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Abstract. The Degasperis-Procesi (DP) equation is an integrable Camassa-Holm-type model as an asymptotic ap-
proximation for the unidirectional propagation of shallow water waves. This work is to establish the L? N L° orbital
stability of a wave train containing N smooth solitons which are well separated. The main difficulties stem from the
subtle nonlocal structure of the DP equation. One consequence is that the energy space of the DE equation based
on the conserved quantity induced by the translation symmetry is only equivalent to the L?-norm, which by itself
can not bound the higher-order nonlinear terms in the Lagrangian. Our remedy is to introduce a priori estimates
based on certain smooth initial conditions. Moreover, another consequence is that the nonlocal structure of the DP
equation significantly complicates the verification of the monotonicity of local momentum and the positive definiteness

of a refined quadratic form of the orthogonalized perturbation.

Résumeé. L’équation de Degasperis-Procesi (DP) est un modéle intégrable de type Camassa-Holm comme approxima-
tion asymptotique pour la propagation unidirectionnelle des vagues d’eau peu profondes. Ce travail consiste a établir la
stabilité orbitale L?N L° d’un train d’ondes contenant N solitons lisses qui sont bien séparés. Les principales difficultés
proviennent de la structure non locale subtile de I’équation DP. L’espace énergétique de I’équation DE basé sur la quan-
tité conservée induite par la symétrie de translation n’est équivalent qu’a la norme L2, qui ne peut pas lier les termes
non linéaires d’ordre supérieur dans le Lagrangien. Notre reméde consiste & introduire des estimations a priori basées
sur certaines conditions initiales lisses. De plus, la structure non locale de ’équation DP complique considérablement
la vérification de la monotonie de la quantité de mouvement locale et la définition positive d’une forme quadratique
raffinée de la perturbation orthogonalisée.

1. INTRODUCTION

Solitary wave phenomena were first scientifically described and studied by Russell [54] in 1834. One
significant observation of Russell, among others, was the existence of solitary waves whose shapes
do not disperse as they propagate. The mathematical vindication of this controversial result was
pursued by many mathematicians such as Boussinesq [3], Rayleigh [52] and finally resolved in 1895
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2 ORBITAL STABILITY OF SUM OF SMOOTH DP SOLITONS

by Korteweg and de Vries [30] whom derived a nonlinear PDE, now called the Korteweg-de Vries
(KdV) equation, taking its dimensionless form,

(11) U + 6uty + Uggr = 0,

and showed that the KdV equation admits solitary wave solution

o(&c) = gsech2 <\f§> . where £ £z — ct.

Except for that, such solitary wave phenomena were largely dismissed till the 1960s when the re-
markable property, that these solitary waves can preserve their shape and velocity after crossing each
other, thus named as solitons, was numerically observed by Zabusky and Kruskal [58], and later
theoretically explained by Gardner et. al. [24] via the inverse scattering method. This inverse scat-
tering method announced the advent of modern study of solitary waves, which eventually unveiled
the universality and significance of solitons, and established a research field vibrant till this day;
see [48, 50] for more detailed history and general exposition. One essential result from the inverse
scattering method is the existence of N-solitons, which are explicit solutions in the form of nonlin-
ear superpositions of N single solitons, asymptotically reducing to linear superposition of N single
solitons as ¢ — oco. The inverse scattering method has since been adapted and generalized to solve
many other completely integrable infinite dimensional systems, typically accommodating N-solitons.
Various other techniques, including the Hirota’s direct method and the Wronskian method, are also
developed for the derivation of N-solitons; see [26, 27, 49| and the references therein for more details.

It is also vital to check the stability of N-solitons for the validity of mathematical models of these
physical systems bearing soliton phenomena. While for single solitary waves (N = 1) case, there
are classical Grillakis-Shatah-Strauss theory, Zakharov-Shabat’s inverse scattering method and so on,
the development in stability theory for N-solitons is less systematic. Similar to the n = 1 case,
Maddocks and Sachs [42] showed that N solitons of the KdV equation are non-isolated constrained
minimizers and thus stable in H™V(R). This result was improved by Martel, Merle and Tsai whom
obtained stability of the sum of N single solitons, instead of N-solitons, in the energy space of
subcritical generalized KdV equation [43] and of nonlinear Schrédinger equations [44], and this is
the path we follow in this paper. Their method was later extended to many other PDEs such as
the Gross-Pitaevskii equation [1]|, the Landau-Lifshitz equation [18] and the nonlinear Schrédinger
equation with derivative cubic nonlinearity [34]. In addition, stability of N-solitons was also proved
in weighted spaces |51, 53|. For instability of N-solitons results we refer to [19, 2| and references
therein.

In this paper, we study the stability of the sum of N smooth solitary waves for the Degasperis-
Procesi (DP) Equation

(1.2) my + 2kug + 3mug +um, =0, xR, t>0,

where m £ u — Uz, is the momentum density and x > 0 is a parameter related to the critical shallow
water speed. It is noted that the DP equation, the Camassa-Holm (CH) equation [4, 23|

(1.3) my + 2Kkug + 2mug + umg = 0,
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and the KdV equation are the only three integrable candidates in a broad family of third-order
dispersive PDEs; see [35] for a detailed comparison of their similarities and differences. We have
proved the existence and spectrum stability of smooth solitary waves of the DP equation in [35].
More specifically, the DP equation can be written as an infinite dimensional Hamiltonian PDE; that
is,
oH
1.4 up = J—(u),
(14) ()

where ) )
J20,4-0)1-0%"", Hu)2 —6/ <u3 + 6k ((4 — ag)*%u) ) de.

Or more explicitly:

1 3
(1.5) Oru + Oy <2u2 +px (§u2 + 2/%)) =0, t>0, zeR,
where p(z) = e 1*l is the impulse response corresponding to the operator 1 — 92 so that for all
2 T

feL*(R),

(L= f=px/
The translation invariance gives rise to a conserved quantity:

1 1 ~ PONSE
(1.6) S =5 [ (=)= ude = 5 [ (@i 450+ ) o
where all through the paper, we introduce the notation
fi=(-0)7'

for convenience. Although the DP equation admits infinitely many conserved quantities, this con-

served quantity S and the Hamiltonian H are the essential ones relevant to our study of stability.
Compared with its counterpart in the CH equation,

(1.7) S(u) = /}R (u? + u2) dz,

which is equivalent to the square of the H'-norm, the conserved quantity S is only equivalent to the
square of the L2-norm, which by itself can not bound the higher-order (the cubic) nonlinear terms
in the Lagrangian, leading to the most significant difficulties one has to overcome in order to prove
orbital stability result.

We first recall the existence result of smooth solitary waves established in [35].

Proposition 1.1 (existence [35]). Given the physical condition ¢ > 2k > 0, there exists a unique
c—speed smooth solitary wave, denoted as ¢.(x — ct), with its profile ¢. satisfying

1 2,42 _ 42 } 2 g 1 2
(18> 5(0_ ¢C) ¢c,x - ¢c(2¢c C¢C + 3/€¢c + 26 /ﬁJC).

