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ABSTRACT

Short videos have recently emerged as a popular form of short-
duration User Generated Content (UGC) within modern social me-
dia. Short video content is generally less than a minute long and
predominantly produced in vertical orientation on smartphones.
While still fundamentally being streaming, short video delivery is
distinctly characterized by the deployment of a mechanism that
pre-loads ahead of user request. Background pre-loading aims to
eliminate start-up time, which is now prioritized higher in Quality
of Experience (QoE) objectives, given that the application design
facilitates instant ‘swiping’ to the next video in a recommended
sequence. In this work, we provide a comprehensive comparison of
four popular short video services. In particular, we explore content
characteristics and evaluate the video quality across resolutions for
each service. We next characterize the pre-loading policy adopted
by each service. Last, we conduct an experimental study to investi-
gate data consumption and evaluate achieved QoE under different
network scenarios and application configurations.
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1 INTRODUCTION

Over the past decade, significant growth of online video sharing has
been spurred by novel streaming techniques such as HTTP Adaptive
Streaming (HAS) and the sustained adoption of smartphone devices.
Concurrently, wireless network capacity and speed improvements
lend support for a variety of video offerings that may appeal to
larger user-bases, such as 360 videos, Augmented Reality, live and
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game streaming, and teleconferencing. One such video offering is
positioned at the intersection of UGC and social media, namely
that of continuous short-duration video streaming (referred to as
simply short videos in this paper), which was initially popularized by
TikTok and then adopted by many existing video streaming services
[34]. The scope of this paper is to characterize and experimentally
compare four of the most popular short video services: YouTube
Shorts, TikTok, Instagram Reels, and Facebook Watch.

Short videos typically do not exceed one or a few minutes in
duration and are primarily UGC. Short video content is most of-
ten recorded on smartphones (vertical orientation), contrary to
long-form content that is typically recorded with dedicated camera
equipment and is often professionally produced. Short videos are
delivered over HTTP and largely under the adaptive streaming
principle, yet exhibit some new properties when compared with
long-form streaming, in regard to encoding characteristics and the
prioritization of the various QoE objectives.

Short video content is typically encoded in a multitude of vari-
ants or quality levels (bitrates and resolutions), offering video clients
granularity in bitrate switching to adapt to varying network condi-
tions. Adaptation may occur between or within videos, depending
on the individual design of each service. Such content organization
resembles long-form videos, although these typically have more
encoding variants [22]. In addition, each short video service has
its own proprietary system design, which may pose an additional
challenge in comparative perceptual Video Quality (VQ) analysis.
To this end, we statistically analyze large video metadata samples
per service, focusing on the distribution of encoding bitrate and
video duration per quality variant. Moreover, to conduct a system-
atic VQ comparison for all variants offered per service, we create
and curate a set of diverse complexity videos, which we upload
individually to each studied service. We find that there exist signifi-
cant differences in design decisions between services, with some
offering a better trade-off between perceptual VQ and bandwidth
requirements than others. Our analysis shows that encoding bi-
trates across quality variants may not always conclusively correlate
to perceptual quality.

Generally, in terms of overall QoE, offering high quality unin-
terrupted video streaming has been a primary streaming objective,
particularly in the more volatile mobile networks. Yet now, as the
shorter video duration creates the user expectation of fast access to
content, start-up and wait time between videos become crucial to
overall short video user experience. Moreover, since short videos
are consumed as a sequence of videos accessed via instant ‘user
swiping’, start-up and wait time become even more stringent QoE
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objectives. Therefore, to amplify user-engagement through seam-
less video consumption, short video services have adjusted their
clients to implement a pre-loading mechanism. Parts of several
videos are downloaded in parallel to the current video playout,
ensuring that the client’s buffer contains a number of individual
videos at any given time. This constitutes a fundamental design
difference from long-form video streaming, where the buffer would
typically host future content of only the playing video. Thus, in
short videos the download process, given the preloading opera-
tion, becomes parallel as opposed to serial (long videos), creating
characteristically different traffic patterns.

Pre-loading policies vary across services with some offering
constant data-size pre-loading, while others employ time-based
approaches, each with different parameterization. Thus, we have
focused on characterizing the different pre-loading properties for
each of the studied services. Moreover, as the impact of such pre-
loading operations on bandwidth requirements and QoE is not
well understood, we provide experimental insights under a series
of test configurations. We find that pre-loading can indeed im-
prove QoE under certain circumstances, such as long user-sessions.
Nonetheless, careful implementations are required since aggressive
pre-loading may not only produce high data wastage, but can also
create significant strain on the network, ultimately eliminating any
prior QoE gain. The main contributions of this work are:

o Service design. We provide a statistical analysis of video duration
and encoding bitrate, which we relate to quality level labeling. We
find significant differences in bitrate and resolution selections, as
well as quality labeling, making direct comparison challenging.

Video quality analysis. We evaluate the video quality and encod-

ing ladder offered by each video service. Results indicate large

differences in VQ between services, as well as trade-off inefficien-
cies between VQ and encoding bitrates.

Pre-loading characterization. We characterize the pre-loading pol-

icy for each of the studied services and unveil related parameters

such as the size, number and duration of pre-loaded videos. Vastly
different policies are detected, resulting in varying risks of wasted
data vs. achieving uninterrupted playback.

o Data consumption and QoE evaluation. We conduct experiments
under a series of network scenarios and application configura-
tions (‘Data Saver’ mode ON - OFF) to gain insights on behavior,
data usage, and overall QoE. Stalls and wait time are significantly
affected by data saving settings and overall service designs, with
some services achieving minimal disruption, while others facing
major challenges in competitive and constrained conditions.

The paper is organized as follows. Section 2 reviews recent re-
search in video streaming and initial work on short videos. Section 3
specifies the methodology and tools used, while Section 4 provides
insights on content characteristics and the video quality offered
by each service. Section 5 characterizes the pre-loading policy for
each studied service. Section 6 presents experimental results of
our investigation on data consumption and achieved QoE, under a
series of network conditions and application configurations.
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2 RELATED WORK

Video streaming research spans a wide set of works that includes
techniques that optimize QoE, frameworks to evaluate percep-
tual video quality, and new video applications. Optimizing QoE
is typically the main objective of any development around video
streaming. Streaming protocols [17, 27] employ client-side tech-
niques to provision against fluctuating network conditions, that
may take various input signals to perform a bitrate adaptation de-
cision. Throughput-based adaptation algorithms use bandwidth
estimates based on measured throughput [41], while buffer-based
strategies adjust bitrate based on the instantaneous buffer level [16].
Most commonly, a combination of inputs is considered [31], while
the algorithmic approach may employ heuristics [32], optimiza-
tion [8] or machine learning [23]. Adaptation may alternatively
occur server-side [7], or be network-assisted [13].

