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Abstract

Among the versatile forms of dynamical patterns of activity exhibited by the brain, oscillations are one of the most salient and
extensively studied, yet are still far from being well understood. In this paper, we provide various structural characterizations
of the existence of oscillatory behavior in neural networks using a classical neural mass model of mesoscale brain activity
called linear-threshold dynamics. Exploiting the switched-affine nature of this dynamics, we obtain various necessary and/or
sufficient conditions on the network structure and its external input for the existence of oscillations in (i) two-dimensional
excitatory-inhibitory networks (E-I pairs), (ii) networks with one inhibitory but arbitrary number of excitatory nodes, (iii)
purely inhibitory networks with an arbitrary number of nodes, and (iv) networks of E-I pairs. Throughout our treatment,
and given the arbitrary dimensionality of the considered dynamics, we rely on the lack of stable equilibria as a system-based
proxy for the existence of oscillations, and provide extensive numerical results to support its tight relationship with the more
standard, signal-based definition of oscillations in computational neuroscience.

1 Introduction

Oscillations are among some of the first forms of neuronal ac-
tivity to be discovered in the human brain, thanks particu-
larly to the invention of electroencephalogram (EEG) nearly a
century ago [3]. Thanks to their conceptual simplicity, promi-
nence, and unmistakable correlation with various neurocogni-
tive processes, oscillations have since been the subject of sig-
nificant research from experimental and computational per-
spectives in neuroscience [10, 13, 20, 31, 46, 61]. Neverthe-
less, the precise mechanisms by which oscillations are gener-
ated are still not understood. In this work, we seek to shed
light on this challenging problem using an analytical, system-
theoretic approach and the linear-threshold mean-field model
of neuronal dynamics. Our results constitute some of the first
rigorous characterizations of the existence of oscillations in
these networks, spanning various network architectures from
simple, two-dimensional networks to arbitrarily complex in-
terconnections of them.

Literature Review: Oscillations have been the subject of ex-
tensive research in the neuroscience literature, see, e.g. [10,
13, 20, 31, 46, 61], often from solely experimental and/or nu-
merical perspectives. In comparison, analytical characteriza-
tions of oscillations have remained far behind, even though
they can enable a more precise understanding of the role that
different network components and their interconnections have
in the appearance of oscillations, with potential implications

⋆ A preliminary version of this paper appeared at the 2019 Amer-
ican Control Conference as [42]. During the preparation of the
bulk of this work, E. Nozari and R. Planas were affiliated with the
University of California, San Diego.

for the study of abnormal behavior (e.g., epilepsy, Parkinson),
information transmission, medical interventions, and beyond.
Among analytical studies, the Wilson-Cowan model [64] has
played a special role owing to its minimal architecture and
richness of non-trivial dynamics at the same time. Neverthe-
less, analytical characterization of structural conditions giv-
ing rise to oscillations even in the Wilson-Cowan model has
not moved beyond partial results [2, 4, 39, 45], mainly due to
the intractability of the sigmoidal nonlinearity in the standard
model. This has motivated the study of variants of the sig-
moidal activation function, such as linear-threshold models.
Analytical results have been developed in [11] for the Wilson-
Cowan model with bounded linear-threshold activation func-
tions, but only under a number of unrealistic assumptions (no-
tably, the violation of Dale’s law, excluding interaction terms
inside the nonlinear activation functions, and a chain network
topology). Similar to neural mass models with sigmoidal non-
linearities, models with linear-threshold activation functions
1 also exhibit rich nonlinear phenomena including multista-
bility, limit cycles, chaos, and bifurcations, see e.g., [12, 40].
Our previous work [43, 44] studies selective recruitment in
linear-threshold networks, characterizing the existence and
uniqueness of equilibria and asymptotic stability, and devel-
oping feedforward/feedback policies for stabilization of said
equilibria in hierarchical multi-layer architectures. More re-
cently, [42] provides sufficient and necessary conditions for
the existence of oscillations in two-dimensional excitatory-
inhibitory networks and their networked excitatory-coupled
interconnection. Among other contributions, the present work

1 not to be confused with binary networks subject to linear inte-
gration and thresholding, such as the Hopfield network [25].
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extends this characterization to the existence of oscillations in
excitatory-inhibitory networks with arbitrary number of ex-
citatory nodes, fully inhibitory networks with arbitrary num-
ber of nodes, and networks of two-dimensional oscillators with
more realistic, excitatory-to-all inter-oscillator connections.

Oscillations have also been studied extensively using bifur-
cation theory (particularly the Hopf bifurcation), see e.g.,
[5, 19, 23, 30, 45, 51, 53, 62] and references therein. How-
ever, a fundamental limitation of these works, and a major
difference with the approach here, is the univariate nature
of the former. In other words, bifurcation analysis is often
conducted by fixing all (of the numerous) network parame-
ters and studying the effect of varying one or two parameters
at a time. In contrast, our global analysis provides a com-
plete characterization of the set of all parameters that give
rise to oscillations, a set whose boundaries consist of bifurca-
tion points. Significant research has been conducted, in the
controls and neuroscience communities alike, to characterize
oscillatory dynamics using models of phase oscillators, the
most notable of which being the Kuramoto model, see [6, 38]
and references therein. However, while the Kuramoto model
has the advantage of having a smaller (half) state dimension,
it is only a valid approximation to the Wilson-Cowan model
in the weakly coupled regime [26, 52], where interconnected
oscillators primarily affect each other’s phase dynamics and
their amplitude dynamics can be neglected. Moving beyond
the weakly connected regime, amplitude dynamics, particu-
larly saturations and phase-amplitude coupling [27, 45], be-
come critical [18] and more complex models, such as the full
Wilson-Cowan model are required.

Statement of Contributions: Our main contributions are four-
fold, and consist of conditions on the structure of linear-
threshold networks and their inputs that are necessary and/or
sufficient to guarantee the lack of stable equilibria (LoSE).
Since conditions for the existence of limit cycles in systems
with higher than two dimensions are unknown in general,
we use LoSE (which constitutes the main condition in the
Poincaré-Bendixson theory for existence of limit cycles in pla-
nar systems) as a proxy for the existence of oscillations. First,
motivated by the higher abundance and versatility of exci-
tatory neurons in the mammalian cortex, we provide a nec-
essary and sufficient condition for LoSE in networks with a
single inhibitory but arbitrary excitatory nodes. We also de-
scribe two important consequences of this result, including
a simple, intuitive, and exact characterization of limit cy-
cles in the Wilson-Cowan model with linear-threshold non-
linearity, as well as the fact that purely excitatory networks
always have stable equilibria. Second, purely inhibitory net-
works have long been known to be able to generate oscilla-
tions, and are often believed to play a central role in cortical
oscillations in the brain. Our second contribution consists of
an extensive study of LoSE in such networks, where we pro-
vide structural necessary conditions on the synaptic connec-
tivity matrix for LoSE for arbitrary inhibitory networks and
a full characterization of LoSE for those with pairwise unsta-
ble connectivity matrices. For the latter case, we provide a
graph-theoretic interpretation for the existence of inputs that
induce oscillations in terms of the presence of special cycles we
term valid in the complete graph whose weights are defined
in terms of the synaptic weight matrix. Next, we study oscil-
lations in networks of multiple brain regions, each modeled
by a simple Wilson-Cowan oscillator. Our third contribution
consists of exact, necessary and sufficient conditions for LoSE
in such networks, when they are coupled either only through

their excitatory nodes or via both excitatory-to-excitatory
and excitatory-to-inhibitory connections. Finally, we provide
extensive numerical evidence that LoSE is indeed a near nec-
essary and sufficient system-based proxy for the existence of
oscillations, where the latter is often defined based on the
power spectral density of the system’s trajectories. Together,
our results provide the first rigorous characterization of the
existence of oscillations in linear-threshold networks with sev-
eral different classes of network architectures, along with the
introduction of a novel proxy for oscillatory systems, whose
relevance is of independent interest for the study of arbitrary
dynamical systems.

2 Problem Formulation

Consider 2 a neuronal network composed of a large number of
neurons that communicate via sequences of spikes. Grouping
together neurons with similar firing rates, under standard as-
sumptions (see, e.g., [15, Ch 7]), the mean-field dynamics of
the network can be described by the linear-threshold model

τ ẋ(t) = −x(t) + [Wx(t) + u]m
0
, x(0) ∈ [0,m], (1)

where x ∈ R
N is the state vector with xi denoting the aver-

age firing rate of the i’th neuronal population, W ∈ R
N×N is

the matrix of average synaptic connectivities, u ∈ R
N is the

vector of average external (background) inputs to the pop-
ulations, m ∈ R

N
>0 is the vector of average maximum firing

rates, and τ > 0 is the network time constant. Note that all
solutions are bounded as [0,m] is invariant under (1).

Our previous work [43] characterized the existence and
uniqueness of equilibria and asymptotic stability for a variant
of (1) with unbounded activation function (m = ∞ · 1N ),
and these results are readily extensible to arbitrary finite
m. However, the existence of oscillations in linear-threshold
dynamics is not as well understood. Further, brain networks
often contain interconnections of multiple coupled oscillators,
and our understanding is even smaller about the oscillatory
behavior of interconnections of (1). Our goal is to charac-
terize the relationship between network structure and the
oscillatory behavior observed in linear-threshold dynamics
modeling brain networks.

2 Throughout the paper, we employ the following notation. R,
R>0, and R≥0 denote the set of reals, positive reals, and nonnega-
tive reals, respectively. Bold-faced letters are used for vectors and
matrices. 1n, 0n, 0m×n, and In stand for the n-vector of all ones,
the n-vector of all zeros, the m-by-n zero matrix, and the identity
n-by-n matrix (we omit the subscripts when clear from the con-
text). Given a vector x, xi = (x)i is its ith component. Likewise,
Aij refers to the (i, j)th entry of a matrix A. For block-partitioned
x, xi refers to the ith block of x. For a vector σ

′ ∈ {0, s}n and
an index i ∈ {1, . . . , n}, we say i ∈ σ

′ if σ′
i = s and i /∈ σ

′ if
σ′
i = 0. Further, for a (row/column) vector x, x

σ
′ is its subvector

composed of xi, i ∈ σ
′ and for a matrix a, aiσ′ is a row vector

composed of aij , j ∈ σ
′. Likewise, ai,: is the i’th row of a and a:,σ′

is the submatrix of its columns in σ
′. For x ∈ R, [x]+ = max{x, 0}

and [x]m0 = min{max{x, 0},m}, which is extended entry-wise to
[x]+ and [x]m0 . Given a vector m ∈ R

n
>0, [0,m] =

∏n

i=1
[0,mi].

