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Abstract. The Degasperis-Procesi equation is an integrable Camassa-Holm-

type model which is an asymptotic approximation for the unidirectional prop-

agation of shallow water waves. This work establishes the orbital stability of

localized smooth solitary waves to the Degasperis-Procesi (DP) equation on

the real line, extending our previous work on their spectral stability [13]. The

main di�culty stems from the fact that the natural energy space is a sub-

space of L3
, but the translation symmetry for the DP equation gives rise to

a conserved quantity equivalent to the L2
-norm, resulting in L3

higher-order

nonlinear terms in the augmented Hamiltonian. But the usual coercivity esti-

mate is in terms of L2
norm for DP equation, which can not be used to control

the L3
higher order term directly. The remedy is to observe that, given a

su�ciently smooth initial condition satisfying some mild constraint, the L1

orbital norm of the perturbation is bounded above by a function of its L2

orbital norm, yielding the higher order control and the orbital stability in the

L2 \ L1
space.

1. Introduction

Sitting at the intersection of integrable systems and nonlinear hydrodynamic
models of shallow water waves, the DP equation [4],

(1.1) mt + 2kux + 3mux + umx = 0, x 2 R, t > 0,

together with the Korteweg-de Vries (KdV) equation [10],

(1.2) ut + uxxx + uux = 0,

and the Camassa-Holm (CH) equation [1, 7]

(1.3) mt + 2kux + 2mux + umx = 0,

where m , u� uxx is the momentum density and k > 0 is a parameter related to
the critical shallow water speed, has drawn much attention throughout the years.
The link between these three equations was established in the same paper where
the DP equation was first found: Degasperis and Procesi in 1999 [4] showed that
the KdV equation, the CH equation and the DP equation are the only three in-
tegrable candidates passing the asymptotic integrability test in a broad family of
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third-order dispersive nonlinear PDEs. Despite strong similarities, they are indeed
distinctively di↵erent from each other in various ways. See our recent work [13] for
more discussion.

For solitons in the DP and CH equation, there are two distinctive scenarios,
depending on the value of k.

• In the limiting case of vanishing linear dispersion (k = 0), smooth solitons
degenerate into peaked solutions, called peakons. The orbital stability of
these peakons in the CH and DP equations has been verified respectively
in [2] and [14].

• In the case of non-vanishing linear dispersion (k 6= 0), while the orbital
stability of smooth solitons of the CH equation is well understood by now
[3], it is less clear for the DP equation. In fact, we (only) established the
spectral stability in our former work [13] and the goal of this paper is to
establish orbital stability of smooth solitons of the DP equation.

We first recall the existence result of smooth solitary waves established in [13].

Proposition 1.1 (existence [13]). Given the physical condition c > 2k > 0, there
exists a unique c�speed smooth solitary wave �c(⇠) with its shape depending on c

and its maximum height

c� 2k

4
< �c , max

⇠2R
{�

c(⇠)} < c� 2k.

In addition, the function �c(⇠) is even, unimodal and decays monotonically to zero
as ⇠ goes to ±1.

The DP equation (1.1), after being applied with the operator (1� @
2
x
)�1, can be

rewritten in a weak form in terms of u; that is,

(1.4) @tu+ @x

✓
1

2
u
2 + p ⇤ (

3

2
u
2 + 2ku)

◆
= 0, t > 0, x 2 R,

where p(x) = 1

2
e
�|x| is the impulse response corresponding to the operator 1 � @

2
x

so that for all f 2 L
2(R),

(1� @
2

x
)�1

f = p ⇤ f.

From now on, whenever we mention the DP equation, it is this weak form we refer
to. The DP equation can be written as an infinite dimensional Hamiltonian PDE:

(1.5) ut = J
�H

�u
(u),

where

J , @x(4� @
2

x
)(1� @

2

x
)�1

, H(u) , �
1

6

Z ✓
u
3 + 6k

⇣
(4� @

2

x
)�

1
2u

⌘2
◆

dx,

giving rise to a conserved quantity:

(1.6) S(u) , 1

2

Z

R
u · (1� @

2

x
)(4� @

2

x
)�1

u dx;

see [13] for a more detailed discussion. The spatial translation of any solitary wave
 c generates a family of solutions, named the orbit of the solitary wave  c and
denoted as

Mc = {�
c(·+ x0) | x0 2 R}.
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As a typical result for nonlinear dispersive PDEs with extra conserved quantities,
the solitary wave �c is not even a critical point of the Hamiltonian. Instead, it is a
critical point, but still not a local minimum, of the augmented Hamiltonian

Q(u;�) , H(u)+�S(u) = �
1

6

Z ✓
u
3 + 6k

⇣
(4� @

2

⇠
)�

1
2u

⌘2
◆

d⇠+
�

2

Z

R
u·(1�@2

⇠
)(4�@2

⇠
)�1

u d⇠.