To facilitate the evaluation of video delivery and specifically
the perceived VQ, multiple assessment frameworks have been pro-
posed [10, 20]. In particular, Tu et al. [35] proposed a model based
on frame-level quality scores. Robitza et al. [29] provide tools
for audiovisual quality evaluation via the QoE standard ITU-T
Rec. P.1203 [18]. Recently, Video Multimethod Assessment Fusion
(VMAF) [21] has emerged as a widely-adopted quality assessment
method, that has shown a high correlation with human perception.

The study presented in this paper aims to provide a compre-
hensive video quality comparison and video delivery performance
evaluation among four popular short video services. A similar in-
vestigation was conducted by Chen et al. [9], who focused on the
characterization of only one service, namely that of Douyin (a
variant of TikTok available exclusively in the Chinese market), pro-
viding data consumption insights and available content statistics,
such as the average video size and length. LiveClip [15] is another
work that focuses on the system design of Douyin, but also explores
alternative download strategies, primarily in regard to bitrate se-
lection during the preloading operation, in an effort to provision
against data wastage caused by fast swiping. While pre-loading poli-
cies [19, 37, 38] are primarily designed to reduce wait time between
consecutive video playouts, video QoE may exhibit substantial fluc-
tuations over different short video sessions. Thus, Guo et al. [14]
employed reinforcement learning to generate quality-driven bitrate
decisions for short video sessions. Zhang et al. [39] analyzed one of
the top short video services in China and present the distribution
of short video length and bitrate based on the content provider’s
database. Our work aims to complement such existing research
by analyzing international large-scale services, providing a direct
comparison of their system design.

3 METHODOLOGY

In this section, we introduce several experimental methodologies
and tools that we employ to collect insights into the design and
operation of short video services. Our work covers four popular
services, which we refer to as Service 1-4 in the remainder of the pa-
per. Due to the varying designs and closed nature of these services,
we generally used black-box approaches for measurement and eval-
uation. Our methodologies could be grouped as follows: 1) API and
browser-based analysis, 2) custom video creation and upload, and
3) active experiments under different network conditions.
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In addition to creating custom videos, we also analyzed larger
samples of videos already available on each video service. This
combination of video sources calls for various tools to be employed,
broadly classified as 1) packet trace collection tools, 2) screen record-
ing tools, 3) tools for scripting and automation of app invocation
and video playback, 4) API and web application tools, etc.

3.1 API and browser-based analysis

To obtain ground truth information on encoded variants, such
as resolutions and bitrates from each video service, as well as to
download the variants for analysis, we applied several approaches,
which allowed us to inspect the design decisions of services without
having internal access.

Selenium [25] is a web-browser automation framework, which
can scrape web pages and provide information about the objects,
including downloading video variants and their metadata, to the
extent provided by each service. We fed Selenium with video URLs
to get the web page content in HTML or scripted form and use
custom parsers to extract quality labels (360p, 720p, etc) and bitrates.
This process involved multiple iterations due to the daily limit some
services impose (~100 video URLs) when using Selenium, ultimately
obtaining a large number of video URLs per service.

Tools such as youtube-dl [6] and pafy [4] were used as plugins in
Selenium for video metadata extraction (listing all audio and video
variants, including resolution, size, bitrate, codec and duration).

Browser Developer Tools [33] are web testing components of
some browsers (e.g., Chrome, Firefox). We used them to: i) observe
the Server Name Indication (SNI) or domain names of video servers,
ii) data consumption (video object sizes), and iii) validate the cap-
tured data in experiments.

3.2 Custom video set

One of our goals was to gain insights into the service design of
each video service, which includes selections of VQ levels, with
associated resolutions, frame rates and bitrates, buffering or pre-
loading, and data savings methods. Our approach was to create a set
of custom videos, upload them to every service, and then download
all variants generated by each service. We recorded videos using
a representative popular smartphone (iPhone XR) in a fixed video
format with 1080p resolution (1080x1920 pixels) and 30 FPS (frames
per second), which is the most popular upload format for short
video services [11]. Videos were encoded using Constant Bit Rate
(CBR) in the H.264/MPEG-4 format. We created a set of 15 videos
and uploaded them to each service twice in the same sequence
within a single user account. Uploading twice creates a sequence
of 30 videos that will become useful in the analysis of pre-loading.

Our custom videos were divided into 3 groups consisting of 5
videos each based on motion levels, so we could analyze data usage
and VQ depending on this feature. Low-motion videos had static
backgrounds (e.g., furniture) and characters. The average encoding
bitrate of this group was 5.1 Mbps. Medium-motion had generally
static background and moving characters (e.g., a person dancing
or walking), with an average bitrate of 12 Mbps. The high-motion
group had both dynamic background and characters (e.g., driving),
with an average bitrate of 20 Mbps. Overall average video duration
was 32 seconds, in the range of 15 to 44 seconds. This approach
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allowed us to compare and contrast design choices made by video
services in providing users with different VQ levels, efficiency in
encoding and data usage, as overall delivery QoE.

To evaluate the perceptual VQ of the video variants offered by
different services (Section 4), we used the VMAF score [40], which
was obtained by comparing the transcoded video to the original.
Degradation to the original video comes from reduced resolutions
and bitrates. VMAF scores were computed by the open-source li-
brary libvmaf (we used v0.6.1) via execution of the phone_model.
VMATF score has a range of 0 to 100, where 100 signifies the highest
quality (equal to the original content), whereas 0 indicates the low-
est possible quality, while a 6 point difference is just noticeable [1].
VMAF is a relative metric, so it is best suited for assessing degra-
dation level of the original video, rather than subjective quality.
While non-reference metrics could also be useful for VQ evaluation,
they may be more appropriate for non-UGC services. For our scope,
VMAF was a more suitable choice due to its high accuracy and
the relative ease of its application on all generated variants, after
uploading original content.