For a set S, |S| and Sc denotes its cardinality and complement. In
block representation of vectors and matrices, we use compact no-
tations [A,B], [A;B], and diag(A,B) for horizontal, vertical, and
diagonal concatenation and ⋆ for arbitrary blocks. For a, b ∈ R,
U(a, b) denotes the uniform distribution over [a, b]. Finally, we let
P denote the set of P-matrices (a matrix is a P-matrix if all the
principal minors are positive).
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Problem 1 We seek to answer the following questions for the
bounded linear-threshold network dynamics (1):

(i) What are neural oscillations? That is, what is an objective
definition of oscillatory signals and oscillatory systems?

(ii) What network structures give rise to oscillations?
(iii) What are the structural conditions for the existence of

oscillations in networked interconnections of multiple os-
cillatory networks?

Following common practice in computational neuroscience [9,
17], we here adopt a broad notion of oscillations that includes
both periodic oscillations (limit cycles) and chaotic ones. In
the latter case, a chaotic behavior is oscillatory if its state
trajectories are near-periodic, as captured by next 3 .

Definition 2.1 (Oscillation). A state trajectory x(t), t ≥
0 of (1) is oscillatory if

(i) its power spectrum contains distinct and pronounced res-
onance peaks; and

(ii) it does not asymptotically converge to a constant limit.�

Two remarks about Definition 2.1 are in order. First, prop-
erty (i) is qualitative and fuzzy in nature, as is the notion of
oscillation. Different measures can be used to quantify this
property, such as the regularity index χreg, cf. Appendix A.
Second, the property (ii) is included in the definition of an os-
cillation to limit our focus to sustained (a.k.a. persistent) os-
cillations and not transient ones. It is important to note that
both types of oscillations are observed in neuronal dynamics
(see, e.g., [10, 35, 48, 55] for sustained and [33, 60] for tran-
sient), albeit with potentially different underlying dynamical
generators. Our focus here is on the former category in light
of the vast literature on attractor dynamics in biological neu-
ronal networks [29, 34, 37, 58], while the latter remains an
avenue for future research.

The analytical tools in the study of oscillations are generally
limited to 2-dimensional systems (cf. the Poincaré-Bendixson
theory [47, Ch 3]) or higher-dimensional systems that are es-
sentially confined to 2-dimensional manifolds (see, e.g., [22,
50]). Thus, throughout the paper, we use lack of stable equilib-
ria (LoSE) as a proxy for oscillations. In fact, this condition
constitutes the main requirement in the Poincaré-Bendixson
theory for existence of limit cycles. In Appendix A, we show
numerically that this proxy is a tight characterization of os-
cillatory dynamics for the model (1).

To study the equilibria of (1), we use its representation as
a switched affine system [32, 36]. It is straightforward to
show [43] that RN can be decomposed into 3N switching re-
gions {Ωσ}σ∈{0,ℓ,s}N defined by

x ∈ Ωσ ⇔







(Wx+ u)i ∈ (−∞, 0]; ∀i s.t. σi = 0,

(Wx+ u)i ∈ [0,mi]; ∀i s.t. σi = ℓ,

(Wx+ u)i ∈ [mi,∞); ∀i s.t. σi = s,

where 0, ℓ, and s denote a node in inactive, active, and sat-
urated state, respectively. Thus, (1) can be rewritten in the
switched affine form

τ ẋ = (−I+ΣℓW)x+Σℓu+Σsm, ∀x ∈ Ωσ, (2)

3 Note the similarity (relaxing the need for perfect periodicity)
as well as the difference (requiring near-periodicity here) of this
definition with the Yakubovich self-sustained oscillations [49, 57].

where for any σ ∈ {0, ℓ, s}N , Σℓ ∈ R
N×N and Σs ∈ R

N×N

are diagonal matrices with entries

Σℓ
ii =

{

1 if σi = ℓ,

0 if σi = 0, s,
Σs

ii =

{

1 if σi = s,

0 if σi = 0, ℓ.

Each Ωσ then has a corresponding equilibrium candidate

x∗
σ
= (I−ΣℓW)−1(Σℓu+Σsm), (3)

and the equilibria of (1) consist of all equilibrium candidates
x∗
σ
that belong to their respective switching regions. Note, in

particular, that while the position of the equilibrium candi-
dates depend on all four of W, u, m, and σ, their stability is
a sole function of W and σ.

To summarize, the main goal of the paper is to develop under-
standing of the role that network structure plays in the emer-
gence (or lack of thereof) of oscillations in linear-threshold
networks. These biologically-grounded dynamical models de-
scribe the behavior of aggregate populations of neurons at
a mesoscale level in the brain. Because of the arbitrary di-
mensionality of the state space considered here, developing
such quantitative understanding is challenging. This is why
we have structured the presentation of the results with var-
ious (and increasingly more complex) architectures. In Sec-
tion 3, we start our development with simple, 2-dimensional
networks with one excitatory and one inhibitory nodes. Sub-
sequently, we generalize this case to networks with arbitrary
number of excitatory (but still one inhibitory) nodes, cf. Sec-
tion 3.1, and separately study networks that are purely in-
hibitory, Section 3.2. Finally, Section 4 studies arbitrarily
large networks of 2-dimensional networks. The network ar-
chitectures that we study respect an important property of
mammalian cortical networks, known as Dale’s law [15, 64],
according to which each node has either an excitatory or in-
hibitory effect on other nodes, but not both. This means that
each column ofW is either nonnegative or nonpositive, a con-
dition that we follow throughout the paper.

3 Oscillations in Single Networks

We analyze the dynamics (1) and derive conditions on the
network (W,u,m) giving rise to oscillatory behavior.

3.1 Excitatory-Inhibitory Networks

The reciprocal interactions between excitatory and inhibitory
populations of cortical neurons have long been known to be a
major contributor to cortical oscillations [31]. Arguably, the
simplest scenario with only one excitatory and one inhibitory
populations (each abstracted to one network node) has been
the most popular in theoretical neuroscience [14]. Interest-
ingly, this coincides with the fact that LoSE is, under mild
conditions, necessary and sufficient for the existence of al-
most globally (excluding trajectories starting at an unstable
equilibrium) asymptotically stable limit cycles when N = 2.
This two-dimensional case, hereafter called an E-I pair, is
the celebrated Wilson-Cowan model used in computational
neuroscience for decades [2, 4, 39, 45, 64]. Unlike the stan-
dard model with sigmoidal activation functions, however, the
next result shows that a complete characterization of limit cy-
cles can be obtained for Wilson-Cowan models with bounded
linear-threshold nonlinearities.
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Theorem 3.1 (Limit cycles in E-I pairs). Consider the
dynamics (1) with N = 2 and

W =

[

a −b

c −d

]

, a, b, c, d ≥ 0.

All network trajectories (except those starting at an unstable
equilibrium, if any) converge to a limit cycle if and only if

d+ 2 < a, (4a)

(a− 1)(d+ 1) < bc, (4b)

(a− 1)m1 < bm2, (4c)

0 < u1 < bm2 − (a− 1)m1, (4d)

0 < (d+ 1)u1 − bu2 <
[

bc− (a− 1)(d+ 1)
]

m1. (4e)

PROOF. By [54, Thm 4.1], all the trajectories (except those
starting at unstable equilibria, if any) converge to a limit cycle
if and only if the network does not have any stable equilibria.
This is, nevertheless, not a special case of Theorem 3.3 as
we here do not presume (4a) but rather show its necessity
together with (4b)-(4e).

If a < 1, then all the regions Ωσ,σ ∈ {0, ℓ, s}2 are stable,
ensuring the existence of a stable equilibrium (since the ex-
istence of an equilibrium is always guaranteed by Brouwer
Fixed-Point Theorem [7]). Thus, assume a ≥ 1. Then, as
shown in the proof of Theorem 3.3, the trivially stable regions
(σ′, j), σ′ ∈ {0, s}, j ∈ {0, ℓ, s} do not contain their equilib-
rium candidates iff u ∈ Y c. One can readily show

Y =
{

(u1, u2) | u1 ≤ max
{

0,min{bm2,
b

d+ 1
u2}

}

or

u1 ≥ −(a− 1)m1 +min
{

bm2,max{0,
b(u2 + cm1)

d+ 1
}
}

}

.

Therefore, u ∈ Y c if and only if

u1 > 0, (5a)

u1 < bm2 − (a− 1)m1, (5b)

u1 > min{bm2,
b

d+ 1
u2}, (5c)

u1 < −(a− 1)m1 +max{0,
b(u2 + cm1)

d+ 1
}. (5d)

Next, we characterize when the conditions (5) are feasible,
i.e., when there exists u1 satisfying them (and hence Y c is
non-empty). In fact, for (5) to be feasible, it is necessary and
sufficient that

(5a) and (5b) : bm2 − (a− 1)m1 > 0, (6a)

(5a) and (5d) : u2 > −
bc− (a− 1)(d+ 1)

b
m1, (6b)

(5b) and (5c) : u2 <
d+ 1

b
(bm2 − (a− 1)m1), (6c)

(5c) and (5d) : bc > (a− 1)(d+ 1). (6d)

Conditions (6a) and (6d) are the same as (4c) and (4b), respec-
tively. Furthermore, under (6), (5) simplifies to (4d) and (4e),
which in turn ensure (6b) and (6c). In conclusion, u ∈ Y c if
and only if (4b)-(4e) hold.

What remains to study are the regions (ℓ, 0), (ℓ, s), and (ℓ, ℓ).
The first two are not stable since a ≥ 1. Also, though not
needed, they do not include their equilibrium candidates due
to (4d). On the other hand, for σ = (ℓ, ℓ),

x∗
σ
=

1

bc− (a− 1)(d+ 1)

[

(d+ 1)u1 − bu2

cu1 − (a− 1)u2

]

= Wx∗
σ
+ u.

