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ABSTRACT
Most biology undergraduates learn about mutations in multiple class
rooms throughout their college career. Understanding personalised gen
ome test results, genome editing controversies, and the appearance of 
new variants of viruses or antibiotic resistant bacteria all require founda
tional knowledge about mutations. However, the abstract nature of mole
cular processes surrounding mutations makes them one of the more 
difficult topics for students to understand and apply. Instructors need 
valid assessment tools to document student understanding and tailor 
their instructional methods to address student knowledge gaps. We 
describe here the development and validation of the Mutations Criterion 
Referenced Assessment (MuCRA). This formative assessment was devel
oped through an iterative process involving expert feedback and student 
responses to both open-ended and multiple-choice questions. The final 
MuCRA is composed of 10 multiple-choice questions aligned with three 
learning objectives. The item difficulty for each question was between 
0.32–0.65, while the discrimination index ranged from 0.31–0.75 and the 
reliability (KR20) for the MuCRA was 0.69. The congruence analyses 
demonstrated distractors are capturing student misconceptions in 9/10 
questions. These data indicate that the MuCRA can be used to reliably 
assess student learning and common misconceptions about mutations.
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Introduction

Both the United States and the European Union describe science literacy skills as scientific knowl
edge combined with an understanding of the interactions between science and society (Stern and 
Kampourakis 2017). While knowledge of basic genetics principles is key to genetics literacy, barriers 
to both teaching and learning genetics include the abstract nature of a gene, students’ lack of 
statistical reasoning skills necessary to understand transmission genetics, faculty use of discipline- 
specific terminology and symbols, and students’ lack of understanding of the process of cellular 
division (Knippels, Waarlo, and Boersma 2005). Furthermore, these difficulties are often mirrored 
in the general public’s understanding (Lanie et al. 2004), where misconceptions are reinforced by 
genetics misinformation used as a plot device in movies and other media (Kampourakis 2017; 
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Roberts et al. 2018; Muela and Abril 2014). One phenomenon that is persistently and pervasively 
used inaccurately is mutation. Young individuals are introduced to and retain incorrect ‘mutation’ 
and ‘mutant’ terminology and ideas from comic books, cartoons, and movies, such as the Teenage 
Mutant Ninja Turtles (Klaehn 2015) and the X-Men (Trushell 2004). This is particularly troubling 
given the dark history of eugenics and the use of genetic pseudoscience to justify racism, ableism, 
and sexism (Hales 2020). While popular culture may refer to individuals as mutants, it is stigmatis
ing to those affected by genetic conditions. One way to avoid these problems is to precisely define 
and apply the concept of mutation as used by biologists.

Inaccuracies related to mutations often lead to misunderstandings regarding truly foundational 
concepts in biology, including inheritance, evolution, genetic risk assessment, and genetic technol
ogies. Conceptual accuracy is necessary for scientists and citizens to understand and knowledgably 
use the products of genetic technology. For example, the techniques needed to generate genetically 
modified organisms (GMO), which are often misunderstood and vilified, are nearly identical to 
those used in gene therapy and genetic testing, which are frequently praised (Hekmat and Dawson 
2019). Precision genome editing is now not only feasible, but relatively easy, using CRISPR-based 
technologies (Ran et al. 2013). Mutations in SARS-CoV2, the virus that causes COVID-19, 
produced the Delta, Omicron, and other variants of concern (Braund 2021). For these reasons, 
understanding the nature, consequences, and applications of mutations is crucial to developing the 
genetics literacy skills needed to make informed health decisions.

The Genetics Society of America (GSA) has identified mutations as a core concept in their 
curricular recommendations (Committee, Genetics Society of America Education 2016) and most 
introductory genetics courses include mutations. However, biology educators currently lack tools to 
reliably assess students’ abilities to define and apply their knowledge concerning mutations. 
Misconceptions, or alternate conceptions, are the inaccurate ideas and meanings that students 
associate with science concepts (Bahar, Johnstone, and Hansell 1999). These conceptions are 
frequently linked to past experiences and intuitive thinking rather than empirical data (Coley and 
Tanner 2015; Prokop, Fančovičová, and Krajčovičová 2016). For example, a common biology 
misconception is that different cells in the body have different genes (Coley and Tanner 2012a). 
Identifying which misconceptions students hold can inform teaching practices. Therefore, it is 
important to create an assessment for educators to accurately gauge mutation conceptual under
standing and identify the nature of student misconceptions. With validated and reliable assessment 
tools, practicing faculty can improve their classroom pedagogy as well as compare teaching and 
learning across classrooms.