As a result, the best we can hope for is orbital stability ; that is, a wave starting
su�ciently close to the solitary wave �c remains close to the orbit of the solitary
wave up to the time of existence. Indeed, the orbital stability of solitary wave �c

is the main result of this paper.

Theorem 1.1 (Orbital stability). Assume that c > 2k > 0. The solitary wave
�
c(x � ct) of the DP equation (1.4) is orbitally stable in the following sense: for

every ✏ > 0, there is � > 0 such that, for the initial value problem of the DP
equation,

(1.7)

(
@tu+ @x

�
1

2
u
2 + p ⇤ ( 3

2
u
2 + 2ku)

�
= 0,

u(0, x) = u0(x),

with initial condition satisfying the following properties:

• (Regularity) There is a positive constant s > 3/2 such that u0 2 H
s(R). In

addition,

w0 , u0 � (u0)xx +
2k

3
> 0,

is a positive Radon measure in the sense that the mapping f 7!
R
R fwdx

gives a continuous linear functional on the space of compact-supported con-
tinuous scalar functions equipped with the canonical limit topology;

• (Smallness) ku0 � �
c
kL2 < �,

then the solution u(t, x) to the initial value problem (1.7) is global that

u 2 C([0,1), Hs(R)) \ C
1([0,1), Hs�1(R)),

and for any t � 0,

inf
x02R

ku(t, ·)� �
c(·� x0)kL2 < ✏, inf

x02R
ku(t, ·)� �

c(·� x0)kL1 < C✏
2
3 ,

for some C > 0 independent of ✏.

Remark 1.1. The set of initial profiles satisfying the regularity and smallness condi-
tions in Theorem 1.1 is not empty. It is straightforward to verify that �c��c

xx
> 0.

Therefore, a su�cient condition for the regularity requirements is that u0 2 H
s(R)

with some s � 3 and

ku0 � �
c
kH3 

2
p
2

3
k;

Remark 1.2. The global existence of strong solutions was given in [16, 21] for k = 0.
The proof for the case k > 0 is a slight modification of the k = 0 one and given in
Section 2. There is also a global existence of weak solutions in L

2-space given in
[5]. The regularity requirement in Theorem (1.1) can be relaxed to

u0 2 L
2(R), w = u0 � (u0)xx +

2k

3
is a positive Radon measure.

The peakon case when k = 0 can be seen in [11].
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The orbital stability proof follows the framework seminally developed by Gril-
lakis, et.al. [8, 12], with extra work on (cubic) nonlinear estimates. Typically, this
framework requires

• The linear operator, corresponding to the second variational derivative of
the augmented Hamiltonian, admits certain spectral properties.

• Convexity of the scalar function which maps velocity to the augmented
Hamiltonian evaluated at the solitary wave with that specific velocity.

While for the CH and KdV equations, the above two lead to orbital stability in
energy space, it is not for the DP equation. We obtained the above for the DP
equation [13], but only concluded the spectrum stability applying the framework
of [15]. The problem lies in the higher order term, say

R
h
3
dx, which can not

generically be bounded above solely by the L2-norm of h. The remedy is to control
the L

1-norm in terms of the L
2-norm by imposing additional (mild) regularity on

the initial condition. We also remark that for the case of null-linear dispersion, the
uniform L

1 control is not needed. Instead, the control of a point distance is enough,
say the di↵erence between the peak of the peakon and that of the perturbation [16].

2. Well-posedness and a priori estimates

The well-posedness of the initial value problem serves as the precondition of any
qualitative study of the dynamics.

A local well-posedness result for the Cauchy problem (1.7) with k = 0 is obtained
in [20] via applying Kato’s theorem [9]. With exactly the same argument, we have
the following local well-posedness result for the Cauchy problem (1.7) with k > 0.