The first component of Wx∗
σ
+ u clearly belongs to [0,m1]

by (4b) and (4e). For its second component, we have 4

(4b), (4e) ⇒ cu1 > (a− 1)u2,

(4d), (4e) ⇒ u2 >
c

a− 1
u1 −

bc− (a− 1)(d+ 1)

a− 1
m2,

ensuring that σ = (ℓ, ℓ) always contains its equilibrium can-
didate. Therefore, this region must be unstable which, un-
der (4b), happens if and only if a > d+ 2. ✷

Remark 3.2 (Connections with experimental obser-
vations in the neuroscientific literature).While existing
quantitative measurements of synaptic weight relationships
that give rise to oscillations in biological neural networks are
extremely few, if any, particularly at the mean-field scale
of analysis most relevant to our study, the bounds in The-
orem 3.1 do resonate with some of the known qualitative
properties of oscillations in cortical networks. For instance,
similar to our conditions (4a) restricting the balance between
excitation and inhibition and (4b) requiring strong recipro-
cal excitatory-inhibitory interconnections, [21] states that
“Gamma oscillations emerge from the synchronized firing
of interconnected excitatory glutamatergic and primarily
inhibitory fast-spiking GABAergic PV+ interneurons, and
its power (i.e., amplitude) is modulated by the E/I balance
at distinct synaptic sites in the circuit and the intrinsic ex-
citable properties of the neurons” and [59] that “Generation
of synchronized neural activity in neocortical circuits is de-
pendent on negative feedback inhibition of pyramidal cells by
GABA (γ-aminobutyric acid)-ergic [inhibitory] interneurons
that express the Ca2+-binding protein parvalbumin”. Even
more specifically, it is mentioned in [21] that “A prominent
hypothesis for SCZ [schizophrenia] pathophysiology posits
that NMDARs on PV+ neurons [excitatory to inhibitory
synaptic weights, c in our Theorem 3.1] are hypofunctional,
thus resulting in lowered GABAergic signaling, overstimula-
tion of excitatory neurons, and a consequent loss of gamma
wave oscillations” which is in line with the lower bound on
c in (4b). However, even such qualitative parallels become
hard to draw when it comes to less characterized quantities
such as the maximal firing rates of different cell types (m1

and m2 in Theorem 3.1) or network structures more detailed
than a simple E-I pair, further highlighting the importance
of theoretical studies that can move beyond experimental
limitations. �

The simplicity of the two-dimensional E-I model in Theo-
rem 3.1, while having led to its long-standing popularity in
computational neuroscience, comes at the price of limited flex-
ibility to model the complex dynamics of the brain. In the rest
of this paper, therefore, we extend the above analysis to more

4 In the proof we only consider the scenario where a > 1 since
(Wx∗

σ
+ u)2 ∈ [0,m2] trivially if a = 1.
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complex scenarios, beginning with the following analysis of
higher-dimensional excitatory-inhibitory networks.

Inhibitory neurons constitute about 20% of neurons in the
cortex and have broader (less specific) interconnection and ac-
tivity patterns than excitatory neurons. Therefore, we focus
on networks with a single inhibitory node and arbitrary num-
ber of excitatory nodes. Let N = n+ 1, n ≥ 1, and consider

W =

[

a −b

c −d

]

, u =

[

ue

un+1

]

, m =

[

me

mn+1

]

, (7)

where a ∈ R
n×n
≥0 , b ∈ R

n×1
≥0 , c ∈ R

1×n
≥0 , d ∈ R≥0. Note that

this class of networks includes, as a special case, the well-
known 2-dimensional Wilson-Cowan model (n = 1) exten-
sively used in the computational neuroscience [16]. We are
ready to give our first result on LoSE for (1), (7).

Theorem 3.3 (Networks with a single inhibitory
node). Consider the dynamics (1), (7) and assume that

aii > d+ 2 ∀i ∈ {1, . . . , n}. (8)

Then, the network does not have any stable equilibria iff u ∈
R

n+1 \ Y , where

Y =
⋃

σ
′∈{0,s}n

[

⋂

i∈σ
′

(Yσ
′,s,i ∪ (Yσ

′,0,i ∩ Yσ
′,ℓ,i))∩

⋂

i/∈σ
′

(Yσ
′,0,i ∪ (Yσ

′,s,i ∩ Yσ
′,ℓ,i))

]

,

Yσ
′,j,i =

{

{u | ui ≥ yσ′,j,i} ; if i ∈ σ
′

{u | ui ≤ yσ′,j,i} ; if i /∈ σ
′ ∀j ∈ {0, ℓ, s},

yσ′,0,i = −(aiσ′ − Iiσ′)mσ
′ , yσ′,s,i = yσ′,0,i + bimn+1, and

yσ′,ℓ,i = yσ′,0,i +
bi(un+1+c

σ
′m

σ
′ )

d+1 for σ
′ ∈ {0, s}n and i ∈

{1, . . . , n}.

PROOF. The proof consists of two steps: first, we determine
the list of Ωσ that are stable and second, we ensure that they
do not contain their equilibrium candidates iff u ∈ R

n+1 \ Y .

Step 1: The switching regions can be naturally decomposed
into two groups: those in which at least one of the excita-
tory nodes is active and those in which all the excitatory
nodes are either inactive or saturated. We next show that
these correspond to unstable and stable switching regions,
respectively. Consider any σ ∈ {0, ℓ, s}N and let L = {i ∈
{1, . . . , n} | σi = ℓ} (note that L is independent of σn+1).
Let r = |L|, and let Π be the permutation matrix such that
Πσ = (0n−r, ℓ, . . . , ℓ, σn+1)

′. Let Σ ∈ R
N×N be a diago-

nal matrix with entries Σii = 1 if σi ∈ {ℓ, s} and Σii = 0
otherwise. The coefficient matrix −I + ΣW in the region
Ωσ then satisfies Π(−I+ΣW)ΠT = [−In−r,0; ⋆,P], where
P = [−Ir + aL, ⋆; ⋆,−1 − Σn+1,n+1d], aL is the principal
submatrix of a composed of its rows and columns in L, and
Σn+1,n+1 is the bottom-right element of Σ. Thus, the eigen-
values of −I + ΣW consist of (−1) with multiplicity n − r
and the eigenvalues of P. Therefore,

• if r > 0, Ωσ is unstable since tr(P) =
∑

i∈L(aii − 1) −

1− Σn+1,n+1d ≥
∑

i∈L(aii − 1)− 1− d
(8)
> 0;

• if r = 0, Ωσ is stable since P = −1− Σn+1,n+1d < 0.

Step 2: According to Step 1, we only need to ensure that re-
gions Ωσ with r = 0 do not contain their equilibrium candi-
dates 5 . These regions have the form

σ = (σ′, j), σ
′ ∈ {0, s}n, j ∈ {0, ℓ, s}.

We consider three cases based on the value of j.

(i) j = 0: It is straightforward to verify that

Wx∗
σ
+ u =

[

a:,σ′mσ
′ + ue

cσ′mσ
′ + un+1

]

,

and that Wx∗
σ
+ u ∈ Ωσ if and only if u ∈

⋂n+1
i=1 Yσ

′,0,i

where Yσ
′,0,n+1 = {u | un+1 ≤ −cσ′mσ

′}.
(ii) j = s: similarly, it follows that

Wx∗
σ
+ u =

[

a:,σ′mσ
′ − bmn+1 + ue

cσ′mσ
′ − dmn+1 + un+1

]

,

and Wx∗
σ

+ u ∈ Ωσ ⇔ u ∈
⋂n+1

i=1 Yσ
′,s,i where

Yσ
′,s,n+1 = {u | un+1 ≥ (d+ 1)mn+1 − cσ′mσ

′}.
(iii) j = ℓ: it also follows similarly that

(d+ 1)Wx∗
σ
+ u =

[

(a:,σ′(d+ 1)− bcσ′)mσ
′ − bun+1 + (d+ 1)ue

cσ′mσ
′ + un+1

]

,

and Wx∗
σ

+ u ∈ Ωσ ⇔ u ∈
⋂n+1

i=1 Yσ
′,ℓ,i where

Yσ
′,s,n+1 = {u | − cσ′mσ

′ ≤ un+1 ≤ (d + 1)mn+1 −
cσ′mσ

′}.

Therefore, for no stable region to contain its equilibrium can-
didate it is necessary and sufficient that

u ∈ R
n+1 \ Ȳ , Ȳ =

⋃

σ
′∈{0,s}n

⋃

j∈{0,ℓ,s}

n+1
⋂

i=1

Yσ
′,j,i. (9)

It only remains to show Ȳ = Y . For σ′ ∈ {0, s}n, let

Ȳσ
′ =

⋃

j∈{0,ℓ,s}

n+1
⋂

i=1

Yσ
′,j,i. (10)

Then, we have Ȳ c
σ

′ =
⋂

j∈{0,ℓ,s}

⋃n+1
i=1 Y c

σ
′,j,i =

⋂5
j=1(A

c
j∪B

c
j ),

where (in what follows, ◦ denotes the interior of a set)

A1 =

n
⋂

i=1

Yσ
′,0,i, B1 = Y ◦

σ
′,0,n+1,

5 Note that if an equilibrium lies at the boundary of a stable
switching region, it still attracts (at least half of) nearby trajec-
tories: if all the switching regions sharing an equilibrium are sta-
ble, their coefficient matrices {−I+ΣW}⊆{−I, [−I,0; c,−1− d]}
hence share a common quadratic Lyapunov function. If an equi-
librium is also shared with an unstable switching region, it is not
difficult to show that the switching hyperplane between the stable
and unstable regions coincides with the slow eigenspace of the co-
efficient matrices {−I+ΣW} of the stable regions, ensuring that
the equilibrium attracts all trajectories initiating in the stable side.
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A2 = A1, B2 = Yσ
′,0,n+1 ∩ Yσ

′,ℓ,n+1,

A3 =
n
⋂

i=1

Yσ
′,ℓ,i, B3 = Y ◦

σ
′,ℓ,n+1,

A4 = A3, B4 = Yσ
′,ℓ,n+1 ∩ Yσ

′,s,n+1,

A5 =

n
⋂

i=1

Yσ
′,s,i, B5 = Y ◦

σ
′,s,n+1,

Since the sets {Bj}
5
j=1 partition R

n+1, it follows that Ȳ c
σ

′ =
⋃5

j=1(A
c
j ∩Bj), or

Ȳ c
σ

′ =
⋃

j∈{0,ℓ,s}

((

⋃n

i=1
Y c
σ

′,j,i

)

∩ Yσ
′,j,n+1

)

=
⋃n

i=1

⋃

j∈{0,ℓ,s}
(Y c

σ
′,j,i ∩ Yσ

′,j,n+1). (11)