Concept inventories (CIs) are a specific subset of criterion referenced assessments (CRA) that are 
multiple-choice instruments used to gauge students’ conceptual understanding about a topic 
(Hestenes, Wells, and Swackhamer 1992; Klymkowsky, Garvin-Doxas, and Zeilik 2003; Smith, 
Wood, and Knight 2008; Gurel, Eryılmaz, and McDermott 2015). A CRA investigates performance 
relative to specific criteria (McDonald 2013). A key feature of concept inventories is the multiple- 
choice questions with answer options that include common student errors in thinking or mis
conceptions. These student misconceptions are identified through teaching experience, interviews 
with students, and open-ended questionnaires in the pilot stage of the instrument. The distractors 
allow educators to identify and quantify the number and distribution of different misconceptions 
within a target student population before and after instruction.

Concept inventories in biology

Within the last two decades, biology educators have published multiple instruments for various 
biological concepts (Klymkowsky, Garvin-Doxas, and Zeilik 2003; Stefanski, Gardner, and Seipelt- 
Thiemann 2016; Paustian et al. 2017; Smith, Wood, and Knight 2008). The Genetics Concept 
Assessment (GCA) broadly captures student understanding and misconceptions of multiple genetic 
concepts including transmission, population, and molecular genetics (Smith, Wood, and Knight 
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2008). Since it was published in 2008, the GCA has been cited over 300 times. It has been used to 
identify common genetics errors (Coley and Tanner 2012a; Smith and Knight 2012) and study the 
effectiveness of teaching methods (Andrews et al. 2011; Levesque 2011). Focused assessments, such 
as the Lac Operon Concept Inventory (Stefanski, Gardner, and Seipelt-Thiemann 2016), are more 
specific and assess changes in student understanding of a single concept (Ones and Viswesvaran 
1996). Generalised knowledge and overall skills are better assessed with broad, general assessments, 
while specific skills and specialised knowledge are better determined by focused, specific instru
ments (Spector 2012; Ones and Viswesvaran 1996). Smaller, more focused assessments have the 
potential for a large benefit because they make timely changes to teaching strategies possible when 
they are used immediately after a concept is taught. The larger concept inventories, such as the GCA 
are typically used to assess the entire course, which means the post test is often given during the last 
week of class, when it is too late to intervene to help students that are struggling. When aligned with 
specific, measurable, learning objectives, these focused criterion referenced assessments can be used 
to measure the relative efficacy of different learning tools and methods for a specific concept.

The goal of this research project was to construct a valid and reliable criterion referenced 
assessment (MuCRA) that: 1) is based in broadly-accepted criteria used by the Genetics Society 
of America (GSA) and learning objectives identified by experienced educators and 2) accurately 
measures student understanding of those learning objectives in a wide variety of settings.

Methods

Participants and context

This study was conducted at seven institutions across the United States: Utah Valley University 
(UVU), Bridgewater State University (BSU), University of Wisconsin at La Crosse (UWL), 
University of Northwestern at St. Paul (UoN), Iowa State University (ISU), Middle Tennessee 
State University (MTSU), and University of North Carolina at Asheville (UNC). These institutions 
include two doctoral universities (R1 and D/PU), three master’s universities (M1, M2, and M3), and 
two baccalaureate colleges based on their Carnegie classification in Fall 2017. The schools ranged in 
size from 37,282 to 1,889 students; underrepresented minority student populations range from 11% 
to 24%, and female student population ranges from 43% to 61%. Data collection occurred across 
five semesters: Fall 2017, Spring 2018, Fall 2018, Spring 2020 and Summer 2020. Student partici
pants were enrolled in a variety of courses depending on the institution and were registered as either 
biology majors or non-majors. The Internal Review Board (IRB) from each institution approved 
this study, with ISU and MTSU being granted primary approval, and collaborating school institu
tional review board’s (IRB) reviewing the ISU documentation and approving the project described 
as exempt, giving it their own approval code, or using the ISU approval code (#17-213): (MTSU 
IRB18-1002, ISU (#17-213); Utah Valley University: (IRB #01995); Bridgewater (Exempt); UW- 
Lacrosse (Approved ISU IRB 17–213); NW-St. Paul (Exempt); UNC-Asheville (Exempt)).