_Ji_2s
oc(+) is even and strictly decreasing on (0,00) with an exponential decay rate e =% , i.e.

(1.9) (6e()] < CeVITEH,
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The current work establishes the following stability result of a train of well separated smooth
solitons.

Theorem 1.1 (Orbital stability of N-train). Let 0 < 2x < ¢ < § < --- < &. There exist
Y0, Ao, Lo, ag > 0 such that the following is true: Let ug € H*(R), s > 3/2, and assume that there
erist L > Lo, a < aq, and x(l) < :L"g < < :L'(])V, such that

N
(1.10) uo—quC?(-—x?) <a, andforj=1,---,N—1, x?+1>x9+L.
Jj=1 L2(R)
In addition,
2K
wo £ up — (U0)ee + 5 >0
is a positive Radon measure in the sense that the mapping [ +— fR fwdzx gives a continuous linear
functional on the space of compact-supported continuous scalar functions equipped with the canonical
limit topology. Let u(t) € C([0,400), H*(R)) be the solution of (1.3). Then, there exist x;(t) such
that
N

(1.11) sup |lu(t, ) = Db~z < Ao (a+ewH).
t€[0,00) = J
L2(R)

Remark 1.1. The existence of N-solutions of the DP equation is given by Matsuno |45, 46].

Remark 1.2. Besides Proposition 2.2 on global existence of strong solution, there is also a global
existence of weak solutions in L*-space given in [22]. The reqularity requirement in Theorem 1.1 can
be relaxed to

2
ug € LQ(R), w = ug — (Up)zz + ?ﬁ s a positive Radon measure.
The peakon case when k=0 can be seen in [31].

The stability proof follows the framework seminally developed by Martel, et.al. [43], which localizes
the well known Lyapunov functional method developed in [25] by exploiting monotonicity of local
mass. More specifically, there are three major steps. Firstly, the positive definiteness of a constrained
quadratic form should be established, typically based on spectral properties of the second variational
derivative of a Lagrangian at solitary waves. Secondly, high order nonlinear terms, if there is any,
has to be controlled in order to construct the Lyapunov functional (for the single solitary wave),
or equivalently, to apply a bootstrap argument. This is done in this work using L? — L>® a priori
estimates to bound the cubic nonlinear term, inspired by the recent work of Khorbatly and Molinet
[31]. At last, the proof is concluded with a localization of the above-mentioned Lyapunov function via
a monotonicity argument of the localized momentum as well as the positive definiteness of a refined
quadratic form of the orthogonalized perturbation.

The remainder of the paper is organized as follows. In section 2 we prove an a priori estimate
and prove some useful estimates related to DP. In Section 3, we prove Theorem 1.1 assuming several
lemmas. In Section 4, we prove these lemmas.
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Notations We collect here important notations adopted throughout the paper. f and g will be
used for general auxiliary functions, which may have different meaning in different places. We use
C to universally denote generic constants which are independent of L and «. We also introduce the
L?-equivalent inner product

_ 08
(uv)s £ (u, (1= 07)(4 = 0;) ") = (5-(u),v).
Integration | without index always means [, and || - ||z» always means || - || Lp(r) With p = 2,3, 0.

> without index always means Zjvzl

2. WELL-POSEDNESS AND a priori ESTIMATES

2.1. Well-posedness. Generically, for evolutionary equations, the well-posedness of initial value
problems serves as the precondition for any qualitative study of their dynamics. For clarity, we list
relavant well-posedness results of the DP equation with x > 0, including uniqueness and existence
results, whose proofs are based upon the ones for the vanishing linear dispersion case, (k = 0), without
or with mild modifications.

A local well-posedness result for the Cauchy problem (2.1) with x = 0 is obtained in [56] via
applying Kato’s theorem [29]. With exactly the same argument (thus omitted), we have the following
local well-posedness result for the Cauchy problem (2.1) with x > 0.

Proposition 2.1 (Uniqueness and local existence of strong solutions). Given the initial profile ug €
H*(R) with s > 3, there exist a mazimal time T = T(ug) € (0,00], independent of the choice of s,
and a unique solution u to the Cauchy problem Consider the following Cauchy problem

du+ 0y (3u? +p* (3u? + 2ku)) =0,

u(0,z) = up(x).

such that u = u(-;ug) € C([0,T); H¥(R)) N C*([0,T); H*~1(R)). Moreover, the solution depends
continuously on the initial data and is called a strong solution due to its smoothness.

(2.1)

Furthermore, the strong solution is a global one if the initial condition is sufficiently “regular".
More specifically, we have the following global existence result established in [39] and thus proof is
omitted.

Proposition 2.2 ([39]). Given that the initial profile ug € H*(R) with s > 3 and wy = uo—uo,m—kgm
is a Radon measure of fixed sign, the strong solution to the Cauchy problem (2.1) then exists globally
in time; that is,
u = u(-up) € C([0,00); H*(R)) N C*([0, 00); H*~(R)),
which admits the following additional estimates.
(1) The magnitude of uy is bounded above by the sum of the magnitude of u and the constant %"“
As a matter of fact, we have, for all (t,x) € [0,00) X R,

(2.2) luz(t, z)| < |u(t,z) + §/£|
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(2) The L™ norm of u is bounded. More specifically, we have, for all t € [0,00),

(2.3) Ju(t, )|z < 2(1+ V2)|luoll 2wy + 5

2.2. A priori estimates. To bound the high order term fR u3dz in the Lagrangian with the con-
served quantity S(u) whose square root is equivalent to the L?-norm of u, we take advantage of the
argument in [31, Lemma 2| to derive the following a priori estimate.

Proposition 2.3 (a priori L>®-L? estimate). Let f € W1°(R) N L?(R) and the initial data ug €
H3(R) with s > % and wyg = mo + %’i a Radon measure of fized sign. The difference between the

strong solution u to the Cauchy problem (2.1) and the function f, denoted as g(t,z) = u(t,z) — f(z),
admits the following estimate
(2.4)

4
ot My < llglt, 5t (1+3n+ﬂug< M7t +2|rfuLoo(R+2ufuLooR>> vt € [0,00).