For any i ∈ σ
′, we have

Ȳ c
σ

′,i ,
⋃

j∈{0,ℓ,s}
(Y c

σ
′,j,i ∩ Yσ

′,j,n+1)

(a)
=

⋃

j∈{0,ℓ,s}
[(Y c

σ
′,j,i ∩ Yσ

′,j,n+1) ∪ (Y c
σ

′,0,i ∩ Yσ
′,j,n+1)]

(b)
=

⋃

j∈{0,ℓ,s}
(Y c

σ
′,j,i ∩ Yσ

′,j,n+1) ∪ Y c
σ

′,0,i

= Y c
σ

′,0,i ∪ (Y c
σ

′,ℓ,i ∩ Yσ
′,ℓ,n+1) ∪ (Y c

σ
′,s,i ∩ Yσ

′,s,n+1)

(c)
= Y c

σ
′,0,i ∪ (Y c

σ
′,ℓ,i ∩ Y c

σ
′,s,n+1) ∪ (Y c

σ
′,s,i ∩ Yσ

′,s,n+1)

(d)
= Y c

σ
′,0,i ∪ (Y c

σ
′,ℓ,i ∩ Y c

σ
′,s,n+1 ∩ Y c

σ
′,s,i)

∪ (Y c
σ

′,s,i ∩ Yσ
′,s,n+1 ∩ Y c

σ
′,ℓ,i)

= Y c
σ

′,0,i ∪ (Y c
σ

′,ℓ,i ∩ Y c
σ

′,s,i)

(d)
= (Y c

σ
′,0,i ∪ Y c

σ
′,ℓ,i) ∩ Y c

σ
′,s,i, (12)

where (a) is because Y c
σ

′,0,i ∩ Yσ
′,j,n+1 ⊆ Y c

σ
′,j,i ∩ Yσ

′,j,n+1

for both j = ℓ and j = s (and is trivial for j = 0), (b) is
because {Yσ

′,j,n+1}j∈{0,ℓ,s} coverR
n+1, (c) is because Y c

σ
′,ℓ,i∩

Yσ
′,ℓ,n+1 ⊆ Y c

σ
′,ℓ,i ∩ Y c

σ
′,s,n+1 and

(Y c
σ

′,ℓ,i ∩ Y c
σ

′,s,n+1) \ (Y
c
σ

′,ℓ,i ∩ Yσ
′,ℓ,n+1) ⊆ Y c

σ
′,0,i,

(d) is because Y c
σ

′,ℓ,i ∩ Y c
σ

′,s,n+1 ⊆ Y c
σ

′,s,i and Y c
σ

′,s,i ∩
Yσ

′,s,n+1 ⊂ Y c
σ

′,ℓ,i, and (e) is because Y c
σ

′,0,i ⊆ Y c
σ

′,s,i. By a

parallel argument, it can be shown that for any i /∈ σ
′,

Ȳ c
σ

′,i = (Y c
σ

′,s,i ∪ Y c
σ

′,ℓ,i) ∩ Y c
σ

′,0,i. (13)

Therefore, (9)-(13) gives Ȳ = Y , completing the proof. ✷

While the description of Y in Theorem 3.3 may seem com-
plex, it has a simple interpretation. Consider a fixed value
for un+1. Then, each of the sets (Yσ

′,s,i ∪ (Yσ
′,0,i ∩ Yσ

′,ℓ,i))
or (Yσ

′,0,i ∪ (Yσ
′,s,i ∩ Yσ

′,ℓ,i)) in the definition of Y are a half
space of the form {ui ≥ y} or {ui ≤ y} (depending on whether
i ∈ σ

′ or not) that drive xi to saturation or inactivity, respec-
tively. Therefore, the cross section of Y for this fixed value of
un+1 is composed of 2n closed orthants, each unbounded to-
wards a different direction in R

n. Figure 1 shows an example
of this for n = 2. The union of these orthants (the shaded
area in Figure 1) characterizes the region where the network
has at least one stable equilibrium.

Fig. 1. Illustration of the region Y in Theorem 3.3 for an example
network with n = 2. The four shaded quadrants represent the cross
section of Y

σ
′ ,σ′ ∈ {0, s}2 at u3 = −5, so the white area is where

the network lacks any stable equilibria. Network parameters are
a = [8.5, 1; 1, 5], b = [5; 7], c = [4, 5], d = 1, m = [2; 3; 6].

Nevertheless, the set Y c may in general be non-convex, un-
bounded, and disconnected. The complex nature of this set is
consistent with the fact that as we are trying to emulate the
complex behavior of brain networks. The assumption (8) in
Theorem 3.3 is closely aligned with the biology of real brain
networks. For the trajectories to oscillate, one needs the ex-
citing parts of the network to impose a greater effect than
its inhibitory counterparts since, otherwise, the whole system
could be forced into an inactive state where no oscillations can
occur. The next result gives simpler and easier-to-interpret,
but more conservative, conditions.

Corollary 3.4 (Simpler conditions for networks with a
single inhibitory node). Consider the same assumptions as
in Theorem 3.3. Then, for the network not to have any stable
equilibria, it is necessary that

−cme < un+1 < (d+ 1)mn+1, (14)

and sufficient that either

0 ≤ un+1 ≤ (d+ 1)mn+1 − cme, (15a)

∃i0 s.t. (ai0i0 − 1)(d+ 1) < bi0ci0 , (15b)

bi0un+1

d+1
<ui0<

bi0(un+1+ci0mi0)

d+1
−(ai0i0−1)mi0 , (15c)

ui<
biun+1−[(ai,:−Ii,:)(d+1)−bic]

+me

d+1
, ∀i 6= i0, (15d)

or

(d+1)mn+1−min
i
(cimi)≤un+1 ≤ (d+1)mn+1, (16a)

∃i0 s.t. (ai0i0 − 1)mi0 < bi0mn+1, (16b)

0 < ui0 < bi0mn+1 − (ai0i0 − 1)mi0 , (16c)

ui < bimn+1 − (ai,: − Ii,:)me, ∀i 6= i0. (16d)

PROOF. First, we prove the sufficiency of the conditions
in (15), by showing that any u satisfying all the conditions
in (15) will not belong to Y as defined in Theorem 3.3. Note
that the expression for Y can be greatly simplified if we can
restrict u such that for all σ′ ∈ {0, s}n,

Yσ
′,s,i ∪ (Yσ

′,0,i ∩ Yσ
′,ℓ,i) = Yσ

′,ℓ,i ∀i ∈ σ
′,

Yσ
′,0,i ∪ (Yσ

′,s,i ∩ Yσ
′,ℓ,i) = Yσ

′,ℓ,i ∀i /∈ σ
′ (17)
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Given the definition of the sets Yσ
′,j,i, we can see that this

holds if for all σ′ ∈ {0, s}n,

−cσ′mσ
′ ≤ un+1 ≤ (d+ 1)mn+1 − cσ′mσ

′ , (18)

which gives (15a) sincemaxσ′ −cσ′mσ
′ = 0 andminσ′ −cσ′mσ

′ =
−cme.

Given (17),uwill not be in Y if and only if for anyσ′ ∈ {0, s}n,
there exists an i such that

ui <
bi

d+ 1
un+1 +

bicσ′ − (aiσ′ − Iiσ′)(d+ 1)

d+ 1
mσ

′ , (19a)

if i ∈ σ
′, or

ui >
bi

d+ 1
un+1 +

bicσ′ − (aiσ′ − Iiσ′)(d+ 1)

d+ 1
mσ

′ , (19b)

if i /∈ σ
′. Note that these are 2n sets of inequalities, where at

least one inequality needs to be satisfied from each set using
only the n variables u1, . . . , un. This provides us with a choice
of which inequality from each set we choose to enforce, with
any choice imposing 2n upper/lower bounds on u1, . . . , un.
Here, care should be taken to ensure the resulting system of
inequalities is feasible. For any variable ui, as long as the in-
equalities imposed on it are all either lower bounds or upper
bounds, a feasible ui exists. However, any lower and upper
bounds imposed on the same ui must be ensured to be collec-
tively feasible, in turn putting additional restrictions on W
and m. With this background in mind, we obtain an explicit
yet minimally restrictive set of sufficient conditions as follows.

Assume that (15b) holds. Then, we impose the i’th inequality
corresponding to σ

′ = 0 and σ
′
i = (0, 0, . . . , s, . . . , 0) where

the s is in the i’th position. The result will be (15c), which is
feasible by (15b). For any other σ′ 6= 0,σ′

i, we only impose
some (or all) of the upper bound inequalities in (19a) for j 6= i,
which will always be feasible without any further restrictions
onW andm. This leads to potentially multiple upper bounds
for each j 6= i, but all of them are greater than the bound
in (15b) and are thus satisfied if (15b) is. This completes the
proof of the sufficiency of (15).

Second, we prove the sufficiency of the conditions in (16) fol-
lowing a similar construction. Here, instead of (17), we re-
strict u such that for all σ′ 6= 0,

Yσ
′,s,i ∪ (Yσ

′,0,i ∩ Yσ
′,ℓ,i) = Yσ

′,s,i ∀i ∈ {1, . . . , n}, (20)

and for σ′ = 0,

Yσ
′,s,i ∪ (Yσ

′,0,i ∩ Yσ
′,ℓ,i) = Yσ

′,0,i ∀i ∈ {1, . . . , n}. (21)

Similar to (18), these will hold if −cσ′mσ
′ + (d+ 1)mn+1 ≤

un+1 ≤ (d + 1)mn+1, for all σ′ 6= 0, which is equivalent
to (16a). Then, similar to the proof of (15), we assume that
there exists at least one i for which (16b) holds, and enforce
the i’th inequality for σ

′ = 0 and σ
′ = σ

′
i. These together

impose (16c) on ui, whose feasibility requires (16b). For any
other σ

′, we enforce the j’th inequality(s) for some (or all)
j ∈ σ

′, j 6= i, which requires uj < −(ajσ′−Ijσ′)mσ
′+bjmn+1

and satisfied if the stronger condition (16d) holds.