Mutations criterion referenced assessment design overview

The Mutations Criterion Referenced Assessment (MuCRA) was developed using established meth
odology for concept inventory instrument design (Adams and Wieman 2011; D’Avanzo 2008; Kalas 
et al. 2013; Paustian et al. 2017; Smith, Wood, and Knight 2008; Stefanski, Gardner, and Seipelt- 
Thiemann 2016), which included faculty input and student feedback at multiple stages. The 
MuCRA was created using a four-phase, iterative process involving fourteen steps with feedback 
from faculty experts at three points, gathering student responses at four points, and data-driven 
revision of questions and answers at four points (Figure 1). The four phases were as follows: (I) 
establishing learning objectives and developing open-ended questions using feedback from multiple 
genetics faculty, (II) creating multiple choice questions using student words and phrasing where 
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possible, (III) revising and removing multiple choice questions to create the final instrument, and 
(IV) confirming the discriminant validity of distractors. Collection and analysis of student 
responses occurred at the end of each phase (Figure 1: Steps 5, 8, 10, & 13). During steps 9 and 
12, we used psychometric methods to evaluate the reliability (KR-20), item difficulty, and internal 
consistency (point biserial and item discrimination) of each question and the MuCRA as a whole 
(McDonald 2013) (Figure 1; Table 3).

Establishing learning objectives

The research team developed learning objectives based on four major concepts related to mutations 
(Table 1).

Figure 1. Development and testing of the Mutations Criterion Referenced Assessment (MuCRA). The MuCRA was developed in 
four steps. First (1), the research team developed learning objectives based on their experience, the Genetics Society of America’s 
curricular guidelines, and feedback from teaching faculty (2). The team then developed open ended questionsto probe student 
understanding of learning objectives and elicited feedback (3-4) before gathering student data (5). These data were analyzed to 
identify and encode common errors (6) that were used to develop multiple choice questions (7). We gathered initial and analyzed 
initial student response data (7-8) and removed 4 questions (9). In phase III, we gathered student and faculty data (10-11) from 
multiple classrooms and removed 3 questions (12).We confirmed distractors were capturing student thinking by gathering and 
analyzing student data (13) in phase IV.

Table 1. Developing Mutation Learning Objectives based on GSA guidelines

Concept
Learning objective 

Students should be able to:
GSA Genetics Learning Framework 

Example Learning Objectives

Mutations are changes to DNA. LO1: Define mutation.
Mutations can be point mutations or 

involve larger segments of DNA. These 
may or may not have different 
outcomes at the protein level.

LO2: Categorise changes to DNA and 
predict the outcome of these changes on 
a protein produced from the altered 
DNA using the genetic code.

‘Explain how the genetic code relates 
transcription to translation’

In multicellular sexually reproducing 
organisms, mutations may occur in 
somatic cells or in germ-line cells.

LO3: Differentiate between somatic and 
germline mutations and predict the 
inheritance patterns of each type of 
mutation

‘Compare and explain the inheritance 
of germline and somatic mutations’. 
‘Distinguish between loss of 
function and gain of function 
mutations and their potential 
phenotypic consequences’.

Mutations may be induced by physical, 
chemical or biological processes.

LO4: Predict the nature of changes to DNA 
exposed to intercalating agents, base 
analogs, and radiation.

‘Describe how mutations arise and how 
environmental factors can increase 
mutation rate’.
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These learning objectives were written based on GSA’s Genetics Learning Framework 
(Committee, Genetics Society of America Education 2016) for undergraduate genetics education, 
Vision and Change for Undergraduate Biology Education Core Competencies (Brewer and Smith 
2009; Brownell et al. 2014), and the expertise of two biology faculty with decades of experience 
teaching general genetics. The first and most basic learning objective is that students should be able 
to define mutation (Learning Objective 1; LO1). Predicting the outcome of a DNA change connects 
genotype to phenotype, and DNA to other cellular components and processes. Students should 
therefore be able to categorise changes to DNA and predict the effect of these changes on proteins 
using the universal genetic code table (Learning Objective 2: LO2). Mutations in germline cells 
behave differently than those in somatic cells. This is a core concept in transmission genetics and 
this physical basis of mutations and inheritance affects understanding of other topics (e.g. mitosis, 
meiosis, gene therapy, fertilisation, and transgenic expression). Students should be able to differ
entiate between somatic and germline mutations and predict the inheritance patterns of each type 
of mutation (Learning Objective 3: LO3). To demonstrate understanding of the mechanisms by 
which mutations induce mutations, students should be able to predict the nature of changes to 
DNA exposed to intercalating agents, base analogues, and radiation (Learning Objective 4: LO4).