Video Google pixel 2 HP 250 G6
Server Access Point ... ADB mnotebooks
. . VN control >
(;’\\) |’r,;$] \ _ Data
O / / - capture
Bandwidth =T I:l
' . <«
€= control =, P %
o Server |1 =
Emnet j(—>[:|
Switch Switch =
j P

Mobile Device

r— N
Laptop

Figure 2: Test design for pre-loading analysis.

3.3 Active Experiments

Important goals of this work included evaluating pre-loading poli-
cies and data consumption in varying network conditions for which
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we set up a controlled network environment (Fig. 1). Video appli-
cations ran on four Android phones (Google pixel 2, Android 11)
which were connected to four HP 250 G6 laptops that monitored
and collected packet traces using Video Optimizer [3] and con-
trolled by Android Debug Bridge (ADB) commands [12]. ADB was
used to simulate user actions such as automatically invoking video
apps and swiping the screen. We used an i0S device (iPhone XR,
i0S 13.5) connected to a Macbook Pro (OS 10.13), which imple-
ments a Remote Virtual Interface (RVI) to enable packet capture
with tecpdump [5]. Since i0S devices do not allow for automatically
simulating user actions, we resorted to manual control for a subset
of experiments. Smartphones are connected to the network via a
NETGEAR R6230 WiFi access point, which is connected to the in-
ternet and video servers via switches. We used EmNet [24] running
on the switch to control the network bandwidth. In addition, we
also ran experiments in a live cellular network in the Unites States.

Monitoring logs were used to synchronize application actions
with packet trace data. The monitoring logs recorded timestamped
information about swiping actions, that helped identify and define
download periods per video sequence. To evaluate the wait time
between videos and stalls, we used the screen recording function
of Android devices to capture the entire experiment visually as
ground truth data and manually extracted the metrics. While some
automated solutions for single video analysis and stall detection
are available [36], short videos have the additional requirement of
handling sequences of videos with swiping events in addition to
wait time measurements. Thus, automation was not applicable for
our experimental evaluation of short video systems.

3.3.1 Pre-loading characterization methodology. Our active mea-
surement environment allowed us to design a custom experiment
to observe the pre-loading behavior for all studied video services.
The tests were operated manually as a typical user would use the
app. As shown in Fig. 2, we started by a keyword search (Step 1) to
reach our user page with the custom video set. In Step 2 we started
the packet and screen captures just before starting the first (main)
video playback. We played the first video in full, while each service
pre-loaded additional videos (pre-loaded videos) in the background
(Step 3). Once the video finished playing, we turned off the internet
connection and stopped capturing the packet trace (Step 4). We
swiped up the screen, while the network connection was disabled,
as many times as needed to capture the number and duration of
pre-loaded videos (Step 5). We performed 10 iterations per service.

With screen recording we could observe the number and du-
ration of pre-loaded videos, while from packet traces we could
compute the data consumption for the main and pre-loaded videos.
We started by extracting the total video data from the packet traces
using SNIs from the TLS headers corresponding to video flows.
SNIs were obtained by inspecting URLs of video objects inside the
browser developer tools. The total data could be partitioned ac-
cording to the timestamp of the main video playback completion.
All data delivered after that point were for pre-loads, while the
data prior were a sum of the main and pre-loaded videos. We could
further identify the main video size from the browser tools or API
calls. All remaining data indicate the size of pre-loads.
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4 SERVICE DESIGN CHARACTERIZATION

In this section, we characterize the aspects of service design relating
to VQ, resolution, and encoding bitrates. We use both a large sample
of available videos on each service and a custom video set. Metadata
for each video, obtained using Selenium, reveal the following key
features of each variant:

e Label: A “quality label” typically represented by resolution
notation (e.g., 360p, 720p, 1080p for video)

e Resolution: Actual spatial resolution of the variant (e.g.,
360x640, 720x1280)

o Bitrate: Average bitrate of the variant (e.g., 1.5 Mbps)

e Codec: Encoding standard (e.g., AVC, VP9, AV1 for video;
AAC, AC3 for audio)

e Size: Data size of the variant

Other common features across variants are also included, such
as video URL and duration. Spatial resolutions also reveal vertical
orientation of videos, compared to long-form videos. We focus on
video variants only in our analysis. We anonymize service names in
the presentation of results to preserve content provider privacy. As
our analysis pertains to a relative comparison of the service design
for the different short video workflows, all findings remain both
valid and valuable even without revealing identity.

4.1 Service design characterization via
sampling

We explore service design by collecting large samples of video
metadata from all studied services between August and October
2021. The summary of the sample set is shown in Table 1. We notice
a large number of resolutions associated with a smaller number of
labels in most services, suggesting precise VQ tuning of variants. We
note that the number of labels used by two of the studied services
was exceptionally large. We indicate with a “+” instances that we
believe may carry an even larger number of labels and resolutions
in the wild. We also observe that some labels and resolutions are
dominant in some services, while more uniformly distributed in
others. For example, Service3 has a relatively balanced usage of
270p, 260p, and 1080p (38%-43% of samples), while in Service4,
240p and 640p dominate in 72% and 51% of samples, respectively.
However, Service3 and Service4 only use up to 6 variants per video.
This variety may pose a challenge in comparing quality levels across
services. In particular, Table 1 indicates the portion of each codec in
the sample. Content providers typically opt to use multiple codecs
per video but may not use every codec for every video.

We further record the proportion of samples where most popular
codecs are used. Notably, Servicel only uses AVC, while the other
three use VP9 substantially or predominantly. We assume that the
prevalent variants generated by each service are the ones served to
users by default, and thus we do not seek to analyze all variants in
detail. We also see anecdotal evidence that Service2 delivers VP9
format to both i0S and Android devices in our tests, as both major
mobile platforms support it [28]. Therefore, we proceed to compare
AVC from Servicel and VP9 from the other services. Our sample
contains a collection of currently popular videos, as identified by a
‘trending’ tag or via homepage recommendations. In addition, we
searched for and accessed content by popular creators per service.
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Table 1: Encoding information per service.

Samples (#) Labels (#) Resol. (#) VP9  AVC
Servicel 2,472 1 8+ 0% 100%
Service2 3,583 8 12+ 98.3% 100%
Service3 2,264 18+ 42+ 88.7% 69.4%
Service4 1,821 57+ 215+ 86.1% 67.3%

Table 2: Common resolutions per service.