Proposition 2.1 (Uniqueness and local existence of strong solutions). Given the
initial profile u0 2 H

s(R) with s >
3

2
, there exist a maximal time T = T (u0) 2

(0,1], independent of the choice of s, and a unique solution u to the Cauchy
problem (1.7) such that

u = u(·;u0) 2 C([0, T );Hs(R)) \ C
1([0, T );Hs�1(R)).

Moreover, the solution depends continuously on the initial data.

Furthermore, the strong solution is a global one if the initial condition is su�-
ciently “regular”. More specifically, the arguments of [16, 21] lead to the following
global existence result.

Proposition 2.2 (Global existence of strong solutions). Given that the initial profile
u0 2 H

s(R) with s >
3

2
and w = u0 � u0,xx + 2

3
k is a Radon measure of fixed sign,

the strong solution to the Cauchy problem (1.7) then exists globally in time; that
is,

u = u(·;u0) 2 C([0,1);Hs(R)) \ C
1([0,1);Hs�1(R)),

which admits the following additional estimates.

(1) The magnitude of ux is bounded above by the sum of the magnitude of u
and the constant 2k

3
. As a matter of fact, we have, for all (t, x) 2 [0,1)⇥R,

(2.1) |ux(t, x)|  |u(t, x) +
2

3
k|.
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(2) The L1 norm of u is bounded. More specifically, we have, for all t 2 [0,1),

(2.2) ku(t, ·)kL1 
p
2(1 +

p
2)ku0kL2(R) +

4

3
k.

The following a priori estimate is useful in higher order nonlinear control.

Proposition 2.3 (a priori L1-L2 estimate). Let  2 W
1,1

\ L
2(R) and the initial

data u0 2 H
s(R) with s >

3

2
and w0 = m0 +

2k

3
a Radon measure of fixed sign.

The di↵erence between the strong solution u to the Cauchy problem (1.7) and the
function  , denoted as g(t, x) , u(t, x)�  (x), admits the following estimate
(2.3)

kg(t, ·)kL1(R)  kg(t, ·)k2/3
L2(R)

✓
1+

4

3
k+

p
2kg(t, ·)k2/3

L2(R)+2k kL1(R)+2k 0
kL1(R)

◆
, 8t 2 [0,1).

Proof. Fix t 2 [0,1), we denote ↵(t) = kg(t, ·)k2/3
L2(R) and assume ↵(t) > 0, due to

the fact that the case ↵(t) = 0 makes both sides of (2.3) zero. Fixing x 2 R, there
exists k 2 Z such that x 2 [k↵(t), (k + 1)↵(t)). By the mean value theorem, there
exists x̄ 2 [(k � 1)↵(t), k↵(t)] such that

g
2(t, x̄) =

1

↵(t)

Z
k↵(t)

(k�1)↵(t)

g
2(t, ⌘)d⌘ 

1

↵(t)
kg(t, ·)k2

L2(R) = ↵(t)2,

which, together with Proposition 2.2 and that 0  x� x̄  2↵(t), yields
(2.4)

g(t, x) = g(t, x̄) +

Z
x

x̄

g⌘(t, ⌘)d⌘

� �↵(t)�
4↵(t)

3
k �

p
2↵(t)

����

✓
|u(t, ·)|+ | 

0
|

◆����
L2([(k�1)↵(t),(k+1)↵(t)])

� �↵(t)�
4↵(t)

3
k �

p
2↵(t)

����

✓
|g(t, ·)|+ | |+ | 

0
|

◆����
L2([(k�1)↵(t),(k+1)↵(t)])

� �↵(t)�
4↵(t)

3
k �

p
2↵(t)


kg(t, ·)kL2(R) +

p
2↵(t)

✓
k kL1(R) + k 

0
kL1(R)

◆�

= �↵(t)

✓
1 +

4

3
k +

p
2↵(t) + 2k kL1(R) + 2k 0

kL1(R)

◆
.

We prove by contradiction and suppose that there exists x⇤ 2 R such that

g(t, x⇤) > ↵(t)

✓
1 +

4

3
k +

p
2↵(t) + 2k kL1(R) + 2k 0

kL1(R)

◆
.