We distributed these preliminary learning objectives to six faculty from four different institutions 
(Iowa State University, Middle Tennessee State University, University of California-Irvine/Maastricht 
University, University of Northwestern at St Paul) with expertise in teaching undergraduate genetics 
concepts (Figure 1: Step 2). Faculty provided feedback regarding: 1) whether each learning objective 
was appropriate to how they taught their classes, 2) if any concepts were missing or unnecessary, 
and 3) whether the faculty included each concept in their courses. This expert feedback confirmed that 
the four learning objectives reflected their teaching practices and course goals.

Open-ended question development and review

The team designed 19 open-ended questions to probe student understanding of the four learning 
objectives and capture student wording and phrasing (Figure 1: Step 3), 10 of which remain in the 
final multiple-choice criterion referenced assessment (MuCRA). After we created the initial open- 
ended questions, six faculty who teach genetics reviewed them to verify that each question aligned 
with stated learning objectives (Figure 1: Step 4). Before testing in classrooms, these open-ended 
questions were revised for clarity based on feedback from this faculty group.

Gathering open-ended student responses

We gathered student written responses to these questions in general biology and genetics courses 
post-instruction at both ISU and MTSU. Additionally, 19 students who completed the open-ended 
questionnaire self-selected to participate in interviews (Figure 1: Step 5). During the interviews, 
students were given their responses from the open-ended questions and asked to re-answer the 
questions and explain their reasoning for their answers using a think-aloud method (Padilla and 
Leighton 2017). The research team analysed student written responses (n = 394) and transcribed 
student interview responses (n = 19) to: 1) identify student phrasing that could be used to make the 
questions, 2) diagnose problems with question readability, and 3) document common student 
errors that could be used as distractor answers. We evaluated each question based on student 
responses (Figure 1: Step 6). One open-ended question was discarded due to question redundancy 
(LO1) and another was discarded due to unclear question wording (LO2). Following this step, the 
questions representing LO1 and LO2 were each reduced from five to four questions. At the end of 
Phase I, the MuCRA consisted of 17 questions.

JOURNAL OF BIOLOGICAL EDUCATION 5



Multiple-choice question design

During Phase II of development, we re-formatted the open-ended questions as multiple-choice 
questions (Figure 1: Step 7). We constructed a codebook based on the student answers to each 
question by individually coding 10% of the student responses, and discussing similar mistakes to 
group into broader code categories. We incorporated student wording, phrasing, and reasoning 
into both the correct and distractor responses from the open-ended question responses and inter
view data (Supplement #1). The team constructed the multiple choice question responses (both 
correct and incorrect) using assessment design best practices so that responses had equivalent 
lengths, similar phrasing, and the correct answer placed randomly for each question (Haladyna, 
Downing, and Rodriguez 2002).

Initial multiple-choice assessment testing and psychometric analyses

We gathered post-instruction multiple choice response data from 453 students across two 
universities (ISU and MTSU) at the end of the Fall semester of 2018 (Figure 1: Step 8). Data 
were combined and used to calculate preliminary validity and reliability measures (Table 2).

Such as KR20, item difficulty, item discrimination, and point-biserial correlation coefficient 
using IBM SPSS® (Field 2013) (See ‘Assessment Validation” for details of the techniques used in this 
study). Based on psychometric analyses, four additional questions were removed from the instru
ment. (Figure 1: Step 9). One question was removed from LO1 to more evenly distribute the 
questions across the learning objectives; this question was chosen for removal because it was very 
similar to another question in LO1. Due to the frequency of incorrect student answers and low point 
biserial coefficients, two questions were removed from LO3. Finally, one question was removed 
from LO4 because it required prior knowledge of mitosis and the eukaryotic cell cycle as well as the 
targeted objective of mutagen action. At the end of Phase II, the MuCRA consisted of 13 questions 
(Figure 1: Step 9).

Secondary assessment testing and psychometric analyses

In Phase III, the revised MuCRA was tested in multiple classrooms at various undergraduate levels 
of experience (i.e. general biology, general genetics, and advanced genetics courses) across seven 
higher education institutions. The revised MuCRA was given as a pre- (n = 286) and post-test 
(n = 302) with 124 students answering both pre- and post-tests (Figure 1: Step 10).

We used post-instruction data to calculate the KR20, item difficulty, item discrimination, and 
point-biserial correlation coefficient using IBM SPSS®. Several faculty using the Phase III MuCRA 
reported not teaching mutagen mechanisms in their classes (Figure 1: Step 11). Unsurprisingly, 
these mutagen questions showed modest learning gains for this learning objective and the 

Table 2. Description of validity and reliability statistical measures.