Proof. Fix t € [0,00), we denote G = ||g(t, )HL2 ®) and assume G > 0, due to the fact that the case

G = 0 makes both sides of (2.4) zero. Fixing x € R, there exists k € Z such that x € [kG, (k+1)G).
By the mean value theorem, there exists z € [(k — 1)G, kG| such that
2 Lk 1 2 2
t,T) = — t,n)dn < —||g(t,- =G
gt =5 i’ (t;mdn < =llg(t, Nzam) :

which, together with Proposition 2.2 and that 0 < z — & < 2G, yields

gt x) = g(t.7) + / ot m)dy

2—G—/€—V2GH<]U |+|f>
L2([(k—1)G,(k+1)G))
(2.5) > —G—n—\/zGH(!g |+|f|+|f|>
L2([(k—1)G,(k+1)G))
4G
> -G = 0= V3G |l + VEG (I + 1 o)) |

4

Similarly to the argument in Proposition 2.2, we use the proof by contradiction and suppose that
there exists x. € R such that

4
glt.2) > 61+ 3+ VIG + 20w + 2F 1w )
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Then there exists k, € Z with z, € [k.G, (k« + 1)G) and by the mean value theorem, there exists
Zx € [(ks + 1)G, (k« + 2)G] such that, on one hand,

1 [kt2)G

g (t, 7.) g*(t,n)dn < G*.

e (ke 4+1)G
On the other hand, proceeding as in (2.5), we have

glt.2.) =g(t.0.) + [ gt m) — £ ()]

>G (14 et VIG + 20l +20f 1= ) = = VI | (Jute ) +111)

L2([k+ G, (ks +2)G])

4 4G
261+ o+ VBG4 2l + 205 1) = 0= G (VEG + 2L + 21 1)
=G.
Again, the incompatibility of the above two estimates concludes the proof of the proposition. O

2.3. Positivity of quadratic form. For any fixed ¢ > 2k > 0, the second variational derivative
of the Lagrangian Q.(u) = H(u) + ¢S(u), at the unique solitary wave ¢ = ¢., admits the following
expression,

3*Qc

L2 512 (¢) = —¢e —26(4— ) L+ (1= 02)(4— >~ : L*(R) - L3(R),

which is a well-defined, self-adjoint, bounded linear operator. In [35] we proved the following spectral
properties about the operator L.
Proposition 2.4. The spectrum of the operator L, denoted as o(L), admits the following properties.
(1) o(L) lies on the real line; that is, o(L) C R.
(2) 0 € o(L) is a simple eigenvalue with O, P. as its eigenfunction.
(3) There exists A > 0 such that o(L) N (—o00,0) = {—=A}. Moreover, —\ is a simple eigenvalue
whose corresponding normalized eigenfunction is denoted as x.

(4) The set of essential spectrum, denoted as oess(L), lies on the positive real azis, admitting a
positive distance to the origin.

Based on the spectral decomposition of £, we have
(2.6) L*(R) = span{x} @ span{d,¢} © X,
where X, £ (span{y, ,#})* is invariant under £ and there exists A\ > 0 such that
(Lp,p) > Mpll 2wy,  for any p € Xy,
Moreover, we have the following lemma.

Lemma 2.1. There exists n > 0 sufficiently small, such that for any y € L*(R) satisfying
(2.7) (y, ®)s| +1(y, 020)s| < nllyll 2wy
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there exists @ > 0 such that (Ly,y) > 9Hy||%2(R).

Proof. The proof consists of two steps: first we deal with the case n = 0 then the case n > 0. In
order to do that, we first develop a more friendly expression of (y, ¢)s. Recalling the soliton equation
%(qﬁ) + c%(d)) = 0, which, taken derivative with respect to c, yields £LO0.¢ = —%((l)). We have

(1. 0)s = (0, 2 (6)) = (o, £0.6).

Furthermore, we have

0S

(£0:6,0.9) = (=5 (6), 0:6) = —-5(6) <0,

where we refer to Lemma 2.2 for the last inequality. It follows from the direct sum (2.6) that there
exist unique agp, by € R, pg € X4, ag # 0, such that

(2.8) Oc = ao(x + po) + bo0r.
We then have
(L3eh, 0:0) = ad[(Lx, X) + (Lpo,po)] = ad[(Lpo, po) — A] <0,
which indicates that there exists § > 0 such that
(Ep()vp(]) < _A-

We can take a small positive number § > 0 such that

1
(Lpo,po) < mé.

As a result, we summarize that

(2.9) (y,0)s = ao[Ay, x) — (y, Lpo)]-

We now ready to prove the theorem for the case n = 0.

Case 1 (n=0). If y; € L*(R) satisfies (2.7) for n = 0, then there exists §; > 0 such that

(2.10) (Ly1,y1) > 01l |72 gy
Case 1.1. If
y1="00:0+p1, bER, pe€Xy,
then
1P117 208y =l — b0x@ll72my > (w1 — bOxd,y1 — bOei)s = |lyall3 + b DusslI3
>l > 32

Therefore, we have

. Tis 1+
(2.11) (Ly1, 1) = (Lpr,p1) = Npr[ 72y > Z)‘HylH%?(R)'

Case 1.2. If
Y1 =000 +a(x +p1), abeR, a#0, peXy,



ORBITAL STABILITY OF SUM OF SMOOTH DP SOLITONS

then as in Case 1.1, we get

1
(2.12) a®|Ix +pilZ2@ > ZHQlH%Q(R)'
In addition, by (2.7) and (2.9), we have
0= [(y1,9)s| = lao[Aly1, X) = (y1. Lpo)]| = laoal - |(x + p1, L(x +po))| = laoal - |A = (Lpo, p1)],
yielding
Lpo,p1) = A.
As a result, we derive two different lower bounds of (L£(x + p1), x + p1); that is,

(£p07p1)2_)\> AQ A > A2 ~ N =6\
(Lpo,po) — o -7

1
(L0 +p1) X +p1) =(Lpr,p1) = A= AlpilZ2 @) — A

(L(x +p1),x +p1) =(Lp1,p1) — A >

>

(ﬁpo, po) 1+e

which, in turns, yield

(2.13)
5\ 2

2 26+ 2)(Lx +p1), x+p1) _ o OAIPLIT2 ) — A+ 202

= = >
(Ly1,y1) =a*(L(x +p1),x +p1) =@ ) >a 542
Smin{\, A} Smin{)\, \} Smin{\, \}

2 9 2 2 ) 2 ) 2

>a T 512 (le”L2(R) +1)=a T s+2 [[p1 +XHL2(R) 2 74(5_1_ 2) ”Z/1HL2(R)-

Case 1 then follows from (2.11) and (2.13).
Case 2 (n>0). If y € L?(R) satisfies (2.7) for 0 < n < 1, then there exists # > 0 such that

1
(2.14) (Ly,y) = ZGH?JH%%R)-
The function y admits the decomposition

(2.15) y=uyi+a1¢+b10;¢0, with (y1,¢)s = (y1,0.¢)s =0,

_ (wd)s _ _(1,0:9)s 4n 4n saldi
= 6.d)s’ by = (006, 0:0)3 ’ laa| < 13113 lylls, [b1] < X lylls, yielding

llls = lylE = lare + 5102015 2[yls — (arllllls + [oa]1020]1s)?