Then there exists k⇤ 2 R with x⇤ 2 [k⇤↵(t), (k⇤ + 1)↵(t)) such that by the mean
value theorem, there exists x̄⇤ 2 [(k⇤+1)↵(t), (k⇤+2)↵(t)] such that, on one hand,

g
2(t, x̄⇤) =

1

↵(t)

Z
(k⇤+2)↵(t)

(k⇤+1)↵(t)

g
2(t, ⌘)d⌘  ↵(t)2.
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On the other hand, proceeding as in (2.4), we have

u(t, x̄⇤)�  (x̄⇤) =u(t, x⇤)�  (x⇤) +

Z
x̄⇤

x⇤

[u⌘(t, ⌘)�  
0(⌘)]d⌘

>↵(t)

✓
1 +

4

3
k +

p
2↵(t) + 2k kL1(R) + 2k 0

kL1(R)

◆
�

4↵(t)

3
k �

p
2↵(t)

����

✓
|u(t, ·)|+ | 

0
|

◆����
L2([k↵(t),(k+2)↵(t)])

�↵(t)

✓
1 +

4

3
k +

p
2↵(t) + 2k kL1(R) + 2k 0

kL1(R)

◆
�

4↵(t)

3
k � ↵(t)

⇣p
2↵(t) + 2k kL1(R) + 2k 0

kL1(R)
⌘

=↵(t).

The incompatibility of the above two estimates concludes the proof of the proposi-
tion. ⇤

3. Orbital Stability of Degasperis-Procesi Solitons

In this section, we prove Theorem 1.1, based on the framework established by
Weinstein[18, 19] and Grillakis et al. [8] with major modifications on nonlinear
estimates. We also refer to [6, 12, 17] for a more contemporary review of this
framework.

The smooth solitary wave �c of the DP equation is a critical point of the aug-
mented Hamiltonian

Q(u; c) = Qc(u) , H(u) + cS(u).

The scalar function

(3.1) R(c) , Q(�c, c) with R(c) : (2k,1) �! R,
is shown to be strictly convex in [13, Lemma 4.2].

Lemma 3.1 (Convexity, [13]). The function R is strictly convex in the sense that

(3.2) R
00(c) =

d

dc

✓
S(�c)

◆
> 0, 8c > 2k.

It is standard that one only needs to prove Theorem 1.1 under the extra conser-
vation constraint

S(u) = S(�c).

For convenience, we from now on fix c > 2k, suppress the supper index of �c

and also introduce a local foliation of a neighborhood of the orbit Mc = {�(·+x0 |

x0 2 R)}. More specifically, there exists �1 > 0 such that for any

u 2 Nc , {v 2 L
2(R) | inf

x02R
kv(·)� �(·� x0)kL2(R) < �1},

there exists a unique foliation decomposition

u = T (r)

✓
�+ h

◆
,
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where T (r)u(·) , u(· + r) is the translation operator and h 2 L
2(R) is perpen-

dicular to @x�; that is (h, @x�) ,
R
R h@x�dx = 0. If the initial data falls in the

neighborhood Nc; that is,

ku0 � �kL2(R) < �1,

there exist a maximal time Tm > 0 such that the strong solution u stays within Nc

for t 2 [0, Tm); that is,

Tm , max
T�0

{T | u(t, ·) 2 Nc, 8t 2 [0, T )} > 0.

As a result, for t 2 [0, Tm), the strong solution admits the foliation decomposition

u(t, x) = T (r(t))

✓
�(x) + h(t, x)

◆
,

where (h(t, ·), @x�) = 0.
We now introduce the time-invariant quantity

Qc , Qc(u)�Qc(�),

whose expansion in terms of h admits the expression

(3.3) Qc = Qc(�(x) + h(t, x))�Qc(�) =
1

2
(Lch, h)�

1

6

Z
h
3
d⇠,

where

(3.4) Lc ,
�
2
Qc

�u2
(�) = c� �� (3c+ 2k)(4� @

2

x
)�1

,

and h(t, ·) lies in the nonlinear admissible set

A , {h 2 L
2(R) | S(h+ �) = S(�), (h, @x�) = 0}.

We established in [13] the following properties about Lc:

Proposition 3.1. [13] The spectrum set of the operator Lc : L2(R) ! L
2(R), denoted

as �(Lc), admits the following properties.