Nearest
360 20
60p 720p resolutions
Servicel - 576x1024 576x1024 (720p)
Service2 406x720 810x1440 608x1080 (480p)
Service3 360x640 720x1280  682x854 (640p)
Service4 364x680 720x1280 640x1138 (640p)

We use two common labels (360p and 720p) to explore the asso-
ciated resolutions and bitrates. We consider labels merely as logical
groups and a coarse proxy for VQ rather than as an indicator of
exact VQ or subjective experience. Table 2 shows the most common
resolution for each label. We observe that the 360p spatial reso-
lutions of the three services are similar (Table 2), while for 720p
some services tend to deviate from the label-implied resolutions.
We also include the set of the nearest resolutions to the single one
we detected for Servicel, and the labels associated with those reso-
lutions in the same table. Here we also observe significant variety
of resolutions and labels.

We further explore the range of bitrates per label across services,
to understand how quality labels relate to data usage and bandwidth
requirements, based on encoding bitrates. Fig. 3a compares 360p
bitrates for three services that offer it (thin lines), and 720p bitrates
for all four services (thick lines). We use the sub-sample where
every video has both 360p and 720p labels for the three services
offering multiple labels, so that comparison between labels becomes
feasible. For 360p, Service2 and Service3 show a narrow range of
encoding bitrates resulting in tight distributions with over 90% of
samples under 500 Kbps and with about 70% of samples falling
between approximately 400 and 500 Kbps. In contrast, Service4 has
a wider range, with 20% of samples between 600 Kbps and 1.6 Mbps.

Generally, 720p bitrates exhibit wide ranges (as expected), except
for Service3, whose bitrates are in in [0.3,2.5] Mbps, with more
than 90% of samples encoded below 1.4 Mbps. This service uses a
constant bitrate difference between the 360p and 720p labels for
most samples. Service2 appears to aim for under 2.5 Mbps at 720p,
but without tight ranges and the largest difference between bitrates
used for 360p and 720p. Less than 10% of samples in several services
exceed 2.5 Mbps for 720p.

We next analyze the set of nearest resolutions, i.e. resolutions
that have similar height and width dimensions, to see if similar
resolutions relate to similar bitrates, and therefore data usage and
bandwidth requirements (Fig. 3b). Service2 exhibits a tighter range
than others, and peaks at 1.5 Mbps, with most samples encoded
under 1 Mbps. Other services have a wider set of bitrate ranges, with
potential bandwidth requirement implications. Seemingly services
with tight distributions aim to ensure that certain resolutions can
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reliably play under certain network conditions (such as under 1.5
Mbps, where distributions either end or have a distinct knee).

Amongst all differences, similarity in bitrate distributions of
Servicel and Service4 is notable and suggests similar encoding
parameters and optimization approaches, with no strict limits and
allowing much higher bitrates in the tails.

The duration of the video content is one of the most signifi-
cant differentiators when comparing short videos to traditional
on-demand streaming. Most short video services generally limit the
duration, as seen in Fig. 3c. Service2 and Service4 have strict limits
at about 30 and 60 seconds, respectively. Servicel appears to have
a small number of videos longer than 60 seconds, while Service3
offers a wider range in duration (not an exclusively short video
service). We show a truncated Cumulative Distribution Function
(CDF) for Service3 up to 180 seconds.

In summary, large sample analysis reveals significant differences in
design decisions between short video services that look very similar to
users. Findings suggest that in short video systems, multiple resolutions
are grouped in only a few quality labels, which prohibits their use
as conclusive indicators of bandwidth requirements. The differences
in encoding bitrates for the same labels and resolutions also raise
questions on how they all relate to perceptual quality.

4.2 Perceptual quality analysis using custom
videos

As outlined in Section. 3, we upload a custom video set to each
service and then download all generated variants. This allows us to
measure degradation of the original video and obtain a form of VQ
analysis that labels and resolutions could not conclusively provide.

VQ vs. labels. Findings from the large sample indicate that
different VQ optimization approaches are used by services. To relate
labels with perceptual quality, we plot VMAF vs. labels in Fig. 4
for the three motion-based video groups of Section 3.2. Average
VMATF is plotted with error bars indicating standard deviation. For
clarity, most common labels are plotted, although some services
offer additional labels.

We first observe that generally for all services, VMAF drops as
motion increases, most noticeably for high-motion videos. Dimin-
ishing returns in VMAF are also observed, as expected, since small
phone screens do not offer better VQ perception beyond a 720p
resolution. These are general qualitative characteristics we would
expect to see, meaning there are no obvious and large aberrations
in the overall service designs related to VQ within each service.

However, we observe numerous differences in some aspects of
system design from Fig. 4. At the high end, a clear distinction of
Service2 is that it offers 1080p, but with negligible VQ improvement,
as expected. Recall that the original video is 1080p, but with all
these services being smartphone-oriented, most services opt to
not go past the VQ where returns significantly diminish, which
corresponds to 720p. At the low end, we note that 2 services offer
variants at extremely low quality (VMAF of 20 and below), which
may be due to either default encoding settings or an attempt to
facilitate ability to deliver content even at the most adverse network
conditions. Servicel further stands out by offering only one variant
for all motion levels that we could detect and compare, and although
it uses only AVC, VMAF indicates that it compares extremely well
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Figure 4: VMAF for various quality labels.

(c) High-motion videos.

with VP9 encodings of other services. Finally, Service4 limits high-
motion videos to a very small range of labels.

It can be noted that labels generally relate well in perceptual VQ
within all services. However, between services, labels do not neces-
sarily correspond to the same or similar VQ. Ideally, we should see
the same or similar VQ (VMAF score) for the same label, somewhere
within 6 VMAF points, as the threshold of noticeable difference.
We note significantly larger gaps in multiple instances, while the
closest VQ is observed for low-motion videos across all labels.

For medium-motion videos, the gap in VQ widens for 360p and
higher labels, with a 20 VMAF point difference seen between Ser-
vice2 and Service3 for 720p. For the high-motion video group, more
than 30 VMAF points are measured between Service2 and Service3
for 720p. We also did not expect to see that similar VMAF values
would be represented by very different labels across services (e.g.,
VMATF of near 70 comes from 360p label of Service3 and from 720p
of Service4 in Fig. 4b).

