < )\3,6 = )\g + 0(5) < e hm )\j,E — +OO,

J]—00

and the eigenfunctions {1 }32, which form a complete orthonormal basis of L?(R).

We exploit the fact that for j = 0,1 the subspaces

X; = {v;(r)e(t) | ¢ € L*(R)} C L*(R?),

are invariant under the resolvent operator associated to Ly. We introduce the Lg-invariant central and
hyperbolic subspaces

Ve = {go(r)do(t) + 1 (r)i(t) | ¢o, 1 € LA(R)}, Vi =V,
and denote by P the L?(R?) orthogonal projection onto V, with @ := Id — P. We decompose v
v = v + vp, (3.13)
where v, := Pv and vy, := Qu, and write the residual equation in the projected form

PF(ve + vp, d,e) =0,
QF(ve + vp, d,€) = 0.

The following Lemma solves the () equation for v, given a fixed v..

Lemma 3.4 There exists an open neighborhood By of the origin in H*(R) x H*(R) x R x R, and a

smooth mapping
H: By — H*R*) NV,

such that the decomposition (3.13) of v with v. = Yodo + P11 and vy, = H(do, ¢1;0,¢€) satisfies
QF(ve + H(o, ¢156,¢€);0,¢) =0, (3.14)

fOT all (¢0’¢1’5a 6) € BO-

Proof. We denote Vh = H*(R?) NV}, take dg, o > 0 sufficiently small and introduce the C*°-smooth
mapping

F: V,x L2(R) x L2(R) x (0,80) x (0,e9) —> Vi
(vn, ¢0, P15 0, ¢€) — QF (Yogo + Y100 + vp; 0, ).

14



From its construction ﬁ(O, 0,0;0,0) = 0. It is easy to verify that

Ia —
gvh(()?(]aovoao) = QLOQ : Vh — Vh-

Moreover, since @) is a spectral projection for Lg, Lg is strictly negative on Vj, and Ay > 0 we deduce
that 0(QLoQ) is bounded away from zero and Q) Lo@ has a bounded inverse. We may apply the implicit
function theorem to solve F' = 0, and concluded the proof. ]

With this reduction of v the P equation may be written in the form

<¢0>F(¢0¢0 + 1/11¢1 + H(¢07 ¢1; 51 6); 67 5)>L2(R) = 07

(3.15)
(1, F (oo + 1é1 + H(¢o, ¢150,€)50,€)) r2(m) = 0,

where the left hand sides depend on t via ¢g, ¢1 and H. The inhomogeneity in 7o does not break
the xo even parity of the stationary FCH equation. Without loss of generality we restrict ourselves to
functions with even parity in r for each fixed ¢. More specifically, we introduce

CAS Lgven(R2) = {U € LQ(RQ) | 1)(7’, t) = 'U(—T’, t)}?

and remark that ¢;(t) = 0 for v € L?

even

(R?) since 91 has odd parity. The second equation in (3.15)
holds trivially since F'(v;d,e) has even parity, and the first equation simplifies to

K(¢0;575) = <¢07F(¢0¢0 + H(¢070;576);67 €)>L2(R) =0. (316)

In the sequel we fix ¢ = 0 and drop references to it. We assume that ||, > 0 are sufficiently small
and use the contraction mapping principle to construct the solution ¢y of (3.16) and identify is leading
order form, establishing Theorem 2.

The map K is smooth,
K : By == {(¢0;6,¢) € H'(R) x R x [0,00) | (¢0,0:6,¢) € By} = L*(R),

and admits the expansion

M%@@=Km@@+3;®&mm+WWM%®) (3.17)

The equality (3.8) suggests that the leading order term in (3.17) is small, correspondingly we introduce

Ko(6.) = K((g;, €) _ WO,F(H(O;((S;;);(S, €)) L2(R) c I(R). (3.18)

Lemma 3.5 The function Ko € L*(R) defined in (3.18) has the leading order ezpansion
. —_ / (4) "
Ko(t:0,) = (o, W'(wo)) |, (€900) +26°(1)) + O(Jel + o], (3.19)

where the inhomogeniety ¢ is defined in (1.10) and the error is measured in L?(R).
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Proof. It is convenient to write the modulated bilayer interface up s of (3.4) as a perturbation of the
flat bilayer; that is, the Taylor expansion of uj s with respect to J, which reads

wn s () = uno(r) + 02€(t) (L (e, 0) W' (wo) ) (r) + O(|0e ),

where the one-dimensional operator L(e, A) is defined in (2.8). Similarly, the residual F, from (3.7),
admits the expansion
F(v;d,€) = F(0,6,€) + Lscv + O([[0]|34(r)); (3.20)

where the modulated residual is given by

F(0,0,e) = (02 — W (up,s) + X0} +em) (Mo0funs) + X7 (02uns — W (uns))