Finally, we prove the necessity of (14) by contradiction. As-
sume, first, that un+1 ≥ (d+ 1)mn+1. This implies that (20)

holds for allσ′ ∈ {0, s}n and all i. We can then make a sequen-
tial argument as follows. Starting from σ

′ = 0, we would need
at least one i such that ui > bimn+1. This i can then never sat-
isfy ui < bimn+1 − (aiσ′ − Iiσ′)mσ

′ for any σ
′, which means

that u cannot belong to any Y c
σ

′,s,i where i ∈ σ
′. To simplify

the discussion and without loss of generality, assume we have
chosen i = 1. Then, u cannot belong to any Y c

σ
′,s,1 for any

σ
′ = (s, ⋆, . . . , ⋆). Therefore, for σ′ = (s, 0, . . . , 0), we need at

least one i ≥ 2 such that ui > bimn+1 − ai1m1. Again, for
simplicity and without loss of generality, assume i = 2. Then,
u cannot belong to any Y c

σ
′,s,2 for any σ

′ = (s, s, ⋆, . . . , ⋆).
Continuing this argument, we will ultimately have to impose
lower bounds on all the elements of ue, which prevent u from
belonging to Y c

σ
′,s,i for σ

′ = (s, s, . . . , s) and any i, ensur-
ing the existence of a stable equilibrium by Theorem 3.3,
which is a contradiction. An analogous argument shows that
un+1 ≤ −cme also leads to a contradiction. ✷

Note the parallelism between (4) and (15)-(16). In fact, con-
ditions (15b), (15c)-(15d), (16b), and (16c)-(16d) are gener-
alizations of (4b), (4e), (4c), and (4d), respectively. Further,
Corollary 3.4 has itself a further consequence with great neu-
roscientific value, as given next.

Corollary 3.5 (Fully excitatory networks). Given the
dynamics (1), if W is fully excitatory (all entries are non-
negative), then the network has at least one stable equilibrium.

PROOF. A fully excitatory network corresponds to (1), (7)
with a sufficiently negative un+1 that drives the inhibitory
node into negative saturation, effectively removing it from the
network. This happens if, for all t, cxe(t)−dxn+1(t)+un+1 <
0 ⇐ un+1 < −cxe(t) ⇐ un+1 < −cme, which, by Corol-
lary 3.4, implies at least one stable equilibrium exists. ✷

This result can also be established using the theory of mono-
tone systems [1, 24]. Corollary 3.5 provides a simple and rig-
orous explanation for the well-known necessity of inhibitory
nodes in brain oscillations [63]. On the other hand, the com-
putational neuroscience literature has long shown the possi-
bility of oscillatory activity in purely inhibitory networks [31],
an important class of networks that we treat next.

3.2 Inhibitory Networks

Our focus here is on linear-threshold network models (1)
where only inhibitory nodes are present. Consequently,

W =















−d1,1 −d1,2 . . . −d1,N

−d2,1 −d2,2 . . . −d2,N
...

. . . . . .
...

−dN,1 −dN,2 . . . −dN,N















with di,j ≥ 0 for all i, j.

3.2.1 Necessary Conditions for LoSE

We start by identifying a necessary condition for the lack of
stable equilibria of fully inhibitory networks.

Theorem 3.6 (Necessary condition for oscillatory be-
havior in fully inhibitory networks). If a fully inhibitory
network does not have any stable equilibria, then I−W /∈ P.
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PROOF. We argue the counter positive: if I−W ∈ P, then
a stable equilibrium point exists. The fact that an equilibrium
exists for any u ∈ R

N is a direct consequence of [43, Theorem
IV.1]. To show it is stable, let us consider any switching region
Ωσ containing the equilibrium.Over this region, the dynamics
is described by−I+ΣW. Let r be the cardinality of the set of
nodes in active state and let Π be a permutation matrix such
that Πσ = (σ1, . . . , σn−r, ℓ, . . . , ℓ), where σi ∈ {0, s}. Then,

Π(−I+ΣW)ΠT =

[

−I 0

∗ P

]

, (22)

for some matrix P. The eigenvalues of the system are there-
fore−1, with multiplicity n−r, and the eigenvalues ofP. Note
that P is a principal submatrix of the matrix −I+W. Since
any principal submatrix of a P−matrix is also a P−matrix,
we deduce −P is a P−matrix too. In addition, sinceW corre-
sponds to a fully inhibitory network, −P is a sign-symmetric
matrix, meaning that (−P(I, J))(−P(I, J)) ≥ 0 for all I,J ⊂
{1, . . . , n} such that |I| = |J |. By [56, Theorem 1], a sign-
symmetric P−matrix is positive stable (if a matrix A is pos-
itive stable, then −A is stable in the traditional Lyapunov
sense, so all the eigenvalues of −A have negative real parts).
Consequently, the eigenvalues of P fall in the negative com-
plex quadrant and the equilibrium is stable. ✷

Theorem 3.6 provides a necessary condition based on the in-
trinsic properties of the network connectivity. The next re-
sult provides an alternative, much simpler necessary condi-
tion based on the number of nodes. This result can also be
derived using the theory of monotone systems [1, 24], but we
here present an independent proof that is instructive in the
context of our methodology.

Proposition 3.7 (2-node fully inhibitory networks al-
ways have a stable equilibrium). A fully inhibitory net-
work with only two nodes always has a stable equilibrium.

PROOF. We divide the proof in two cases depending on
whether (d1,1 + 1)(d2,2 + 1) − d1,2d2,1 is (i) greater than 0
or (ii) less than or equal to 0. In case (i), the fact that the
network is fully inhibitory results in all the principal minors
of I−W being greater than zero, and hence I−W ∈ P. By
Theorem 3.6, a stable equilibrium point exists.

In case (ii), we look at the equilibrium candidates. Note that
only one switching region has a non-stable equilibrium can-
didate (the one where both nodes are found in active state),
while all the other switching regions have stable equilibrium
candidates. Hence, proving the existence of multiple equilib-
rium points in the system is enough to prove the stability of
it. By Brouwer Fixed-Point Theorem [7], an equilibrium point
exists. Then, since (ii) implies that I − W /∈ P, we use [43,
Theorem VI.1] to conclude that the equilibrium is not unique.
As, at least, two equilibrium points exist, one necessarily cor-
responds to a stable equilibrium candidate. ✷

3.2.2 Sufficient Conditions for LoSE

In the following, we derive sufficient conditions for LoSE by
investigating the instability properties of the equilibrium can-
didate of each switching region. In our study, we focus on the
following class of network structures.

Definition 3.8 (Pairwise unstable connectivity ma-
trix). W is a pairwise unstable connectivity matrix if the
system matrix −I + ΣW corresponding to each switching
region involving only two nodes in active state is unstable.

The definition is valid for arbitrary (i.e., not necessarily in-
hibitory) networks. For inhibitory networks, it is equivalent
to asking each principal minorMi,j of order two of −I+W to
be negative, Mi,j < 0, which can only be achieved if di,j > 0
when i 6= j. Interestingly, this property allows us to establish
conclusions about the instability of the switching regions that
involve more than two nodes in active state.

Theorem 3.9 (Instability of networks with pairwise
unstable connectivity matrices). Let W be a pairwise un-
stable connectivity matrix. Then, the system matrix −I+ΣW
corresponding to each switching region Ωσ involving more
than two nodes in active state is unstable.

PROOF. Let Ωσ be a switching region involving more than
two nodes in active state and consider its corresponding sys-
tem matrix −I + ΣW. Using the same decomposition as
in (22), the system eigenvalues are −1 with multiplicity N−r
and the eigenvalues of the r × r-matrix P. For the latter,
consider the characteristic polynomial of P, Char(P− λI) =
(−1)rλr+(−1)r−1Kr−1λ

r−1+· · ·+(−1)K1λ+K0 , whereKk

represents the sum of all the principal minors of order r−k. In
particular, since r > 2, Kr−2 =

∑

i 6=j with σi,σj=l

Mi,j . Since W

is pairwise unstable, we deduce Kr−2 < 0 and, consequently,
sign((−1)r) 6= sign((−1)r−2Kr−2). Given that the character-
istic polynomial has a sign change in its coefficients, using
the Routh-Hurwitz criteria [28] we deduce that there exists
a root λ of the characteristic polynomial with Re(λ) > 0, as
claimed. ✷

The implication of Theorem 3.9 is that the analysis of LoSE
for networks with pairwise unstable connectivity matrices can
be reduced to the study of those switching regions where only
up to one node is in active state. This is what we do in our
next result.

Proposition 3.10 (Characterization of LoSE in net-
works with pairwise unstable connectivity matrices).
Let (W,u,m) be a fully inhibitory network with a pairwise
unstable connectivity matrix. Define

T0 =
{

u | ∃i ∈ {1, . . . , N} s.t. ui > 0
}

,

Ti =
{

u |
∨

i 6=j∈{1,...,n}

(uj >
dj,i

di,i + 1
ui)

}

,

for i ∈ {1, . . . , N}, and let T =
⋂

i∈{0,...,n} Ti. If u ∈ C =

[0, (d1,1 + 1)m1) × · · · × [0, (dN,N + 1)mN ) 6= ∅, then LoSE
holds iff u ∈ T.

PROOF. From Theorem 3.9, the equilibrium candidate of
any switching region with more than one node in active state
is unstable. In addition, one can show that no switching region
with a node in positive saturation can contain its correspond-
ing equilibrium candidate. This is because the dynamics for
such node, say k, would take the form

τ ẋk = −xk + [−
∑

i 6=k

dk,ixi − dk,kmk + uk]
mk

0 .
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Since u ∈ C, we deduce uk < (dk,k+1)mk, and so −dk,kmk+
uk < mk. Consequently, the node always goes out of positive
saturation. Similarly, for the switching region where all nodes
are in negative saturation, the fact that the equilibrium can-
didate falls outside it is a consequence of u ∈ T0. Finally, for
the switching region where node i ∈ {1, . . . , N} is in active
state and all others are in negative saturation, its correspond-
ing equilibrium candidate falls outside it iff u ∈ Ti. ✷

The assumption that u ∈ C in Proposition 3.10 means that
the input has a low magnitude, avoiding positive saturation
of the nodes in key switching regions. We can relate this as-
sumption to actual brain networks by observing that these
networks are not designed to process a range of inputs that
would drive them directly to a saturated state, but rather that
allow the oscillatory behavior to take place. Thus, although
restrictive from a mathematical standpoint, the assumption
is biologically consistent and helps successfully capture im-
portant existent behavior in real brain networks.