VQ vs. encoding bitrates. Some of the observed differences
in VMAF and labels of offered variants prompt us to delve into
more detail regarding encoding efficiency across multiple services.
Different VQ for the same type of videos raises questions about
encoding efficiency, in particular of the bitrates used to produce
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Table 3: Average encoding bitrates for Service3 in Mbps.

720p 360p 240p 144p
Low-motion bitrate 052 0.13 0.04 0.01
Medium-motion bitrate 1.60 032 0.10 0.04
High-motion bitrate 5.10 1.50 0.17 0.07

variants of certain qualities. Hence, we randomly select three videos
from each set of motion levels to observe the relationship between
VMATF and encoding bitrates, where each bitrate is associated with
a quality label. The bitrate directly corresponds to data usage and
bandwidth requirement to deliver a video under various network
conditions and when combined with other encoding parameters, it
directly impacts the VQ of that variant. We provide an illustrative
example of generated average bitrates in VP9 for several labels used
by Service3 across motion levels in Table 3.

Fig. 5 compares VMAF and its corresponding bitrate for the same
videos across services. First, we observe similar curve shapes for
three services that produce multiple detected bitrates (as opposed
to Servicel that has only one), as we observed for labels. This is
expected, as labels still relatively correspond to VQ and encoding
bitrate requirements within each service. Diminishing returns on
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Figure 5: VMATF for various encoding bitrates.

VQ are noticeable, sometimes appearing very quickly, as the curves
sharply flatten past certain bitrates.

As motion levels increase, significantly more bits are needed
to maintain VQ, sometimes ineffectively. Some medium-motion
samples prove to be a challenge for Service4, while both Service2
and Service4 struggle with high-motion videos (degraded to VMAF
of below 50). We further note that some services expend signifi-
cant amount of data to produce variants with negligible VQ benefit
(e.g., Service2 and Service4 for all motion levels), while Service3
appears to aim to expend high bitrate for one variant that signifi-
cantly improves VQ. Servicel manages to maintain relatively high
VMAF scores at moderate bitrates.

In summary, different video services maintain a relatively high
VMAEF score of at least 70 for most low and medium-motion videos
at bitrates up to 2 Mbps. However, the high-motion videos reveal
significant differences, where similar VQ could result in 50% higher
data usage in some services (e.g., 3-4 Mbps vs. 5-6.5 Mbps for Servicel
and Service3, respectively).

5 PRE-LOADING POLICIES

As noted earlier, short video services are commonly characterized
by the introduction of pre-loading, which makes user experience
seamless by facilitating instant playout of consecutive videos in a
playlist. Thereby, interactivity and choice are encouraged by mak-
ing the browsing process (swiping) a nearly zero cost activity. In
reality the associated data cost has simply been “pre-paid” and
shifted back in time, due to pre-loading. To wit, Fig. 6 provides a
brief glimpse into one of the pre-loading policies under such condi-
tions where network connectivity is disabled just as the first video
completes playing. In spite of the network being disabled, portions
of the next three videos are still able to be played (via swiping) with
eventually the fifth and sixth videos having no content.

However, there are many subtle design choices that emerge with
respect to the employed pre-loading policy, such as the number of
videos that should be pre-loaded. Too few may result in the user
swiping ahead of network performance but too many may cause
wasted data. The number of pre-loads also draws the likelihood
of engagement for the video selection of the user. When services
recommend videos well, users are more likely to watch all the
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videos thus being less likely to rapidly swipe. Conversely, poor
recommendations may result in rapid browsing or forced content
refresh, ultimately leading to further data wasting.

Similarly, what criterion should be used in terms of how much
content to buffer? Should the length of pre-loading be size depen-
dent or time (playback) dependent? One provides a consistent data
cost while the other ensures a more consistent resilience and play-
back amount. That cost in turn can be impacted by choices with
respect to coding and resolution that effectively may be attempting
to guess network conditions significantly forward in time. Taking
the third video from Fig. 6, it could be played after the full playback
of videos 1 and video 2 or it could be quickly swiped to by the
user with network conditions varying dramatically from when the
pre-loading occurred to when the actual playback and subsequent
buffering need to occur.

In this section, we explore, compare and contrast the operating
principles, design choices and attributes of the pre-loading policy
of each video service. We apply a consistent testing methodology
across all services as described earlier and offer observations on
each policy, summarized in Table 4.

5.1 Servicel

We begin by conducting tests following the methodology of Sec-
tion 3.3.1 in a network environment with sufficient bandwidth (20
Mbps), where speeds are confirmed by SpeedTest [2]. Fig. 7 plots
the time series of data bursts following each swipe indicated by

- :
Video 1 _TUrn off "video 2 Video3 Video4 : Video5 = Video 6
Conriection :
Network On : Network off Network off
Playing Pre-loaded : Not downloaded
Content Content : Content

Figure 6: Methodology for measuring pre-loading length.
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U@

Played Playing Pre-loading|

Figure 10: Servicel pre-loading sequence.

dots on the x-axis. A single test run has 10 swipes, but we plot
fewer for clarity. The y-axis denotes the downloaded data rate, and
the x-axis denotes time. Each video is watched completely before
the swipe occurs. The viewed video (‘Main’) is denoted in blue,
while pre-loading data in red. We distinguish the main video and
pre-loading data based on our recorded playing time and video data
(size, duration) extracted using Selenium. We leverage the gaps
in data bursts, TCP sequence numbers and timing of packets to
confirm the distinction between the main and pre-loaded videos
when delivered over the same TCP connection.

Notably, in the sufficient network environment (20 Mbps), Ser-
vicel quickly pre-loads videos and shows idle connection periods,
after each pre-load and before the next video needs to be played
(following a swipe). In contrast, in Fig. 8, we plot the impact of alow
bandwidth of 2 Mbps which has a significant impact on download-
ing and total time to view all of the videos (last video is swiped to
start nearly 25 seconds later). The time series of the low bandwidth
case illustrates that the app has to adapt to the conditions of mini-
mal idle time between download bursts, and that pre-loading does
not appear to compete with the main video download; they are
instead managed to run consecutively. Initial pre-loading is more
challenging, until steady-state is reached, where the app main-
tains the number of pre-loaded videos. The intended pre-loading
sequence following the described policy is illustrated in Fig. 10.