B 4n ? 2
5 [1 (e ] Il

where a;

Taking n < % min{||¢||s, ||0z¢||s}, we have

1 1
(2.16) lyillz2@y > llyalls > 5”9”8 > §H3/||L2(R)-
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As a result, we conclude that
(Ly,y) =(Ly1,y1) + (L(a1¢ + b10), a1¢ + b10¢) + 2(L(a1¢ + b10¢), y1)
=(Ly1,y1) + ai(Lp, ¢) + 2a1(L,y1)

dmin{), A} 2 n?[(Le, 0)| 2 277||£¢||L2(1R)
> Y - Yy — —ae WYL Y12
Smin{\ A} Lol @lollem o 8ILPlLe(w) 5
> G I n° — 50| 1Yl 22
32(6 +2) 161l 1615
=f(n)
It is straightforward to see that f(n) = 0 admits two root n— < 0 < ny. Taking
: V3 .
0 <y <min{"h, 3 minfllo]s. [9:0]s}}, 6= FC) >0,
we have (Ly,y) > 0||y||3, (r)» Which concludes the proof. O
Lemma 2.2. For the c-speed solitary wave ¢ = ¢(z;¢), we have
d d 3c?
(2.17) ) = —eLs(g) = — TR e <0

dc dc 2(3c + 2k)?

Proof. The second equality was proved in [35] and we only prove the first equality. Note that ¢(x;c)
is the critical point of the Lagrangian @y (u) = H(u) + AS(u) with A = ¢; that is,

218 (G 5@)| o
we have
T s = 2w =((Grenne)| 5=

3. DECOMPOSITION AND PROPERTIES OF SOLUTION NEAR N SOLITONS

Fix a constant o such that 0 < og < %min{w — i—?“,c? — 2K, — c?,cg - cg,--' ,c?v — 09\,_1}.

Let 7o = min{1/(8B),0¢/8}, where B is the constant determined in Lemma 3.4. We have by (1.9)
that

(3.1) [6c()] < el
On the other hand, there appears
(3.2)

1

(=2 0l =m) (©) = 5 [ M outr —m)ar < € [ etz onlgr < e
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(33) (=3 o= m) €)1 = 3 [ o — mydr < Ceroleom
R
For Ag, L, a > 0, we define

U(L,a) 2{uec L*R) : inf u—ZqS =zl <Lap,

rj—x;_1>L

N
Va,(L,a) 2 u € LQ(R) : inf u— Z¢cg( — ;) < Ao(a + e—’YoL/Q)

zj—xj1>L

L2
Our strategy is to prove that there exists Ag > 0, Lo > 0, and g > 0 such that, Yug € H*(R),
if for some L > Ly, o < «p, |Jug — Eévzl d)c?(' — ZL‘?)HLQ < «, where l’? > x?,l + L, then Vt > 0,
u(t) € Va,(L, ). In order to establish Theorem 1.1, it suffices to prove the following
Proposition 3.1. There exists Ag >0, Ly > 0, and g > 0 such that, for all ug € H*(R), if
N

(3.4) w Y b —af)| <a
J=1 L2

where 0 < a < ag, x? > CL’?_I + L, L > Ly, and if for t* > 0,

(3.5) YVt € [0,t7], wu(t) € Va,(L, ),

then

(3.6) vt € [0,t7],  u(t) € Vay 2L, a),

where Ag, Lo, and a are independent of t*.

The proof of Proposition 3.1 is approached via a series of lemmas, the proofs of which are provided
in the next section.

Lemma 3.1 (Decomposition of the solution). There exist L1, a1, K1 > 0 such that the following is
true: If for some t* > 0, the solution of (1.4) u(t,z) € U(L,«) for all t € [0,t*] with L > Ly, 0 <
o < v, then there exist unique C functions ¢; : [0,t*] = (2k,00), x; : [0,t*] = R, such that

N
e(t,x) = u(t, x) ZR] where  Rj(t,z) £ Ge; (1) (T — (1)),
7j=1
satisfies the following orthogonality conditions:

(3.7) V4, Vt € [0,t%], / (1 - 9HR;(t)e(t)dx = / (1 — 0} R;.(t)e(t)dr = 0.

Moreover, for any t € [0,t*],

N
(3.8) lle(t, )2 + Z lej(t) — &I < K, @j(t) > zj-1(t) + L — Ky
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1/2
(3.9) &5 ()] + 125(t) — c;(t)| < Ky (/ 628—0'0$—33j(t)|dx> + Kle_UOL/Z,

Lemma 3.2 (Energy bound). Then there exist Ko > 0 and Lo > 0 such that if Ly > Lo, then, for
all t € 0,t]:

é { (Dc; () (%(0))} - / [;R(t)GQ(t) + ﬁe(t)?(t)] dx

ool

(3.10) < Ky (llel®)3s + 1e(0) 22 + le(@) 3 + ¢ )
Let ¢(z) = arctan( 5) and define for j > 2, m;(t) £ w and

(3.11) wal /w—mj ) [482(2) + 532(¢) + @2 (t)] d,

where B is a large constant chosen in the proof of Lemma 3.4. Note that ¢ € (0,1) and 1 is
monotonically increasing, satisfying

3.12)  |p@| < %zp’, | < %zp’, W' < %zp’, and ¢®(z) < Ce B for k = 1,2,3, 4.
Lemma 3.3 (Monotonicity). There exist K3 > 0, L3 >0, ag > 0 such that if Ly > L3, ap < g,
I;(t) — I;(0) < Kse 5.
Let ap and Lo be chosen such that (3.16), (3.21), and (3.22) be satisfied. Then we have
Lemma 3.4 (Positivity). There exists Ly > 0 and A\g > 0 such that if Lo > Ly, then, for allt € [0,t*],

(3.13) / [~ R(t)e* — 2kee + c(t, 1)(42% + 562 + &2,)] dz > Nol|e(t)]|,

where ct,x) £ ¢1(t) + Y70o[ej (1) — ¢j—1(8)]4(x — my(t)).
Lemma 3.5 ( Quadratic control). There exists K4 > 0 such that, for any t € [0,t*],

oot
(3.14) Zrcg )| < Ka(le(®l32 + e(0)|[2: + e~ BEHHH) 4 moul ),

Lemma 3.6. There exists K5 > 0 independent of Ay, such that, for any t € [0,t*],
(3.15) le(®)72 < K5 ([le(0)[172 + e~ 7F) .
With these lemmas in hand, we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. Let Ag > 1 be fixed later. We choose g and Lo(> L;) such that

(3.16) Ap <Ct0 + 6_70L0/2> < o1,
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where o7 and L; are defined in Lemma 3.1. Therefore, assuming (3.5), Lemma 3.1 is applicable:
there exist unique C* functions ¢; : [0,t*] — (2k,00), ; : [0,¢*] — R, such that

e(t,x) = u(t,x) ZR (t,z) =u(t,x) — R(t,x), where R;(t,z)= ¢, )(x — x;(t)),

satisfies the following orthogonality conditions:

(3.17) Vj,Vt € [0,17], /(1 —OHR;(t)(4 — 02) te(t)da = /(1 — OHR; . (t)(4 — 92) te(t)dx = 0.