Item Definition Optimal Values

Kuder- 
Richardson 
20 (KR-20)

Internal consistency as a measure of reliability based on item 
covariance. Performance on each question correlates with 
performance on the entire assessment.

Values above 0.70 are optimal (Streiner 
2003)

Item Difficulty Determines how hard each question is based on the proportion 
of students who selected the correct answer.

A range of positive values (Crocker and 
Algina 1986)

Discrimination 
Index (D27)

Shows if the test can distinguish between the low and high 
performing students by comparing proportions of these 
students who selected the correct answer.

Values at or above 0.30 are good and 
above 0.2 acceptable (Ebel and Frisbie 
1972)

Point-biserial 
correlation

Determines if each question is an accurate representation of the 
overall scores

Values at or above 0.30 are good 
(McCowan and McCowan 1999)
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psychometric data indicated these questions had less discriminatory power than the rest of the 
MuCRA. We removed three more questions, eliminating LO4 entirely (Figure 1: Step 12). The 
shortened criterion referenced assessment more accurately reflects the learning objectives taught in 
general biology and genetics courses. At the end of Phase III, the final MuCRA consisted of 10 
questions: three in LO1, four in LO2, and three in LO3 (Figure 1: Step 12).

Assessment validation

The aim of this project was to design an assessment tool for instructors to measure undergraduate 
student understanding of mutation concepts. A well-designed assessment tool can accurately assess 
the efficacy of specific educational activities and can also be used to assess prior knowledge and 
determine how student reasoning changes as students move from naïve to more expert-like thinking. 
A criterion referenced assessment should have the ability to accurately measure understanding of 
described criteria, or learning objectives (i.e. the instrument should be valid in the context given) 
(Glaser 1963) and should be able to consistently evaluate this understanding in different contexts (i.e. 
the instrument should be reliable). In order to evaluate validity and reliability, we designed and 
evaluated the mutations criterion referenced assessment (MuCRA) using several common psycho
metric statistics, including Kuder-Richardson 20 (KR-20), item difficulty, discrimination index (D27), 
and point-biserial correlation (Table 2). We further tested each question and the instrument as 
a whole by calculating the discrimination index and point-biserial correlation of each question. The 
discrimination index is a measure of each question’s ability to distinguish between top- and low- 
performing students. The generally accepted threshold for the discrimination index for assessment 
questions is 0.30 (Ebel 1954). The point-biserial correlation measures the correlation between student 
responses on one question to their overall test score to determine if each student responses to each 
question are consistent with the overall performance on the instrument.

While the use of Rasch analysis or other item response theory (IRT) methods to validate 
assessments has increased in the past decade, these statistical models assume unidimensionality 
(Hambleton, Zenisky, and Popham 2016), meaning the assessment conceptual understanding of 
a single dimension of information. Since the MuCRA has three separate learning objectives that 
probe understanding at multiple levels (definition, molecular application, organismal effects), the 
assumption of unidimensionality is questionable in this context (Huynh 2010). To test the assump
tion that student responses could be reduced to a single dimension of information or conceptual 
understanding, we ran separate non-parametric multidimensional scaling (nMDS) analyses on the 
data specifying solution dimensionalities 1 through 9, and examined the stress measurement for 
each nMDS run. Stress is a measure of the difference between the data and the model, and a stress of 
zero indicates that the model is over-fit (Kruskal 1964). For the pre-test data, stress was zero in 
solution dimensions 5–10, while for the post-test data the ordination returned non-zero stress 
values for the first three solution dimensions. These results suggest that the pre-test data contain 
useful information in up to four dimensions, while the post-test data are informative in up to three. 
Classical test theory does not rely on the assumption of unidimensionality that is required for Rasch 
analysis and other IRT models (De Champlain 2010; Hambleton and Rogers 1989; Hambleton and 
Jones). We therefore used the well-established tools from classical test theory (Table 2) and 
distance-based ordination methods rather than IRT to investigate the relationships among learning 
objectives, MuCRA questions, and student responses.