Size versus Time: One notable design choice for Servicel is
the apparent reliance on a very tight range of pre-load sizes rather
than targeting a specific duration for each video. To demonstrate

Figure 8: Data rate at 2 Mbps, Servicel
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Figure 9: Data size vs. bandwidth, Servicel

this phenomenon, we select two videos from the previous experi-
ment, with one video set as the watched video and another video
to observe with regards to pre-loading. Both videos are sufficiently
large (around 3 MB) and long (over 40 seconds). Fig. 9 plots the
average size of the watched video versus the average size of pre-
loaded video as the bandwidth is varied in a very wide range (1-50
Mbps) with each data point sampled ten times. While the watched
video download size varies significantly, the pre-loaded size is in
the close range of 1 MB. One would expect that any adaptation
potentially employed for the time-based pre-loaded video would
make the pre-loaded size vary significantly across the various net-
work bandwidths. Overall, Servicel preloads 1MB for each of the
next three or five videos, depending on the OS (iOS vs. Android).
We summarize all characteristics of pre-loading policies in Table 4.

5.2 Service2

Service2 employs a relatively simple pre-loading policy by pre-
loading only one video. Hence, we omit a figure. We find that
Service2 uses a time-based approach, pre-loading 20 seconds of
video data for iOS and 30 seconds for Android. This often results in
pre-loading videos fully, given the duration distribution of Fig. 3c.

Our investigation yields that Service2 may employ either TCP
or QUIC as the transport protocol for individual sessions. Analysis
of this and other services that use QUIC is more challenging due
to lack of TCP sequence numbers, so we resort to delineating data
bursts using a 100 ms timeout. We detect that pre-loads are always
in the first burst, which is large, while subsequent small bursts load
the remainder of the main video. The size of the pre-load in this
case is simply the total size of the consecutive bursts less the video
size retrieved from metadata.

We further discover that pre-loading starts near concurrently
with the main video load or with a short delay, as established by
swiping immediately after the main video starts playing and finding
pre-loaded data already available.

5.3 Service3

Fig. 11 illustrates the pre-loading sequence for Service3. In contrast
to Servicel and Service2, pre-loading in Service3 does not happen
on every swipe, but rather occurs in trains or batches, when the
number of buffered but not yet watched videos is less than four.
For instance, four videos (v2-v5) are pre-loaded in a train while the
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Figure 11: Service3 pre-loading sequence using trains.

first video (v1) is playing. When the second video (v2) is played, an
additional batch of four videos are pre-loaded (v6-v9). Subsequent
pre-loading does not occur again until the sixth video (v6). Though
not shown, the pattern repeats after every 4 videos.

The impact of this policy decision is potentially substantial dur-
ing the early viewing period in a user session. Whereas Servicel
could be relatively busy with respect to pre-loading during the
first video (pre-loading three or five videos), subsequent swipes
only incur one additional pre-loading demand (maintaining a fixed
number of pre-loaded videos). Service2 exhibits a similar behavior,
albeit with only one pre-loaded video. In contrast, Service3 can po-
tentially be more bursty in terms of demand and therefore wasteful
in the event of an extremely short session, such as when watching
only two videos (v1, v2) but pre-loading an additional seven (v3-v9).
In contrast though to Service2 that pre-loaded tens of seconds of
content, Service3 pre-loads are much shorter (2-10 s). This tempers
the impact and burstiness though also dampens the robustness
against stalls in the face of changing network conditions.

We further experiment with swiping time after the main video
starts playing to determine that there is a consistent delay in the
start of pre-loading. This delay is variable and influenced by net-
work bandwidth and video bitrates, but it corresponds to approxi-
mately 10 s of main video content. This is determined as follows.
We start playing the main video for increasing number of seconds
starting from 1 s, then turning off the network. Swiping will reveal
if there is a pre-load available. Once pre-loaded video plays, we can
swipe back to the prior (main) video and measure the available play
time. Repeated trials reveal a 10-second delay. Service3 has been
observed to employ both TCP and QUIC interchangeably, as the
transport protocol.

5.4 Service4

Service4 adopts the train-based pre-loading policy like Service3
(figure omitted), although videos are generally much shorter. In
fact, similar policies are employed by two video services, each at
the extremes of the duration spectrum (Figure 3c). Furthermore,
Service4 can be extremely aggressive in train sizes, electing to pre-
load up to 17 videos, resulting in a pre-load buffer of up to 22 videos.
In tandem with this significant pre-load length, Service4 uses short
pre-loaded durations of 1-3 seconds per video, which ultimately
may not result in an excessive amount of data. We also find that the
pre-loading starts about 3 s after the main video download initiates,
using steps similar to those outlined for Service3.
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Figure 12: Pre-loading relative to main video download.

We conclude the pre-loading policy analysis by comparing the
differences in relative positioning of the pre-load, in reference to the
main video download, in Figure 12. Servicel downloads the main
video completely before pre-load starts, while Service2 generally
initiates the main video and pre-load downloads concurrently. For
Service3 and Service4 a short delay is introduced for the pre-load
(10 s and 3 s, respectively) after initiating the main video download.

Similar to Service2 and Service3, Service4 employs both TCP and
QUIC interchangeably, as the transport protocol.

5.5 Statistical analysis of pre-loading
characteristics

Next, we compare and contrast the expected distributions of the
various pre-loading policy characteristics when watching a large
number of videos in practice. We compare the pre-load duration,
size, and duration percentage with respect to the currently playing
(main) video. The evaluations were conducted using ample network
bandwidth (20 Mbps) and several hundred videos from each service
(i.e. {789, 885, 738, 643} for Servicel to Service4 respectively). The
pre-load duration is the number of seconds of video downloaded for
each pre-load. This value is inferred by turning the network connec-
tion off and measuring the time of available video at the client per
instance in the sequence, ensuring that in the case of the first video
in the sequence, no swiping to the consecutive videos happens
for at least 60 seconds. The pre-load size represents the observed
data volume per pre-loaded video. Finally, the pre-load percentage
represents the ratio of pre-load duration over actual video duration.
CDFs per respective parameter are plotted in Figs. 13a-13c.