Moreover, for any ¢ € [0,¢*],

N
(3.18) He(t, ')”L2 +Z ’Cj(t) - ?‘ < Kle(a—i-e*'mL/Z), mj(t) > xj_l(t) +L—K1A0(OJ+€770L/2),

1/2
(3.19) 65(0] + g (1) — ¢ (0] < K ( / e%—oox—w'dx) T Kyem L2,

Note also that by (3.4) and (4.2), we have stronger estimates for initials as follows
N
(3.20) le(O)lIr2 + > 1ej(0) = €] < Kia,  2(0) > 2;-1(0) + L — K1a.

From (3.18), (3.19), and (3.20), we can choose ap small enough, and L, large enough, such that
vt € [0,t7],

(3.21) i’l(t) 2 2K + oo, .C'Cj(t) — j?j_l(t) Z o, Cl(t) > 2K + ago, Cj(t) - Cj_l(t) 2 ao,

(3.22) 2t — 25 1() > Lj2 > Lo, [e(t)]lz2 < 00/8.
In view of (3.18), (3.20), (3.14), and (3.15), we have

[OEDSEFEEEHON

2

< t)HL2+CZ|Cj(t)_CJ |+CZ|C] C]

< Jlet)ll 2 + CEa(lle®l3z + [€(0)][F2 + e ") + CKia

< VEs(Ie(0)2 + em08) + CEy(1+ K3)([e(0)]2: + e ) + CKia
< Kgla+e 100/2)

for some constant Kg > 0. Choosing Ag = 4Kg, this completes the proof of Proposition 3.1. ([l
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4. PROOF OF LEMMAS
We shall make use of the following essentially
2
(4.1) le(t, )z~ < Clle(t, )l < C,
which follows from applying (2.4) for g = €(t,z) = u — R.

Proof of Lemma 3.1. We make the following claim:

e There exists L1, a; > 0 and unique C* functions (cj,z;) : U(L1,c1) — (2k,00) x R, where
j=1,2,--- N, such that if u € U(L1, 1), and

N
- Z qbcj(u)(x - mj(“)))
=1

then for any j=1,--- N,
[ 0= Bt =z )E@)z = (1= By ale — 2,0))ela)ds =0

Moreover, There exists K1 > 0 such that if u € U(L, ), with 0 < a < ey, L > Ly, then
(4.2) lellzz + 3 lejw) — &) < Kra,  a(u) > 5 1(w) + L — Ko

This is a standard application of the implicit function theorem. The non-degeneracy conditions in
applying the implicit function theorem are

(2. 17)

[ =80, = r8) (4= 3B oy (e = ) e = 500) S 0,
J
/(1 — 92)0p e, (. — r?)%(él — 02) o, (x — 1) du 2 b,
J
=300, =D (4= ) o, (@ 18) de =0,

= 80,00, 197 (4= 016, (0~ ) do = 25(0104) > 0
and for k # j,

- [0 B4 02 o= ) o

(

(4.3) < C’/ —o0le—rflHlz—ri) ;. < Ce=o0lri il <) Ce—00L/2,

We omit the details. (See for example [43], Lemma 1 for instance.)

To continue the proof of Lemma 3.1, let ¢;(t) £ ¢j(u(t,-)), z;(t) £ z;(u(t,-)), where with some

abuse of notation, the left-sided c;, x; are functions of time ¢ and the right-sided c;, x; are functions
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of u € U(L, o) and are constructed as above. Then the orthogonality conditions and (3.8) are clearly

satisfied.
We prove (3.9) next. Applying (4 — 9?) on both sides of the soliton profile equation

(4.4) c(1-F)4—-0) " o— B(@? + (4 — ag)—lzms] =0
to get 2kR;j, = [cj )1 = P)Rj + RjRj vu + Rim - QRﬂ X Therefore, from the equation (1.3):
(uum« + ui — 2u2)m =(1- ag)ut + 2/$ux
—(1- ) <€t + 23R ) 26 (e + > Ry
(- P+ (1-03)Y <ej(t)chj _ g;nj(t)Rj,x> 26+ 26 S Ry
1= )t (1= ) S (&0 3R - 505 ) + 2

+> e ()1 = )R + RjR; 40 + R}, — 2R3]
which yields

(1—02)er +2ke + (1—02) Y <¢j(t)jCRj - ;L«j(t)Rj,x> +) et
- (uuxx +u2 =2 =3 (RjRy e + R, — 2R§))

- [(462)( D+ -G R

[ (4—02)( e—i—ZR (4—9%)( 2ZR§-)L
=—(4- 3:3)(562)1: — > (4= 33)(eRy)s — ;(4 — 93)(R; Ry ).

Taking the L? scalar product of the above equation with (4 — 02)71R;, integrating by parts, using
the orthogonality conditions (3.17) as well as arguments of (4.3) for mixed terms, and noting that

T

/(1 _ e (4= 0y)  Ryde = (1= 02)e(4 — 0,) " Ryda — /(1 _ el (4— 0, Ryde

dt dt
L2> ’
1/2
)] l¢;(t)] = O (/ 626—00$—Ij(t)|d$> + O(e—O'OL/Q)‘
2

= —¢;(t) /(1 — 0%)e(4 — ai)_léRjdx =0 ( e(t)

which is small for a small, we get

d d

%S(Cf’c‘j(t)) +O( €(t) %Rg

L
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Therefore, |¢;(t)| < Ki ([ e2e~o0lz=zi®ldz) Y2y Kie~?0L/2_ Taking now the scalar product as above
with (4 — 82)7!R;, instead, arguing as above and using as well the last inequality for |¢;(¢)], we get
lej (1) — 3(t)] < Ky ([ 2eo0le=2iOldz) " 4 Fye=o0L/2. S0 (3.19) follows. O

Proof of Lemma 3.2. We have by (4.4) and (3.7):

CH(u(t) = é / [(c+ R + 6n(c + R)(E+ B)] da

1 ~ 1 1
= —H(R(t)) +/ <2R26 + 2/€R6> dx +/ (2621% + He?) de+ = /é”da:

N N
1 _ ogL
= - ZH(Rj(t)) + /Z <2R?e + 2/£Rj6> dx + O (e_OT>
j=1 j=1
1, A 1/, .
+ ¢ R + kee | dx + 6l ¢ dx ( by arguing as for (4.3))

N N /\ ool
= = H(dgw) +/Z (Cﬂ'(t)(l _ag)Rj) cdv+ 0 (6_%>
j=1

1 1
+/ <62R+ /ie?) de + = /e3dac
2 6
N

j=1
= = H(¢ew)+0 Y 4 [ (LR g pe)dos S [
= e (t) e 26 Kee | dx 5 edx.

j=1
Since H(u(t)) = H(u(0)), the above implies (3.10). O

Proof of Lemma 3.3. Integrating by parts many times yields the following equality.