We computed a permutational multivariate analysis of variance (PERMANOVA) and non-metric 
multidimensional scaling (nMDS) using the vegan package (Oksanen 2019) in R version 4.0.2 (R Core 
Team 2020) to determine if student responses clustered by learning objective (Napior 1972; Jaworska 
and Chupetlovska-Anastasova 2009), and to compare student response patterns for questions given 
prior to and after instruction. The function vegdist was used to create two Jaccard dissimilarity 
matrices from binary-coded data (correct/incorrect student response) for pre- and post-instruction 
(one matrix each, n = 286 and 302 respectively, with 124 students included in both datasets); analyses 
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were conducted on each dissimilarity matrix separately. To test if learning objectives significantly 
contributed to clustering of student responses, we conducted a PERMANOVA using the adonis 
function with 9,999 permutations. Because PERMANOVA is sensitive to heterogeneity of variance for 
unbalanced designs (Anderson 2017), heteroscedasticity tests were also performed using the betadis
per function and permutest function with 9,999 permutations.

Results from the literature indicate that for ten observations (i.e. ten questions on the MuCRA) an 
nMDS solution should be calculated using no more than 2 dimensions (Kruskal 1964; Shepard 1974). 
We therefore used the metaMDS function to calculate 2-dimensional solutions (specifying k = 2) and 
plotted results using the ggplot2 (Wickman 2016) and ggConvexHull packages (Martin 2017).

Distractor confirmation congruence analysis

Students in two general genetics classes (Spring and Summer 2020) were given the final MuCRA 
and asked to explain the reasoning behind their answer choice. For coding, multiple-choice 
responses (n = 61) were hidden from the coder and the rationale coded as if it was a short- 
answer response to an open-ended question using the rationale codebook established during Phase 
I of the MuCRA construction (Figure 1: Step 13). These codes were compared with the misconcep
tion code each multiple-choice distractor was designed to capture as well. There are four possible 
relationships between students’ multiple-choice responses and their explanations: (1) students 
chose the correct multiple-choice response and gave the correct reasoning for their response, 
coded as congruent-correct, (2) students chose a multiple-choice distractor and their reasoning 
matched the misconception the distractor was designed to capture, coded as congruent-incorrect, 
(3) students chose the correct multiple-choice response but their reasoning contained 
a misconception or error in reasoning, coded as incongruent-correct, and (4) students chose 
a distractor and their reasoning showed a different misconception than the one used for design 
of the distractor, coded as incongruent-incorrect. The details of the congruence analysis are found 
in Supplement #2.

Results & discussion

The MuCRA is both valid and reliable when used in college courses

The MuCRA provides valid and reliable data to measure undergraduate students’ understanding of 
core learning objectives related to mutations as taught in general genetics, microbiology, and 
biology classrooms. Student learning gains were not significantly different for males compared to 
females, first-generation students compared to non-first-generation students, multiple ethnic 
groups, or grade in school (data not shown). When determining the overall test reliability, the 
KR20 was found to be 0.64 for the pre-test (n = 285) and 0.69 for the post-test (n = 301), indicating 
that the assessment is reliable when used in the context of undergraduate biological sciences 
courses. While the KR-20 values are slightly below the optimal 0.7 threshold, the KR-20 assumes 
item homogeneity. Since the MuCRA is comprised of three separate learning objectives, this range 
of content reduces item homogeneity, which in turn reduces the KR-20 value for internal consis
tency (Cortina 1993).

The item difficulty is another psychometric parameter used to assess newly developed instru
ments. The item difficulty measures the proportion of students answering each question correctly. 
This means items with a higher item difficulty are actually easier than those with a lower item 
difficulty. The item difficulty for the pre-testing of the MuCRA questions had a range of 0.30–0.60, 
with four questions being more difficult (Q1 = 0.30, Q3 = 0.32, Q4 = 0.34, Q5 = 0.32), five questions 
being in the middle range (Q2 = 0.46, Q6 = 0.55, Q7 = 0.42, Q8 = 0.41, Q10 = 0.41), and one 
question that was relatively easy (Q9 = 0.60). For the post-test of the MuCRA questions, the item 
difficulty had a range of 0.32–0.67, with three questions being more difficult (Q1 = 0.32, Q3 = 0.35, 
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Q4 = 0.35), five questions being in the middle range (Q2 = 0.49, Q5 = 0.43, Q7 = 0.53, Q8 = 0.46, 
Q10 = 0.55), and two questions that were relatively easy (Q6 = 0.67, Q9 = 0.65). The average item 
difficulty for LO1 (Define Mutation) was 0.36 before and 0.39 after instruction, LO2 (Categorise 
changes in DNA) moved from 0.40 before to 0.53 after instruction, and for LO3 (Differentiate 
between somatic and germline) pre- was 0.47 and post-instruction was 0.55. The average item 
difficulties for the pre- and post-instruction MuCRA administration were 0.41 and 0.48, respec
tively. A range of difficulty among the questions, as indicated by the range of item difficulty values, 
is desirable for a criterion referenced assessment because it helps widen the range of scores, and 
gives instructors information on which concepts most students understand and which more 
challenging. A moderate average item difficulty across both the pre- and post-tests of the 
MuCRA and for each learning objective shows that the test is neither too easy nor too hard and 
can therefore be used at many different course levels.