, (3.21)
=edFy . + O(|0el?).
Here, using the expansion of uj s, we have introduced
Foe i= D () (L7 (2, 00W (o) ) (r) + A& () | (2Ln0 + em) L™ (2, )W (o) | (7). (3.22)
The result (3.14) holds with ¢¢ = 0, which implies that
QF (H(0;0,¢);0,¢) = 0. (3.23)
Using (3.20) and (3.21) to expand (3.23), yields the asymptotic result
H(0;6,) = —deHo(e) + (9(|5e|2), (3.24)
where we have introduced
—1
Hoe) = (QLoQ)  (QFv.c). (3.25)
Combining the expansions for Fs. and H (3.20-3.24) we simplify Ky as
Ko =<¢0,F0,5 - L0,5H0>L2(R) + O(!ée|)
(3.26)

=<¢J0,F0,o —Loo (QLO,OQ>71 (QF0,0>>L2(R) + 0<|5’ + |55\>-

Since @) commutes with Lo and Q1o = 0 the second term in the inner product is zero and we are left
with the inner product with Fpo. From (3.22) with € = 0 we arrive at (3.18). Since the derivatives of
& are compactly supported K is too, at least at leading order. ]

To simplify the second term on the right-hand side of (3.17) we introduce the constant coefficient
operator
G:=(1+ ) +ecr(1+07) — deay, (3.27)

that acts purely through the tangential variable. Here the constant c¢; € R is defined by

= 2(ho, W (uo)urtho) 12 (w)
_ " ,

Cc1

where 1)y is normalized to have L? norm 1 and wu; is the e-scaled leading order term of wj, — ug as
defined in (2.12). Significantly the quantity «q is the key bifurcation parameter defined in (2.16) that
establishes the positivity of G for oy < 0.
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Lemma 3.6 DK
g 050:)60 = N3G + O((02 + ) ol ey )- (3.28)

Proof. Recalling (3.10, 3.16), a straightforward calculation shows that

oK (0;6,€)p0 = <¢0, L. <¢0¢>0 + 87[{(0; 9, 6)¢>0>>
- o HE (3.29)
" .
= <¢0, Loe <¢0¢0 + 3(;5(0; 0, €)¢0>> + 0(’55\ ”¢0HH4(]R)>7
0 LQ(R)

where the latter equality is simply the leading order expansion in 6. From (3.11) with 6 = 0, the
operator Lo, takes the form

Locv = (ﬁh,o +em + )\06,:2) (ﬁh,o + /\oaf)v + €<77d,0W"(Uh,o) - W’”(Uh,o)wh,o)v

(3.30)
=Lov + eL1v + O(e%),

where the last expression gives the Taylor expansion of Lo . in & with Ly = (Lo + X\o9?)? as in (3.12)
and the first order operator

Liv = (’r]l — W"'(uo)ul) (£0 + )\0(9152)’0 — (ﬁo + )\083) (W’"(uo)ulv) + (Ude”(Uo) — W”/(UO)U)())’U.
Using (3.27) and the expansion (3.30), the first term on the right-hand side of (3.29) is expressed as

<¢0, Lo e (Yodo) >L2(R) =<¢0, {Lo + 8L1} (Yodo) >L + O<€2||¢0HH4(R))7

*(R)
(v, [A%(l + 33)2 + Doz (m = 2W" (uo)ur ) (14 03 ) +
= (naoW" (o) = W"" (o)uo) | (wogo) )

=300 + O (o).

(3.31)

2
i HO(E 0l

To estimate the second, lower-order term on the right-hand side of (3.29) we first expand %(0; 0,¢).
When ¢1 = 0 and 6 = 0 equation (3.14) reduces to

QF (Yo¢o + H(o;0,¢),0,e) = 0.