Fig. 13a shows the duration per pre-load for Service4 and Ser-
vice3 remains in the more narrow range of 1-3 s and 2-4 s, respec-
tively, while each service may pre-load a substantial number of
videos (up to 7 and 22, respectively). Having a large number of
pre-loaded videos may have a significant impact on the network
demand and would require a large buffer at the application side.
Thus, partially downloading only a short portion for each video,
may alleviate both challenges. Contrary, Service2 that pre-loads
only one video presents a wider distribution in pre-load duration
(up to 20 s on iOS and 30 s on Android). Notably, with an average
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Table 4: Attributes of studied video services.
Attribute Servicel Service2 Service3 Service4
Number of pre-loads 3 (10S)/5 (Android) 7 22
Pre-load size per video 0.5-1.8 MB 0.1-6 MB 0.1-5MB 0.1 -1.6 MB
Pre-load duration per video 1-25s 20 s (i0S)/30 s (Android) 2 -4 s (i0S)/2 - 10 s (Android) 1-3s
Average video duration 25s 28s 101s 14s
Average video size 4.9 MB 1.7 MB 19 MB 1.1 MB
Transport protocol TCP QUIC/TCP QUIC/TCP QUIC/TCP
Quality levels 1+ Upto 8 Upto6 Upto6
1.0 1.0 1.0
0.8 0.8 ,’ 0.8
1
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Figure 13: Pre-loading duration and size characteristics.

video duration of 28 s, Service2 may pre-load videos in their entirety
as shown in Fig. 13c, where roughly half of the observed instances
for Service2 are pre-loaded at 90% of content duration or more.

As Servicel employs a size-based pre-loading policy, its pre-load
size is near 1 MB in most cases (Fig. 9). In contrast, other services
that may pre-load either only a single video (Service2) or short
portions of multiple videos (Service3 and Service4) in a time-based
manner, tend to utilize less data for the pre-loading operation of
each video. Nonetheless, Servicel is clearly associated with a higher
data cost per pre-load, that does not necessarily translate to higher
pre-load percentage (median is 30% as per Fig. 13c).

Table 4 summarizes all pre-loading attributes such as the different
policies observed for each service, along with the number, size
and duration of pre-loads. In particular, we appropriately note
instances where values are crucially different between iOS and
Android devices. We have also gathered relevant service design
information such as the transport protocol observed and number
of quality levels offered.

6 DATA CONSUMPTION AND QOE
EVALUATION

In this section, we analyze overall data consumption and QoE per
service, under different network and application configurations.
As short videos are primarily consumed on mobile devices and
are often downloaded via the cellular network, the incurred data
cost may be deducted from the subscriber’s monthly data budget.
Therefore, evaluating the bandwidth requirements generated by
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each service can provide two valuable insights. The first pertains
to the data requirements associated with the pre-loading operation,
while the second concerns the extent to which higher amount of
downloaded data (i.e. higher encoding bitrates) reflect on VQ gains.
To measure QoE, we evaluate individually 3 of the most relevant
metrics [30], i.e VQ (via VMAF), wait time between videos, and stall
time. Wait time is defined as the time difference between swiping
on the app interface and the time of the first video frame is rendered
on the screen, while stall time is defined as the duration of playout
interruption, not including wait time. Wait and stall time may have
a significant impact on QoE, especially in the context of short
video streaming, given the frequent ‘swiping’ user-behavior, that is
commonly associated with related services.

We note that the scope of our analysis in Section 4 and this
section is to evaluate and compare the studied services from a
content preparation and delivery point of view of the system design
respectively, excluding user-specific design. Thus in the following,
we allow the player to execute its pre-loading method unimpaired
to assess QoE in different network conditions.

6.1 Experimental design

According to the methodology of Section 3.3, we perform automated
(via ADB scripting) measurements for this study, while capturing
both packet traces and ground-truth screen-recording. We explore 4
distinct experimental scenarios (scenarios 1-4). Initially we setup a
competitive network scenario on WiFi, where four clients running
the same service simultaneously stream a sequence of 15 videos,
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as specified in Section 3.2, while sharing a bandwidth of 6 Mbps
(scenario 1) and then of 20 Mbps (scenario 2).

Following, we conduct measurements on a cellular network. We
use only one client for testing in the cellular scenarios, where for
each service we explore the ‘Data Saver’ mode. Data saver is a built-
in function accessible in the settings option of each studied video
application and is meant to reduce overall data consumption. As the
specifics of the precise data-saving logic are not available for any of
the services, we resort to comparing cumulative data consumption
after streaming the sequence of 15 videos, first with the ‘Data Saver’
mode activated (ON) (scenario 3) and then deactivated (OFF) (sce-
nario 4). During cellular experimentation, bandwidth was measured
at 18 - 20 Mbps via SpeedTest [26], prior to each measurement. For
reference, we provide the cumulative data volume associated with
the highest quality for all 15 videos, as the theoretical maximum
data required per service: 105 MB for Servicel, 122 MB for Service2,
158 MB for Service3, and 173 MB for Service4.

Computing VMAF for playing videos is challenging, due to po-
tential adaptation, stalls, and decoding and rendering impacts. For
this evaluation, we resort to indirect measurement by converting
bitrates into VMAF. We first generate a mapping between VMAF
and bitrates for all 15 videos presented in Fig. 5. Video and audio
bitrates are directly known from metadata or media file inspection.
The average VMAF for a test is obtained by extracting the data
rate for each video flow, excluding idle times. Known audio bitrate
is subtracted, and the remainder approximately represents video
encoding bitrates (modulo small overheads), which we convert to
VMATF by interpolation using the aforementioned mapping (Fig. 5).
For reference, the average audio bitrates for the 15 videos used are:
32 Kbps for Servicel, 128 Kbps for Service2, 75 Kbps for Service3,
and 83 Kbps for Service4. This is an approximate method, since
VMAF score normally corresponds to an encoding variant, and in
our experiments, adaptation may cause switching between variants.

As studied services prevent access to application-layer informa-
tion, difficulty in obtaining ground-truth for wait and stall time is
mitigated by visual inspection via Android’s screen recording func-
tion, automatically operated via ADB for time precision. Nonethe-
less, according to Fig. 5, VMAF scores for adjacent (even 3 consecu-
tive) quality levels are very close, rendering adaptation events hard
to detect by visual inspection. While anecdotal evidence of adapta-
tion within video was observed for a subset of the studied services,
in this study we resort to data consumption to infer adaptation.

6.2 Data consumption vs. perceptual quality

Fig. 14 presents averages (over 10 iterations), of VMAF scores
against the cumulative consumed data, generated by streaming
the 15 videos per service and per investigated scenario.