(1) The spectrum set �(Lc) lies on the real line; that is, �(Lc) ⇢ R.
(2) 0 is a simple eigenvalue of Lc with �x as its eigenfunction.
(3) On the negative axis (�1, 0), the spectrum set �(Lc) admits nothing but

only one simple eigenvalue, denoted as �⇤, with its corresponding normal-
ized eigenfunction, denoted as �⇤.

(4) The set of essential spectrum �ess(Lc) lies on the positive real axis, admit-
ting a positive distance to the origin.

With these properties, it is standard to prove the following

Proposition 3.2. For su�ciently small h 2 A, there exist ↵,� > 0 such that

(3.5)
1

2
(Lch, h) � ↵khk

2

L2(R) � �khk
3

L2(R).

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. For convenience, we assume � < 1. We first derive an upper
bound of |Qc| in terms of the L2 norm of h0(x) , h(0, x). We recall from Proposition
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1.1 that �c = max
⇠2R

{�(⇠)} < c�2k and obtain the following lower and upper bounds

of (Lch, h),

ckhk
2

L2(R) � (Lch, h) � (c� �c �
3c+ 2k

4
)khk2

L2(R) � (�
3

4
c+

3

2
k)khk2

L2(R) � �ckhk
2

L2(R),

which, together with the expansions (3.3) and (3.4), yield

(3.6) |Qc| 
1

2
ckh0k

2

L2(R) +
1

6
kh0kL1(R) · kh0k

2

L2(R).

According to Proposition 2.3, the L
1 norm of h admits the following estimate

(3.7)
kh(t, ·)kL1(R) =kT (r(t))h(t, ·)kL1(R) = ku(t, ·)� T (r(t))�(·)kL1

kh(t, ·)k2/3
L2(R)

✓
1 +

4

3
k +

p
2kh(t, ·)k2/3

L2(R) + 2k�kL1(R) + 2k�0kL1(R)

◆
.

The estimate (3.7) for t = 0, plugged into the estimate (3.6), leads to

(3.8) |Qc| 
1

2
ckh0k

2

L2(R) + �kh0k
8/3

L2(R) +

p
2

6
kh0k

10/3

L2(R) < K�
2
,

where �(c, k) , 1

6

�
1 + 4

3
k + 2k�kL1(R) + 2k�0kL1(R)

�
and K , max{ 1

2
c, �,

p
2

6
}.

Similarly, we also derive a lower bound of |Qc| in terms of the L
2 norm of

h0(x) , h(0, x). We first conclude from the expansion (3.3) and the inequality
(3.5) that

(3.9) |Qc| � ↵khk
2

L2(R) � �khk
3

L2(R) �
1

6
khkL1(R) · khk

2

L2(R).

which, together with the inequality (3.7), yields that
(3.10)

|Qc| � ↵khk
2

L2(R) � �khk
3

L2(R) �
1

6
khk

8/3

L2(R)

✓
1 +

4

3
k +

p
2khk2/3

L2(R) + 2k�kL1(R) + 2k�0kL1(R)

◆

= ↵khk
2

L2(R) � �khk
8
3

L2(R) � �khk
3

L2(R) �

p
2

6
khk

10
3

L2(R),

For small |Qc|, the function

f(r) , |Qc|� ↵r
2 + �r

8
3 + �r

3 +

p
2

6
r

10
3

admits two consecutive positive roots

0 < r1 = O(|Qc|
1/2) < r2 = O(1),

which, together with the estimate (3.8), shows that

r1 = O(�).

As a result, there exists �0 2 (0, 1) such that

r1 < min{✏, �1,
1

2

✓
↵

�

◆3/2

} < r2.

Furthermore, we conclude from the inequality (3.10) and the continuity of h(t) that
if kh0kL2(R2) 2 (0, r1), then kh(t, ·)kL2(R2) 2 (0, r1) holds globally for t 2 [0,1).
Therefore, for any " > 0, we can choose � = �0 such that if

ku0 � �kL2(R) = kh0kL2(R)  �,
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then

inf
r2R

ku(t, ·)� T (r)�kL2(R) = kh(t)kL2(R) < r1 < ", 8t 2 [0,1).

Noting that the L
1 estimate in the theorem follows from the L

2 estimate and
Proposition 2.3, we conclude the proof of Theorem 1.1. ⇤
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