Linearizing this relation with respect to ¢g at ¢g = 0, yields

QLo. <¢0¢0 + 67H(0; 0, €)¢0> =0. (3.32)
Do

Since @ commutes with Ly and Qo¢po = 0, applying @ to the expansion (3.30) yields
QLo (Yoo) = QL1 (ogo) + O || oll 4 m) )-

We expand 0y, H as

H
g(z)(o; 0,e) = Hy+eH; + 0(52), (3.33)
0
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and plug this into (3.29), and equate orders of £. At first and second order we find

(3.34)

{QL0H0¢0 =0,
QLoH1¢o + QL1Hypo + QL1 (vo¢0) = 0,

for any ¢g € H*(R). The operator %(O; 0,¢) maps H*(R) to V;, N H*(R?) while QLQ is e-uniformly
invertible, on V}, which is the range of (). Since the expansion holds for all ¢g € H* the first equation
in (3.34) implies

Hy=0, (3.35)

and the second equation in (3.34) reduces to

QLoQHpo = —QL1(Yo¢o),

or, equivalently,

Hido = —(QLoQ) (QLi (o) ). (3.36)
With these formulations the expansion (3.33), reduces to
OH -1
g 0:0:060 = ~=(QLoR)  (QIa(o00)) + O 6o rs) € Vi (3.37)

and together with (3.30) we rewrite the second term on the right-hand side of (3.29) as

(0.0 (G 0500 >L2(R) == (Vo o(QL0Q) " (QLitvutn)) )+ OEdulice),

L2(R)

=—c <¢0, QL <¢0¢0)>L2( + O (|0l 1 (m)):

=0(52||¢0HH4<R>).
(3.38)

Together (3.31) and (3.38) establish (3.28). ]

R)

Remark 3.7 In section 2 the stationary FCH equation was rewritten as an infinite-dimensional dy-
namical system (2.5),

V =L(e)V +F(V,e).

The eigenvalue problem L(e)V = AV is equivalent to (2.8),
L(g,Nv := (ﬁh +em + )\0)\2) (Eh + )\0)\2) +emaW” (up) — W" (up)wp) [v =0,

which, restricted to the central mode v = 1o(r), leads to a quartic polynomial in \,

P(A) = (o, L(g, \)bo) 12wy

The characteristic polynomial of G equals Ay *p(\) to O(e).
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With Lemmas 3.5 and 3.6 we may rewrite the expansion (3.17) of K as
K (¢0;8,¢) = 6eKo(+50,) + AjGdo + R(¢o; 6, ¢), (3.39)
where Ko € L?(R), with expansion given in (3.19), is independent of ¢y and the remainder satisfies
R(¢0:0,€) = O ((* + 8le) | ol s + l|boll7r4) - (3.40)
In particular ¢¢ satisfies K(¢o;9,e) = 0 if and only if
Gho = —0eAy *Ko(+56,€) + R(do; 6, €), (3.41)

where we have rescaled the remainder.

The operator G, given in (3.27) is constant coefficient. Its Green’s function G can be determined
explicitly, see for example [1]. Indeed, G € H3(R) has two continuous derivatives and satisfies

e~ B[ Acos(At) + B(x(t) = X(~0)sn(A1)]| AR, (Br) cos(At) + BE,(Bt) sin(At)
el = IAB(A 1 BY) - IAB(AZ+ BY)  (342)

where x is the standard step function and

V1 —4 2

A:\/ + ecy EOé0+ +€Cl:1+(’)(€),

2 4

V1+ec —4dea 2+ ec

B :\/ 21 0_ I L= /Zage + O(%?), (3.43)
e x>0, e, x>0,

Ee(z) = Eo(z) =

e’, x <0, —e”, <.

Inverting G, the relation (3.41) reduces to a fixed point problem

$o = T(¢0),

where the map
T: H*YR) — H4(R)

3.44
ol — G x (—55/\52K0+R), ( )

is defined through convolution with the Green’s function G over ¢t € R.

Lemma 3.8 Fix €y, 69 > 0 sufficiently small, then for each q € [1,2] there exists Cy > 0 such that for
all e € (0,e0) and 6 € (o, ) we have the estimate

5q—2

IG * fllgawy < Coe™ % (IfllLawy + £ 2w)) » (3.45)

for all f € LY(R) N L*(R).
Proof. From Young’s convolution inequality we may estimate
|G * fllLe@wy < NGllze@) | £l La(r),
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for conjugate exponents p~! 4+ ¢~ = % In particular we need ¢ € [1,2] so that p > 1. From the

expression (3.42) and asymptotic expansions (3.43) we have

A+ B —1 _5g—2
<——-—-BP < E
Lr®R)  2AB(A%+ B?) Coe

A+ B
el

< N
HGHLP(]R) 4AB(A2 +B2)

Since G € H3(R) we may take two derivatives of G point-wise and estimate

5
102G 1» < Coe™ 14 .

This estimate, and the convolution identity 02(G  f) = (0?G) * f, implies an H?(R) bound on G * f
of the form (3.45). Expanding the operator G in (3.27), denoting u = G * f, and taking the L? norm
of both sides we have

10 ull 2 < O (107l 2 + llull 2 + 1| fll2) -
Here the constant C' may be chosen independent of € and § sufficiently small. This extends the estimate

to H*(R) as in (3.45). ]

Lemma 3.9 Let the function Kq be as defined in (3.18). Fix £q, do, sufficiently small, then there exists
a constant Cp > 0 such that
|G * Kol ragry < Cre™/4, (3.46)

holds for all (6,¢) € (—6o,d0) x (0, ¢€p).