The discrimination index was above the accepted threshold of 0.30 for all questions over both the 
pre- and post-instruction administrations. Prior to instruction the discrimination index for the 
questions of the MuCRA ranged from 0.31–0.79 with an average of 0.6, while post-instruction values 
ranged from 0.31–0.75 with an average of 0.5. For the pre-test of the MuCRA, questions had a point- 
biserial correlation in the range of 0.08 to 0.79, with most questions above the optimal threshold of 
0.30 (Nunnally 1978). The point biserial correlation for the questions in the post-test were between 
0.12 and 0.48, with seven questions above the optimal threshold of 0.30. Three questions (Q 1, 4, 5) 
that did not meet the 0.3 threshold for point biserial were more difficult than the MuCRA average and 
each had an item discrimination above the optimal 0.3. This suggests that while the correlation 
between scoring well on the assessment and answering these questions correctly was not high, these 
items were still able to discriminate between high and low performing students. We retained these in 
the final MuCRA as challenge items for high-performing students. The average point biserial 
correlations for both the pre- and post- test questions were at or above 0.30 (0.30 and 0.35). As 
a whole, when considering all classical test theory psychometric data, the MuCRA to generates valid 
and reliable data for each learning objective in a variety of different college classrooms.

Student responses to the MuCRA grouped by learning objective

We next used clustering analysis to determine the relationship of student scores to learning objectives 
which measured different concepts at multiple difficulty and Bloom’s taxonomic levels (Crowe, Dirks, 
and Wenderoth 2008; Lemons and Lemons 2013). The first learning objective is based on under
standing the definition of a mutation and requires fundamental skills of remembering, identifying, 
and understanding (Crowe, Dirks, and Wenderoth 2008). The second learning objective (LO2) 
requires students to apply their knowledge of translation in the context of reading the universal 
genetic code table. The third learning objective (LO3) contains contextual (story-problem) questions 
that measure synthesis of mutation and cell division knowledge simultaneously. For this analysis, both 
dissimilarity matrices (pre- and post-tests) met assumptions for equal variance among learning 
objective groups (H0: no difference in variance among groups; pre-test: F(2,7) = 0.97, p = 0.426; post- 
test: F(2,7) = 1.79, p = 0.271). PERMANOVA tests for both pre- and post-instruction indicated that in 
both cases learning objectives significantly contributed to clustering (H0:adding learning objective to 
the model does not improve model fit; pre-test: Pseudo F(2,7) = 1.29, p = 0.016; post-test: Pseudo F 
(2,7) = 1.48, p = 0.0094). The first two axes provided good separation for all three learning objectives 
(Figure 2.: A, B) and at least two dimensions were needed to represent the three learning objectives. 
While the grouping for LO1 was more distant in post-instruction measurements, both plots show 
similar separations between pre- and post-instruction. In the pre-test, we observed clear separation 
between the three learning objectives, with the second and third appearing closer to each other than 
either one was to LO1. After instruction, the lower-order (remembering/understanding) learning 
objective (LO1) was distinct from both higher-order objectives (LO2 & LO3); however, LO3 questions 
clustered more tightly and also clustered with the questions of the second learning objective. These 
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findings are consistent with a 2013 study that describes questions probing higher-order cognitive skills 
as multi-faceted (Lemons and Lemons 2013). The application questions were of higher complexity on 
the Bloom’s scale, and responses depended on student experience. This movement to overlap in LO2 
and LO3 post-instruction may reflect the acquisition of more advanced higher order skills in students 
that lacked them prior to instruction.

Distractor answers accurately captured their misconceptions

To determine distractor efficacy, we designed a novel confirmatory step that has not been 
reported for other concept inventories. Distractor congruence provides direct evidence that 
multiple-choice distractors accurately capture the misconceptions they were designed to 
address.