Given Proposition 3.10, we next focus on understanding the
conditions on the network connectivity matrix ensuring that
T is nonempty. We first note that such conditions must in-
volve at least three nodes. This is because if only two nodes,
say i and j, are considered then, by the pairwise instability

assumption,
dj,i

di,i+1 <
dj,j+1
di,j

, and therefore if uj >
dj,i

di,i+1ui

then ui <
di,j

dj,j+1uj , and vice versa. To find then conditions

involving three or more nodes, we re-interpret the inequali-
ties that define T−0 :=

⋂

i∈{1,...,N} Ti using graph-theoretic

concepts. Consider the weighted complete graph with vertex
set {1, . . . , N}, edge set {1, . . . , N}× {1, . . . , N} \ {(i, i) | i ∈
{1, . . . , N}} (i.e., self-loops are excluded), and weight matrix

F =























0
d1,1+1
d2,1

d1,1+1
d3,1

. . .
d1,1+1
dN,1

d2,2+1
d1,2

0
d2,2+1
d3,2

. . .
d2,2+1
dN,2

d3,3+1
d1,3

d3,3+1
d2,3

0 . . .
...

...
...

...
. . .

...
dN,N+1
d1,N

dN,N+1
d2,N

d3,3+1
dN,3

. . . 0























.

In this definition, edge (i, j) corresponds to the inequality

uj
di,i+1
dj,i

> ui. In this way, the row i of F corresponds to the

set of inequalities that define the set Ti. To find conditions
such that T−0 is not empty, it is necessary and sufficient that
there exists a path that involves every node and corresponds
to a feasible sequence of inequalities. Note thatTi is not empty
when some inequality holds, meaning that node i has an out-
going edge. Then, for T−0 to be non empty, every node needs
to have an outgoing edge. This is only possible if a cycle exists,
restricting all those ui involved in it. For those i not involved
in the cycle, there always exists a sufficiently small value of
ui that ensures Ti, and consequently T−0, is not empty.

Given these observations, we consider the collection of cycles
of length 3 or more of the graph defined above. This collec-
tion represents all the ways the inequalities involved in the
definition of the set T−0 can be satisfied while remaining com-
patible with the pairwise instability condition. For each cy-
cle Gc = (Vc, Ec), consider the connectivity matrix Fc, of di-
mension |Vc|, that results from having the edges inherit their
weights from the full adjacency matrix F. The matrix Fc has
one non-zero element per row and column. Consequently, for

the cycle defined by Gc, we have successfully reduced the fea-
sibility problem of the inequalities to the problem of finding
v such that Fcv > v holds componentwise. If v exists, then
the inequalities defined by Gc are feasible, and the set T−0

is not empty. Moreover, if the resulting v has some positive
component, then the set T is not empty.

Theorem 3.11 (Sufficient condition for LoSE in fully
inhibitory networks with pairwise unstable connectiv-
itymatrix). LetW be fully inhibitory and a pairwise unstable
connectivity matrix. If there is cycle whose adjacency matrix
satisfies ρ(Fc) > 1, then there exists u for which LoSE holds.

PROOF. Let Gc be a cycle whose adjacency matrix Fc sat-
isfies ρ(Fc) > 1. Since Gc is strongly connected, Fc is irre-
ducible. Using the Perron-Frobenius theorem for irreducible
matrices [8, Theorem 1.11], we deduce that ρ(Fc) is an eigen-
value of Fc and has an eigenvector v with positive compo-
nents. Since ρ(Fc) > 1, Fcv = ρ(Fc)v > v element-wise. We
can use this eigenvector to construct u belonging to T and C

as follows. Let λ ∈ (0,mini∈Vc

(di,i+1)mi‖v‖
vi

). Then, for every i

in the cycle, let ui =
vi

‖v‖λ. Since Fcv > v, we have u ∈ Ti for

every i in the cycle. Moreover, by definition, ui ≤ mi(di,i+1).
Since the components of v are all positive, so are the ones
of u. For those nodes j that do not belong to the cycle, we
can find values that satisfy the inequalities by setting uj = 0.
Since the entries ui are positive for all the nodes i in the cycle,
the vector u so constructed belongs to T and C, and LoSE
follows from Proposition 3.10. ✷

We refer to the cycle in Theorem 3.11 as valid. The next result
guarantees the necessity of the existence of a valid cycle when
the input is restricted to have small values.

Corollary 3.12 (Necessary condition for LoSE in fully
inhibitory networks with pairwise unstable connectiv-
ity matrix with small inputs). Let W be fully inhibitory
and a pairwise unstable connectivity matrix. If u is restricted
to C, a valid cycle exists iff there is u for which LoSE holds.

PROOF. The implication from left to right follows from
Theorem 3.11. To show the other implication, by Proposi-
tion 3.10, we only need to prove that, when u ∈ C, the exis-
tence of a valid cycle is necessary for T to be not empty. We
reason by contradiction, i.e., assume there does not exist any
valid cycle but T 6= ∅. Let u ∈ C ∩T. As u ∈ T, there exists a
feasible sequence of inequalities. Let Gc be the corresponding
cycle, say of t nodes i1, . . . , it, encoding this sequence,

ui1 < ui2

di1,i1 + 1

di2,i1
, . . . , uit < ui1

dit,it + 1

di1,it

holds, which implies
di1,i1

+1

di2,i1

di2,i2
+1

di3,i2

. . .
dit,it

+1

di1,it

> 1. Due to

the structure of the adjacency matrix Fc of the cycle, this
means that det(Fc) > 1, and hence ρ(Fc) > 1, implying that
the cycle is valid, which is a contradiction.

The graph-theoretical approach to characterize LoSE in in-
hibitory networks with pairwise unstable connectivity matri-
ces can also be used to derive conditions on how the system
oscillations occur.

Theorem 3.13 (Node outside valid cycle does not os-
cillate).Consider a fully inhibitory network with pairwise un-
stable connectivity matrix and let i be one if its nodes. There
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exists u ∈ C that provides lack of stable equilibria for which
the node i does not oscillate, i.e. is always found in the same
saturated state, if and only if the node i does not belong to the
valid cycle associated to u.
PROOF. We prove the implication from left to right (the
other one can be reasoned analogously). As the node i does
not oscillate, then it must be in positive or negative satura-
tion. As u ∈ C, ui < (di,i +1)mi, then it must be in negative
saturation, because the node cannot remain in positive satu-
ration state. If a node is in negative saturation, then it does
not contribute to the oscillations of the other nodes, meaning
that it is effectively as considering a new network with N − 1
nodes. For this network to oscillate for u−i, it is necessary that
there exists a valid cycle (which will not include node i). ✷

4 Oscillations in Networks of Networks

Here, we build on the results of Section 3 to study the oscil-
latory behavior of a network of oscillators, each itself repre-
sented by a linear-threshold network. Motivated by the exper-
imental and computational evidence in brain networks, we are
interested in the phenomena of synchronization and phase-
amplitude coupling. Consider n oscillators, each modeled by
an E-I pair, connected over a network with adjacency matrix
A ∈ R

n×n
≥0 via their excitatory nodes [41]. Since A captures

inter-oscillator connections, its diagonal entries are zero. The
dynamics of the resulting network of networks is

Tẋ = −x+ [Wx+ u]m
0
, (23a)

where x = [x1, · · · ,xn], xi = [xi,1, xi,2], u andm have similar
decompositions, T = diag(τ1, τ1, τ2, τ2, . . . , τn, τn), and

W = diag(W1, . . . ,Wn) +A⊗E, E =

[

1 0

0 0

]

, (23b)

Wi =

[

ai −bi

ci −di

]

, Aii = 0, i ∈ {1, . . . , n}, (23c)

and ⊗ denotes the Kronecker product. We assume each E-
I pair oscillates on its own. The first question we address is
whether the pairs maintain oscillatory behavior once inter-
connected.

Theorem 4.1 (Excitatory-to-excitatory-coupled net-
works). Consider the dynamics (23) and assume that each
Wi satisfies the conditions of Theorem 3.1. Then, the overall
network does not have any stable equilibria if and only if

∑N

j=1
Aijmj,1 < ūi,1 − ui,1, (24)

ūi,1 , bi min
{

mi,2,
ui,2 + cimi,1

di + 1

}

− (ai − 1)mi,1,

holds for at least one i ∈ {1, . . . , n}. Moreover, the state of
any E-I pair for which (24) holds may not converge to a fixed
value (except for trivial solutions at unstable equilibria, if any)
irrespective of the validity of (24) for other pairs.

PROOF. Consider an arbitrary σ ∈ {0, ℓ, s}2n and let
L ⊆ {1, . . . , n}, |L| = r be the set of pairs whose re-
spective switching region from σ is unstable (i.e., σi =
(ℓ, j), j ∈ {0, ℓ, s}, i ∈ L). Let Π = Π̄ ⊗ I2 be the per-
mutation matrix that permutes the pairs such that these r

pairs are placed first. Then, Π(−I +ΣW)ΠT = [R, ⋆;0,N]
where R = −I + ΣL(diag({Wi}i∈L) + AL ⊗ E), N =
−I+ΣLcdiag({Wi}i∈Lc), andΣL is the 2r×2r principal sub-
matrix of Σ consisting of rows and columns corresponding to
the pairs in L. AL and ΣLc are defined similarly. Therefore,
the eigenvalues of −I+ΣW consist of those of R and N.

N has n − r eigenvalues equal to −1 and n − r eigenvalues
that equal −1 − di or −1, depending on whether σi,2 = ℓ or
not for each i ∈ Lc. On the other hand, if r > 0, then

tr(R) = tr(−I+ΣLdiag({Wi}i∈L))

≥ tr(−I+ diag({Wi}i∈L)) =
∑r

i=1
ai − di − 2 > 0.

Thus, any switching region Ωσ is stable if and only if σi,1 6= ℓ
for all i ∈ {1, . . . , n}. To prove the sufficiency of (24), consider
any stable Ωσ. Then, if (24) holds for even one i,

ui,1 +
∑n

j=1
Aij(x

∗
σ
)j,1 ≤ ui,1 +

∑n

j=1
Aijmj,1

(24)
< ūi,1,

ensuring x∗
σ

/∈ Ωσ (by Theorem 3.1) and the sufficiency
of (24). Regarding the last statement of the theorem, note
that for xi to converge to a fixed value,

∑

j Aijxj,1(t) must ei-
ther also converge to a fixed value or be greater than or equal
to ūi,1 − ui,1 for sufficiently large t, both contradicting (24).