d o L~
= [ (@253 + 8,00 — my(0)
2 3./ 21 1 2 1 1 2~ 1 / 1 "
=3 u’y — 4 uuw—§ u U —1—5 u U Y + uhzﬁ—i—i whg )
(4.5) - g / fha’ — 2 / k) + % / That™® 4 26 / (1 — 82) "\, (0™ — 53"

- 8n/ax(1 — 02) Mg — 2H/y(1 — 02) M — 2/@/’%1’21/1
—ig(e) [ (4 + 532+ @),

where h £ (1 — 92)7!(u?) and for notational convenience the argument = — m;(t) of 1 is suppressed.
Consider first the quadratic terms, say the last fives. Denoting r 2 (1 —92)~'4, @ =1 — rys, and
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making use of the identity

(4.6) /R wty" = /R (r —rae)?y"” = /R (r? 412, +2r2)" — /R )

we have

/ a1 - 02) @, (0@ — 54") = / (r — ra)ra(® — 59
R R

(4.7) 1 1
_ 3 / 702(1/}(5) _ 5w///) + 5 / T§(¢(5) _ 51/}///)7
R R
1
/ ax(l - 3%)71@\”1?” = ax(r — a) "= /(Tx - Ta;:mj)rw// + 5 / ﬂ2w”/
R R R R

1 3 1 1 IR

(4.8) — 2/ T2¢/// o 5 749201#/// + 5 / 7”21/)(5) + 5 uzwm
R R R R

W3 ezt

Integrating by parts leads to

[t - = [ (1= B ) - Byl

R R

(49) ——2 [ g [ a2 o [ okt 3 /]R 2"
5 [t =5 [ g [ 2

/ ug Ut = / (4 — 02)u,tinp = / Ayin) — / Tppr U1

_ 5,1
=-2 @ -5 [T +g |
R

(4.10)
a21/1///.
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We compute A £ 2k - (4.7) — 8k - (4.8) — 2k - (4.9) — 2k - (4.10):
A :/i/(4172 + 302y — Ii/ a2y — n/ r2ep®)
R R R
+K /R(47“2 —9r2 —18r2, — 5r2, ) + /i/R(57“2 + 572 + 12, )"

:/f/(4ﬂ2 + 3@%)1#' + H/(4T2 — 97“3: — 187"92696 — 57“3:”)7,// + /i/(47"2 + 37"%)1#”' By (4.6)
R R R

< [ (@ 3@+ [ a0 = [ - 30
R R R
SH/R(@? +3u2)Y + k(1 + %) /R4r2¢' — k(1 - %) /ercq//

1
/f/(4ﬂ2 +302)Y + k(1 + ﬁ) / 472y by choosing B > 2.
R R

We have as in (4.6) that
744 / " / " 1 ’
(4.11) /Ru% =A<r2+rix+2ri>¢ —/Rr?w z/Rr?(w —v )2(1—32)/RT2¢.

Choosing B large such that 322B_21 < 2+ %2, it follows that
1

1 2B?
A< A2 20 1 1— —1/4A2/: /4A2/ /3A2/
_”/]R(U+3“x)¢ + K( —i——Bz)( —BQ) Ruw 1" A u“Y + K Rum
<(2 + 09) / (482 + 52 + 2, )1

R
Then by (4.5) and the above, we deduce that

2 1 1
% (40% + 5uz + a2, ) < 3 / udy' — 4 / w?uy’ — 3 / u*ay"” + 5 / u i " + / why)’

1 1 [
—|—2/uhx ”—2/ﬂhx¢”—2/aggh¢”+2/Uhx¢(4)

+ (2 oy —miy(0) [ (47 + 532+ 22,)0

(4.12)

(4.13)

% 4 (26 + 00 — i (1)) /(4@2 + 502 + 82, )0

If = 0 [ (48 4 5 + 2, )0

(4.14) IF <
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Divide R into two regions D; and D§ with D; = [2;-1(2) + %, xj(t) — ﬂ , j=2,---,N.Combining
(3.8) and (3.9), one check that for x € DY,

oot
2

>

(4.15) |z —mj(t)] > zj(t) —zj1(t) _ % S oot 2j(0) —x;—1(0) N

= 2 =5 T 2

»Mh
|

Note that by Proposition 2.3 and (1.9):

(4.16)
ol <[ = bes0 ¢ = ] .+ 3 o =D .

(H“‘Z%m )H >+0( “eob/4) Z 0(af) +0 (e-0b/4),
lullee  <lu—3" 6,0 — 2 H ZM o= 0] = 0ty 00
sl 5 Tt -0l o -0,

One also has,

(4.17)
/RIU(Iﬂ\ + [ta| + [Uea|)¢ Z/R\M—ﬂml(!ﬂl + (U] + [t )" < 20/R(4ﬂ2+5ﬂ§+ﬂ§$) v,

/R (18] + ] + [faa]) = /R 143 — G (1] + 0] + [Gue]) < 20 /R (42% 1 532 + 22,) < 20|Jul2,

and

L= [fa—od ) < [t gt <5 [ (e a4 a) o
(4.18) /}R julh = /R ul [(1— )7 ()] < || (1 - 82) " Yul | /R a2 < ull

/ falh = / (-3 al] u? < |1 - 0 all], / W < lullds,
R R R

where the first < holds since (1 — 92)y =9’ — %1/}”’ >(1- %)W , the last inequality holds because

1

(1= 0) fa)| < =)' (4= ) ul = (1 = 05) " ul = 5 (4= 92) " ul

<
1 2 -1 1 2\—1
<=l e + 5 1@ = Ml < Iulle
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One then has
2 2 2 2
1 _ 3 3 2
deg ) s ), < Sl L 0 e s
2 o~ o~ I o
< lullpe(p;) /]R [u(40 — Tga) |9 4 Ce™ B 2L 1y oo - |ul|2,,
~ _ (s ~
12 <Alfull o ) /R @y’ + Ce™ B0t/ ZHLD | /R ],
_1l(s
B Slulieqpy [ 17+ Ceb2509 [ up,

5 _1l(g ~
[ <l [ w7+ bt [,

2
It follows from (4.16), (4.17), (4.18) that for o small enough and L large enough,

1;72,5,7 < 52"8/(4a2 +5ai_’_agx)@b_f_ce—%(oot/Q—&-LM)‘

By (3.12), (4.16), (4.17), the estimate for I?A are almost the same as that for Ijz. Noticing that

h(z) 262/ €Tu2(’l“)d’r'+€2/ e "u?(r)dr,

—00

hy(z) = 5 / BTUZ(T)dT—FZ/ e "u?(r)dr,

we infer that |hy(z)| < h(z), Va € R. Then the estimate for 1 ]6 follows from the same arguments as
that of I;. Noting that IJ8 =2 [p Uha ¥ + 2 [ uhy)”, where the first integral is Ij7, and the second
could be estimated as for I ]7 using the inequality [¢)"| < ¢’. The estimate for 1]9 is exactly the same
as for Ij7 using [p¥)| < 3¢/