Proportions of congruent answers were higher than proportions of incongruent answers 
for all questions and all answer types (correct or incorrect), except for Question 3 where the 
proportion of correct congruent responses was exactly 50% (Figure 3). Students that 
answered question 3 correctly provided inaccurate reasoning 50% of the time. Question 3 
described a change to an intron splice site sequence and several explanations for correct 
responses focussed on the effects of mutation on the RNA rather than defining the mutation 
itself. Probabilities of observing the number of congruent answers under the null hypothesis 
fell between <0.0001 and 0.1723 for each question, with all probabilities <0.05 except for 
Question 3 (Table 4). Overall, congruence analysis confirmed that distractors effectively 
capture design misconceptions, although our confidence in distractor answers with very few 
or no responses is lower.

Figure 2. nMDS plots. Non metric multidimensional scaling plots depicting grouping of MuCRA questions (Q1-Q10) by learning 
objectives for pre-instruction test data (A) and post-instruction test data (B). Learning objective 1 remains distinct from learning 
objectives 2 and 3 when the MuCRA is used before and after instruction.
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Table 3. Psychometric Data Table.

Pre-Test (n = 285) Post-Test (n = 301)

Item Item Difficulty Point-Biserial Item Discrimination Item Difficulty Point-Biserial Item Discrimination

Q1 0.30 0.27 0.49 0.32 0.27 0.50
Q2 0.46 0.38 0.75 0.49 0.34 0.63
Q3 0.32 0.25 0.48 0.35 0.35 0.58
Q4 0.34 0.08 0.31 0.35 0.12 0.31
Q5 0.32 0.29 0.53 0.43 0.29 0.54
Q6 0.55 0.45 0.79 0.67 0.48 0.67
Q7 0.42 0.33 0.70 0.53 0.45 0.75
Q8 0.41 0.34 0.68 0.46 0.37 0.66
Q9 0.60 0.31 0.64 0.65 0.39 0.64
Q10 0.41 0.31 0.60 0.55 0.39 0.66
Mean 0.41 0.30 0.60 0.48 0.35 0.59

Pre KR20 is 0.64 and post KR20 is 0.69.

a) b)

Figure 3 Congruence of student rationale with misconception code. For each question in the MuCRA, the proportion of incorrect 
answers (bottom half) or correct answers (top half) for which student self reported rationale was incongruent(dark) or congruent 
(light) with the targeted misconception for incorrect responses or correct reasoning for correct responses.

Table 4. Congruence Probabilities.

Question Probability

1 0.0036
2 0.0420
3 0.1723
4 0.0126
5 0.0020
6 <0.0001
7 0.0014
8 0.0006
9 0.0235
10 0.0025

For each question on the concept 
inventory, the probability of 
observing the number of con
gruent self-reported rationales 
if students were randomly gues
sing for both the answer and 
providing rationale for answer
ing the way they did.
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Conclusions

Implementation of concept inventory

While concept inventories are available for general biology (Knight 2010), genetics (Smith, 
Wood, and Knight 2008), and cell biology (Couch, Wood, and Knight 2015), these are too 
broad for specific concepts (Ones and Viswesvaran 1996). Instruments with a narrower 
scope, such as the MuCRA, are valuable because they are focused and capture more detail. 
They are used to measure student learning gains, evaluate a teaching practice, and deter
mine the baseline knowledge of the students in a given class about a specific (targeted) 
aspect of genetics. The lac operon concept inventory (Stefanski, Gardner, and Seipelt- 
Thiemann 2016) has been used to assess several new teaching techniques used to teach 
students about gene regulation in prokaryotes. These include use of models ((Gordy et al. 
2020), virtual reality (Lui, McEwen, and Mullally 2020), and computational modelling 
(Dauer et al. 2019).

The MuCRA has utility as a criterion referenced test designed to measure and identify 
student misconceptions about mutations. In addition, it supports innovation and evidence- 
based teaching by providing valid and reliable data useful in optimising learning. For 
example, faculty implementing a new case study to visualise molecular changes related to 
mutations can use the MuCRA before and after instruction to assess its effectiveness. The 
data gathered would be specific to mutations and of immediate use. Careful analysis of the 
pre-instruction data would help faculty identify both prior knowledge and common mis
conceptions. Faculty can also determine which concepts showed strong learning gains and 
where any mastery gaps persist after instruction. These data can then be used to inform 
course and curricular design for future terms. The MuCRA is available to instructors upon 
request and can be used in either a written (pdf) or digital (LASSO) format.

Lastly, we developed a final and direct measure of criterion referenced assessment validity: 
congruence analysis. This is a direct, rather than indirect, measure of how well distractors accurately 
capture the misconceptions for which they were designed and is an important measure for a robust 
criterion referenced assessment.
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