To prove the necessity of (24), assume that it does not hold
for any i or, in other words, at least one of

ui,1+

N
∑

j=1

Aijmj,1>bimi,2 − (ai − 1)mi,1, (25a)

ui,1+

N
∑

j=1

Aijmj,1>
bi(ui,2+cimi,1)

di+1
−(ai−1)mi,1, (25b)

holds for all i ∈ {1, . . . , n}. Now, define σ ∈ {0, ℓ, s}n by

σi =

{

(s, s) if ui,2 ≥ (di + 1)mi,2 − cimi,1,

(s, ℓ) if ui,2 < (di + 1)mi,2 − cimi,1.

Note that (25b) implies (25a) if ui,2 ≥ (di + 1)mi,2 − cimi,1

and (25a) implies (25b) otherwise. Given that all the excita-
tory nodes are at saturation in σ, it is not difficult to show
that Ωσ (which is stable, by the reasoning above) contains its
equilibrium, showing the necessity of (24). ✷

The assumptions of Theorem 4.1 are consistent with the ob-
servation that long-range connections between different brain
regions are almost exclusively excitatory. Nevertheless, it is
possible that these excitatory connections target both excita-
tory and inhibitory populations in the receiving region. There-
fore, a more realistic scenario is where the inter-network cou-
pling consists of both excitatory-to-excitatory and excitatory-
to-inhibitory connections. This generality, however, comes at
the price that condition (24) becomes only sufficient.

Theorem 4.2 (Excitatory-to-all-coupled networks).
Consider the dynamics (1) with

W = diag(W1, . . . ,WN ) +Ae ⊗

[

1 0

0 0

]

+Ai ⊗

[

0 0

1 0

]

,
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where Ae,Ai ∈ R
N×N
≥0 , diag(Ae) = diag(Ai) = 0,

Wi =

[

ai −bi

ci −di

]

, ai, bi, ci, di > 0, ∀i ∈ {1, . . . , N},

and each Wi satisfies the conditions of Theorem 3.1. Then,
this system does not have any stable equilibria if

N
∑

j=1

Ae
ijmj,1 < bimi,2 − (ai − 1)mi,1 − ui,1 (26a)

N
∑

j=1

[(di + 1)Ae
ij − biA

i
ij ]

+mj,1 (26b)

<
(

bici−(ai−1)(di+1)
)

mi,1−(di+1)ui,1+biui,2

N
∑

j=1

[biA
i
ij−(di+1)Ae

ij ]
+mj,1 < (di+1)ui,1−biui,2 (26c)

all hold for at least one i ∈ {1, . . . , N}.

PROOF. Consider σ ∈ {0, ℓ, s}2N and let 0 ≤ n ≤ N be the
number of pairs whose respective switching region from σ is
unstable (i.e., (ℓ, 0), (ℓ, ℓ), (ℓ, s)). Without loss of generality,
let them be the first n pairs. Then,

−I+ΣW = Π









B1 ⋆ ⋆

0 B2 ⋆

0 0 −I









ΠT ,

where B1 = −I−Σi
n+1:Ndiag(dn+1, . . . , dN ) and B2 = −I+

Σ1:n(diag(W1, . . . ,Wn)+A1:n⊗diag(1, 0)), and Π is a per-
mutation matrix to separate the excitatory and inhibitory
nodes of the stable pairs. Therefore, similar to Theorem 4.1,
σ ∈ {0, ℓ, s}2N is stable if and only if all its N subindices
are stable. Assume this is the case and (26) holds (at least)

for i ∈ {1, . . . , N}. Then, from (26a), ui,1 +
∑N

j=1 A
e
ijx

∗
j,1 <

bimi,2 − (ai − 1)mi,1, and from (26b)-(26c),

0 < (di + 1)
(

ui,1 +

N
∑

j=1

Ae
ijx

∗
j,1

)

− bi

(

ui,2 +

N
∑

j=1

Ai
ijx

∗
j,1

)

<
(

bici − (ai − 1)(di + 1)
)

mi,1,

ensuring that x∗
σ

/∈ Ωσ. ✷

Unlike Theorem 4.1, the condition of Theorem 4.2 is not nec-
essary. The reason is that even if (26) is violated for all i,
they need not be violated with the same excitatory saturation
patterns (i.e., vectors in {0, s}N showing whether the excita-
tory node of each pair is in negative or positive saturation)
while in Theorem 4.1, if (24) is violated for any node, it would
be with the excitatory saturation pattern of (s, . . . , s) (possi-
bly among others). This ensures the existence of at least one
stable σ ∈ {0, ℓ, s}N (whose excitatory elements are all s)
that contains its equilibrium candidate. On the other hand,
when (26) is violated for each i, it may be with one or more
excitatory activation patterns none of which may be shared
among all the pairs. Therefore, the necessary and sufficient

condition for lack of stable equilibria in this case is that the
intersection of the sets of excitatory activation patterns of all
pairs is empty, with the convention that this set is empty for
any pair for which (26) holds.

5 Conclusions and Future Work

We have studied nonlinear networked dynamical systems
with bounded linear-threshold activation functions and dif-
ferent classes of architectures interconnecting excitatory and
inhibitory nodes. Given the arbitrary dimensionality of these
networks, and motivated by the Poincare-Bendixson theo-
rem, we have relied on the lack of stable equilibria (LoSE)
as a system-based proxy for the commonly used signal-based
definitions of oscillatory dynamics. Our main contributions
are various necessary and/or sufficient conditions on the
structure of linear-threshold networks for LoSE. In partic-
ular, we considered three classes of network architectures
motivated by different aspects of mammalian cortical archi-
tecture: networks with multiple excitatory and one inhibitory
nodes, purely inhibitory networks, and arbitrary networks of
two-dimensional excitatory-inhibitory subnetworks. Among
the important avenues for future work, we highlight the
extension of our results to include conduction delays, the ro-
bustness analysis to process noise, and the characterization
of phase-phase and phase-amplitude coupling.

Appendix A Lack of Stable Equilibria as a Proxy for
Oscillations

Throughout the paper, we employ LoSE as a proxy for oscilla-
tions, as defined in Definition 2.1. Here we provide numerical
evidence that, at least for systems with linear-threshold dy-
namics, this proxy is tight. The evidence is structured along
three directions. First, we perform a Monte Carlo sampling of
a 10-node linear-threshold network and show the strong over-
lap between networks that satisfy Definition 2.1 and those
without stable equilibria. Second, for the same sampled set, we
perform a similar comparison locally around the boundaries
of the LoSE parameter set, and show that the transition from
oscillating to non-oscillating and the transition from LoSE
to presence of stable equilibria are tightly related. Third, we
exploit the analytical characterizations in Section 4 to show
not only the tightness of LoSE as a binary measure of the ex-
istence of oscillations, but also the relationship between the
distance of a network to the appearance of stable equilibria
and the strength of its oscillations.

To numerically measure the existence and strength of oscil-
lations, we construct an oscillation index directly based on
Definition 2.1. First, we define a regularity index to quantify
Definition 2.1(i), i.e., the existence of distinct and pronounced
resonance peaks in the power spectrum of a state trajectory.
After mean-centering all state trajectories xi(t), we let Xi(f)
be the Fourier transform of xi(t), and fi = argmaxf |Xi(f)|.
The regularity index is defined as

χreg = max
i=1,...,n

χreg,i,

χreg,i =
|Xi(fi)|

max{|Xi((1− ǫ)fi)|, |Xi((1 + ǫ)fi)|}
∈ [1,∞),

where ǫ ∈ (0, 1). For each i, a value of χreg,i = 1 indicates a
flat power spectrum (lack of oscillations) whereas χreg,i → ∞
indicates a Dirac delta at fi (periodic oscillations). Clearly,
the regularity of oscillations lies on a continuum, with more
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regularity (less chaotic behavior) as χreg,i grows. We then
take the maximum of χreg,i to obtain a regularity index of the
collection of state trajectories x(t).

Second, we quantify Definition 2.1(ii) (lack of a constant
asymptotic limit) simply by the steady state peak to peak
amplitude of the oscillating trajectories, normalized by its
maximum value possible, and maximized over all trajectories,

χpp = max
i=1,...,n

lim supt→∞ xi(t)− lim inft→∞ xi(t)

mi

The larger χpp, the stronger the oscillations in (at least one
channel of) x(t), regardless of how regular or chaotic they
are. Inclusion of this second metric is critical in distinguishing
between oscillations that are extremely regular but almost
vanishing in magnitude (and hence devoid of any practical
significance), and oscillations with significant amplitudes.

We combine the regularity and peak to peak indices to obtain
the oscillation index,

χosc = χreg · χpp (27)

Among the various potential ways of combining χreg and χpp,
this choice acts a conjunction of regularity and strength mea-
sures, so that a signal is considered oscillatory if it has high
regularity and strength, as required in Definition 2.1.

A.1 Global Inspection via Monte-Carlo Sampling of Struc-
tural Parameters

We start our numerical inspection of the relationship between
LoSE and existence of oscillations using a global Monte-Carlo
sampling of the parameter space of linear-threshold networks.
In general, the distribution of indices χreg, χpp, and χosc de-
pend on the number and excitatory/inhibitory mix of the
nodes. However, this dependence is not critical while, at the
same time, sweeping over NE and NI would be computation-
ally prohibitive for our Monte-Carlo sampling. Therefore, we
here generate 20000 randomnetworks using the fixedmedium-
range values of NE = NI = 5 and address the role of network
size in Section A.3. We use parameter values drawn randomly
and independently from the following distributions

|wij | ∼ U(0, B), ui ∼ U(−B,B), mi ∼ U(1, B)

xi(0) ∼ U(0,mi), ∀i, j = 1, . . . , n,

where n = NE+NI = 10 andB = 10 is an (arbitrary, but nec-
essary) upper bound on the parameter values. We employ the
value of τ = 1 throughout as the timescale only compresses
or stretches the trajectories over time. For each random net-
work, we first check whether it possesses any stable equilib-
ria from (3). For networks that lack any stable equilibria, we
simulate their trajectories, starting from random initial con-
ditions, over a sufficiently long time horizon 6 and compute
their value of χosc in (27). For networks that did have (one or
more) stable equilibria, we repeat the same but starting from
10 different initial conditions to capture the possibility of the
co-existence of oscillatory and equilibrium attractors.

Figure 2 shows the resulting statistics. First, we observe that
the lack of stable equilibria is less frequent than their exis-

6 We simulate all network trajectories over t ∈ [0, 2000] with a
time step of 0.01 using MATLAB’s ode45 and use the final 5% of
the trajectories for the computation of χreg and χpp.

tence in random networks. Second, the values of χosc lie on
a continuous spectrum, regardless of whether the networks
possess or lack stable equilibria. However, the distribution of
χosc is significantly different between the two cases.