It follows from (4.13) and (4.14) that % (4u?+5u2 +u2, ) < CeB(00t/2+L/4) The lemma follows
from integrating the above from 0 to ¢. (|

Proof of Lemma 3.4. Let 7 > 0 be some small constant to be chosen later. Let ® € C%(R) be an
even function, with

(4.19) ®(z)=1-mn; on [0,1]; ®(z) =e ® on [2,00); e ¥ < ®(z) < 3¢ on (1,2); and || < &.
Let ®p(x) = ®(5). One has

S (5] < 5P()

(4.20) ()] =
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Denoting ®p, = ®p;(v,t) = ®p(x — ;(t)), it thus transpires that
/ [ R(1)E — 2nee + cft, 2)(4E + 58 + 2,)] da
_ / [ R()e — 26(48 + &) + clt, 2) (48 + 58 + &,)] do
_ Z/‘I’B “R;(1)e(t)? — 2642 + ) + () (482 + 5 + &2,)] da
/( Z(I)BR ) )dx—i—/(l—ZCI)B) z) — 20) (4% + €)dx
n /R (1 -y @B].) c(t, 2)(4& + &, )dx + /R 3 @p, (c(t,x) — ¢(t)) (4 + 56 + &2,)da,

where we applied the spectral information of £ in the last step.

Note that for B sufficiently large, we have % < 09, which implies that the exponential decay rate
of ®p is smaller than those of ¢, ;). Then from the orthogonality (3.17) and the exponential decay
of Rj, it is easy to verify that for B sufficiently large,

() (e ),

Then by Lemma 2.1, we have

/—Rj(t)e(t)QCDBj - 2ne\/q>>3j(4 — )L (e\/@?j)
Fey(t) (e/2p,) (1 -4 - 327" (e /p,) do > e/e%Bj

(4.21) o,

2’

(4.22)

One has

/R [e O, ()(4—02)"" (e\/ngj) () — (c®p,) (x)(4— ag)—le] dx
1 /Re(az)/ —2ly— x' \/<I>B <\/<I>Bj \/<I>B )dyda:

4

(4.23) S‘EQLZ\//R (/R e—2ly—w\e(y)\/<I>B]. (x) (\/CDB]_ (z) — \/‘I’Bj (y)) dy)de
g"iL\/ /R /R o105, (2) (/05 (2) — [P, () dyde
="1L¢ | [[etvton(o) (VOs) Vo5 duda,
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and
// el (0) (VER() - VEBG)) dyde
(4.24) // e () <2$§73 m—y)>22dydx
// —4]y— a:|<I>B (23(139@ :n—y)> dydx
4B2// =l p(2)(z — y)2dyde = Og)’

which implies

/R (ey/@n,(2)(4 = 027" (e/@5,) (2) = (@) (2)(4 - 92)e) da:' < Ojgueriz.

(4.25)

It follows that

/—Rj(t)e(t)2<I>Bj ~ 2ne[0p, (4 )" (/)
+e;(t) (e\/qTBj) (1—02)(4—92)~! (e\/qTBj) dz
(4.26) = [(ei(t) - Bye)e(tP®n, — (es(t) + 20)ey [ (4 - D) (e o)

Z/(Cj(t) = Rj(£))e(t)*®p, — (3¢;(t) + 2w)ePp, (4 — 97) e + O\(f) lelZ2

O), 2
\/E H€HL27
where in the last step, terms containing <1>’ from integration by parts are of 21 || 12 72, which are

controlled by || ell?,. (4.26) and (4.22) 1mply

:/—Rj(t)6<t>2q33j — QK(I)B]. (4/6\2 +/€\g26> + CjCI)Bj (4/6\2 + 5/6\32C +€xz>

Z/‘I’Bj [—R;j(t)e(t)” — 25(422 +E2) + ¢ (t) (48 + 5e; + €5,)] da
)
ZQZ/(I)B].E( )Qd.’E \/» H HLQ >62/¢)B 45 +5 x) 3(»;)‘6”%2
Since 1 — > ®p, >0, c(t,x) -2k > 09, c(t,x)> 00,
/(1-2%) z) — 26) (4% + &) dm+/(1—2¢>3) Y4 + &, )da
> /R (1—Z‘I>Bj)ao(4€ + 52+, )d

(4.27

(4.28)
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opt

Notice that n R(t) Z Wjde, (1) (x—;(t)) is all exponentially small, being O (e*%(TJF%) + e_"OL/4).
If we choose Ly = M B, with M > 0, and Ao = A\1/5, it then follows that

’— / (R(t) ~ 3 @5, Ry (1)) (1) do
<m/R d:c+/( L= m)R() = Y @5, R;(1)) (1) dz = mO(1)e]32.

Denote Wy (t,z) = 1 — ¢(x — ma(t)), ¥;(t,z) = (@ —m;(t)) — (@ —mja(t), j=2,---,N —1,
and Wy (t,z) = ¢(z —mn(t)). Then c(t,xz) = > W;(t,x)c;(t) and Y ¥;(t,x) = 1. From the property

le—m (¢t

I
of v, the fact that &5, < 3e™ 2 , and that |m;(t) — z;(t)| > L4/2 > 2M B, we obtain
J J J

(4.29)

(430) [, (clt,x) — ¢; ()| < le(t: @) = 5(8)| 1w sy 0y <r1m) + Ce™ < Ce70MP 4 M

It follows from that for sufficiently small n; > 0,

/ [fR(t)e2 — 2kee + c(t, x) (4€% + 52 + %\im)] dx

>0y / By, (42 + 52 + 22, )du + /R (1= @, ) 004 + 58 + &, )d

(4.31)

o1 _ _ ~ PORN
- T2l ~ mOWIlzs — (B + Ce) [ (4@ + 52 + &, )do
min{6, og e o min{6, og min{6, o0}
IR [ (g5t ey - MG gz, o MR,

Proof of Lemma 3.5. Noting that

dH (6,
H(ny0) — H(ny0) = (00,0 — (0)) + Ol () — 5 02,

dS (..
56000 ~ $0uy0) = (O 0 1) — 0,(0)) + Oy 1) - s O,

it follows from (2.17) that
(432)  H(be,) = H(bey0) = ~e5(0) (S(6e,0) = S(0e,0))) + Olles (1) = 5(O)F2).
Step 1. We prove that there exists C' > 0 such that

(4 33)

ZCJ [S(¢e; (1)) — S(be;(0))]| <C

(6(t)i2+6(0)%2+6(0)i3+6 E +Z\CJ —¢;(0 )
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By (3.10) and (3.22), it is found that

N
S H(be,) = H(de,0)] <C (I35 + (@22 + 1e(0) |32 + 1e(0) |35 + =)
j=1

20

<C (@)l + DOl + €Ol + €Ol + %)

This together with (4.32) and (4.1) implies (4.33).
Step 2. We prove that for d;(t) = Z,ivzj S(@e; (1))

(4.34) dj(t) — d;(0) < —(d;(t) — d;(0)) + C([|e(0)[22 + e BE ) 4 em0L/8) >0
1 1 Y
(4.35) [d(8) = da(0)] < 5[1€(0) 3 = Slle®)]% + Ce .