Proof. From the expansion (3.19) the leading order behaviour of Ko(+;d,¢), which we denote by Ko,

is given by
Koo — / (4) "
Ko = (vo, W'(wo)) , . (€9(0) +26"(1)),
while the remainder K; := Ky — K¢ satisfies
Ky = O(e + d¢e),

in L?(R). The function K, inherits compact support from the perturbation &, however the estimate
(3.46) only requires Ko € L'(R) N L?(R), for which Lemma 3.8 with ¢ = 1 implies

IG * Kol grary < CollKoll 1 mye/*. (3.47)

Similarly, Lemma 3.8 with ¢ = 2 applied to G * K1, yields

|G * K1llgar) < Co(1+ 4], (3.48)
for some Cp > 0. We take € := max{Col[Koll 11 (r); Co(1 + \50|)53/4} and deduce (3.46). ]
In the sequel we fix

q>3/4
and rescale § and ¢g, introducing
§=106e1, ¢ = ey, (3.49)
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and the associated operators
T($o) = 0 /4T (¢g), R(¢o;d,€) = 5"/*R(¢o; 0, ).
The rescaled fixed point equation takes the form
do =T(d0) = G+ (= N2 Ko + R),

where, expanding (3.40), the residual term satisfies

IR (B33, &)l L2y = Oel*llpoll e + 827 [|doll s + [6TH4] (| dol14)

The following proposition establishes that T is a contraction mapping.

(3.50)

(3.51)

(3.52)

Proposition 3.10 There exist §g,c0, R > 0 such that for any given (g,s) € (—d0,90) x (0,e9), the

mapping N
T: By(R) := {¢ € H'R)|6]l g2w) < R} — Bo(R)

1s a well-defined contraction and admits a unique fized point, qu‘)(t;g,e).

Proof. From (3.46) there exist d1,e1, Ry > 0 such that, for any |§’ < 61,0 < e <eyq,

IG * (£*0g 2 Ko) |l prag) < Ru.

(3.53)

Similarly, from Lemma 3.8 and the estimate (3.52), we conclude that there exist dz,£9 > 0,C% > 1 such

that, for any |0] < 62,0 < & < &9,

G Rl gy < CoIellollzr + 18 oll s + 135/ doll3 ).

We choose d3,e3 > 0 sufficiently small that

~ ~ 1
Cy  max {e, |07, 4Ry |67/} < =
[6]<03,0<e<es 4

Combining (3.53)-(3.55) and defining
d4 := min{dy, 02,03}, &4 :=min{e1,e9,e3}, R =4Ry,
Then for any |6] < 0, 0 < & < &4, and all ¢y € By(R) we have the bound
IT(60) | 11 ry <G * (€326 Ko) 1wy + |G * R(b0) | =)
<R+ 5 (2ol + g 1501 )
R?

<R1+i(2R+4R1) — R

(3.54)

(3.55)

This establishes that T : By(R) — Bo(R). Taking ¢o, $o € Bo(R), we bound ||T () — T(@0)||H4(R) in

terms of ||go — Foll H4(R)- Since Ko is independent of ¢ we have
T(0) = T(20) = G * (R(%0) = R(0))-
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From the expansion (3.39) and the rescaling in (3.50), we conclude that

Rl RQ
1 0K 0K
= G0+ 33 5,0(0:0.)60 + A2( (60:0,) = K(0:0,2) = 52-(0.6,€)n)  (3.57)

where R4 is linear in ¢¢ while R is genuinely nonlinear in ¢g. We rescale 751\2 as in (3.50). The
linearity of Ry, and the estimates (3.54) and (3.55) show that

|G * <7€1(q§0) - 7%1(@0)) | o ry < —H¢0 — @ollga(r)- (3.58)
For the rescaled nonlinear term Ra, we claim that there exists C's > 0 such that

6+ (Ra@o) = Ra@) |, ) < O 100~ Boll sy (3.50)

Exploiting the integral remainder form of Taylor’s expansion we write

0K 0K
Raton) = 35 [ (Goctons.e) = S5 0:6.0) e

which for the rescaled operator leads to

Rl ~ Rat) = | [ (G140 )~ S (0:6.9) (3 = e
/0 <a¢0 (t551 4¢0a 5 8) - %(tdg @07 5 5))900dt:|

561/4 e _ _
— /47 . _ >
- { /0 f( /0 57 (tsM gz 8, )uds ) (30 — G )i+
L POk ~ -
bl /4G, — G- _ 5 ~
/0 t(/o 962 (tée™ (@0 + s(do — ¢0)); 6, €) <<z50 <po>ds) (,00dt:| :
From (3.60) we derive the existence of a constant Cs such that

IR2(0) — R2(Po)ll z2(ry < C30e™*||do — Goll mrar)

which, together with the Young’s inequality in Lemma 3.8 with ¢ = 2, leads to the inequality (3.59).