Servicel achieves close range of VMAF in both competitive WiFi
and real-world cellular scenarios, with moderate data consump-
tion (50-80 MB), as expected from Fig. 4, previously analyzed in
Section 4. A point worth noting is that according to our metadata
analysis and Table 1, Servicel provides only one resolution (720p),
while Fig. 14 suggests some data preservation mechanism, given the
data consumption difference (~35%) between the WiFi scenarios
or between the Data Saver ‘ON” and ‘OFF’ scenarios. This would
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Figure 14: VMAF vs. cumulative data consumption.

be attributed to either a more conservative pre-loading policy or
employment of bitrate adaptation.

Service2, which according to Table 1 offers up to 8 resolutions,
shows similar or at times lower VMAF scores, when compared with
the other services in Fig. 4. Fig. 14 indicates that in fact Service2
scores lower in average VMATF score across all services in all scenar-
ios, while requiring the least data consumption. This indicates that
Service2 prioritizes data savings over VQ, which seems a reasonable
design choice for cellular connectivity scenarios. Additionally, its
Data Saver mode is more efficient than other services, reducing
data requirements by more than 50%.

In Fig. 4, Service3 scores highest or equally high in VMAF when
compared to other services in most scenarios, which is also sup-
ported by Fig. 14. In terms of data consumption, Service3 performs
similarly to Servicel and at least 25% better than Service4. While
Service4 shows the highest data consumption of all services, it
is not present equivalently high VMAF scores in most scenarios,
except in the constrained WiFi (6 Mbps).

Comparing cellular and WiFi networks between the least con-
strained scenarios (WiFi 20 Mbps and cellular without ‘Data Saver’),
we observe that data usage is similar across all services (within 10%
and lower in cellular for 3 out of 4 services), while VMAF is nearly
the same across three services. Only Service2 shows a reduction in
VMATF by about 20% (60 vs. 48), in cellular.

In summary, Servicel and Service3 manage to strike a better trade-
off between VQ and data consumption, consistently ranking in the
"middle", with Service4 using the most data but failing to provide
significantly better VQ than other services. Service2 provides the low-
est data consumption, but is associated with lower VMAF scores. The
‘Data Saver’ reduces data consumption by a minimum of 15% for most
services, reaching 50% for Service2. Such data savings are associated
with VQ reduction of about 15-25% for Servicel, Service3 and Service4,
but more (~33%) for Service2. Network type does not appear to signif-
icantly impact the behavior and performance of most services, unless
constrained by bandwidth or by the ‘Data Saver’ setting.
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Figure 15: QoE evaluation

6.3 QoE evaluation

Fig. 15 presents the average (over 10 iterations) QoE metrics, i.e.
VMAF score for VQ, cumulative wait time and cumulative stall
time, measured while streaming the same list of 15 videos in four
experimental scenarios. Fig. 15a allows us to conclude that Ser-
vice3 manages to perform equally well or outperform, in terms of
VMAF scores, all services in all scenarios, except Service4 in the
constrained WiFi scenario (6 Mbps). It is worth noting that any
gains in VQ are more appropriately evaluated in contrast to the
incurred cost in terms of data consumption, something that was
addressed in Section 6.2.

Fig. 15b shows wait time results, where we separate ‘First’ wait
time (for the first video), and ‘Later’ (for all subsequent videos
cumulatively). Wait time for the first video is also commonly re-
ferred to as ‘start-up time’. All services maintain a relatively low
average start-up time of less than 2s (‘First’ video) in all studied
scenarios, except the constrained WiFi (6 Mbps) scenario, where
Servicel and Service4 show relatively higher values of 9 and 8
s, respectively. The average cumulative wait times for ‘Later’ are
significantly reduced on a per video basis, when compared with
the start-up time of the ‘First’ video. This insight suggests that the
effectiveness of pre-loading on reducing wait times depends on
the length of the user-session. User-sessions that consist of con-
suming a large number of videos consecutively, benefit more in
the long-term from pre-loading, in terms of cumulative wait time.
The higher start-up time incurred for the first video is ultimately
countered by pre-loading more data of subsequent videos, thus
eliminating wait time further in the session. Meanwhile, we also
consider the impact of Round Trip Time (RTT) on each service. We
observed 25-35 ms of RTT on WiFi and 71-107 ms on cellular. Under
the same network type, each service’s RTT is comparable, which
suggests that higher start-up and wait time occurrences are more
likely throughput-driven rather than attributed to RTT.

In regard to stall time, Fig. 15¢ shows that in all scenarios, except
the constrained WiFi (6 Mbps), the average stall time is less than 3
s, for the first video of the playlist (1 of 15). The cumulative stall
time for the remaining playlist (2-15 of 15) is kept below 5 s for all
services, except for Service4 which is slightly higher at about 7 s.

The first video may account for about 25% to 50% of the total
stall time in some of the cases, such as for Servicel and Service3 in
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the cellular scenarios. High stall times for the first video can be an
indication that parallel pre-loading of multiple videos in a congested
network may quickly saturate the network link, resulting in poor
QoE during the initiation of a short video session. Thus, the choice
of the pre-loading parameters, such as the amount of video data
pre-loaded, is an important design feature for short-video services.

Service2 achieved the lowest wait and stall times, which indicate
good QoE, coupled with lower bitrate requests (with related impli-
cations on VQ). This hypothesis is also supported from Service2’s
low bandwidth requirements (Fig. 14) and VMAF scores (Fig. 15a).

In summary, our results, suggest that pre-loading - employed in all
studied short video systems - has the potential to improve start-up or
wait times, especially for longer user-sessions. Given that short video
users access a new video more frequently per user session, when com-
pared to long videos users, short video user experience is enhanced by
seamless content transitions without delay. Nonetheless, the amount of
pre-loaded data is an important design feature, since more aggressive
pre-loading may create significant strain on the network, ultimately
hindering QoE in terms of playout interruptions (stalls).

7 CONCLUSION

We present a detailed investigation of the characteristics of four
short video platforms. We outline insights into design decisions
on encoding quality levels, resulting bitrates and perceptual qual-
ity, using large samples and custom-generated videos that were
uploaded and then downloaded for analysis. We further reveal the
principles of pre-loading mechanisms, such as the number of videos,
duration, and size. Finally, we compare the data traffic consumption
and QoE impact under multiple network conditions and present
the performance results for each service. Our work complements
initial research on short videos. Our methodologies can be used
by researchers and service providers to gain further insights and
improve system designs for the benefit of all participants in this
new and exciting application ecosystem.
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