In order to prove (4.34), we shall prove

L) = di0) — 5 [ 60— my(O) () + 5E(0) + &,(0)da| < C(eHEETE) 4 ool

(4.36)

~ ~ 2 ~ 2
Indeed, d;(t) = 3 N [ <4R,2 +5(Rue) + (Ria) ) dz, and

21;(t) — 2d;(t) — /wc —m;(t))(4E(t) + 5 (t) + €, (1)) dx
N

_ / Y(- = my(1)) (48 + 502 +702,) — (4(8) + 5 (1) + (1) = > / (477 + 5R2, + R o)
I=j

= [ (- —mi(t AR? 1 5R2 + R2 4 2(4€R; + 5¢x Ry 4 + €ouRivw) ) + mixed terms | dz
J 1 I,z lzx ) )
=1

N
-3 / (4R} + 572, + By, pie)
l=j

7j—1
— / (- —my(t)) (Z (43,2 +5R7, + RY ., + 2(4€R, + 56, Ry + EMR,,M))> dz

=1
N
_ / (1= (= my(0) Y (487 + 5R2, + Ry + 2(46R, + 56, o + € Rie) ) + 0 (7 0H),
=

where we have used the first orthogonality of (3.17), which is equivalently expressed as

(4.37) / (4@?%7 + 5enRyg + Emﬁl,m) dx = 0.
R
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To evaluate the first integral, we divide R into two intervals by the point x;_1(t) + L/8. To the left
of the point,

vV
8
<
—~
=
|

&
<
L
—
~
S—
oo
Q
o
~
8
o,
=
S—
|
8
iy
AN
=
S—
oo I~
Q
o
~
oot~

| —m;(t)]

[l —mi(1)] < Ce 58 +%),

and to the right of the point, R;, [ < j — 1 are exponentially small, being O (e“’oL/S). To evaluate
the second integral, we divide R into two intervals by the point z;(¢) — L/8. To the right of the point,

| —m;(t)]

vV
)
o
—~
=
|
&
<
L
)
=
oo |
Q
o
~
)
<.
=
|
)
<
N
=
S—
oo | I~
Q
o
~
oot~

11— (z—my(t))| < Ce 558

and to the left of the point, R;, [ > j are exponentially small, being O (e‘”oL/B). This proves (4.36).
Then Lemma 3.3 together with (4.36) imply
(4.38)

40) = dy(0) <5 [ (6~ my(s)(4(s) + 5 (5) + 4 (5))do
R

(4.34) then follows from the above estimate easily.
To prove (4.35), we note that S(u(t)) = S(u(0)) and by orthogonality (4.37) that

1 R U 1 ~ Y~ 1 o g
2/(4u2+5ui+u§$) :2/(4R2+5R§+R§m)+2/(4e2+5e§+e?m)
(4.39) R R R

UOL

=di(t) +O(e” "2 ) + S(e(t)).

Then (4.35) follows.
Step 3. Resummation by the Abel transform:

N
>~ e5(0) [$(6e,) = 506,00
=1
’ N-1
= > i O)[(d;(t) = djsa (1)) = (d;(0) = dy1(0)] + en(0) A (£) = d (0)]
j=1
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It then follows from (4.33) that

N
—c1(0)[d1(t) — d1(0)] - Z[Cj(o) = ¢j-1(0)][d;(t) — d;(0)]

(4.40) o .
<C (6(75)%2 + [e(O)IIF2 + e+ Y les(t) - Cj(O)Q) :
j=1
Since ¢1(0) > 09, ¢j(0) — ¢j—1(0) > 0¢, by (4.35) and (4.34), we have
N N
00y _ldj(t) = d;(0)] < cr(0)|di(t) = di(0)] + Y _[e;(0) — ¢;—1(0)] |d;(t) — d;(0)]
j=1 J=2

[¢j(0) = ¢j—1(0)][d;(¥) — dj(O)])

-

[\

J=

4 (O + e BEH+D 4 emrois)

< - (01(0)[d1(t) —d1(0)] +

Then by (4.40), we have

N N
>l 0)<C (e@); T e(O)]2s + e BBHE) 4 o0/ L3 o) - cj<o>2> |
= =1

Note that from the boundedness (from both above and below (2.17)) of dséfc), we have

1¢j(t) = ¢;(0)] < C[S(e; 1)) — S(oe; 00| < C(|dj(t) — dj(0)] + [dja(t) — djra(0)])

which then yields
_ 1 20t —
Z|c] ) -0 <C (e<t>%2+e<o>%z+e 55 0”8+Z\c] ) = (0 ) |

By choosing a small and L large enough, we assume C|c;(t) —¢;(0)| < 1/2 and so (3.14) follows and
([l

the proof of the lemma is complete.
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Proof of Lemma 3.6. Recall that vy = min{1/(8B),00/8}. In view of (4.32), (4.34) and (4.35), we
infer that

- / BR(t)eZ(t) 1 ke(t)(4 - 85)16(15)} dz
R
i[ H (60, 1)) —

7j=1

< 3 6(0) [0,

J=1

(3.10)
< H(bey0))] + Ko {le@IZalle(®)lno + e(@)]32 + e~/

(
) —

N

N 8
¢c] ] Z —¢;(0 e, (He(t)\iQ + ||€(0)H%2 + 670L>

(3.14)
< c1(0)[di(t) — d1(0)] +

M-

Il
N

[¢;(0) = ¢;—1(0)][d;(¢) — d;(0)] + C (IIE(t)H%z + [€(0)172 + 6—70L>
(4.38) (4.35) ’

- 61(0)[%H€(t)H?s le(0) 151+

NJM—\

N

> 160 - 0]

Jj=2

[t =m0 + 520 + Eunds| + € (IOl + 101 + )

L —

[ 4= my ) E0) + 520) + ,(0))da~

1 9 al 1 2 -2 22
< = a0 IOl — Yl (0) e 013 [ 60— my0)4e 0+ 52(0) + )+
=2
 (Ie1 + IO + L)
) a0 - Y le) e 015 [ 0t )+ 5E2(0) + E,()da+

j= 2

8
c (He(t)ll 5, 4 1e(0) 22 + L>
(3.13)

= _/R;C(t’m) (4€%(t) + 5Ex() + &2, (1)) derC(”e(t)H%z+H6(0)Hiz+eVOL>_

Therefore,
/—R(t)eQ(t) — 2ke(t)e(t) + c(t, ) (4€(t) + 5ea(t) + €wa(t)) < (H (t) HEQ + [le(0))12, + e—WOL) .

8
Then from Lemma 3.4, we have Xo|[e(t)[|3. < C (]]e(t)]]z2 + ()13, + €’YOL> , which implies (3.15).
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