83/4 q
= dp :=min < 6
€0 &4, 0 mln{ 4, 403 } )

the estimates (3.56-3.59) imply that for any |8] < Jy,0 < & < &0, T is a contraction in the sense that

Setting

o 3.~ -
I7(90) = T(@0)llmscey = G + (RiGo) = RAG0) )l arscey < 5190 = Follrsey

Since T is a strict contraction from By(R) back into itself it admits a unique fixed point in that set. m
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Proof of Theorem 2. The existence of the undulated bilayer solution is a direct consequence of
Proposition 3.10. It remains to establish its asymptotic form. Denoting the unscaled fixed point by
¢ := de'/4¢s, we conclude from (3.4), (3.6), (3.13), and (3.49) that the undulated solution, u,,, takes
the form

= wn (252 malw1,)) +Yods + H(95:0.), (3.61)

where from (3.24) and (3.37) we have the estimate
1 (66: 0, €) |l a2y = O(I0e| + el 65l mramy + 1961174 wy)- (3.62)

It remains to identify the leading order form of 53 and quantify the size of the remainder terms. We
apply Lemma 3.8, together with the estimates (3.47), (3.48), and (3.52), to the right-hand side of the
rescaled fixed point equality (3.51) yielding,

1661 2y = O + el + lell|g5] s + 18] [ F5 1 s + 166>/ d513). (3.63)

From Young’s inequality we deduce that the fixed point is O(1). Returning to (3.51) we absorb factors
of ||#6ll 4 (r) and eliminate 6 = de? to conclude that

by = —e/NT2G « Ko + O([eP/* + 6973/4). (3.64)
Combining (3.61), (3.62), and (3.64), we have

Uy, = Up, <%7 g,nq(z1, 5)) — (58/\52¢O (G * Fo) + O(de + (52571/2). (3.65)

Taking advantage of similar arguments as in Lemma 3.8, together with the expansions A = 1 4+ O(¢)
and B = /—age + O(e%/?) from (3.43), the leading order term G * K can be evaluated directly. More
specifically, we have

G+ Ko(t) = /R G(t — s)Ko(s)ds

1

:4AB(AQ+B2)/R [AEe (B(t — S)) cos (A(t — 5)) + BE’O(B(t — s)) sin (A(t — 5))}Fo(s)ds,

S — §)) cos — s))Ky(s)ds —1/4
_4\/705/RE6(B@ ) cos(A(t — s))Ko(s)ds + O(e~1/4).

Using the double angle formula to break the cos term into s and ¢t dependent parts gives the expression

G Ko(t) [( /R E.(B(t—s)) cos(As)FO(s)ds) cos(At)

1
~dy/=aee
+ (/REe(B(t —s)) sin(As)Fo(s)ds> sin(At) ] O VY,

where the error estimate is in the H*(R?)-norm. The term FE, is slowly varying since B < 1. Since
Kg has O(1) compact support, localized near 0, we may approximate E. by its value at s = 0, which
affords the simplification

Ee(\/ —Oéoa?t)

G Rolt) = === [( /IR Ko(s) cos(s)ds) cos(At) + /R Ko(s) sm(s)ds) sin(At)] + O,
(3.66)
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From the form (3.19) of K¢ we may simplify,
/R To(s) cos(s)ds =0, W' (u0)) 12z /R (69(5) + 26" (s)) eos(s)ds = — (o, W (u0)) ) Ze.1
/Ko(s) sin(s)ds =(v, W’(u0)>L2(R)/ <§(4)(8) + 25"(8)) sin(s)ds = — (Yo, W' (u0)) r2(r)Ze,1,

R R

where the Fourier coefficients =/, ; are defined in (1.11).

Returning these results to (3.66), we conclude that

_ W
G Ko(t) = Wo y \/%”(R)evaoelt [EeJcos(At) +5071sin(At)} + O, (3.67)
where the error estimate is in the H*(R?)-norm. Plugging (3.67) into (3.65), we obtain (1.12), which
concludes the proof. ]
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