Threshold ϑ

Fig. 2. The statistics of LoSE and χosc for randomly generated lin-
ear-threshold networks via Monte-Carlo sampling of their parame-
ter space, as described in Section A.1. Top right, only about 8% of
networks without stable equilibria lack strong oscillations (though
the majority still possess weak oscillations). Bottom right, only
about 5% of networks with stable equilibria also have strongly os-
cillatory trajectories (corresponding to rare oscillatory attractors
that co-exist with equilibrium attractors).

To quantify this difference, we need to place a threshold on
the value of χosc and binarize the networks into ones that do
show oscillatory activity and ones that do not. In order to
avoid using arbitrary thresholds, we chose to obtain it from
the empirical distribution of χosc we have just obtained. It
can be seen from the bottom-right panel of Figure 2 that the
distribution of χosc for networks with stable equilibria is nat-
urally tri-modal. The three chunks of the distribution corre-
spond, roughly, to strongly oscillating, barely oscillating, and
effectively non-oscillating trajectories, respectively. We thus
fit a Gaussian mixture model to this distribution and use the
trough of the distribution between the center and right modes
as the threshold for the existence of oscillations. Let this
threshold be called ϑ. To ensure uniformity, ϑ is also used for
networks without stable equilibria. Accordingly, we observe
that only about 8% of networks without stable equilibria lack
strong oscillations (though the majority of which still possess
weak oscillations) indicating the near-sufficiency of LoSE for
existence of oscillations. On the other hand, only about 5% of
networks with stable equilibria also have strongly oscillatory
trajectories (corresponding to rare oscillatory attractors that
co-exist with equilibrium attractors, each having their respec-
tive regions of attraction) showing the near-necessity of LoSE
for exhibiting oscillations.

In conclusion, on a global landscape of the parameter space,
LoSE provides an unambiguous and system-based proxy with
great analytical utility for the existence of oscillations which
closely matches the signal-based definition of oscillations (cf.
Definition 2.1) used in computational neuroscience.
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A.2 Local Inspection via Linear Sweeping of Structural Pa-
rameters

In this section, we assess the consistency of LoSE as a proxy
for oscillations on a local basis. Our basic idea is the following:
given a pair of networks, one which displays strong oscillations
and another that displays none, consider the convex combina-
tion of their parameters (W,m,u). As we traverse the result-
ing convex set, the strong oscillations present on one extreme
eventually disappear into the non-oscillatory behavior of the
other extreme. Given our discussion above, the value of the
convex parameter where this transition occurs can be deter-
mined in two different ways: either through LoSE or through
the oscillatory metric χosc. The extent to which the two ways
coincide offers a measure of the local consistency of LoSE as
a proxy for oscillations.

We carry out this vision by randomly selecting 500 pairs of
networks out of the 20000 generated in Section A.1 as fol-
lows. The first network of each pair is uniformly randomly
selected among the strongly oscillating networks of the top-
right panel of Figure 2 (those to the right of the black ver-
tical line) that also lack stable equilibria, while the second
network of each pair is uniformly randomly selected from
the almost non-oscillating networks of the bottom-right panel
of Figure 2 (those belonging to the left-most bump in the
distribution) that have some stable equilibria as well. Let-
ting (W1,m1,u1) and (W2,m2,u2) denote the parameters of
these networks, we then linearly sweep between the two to ob-
tain networks with parametersW = (1−α)W1+αW2,m =
(1− α)m1 + αm2,u = (1− α)u1 + αu2, α ∈ [0, 1],

and compute LoSE and χosc for each intermediate network.
Given the fact that the set of networks with LoSE is not con-
vex, we only retain the cases for which only one switching in
LoSE occurred between the end points as we sweep (due to
the complexity of estimating the switching point in χosc, as
discussed next). The value of α at which LoSE switches (i.e., a
stable equilibrium point appeared) is defined as α∗

LoSE. Simi-
larly, the value of α at which log(χosc) crosses the threshold ϑ
is defined as α∗

χosc
. Due to the noisy nature of χosc estimation

(see, e.g., Figure 3(b-d)), the numerical (or even visual) de-
tection of this threshold crossing is often not straightforward.
Here, we define α∗

χosc
as the first time (while increasing α from

0 to 1) that the average of 3 consecutive χosc values is above
ϑ and the average of the following 3 χosc values falls below ϑ.

The resulting comparison of α∗
LoSE and α∗

χosc
for the 500 ran-

dom pairs of networks (except those having more than one
switch in LoSE, as noted above) is shown in Figure 3(a). De-
tails of three sample scenarios are also shown in Figure 3(b-d),
with the corresponding points marked in Figure 3(a). Even
though not all the points lie on the α∗

χosc
= α∗

LoSE line, they
are often very close to it, indicating a strong consistency be-
tween the detection of oscillations using LoSE and χosc.

In addition to the closeness of the majority of the points to
the α∗

χosc
= α∗

LoSE line, also notable from Figure 3(a) is the
fact that the majority of the points lying away from this line
lie above it, a situation exemplified in Figure 3(c). This cor-
responds to scenarios where the creation of the stable equi-
librium point at α∗

LoSE does not immediately nullify the on-
going oscillatory attractor, but the two coexist with distinct
regions of attraction for some range of α values. The points
lying below the α∗

χosc
= α∗

LoSE line, however, often indicate
a complexity with the detection of α∗

χosc
. An example of this

can be seen in Figure 3(d), where α∗
χosc

is detected as the first

(a) (b)

(c) (d)

Fig. 3. The consistency of LoSE (as a proxy for oscillations) and
χosc (as a “ground truth” measure of oscillations) when locally
sweeping between network parameters that give rise to oscilla-
tions and those that do not. (a) The value of α at which LoSE
switches vs. the value of α at which log(χosc) crosses the thresh-
old ϑ. Note the gathering of the majority of the points around
the α∗

χosc
= α∗

LoSE line. (b-d) Sample plots of LoSE (left verti-
cal axis) and log(χosc) (right vertical axis) as a function of α for
three sample cases denoted in panel (a). The red horizontal dot-
ted line indicate the oscillation threshold ϑ. Panel (b) illustrates
a common mid-point scenario where α∗

χosc
≃ α∗

LoSE while (c) and
(d) illustrate two extreme conditions.

threshold crossing, much sooner (smaller) than α∗
LoSE, even

though a meaningful drop in χosc is also clearly visible near
α∗
LoSE. Note, also, that α∗

χosc
< α∗

LoSE indicates a range of
α values for which neither a stable equilibrium point nor a
strong oscillation exists. Since an attractor must nevertheless
exist, it can either be a highly chaotic one (small χreg) or an
oscillatory one with very small amplitude (small χpp), neither
of which we found to be common in networks of size n ≃ 10.

A.3 Global Inspection in Networks of E-I Pairs

In Sections A.1 and A.2, we have inspected general excitatory-
inhibitory networks with arbitrary connection patterns be-
tween the nodes. Here, we inspect the networks of E-I pairs
studied in Section 4. These networks not only constitute an
important special case from a computational neuroscience
standpoint, but they also lend themselves to theoretical char-
acterizations such as that in Theorem 4.1. Here, we inspect
the quality of LoSE as a proxy for oscillations using the the-
oretical condition in (24). To this end, we construct random
networks according to

di ∼ U(0, dmax), ai ∼ U(amin, amax), amin > dmax + 2,

bi = ci ∼ U(bmin, bmax), bmin >
√

(amax − 1)(dmax + 1),

mj,i ∼ U(mj,min,mj,max), m2,min >
amax − 1

bmin
m1,max,

τi ∼ U(τmin, τmax), i.i.d. ∀j = 1, 2, i ∈ {1, . . . , n}, (28)

all satisfying (4a)-(4c). The values of ui,1 and ui,2 are cho-
sen at the center of their respective ranges in (4d)-(4e) so
that the E-I pairs oscillate at their maximum amplitude be-
fore interconnection. For A, we first generate a random G ∈
R

n×n
≥0 with zero diagonal and set A = ηĀ, Ā = diag(ū1 −

13



Fig. 4. Strength and regularity of oscillations as a function of
inter-oscillator connection strength (η). The probability density
function of logχosc is plotted for n = 10 and varying η. Each
distribution is based on 1000 random networks (28) with dmax = 1,

amin = 3.5, amax = 5, bmin =
√
8+0.5, bmax =

√
8+2, m1,min = 1,

m1,max = 2, m2,min = 8/bmin +0.5, m2,max = 8/bmin +2, τmin=1,
τmax=10.

u1)G[diag(G1n)diag(m1)]
−1. A then satisfies (24) for all

i ∈ {1, . . . , n} iff η ∈ [0, 1).

Figure 4 shows the distribution of logχosc for random net-
works of n = 10 oscillators, ǫ = 0.1, and varying intercon-
nection strength η. For disconnected oscillators (η = 0), each
oscillator has a perfectly regular oscillation (by Theorem 3.1)
and thus very large χosc (though finite, due to the finiteness
of χreg, which is in turn due to finite signal length and nu-
merical error). These oscillations lose their regularity and/or
strength as we increase the connection strength η towards 1,
but still persist up to η = 0.99, showing the almost sufficiency
of (24). Moving beyond η = 1, almost no oscillations persist
even at η = 1.01 (and less so at η = 1.1) due to convergence
to the stable equilibria ensured by Theorem 4.1. This shows
that (24) is also almost necessary for existence of oscillations
in the network dynamics (23).
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[3] H. Berger. Über das elektrenkephalogramm des menschen.
Archiv für Psychiatrie und Nervenkrankheiten, 87(1):527–570,
Dec 1929.

[4] R. M. Borisyuk and A. B. Kirillov. Bifurcation analysis of a
neural network model. Biological Cybernetics, 66(4):319–325,
1992.

[5] M. Breakspear, J. A. Roberts, J. R. Terry, S. Rodrigues,
N. Mahant, and P. A. Robinson. A unifying explanation of
primary generalized seizures through nonlinear brain mod-
eling and bifurcation analysis. Cerebral Cortex, 16(9):1296–
1313, 2006.

[6] M. Breakspear, S. Heitmann, and A. Daffertshofer. Gener-
ative models of cortical oscillations: neurobiological implica-
tions of the Kuramoto model. Frontiers in Human Neuro-
science, 4:190, 2010.
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