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Abstract: Traditionally, a high-performance microscope with a large numerical aperture is 
required to acquire high-resolution images. However, images’ size is typically tremendous. 
Therefore, they are not conveniently managed and transferred across a computer network or 
stored in a limited computer storage system. As a result, image compression is commonly used 
to reduce image size resulting in poor image resolution. Here, we demonstrate custom 
convolution neural networks (CNNs) for both super-resolution image enhancement from low-
resolution images and characterization of both cells and nuclei from hematoxylin and eosin 
(H&E) stained breast cancer histopathological images by using a combination of generator and 
discriminator networks so-called super-resolution generative adversarial network-based on 
aggregated residual transformation (SRGAN-ResNeXt) to facilitate cancer diagnosis in low 
resource settings. The results provide high enhancement in image quality where the peak signal-
to-noise ratio and structural similarity of our network results are over 30 dB and 0.93, 
respectively. The derived performance is superior to the results obtained from both the bicubic 
interpolation and the well-known SRGAN deep-learning methods. In addition, another custom 
CNN is used to perform image segmentation from the generated high-resolution breast cancer 
images derived with our model with an average Intersection over Union of 0.869 and an average 
Dice Similarity Coefficient of 0.893 for the H&E image segmentation results. Finally, we 
propose the jointly trained SRGAN-ResNeXt and Inception U-net Models, which applied the 
weights from the individually trained SRGAN-ResNeXt and Inception U-net Models as the 
pre-trained weights for transfer learning. The jointly trained model’s results are progressively 
improved and promising. We anticipate these custom CNNs can help resolve the inaccessibility 
of advanced microscopes or whole slide imaging (WSI) systems to acquire high-resolution 
images from low-performance microscopes located in remote-constraint settings. 

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing 
Agreement

1. Introduction
Pathology diagnosis is routine work usually performed by a skilled pathologist or cytologist. 
The diagnosis begins with staining (typically hematoxylin and eosin or H&E) of a specimen on 
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a glass slide and observing it under a high-resolution (HR) microscope. Typically, the diagnosis 
process for each biopsy slide could take up to 15-20 mins per slide which is very time-
consuming. Pathologists must visually scan a vast field of view to find any abnormalities on 
each slide. Therefore, whole slide imaging (WSI) has been introduced to solve this main 
problem [1]. The WSI refers to scanning a complete microscope slide and creating a single 
high-resolution digital file. This is commonly achieved by capturing many small HR image 
tiles or strips and then montaging them to create a full image of a histological section. The WSI 
equipped with pathological image diagnosis software is changing the workflow of many 
laboratories. Specimens on glass slides can now be transformed into HR digital files that can 
be efficiently stored, accessed, and analyzed. The latter is due to the advancement of computer 
vision and convolution neural networks (CNNs) algorithms in digital pathological image 
analysis [1, 2].  

However, in resource-constraint settings, accessibility of both HR microscope and WSI is 
a crucial obstacle to delivering quality health care, frequently resulting in undertreatment and 
overtreatment of infectious diseases based on clinical assessment alone [3].  Laboratory 
infrastructure is typically clustered in urban settings and is relatively inaccessible in regions 
where significant portions of the affected population reside [4]. In particular, many neglected 
diseases are more prevalent in rural areas, far from these diagnostic centers [5].   Therefore, 
novel, simple, and inexpensive approaches to perform digital pathological diagnoses are needed 
in both clinical and public health environments. Potential solutions are to provide a software-
based solution to help transform low-resolution (LR) to either HR or super-resolution (SR) 
images.

Due to the rapid development of computational technologies, deep-learning-based 
diagnosis has become a sought-after technique for digital pathology image analysis 
implementation [2, 3]. Depending on the analysis, the technique can be divided into supervised 
and unsupervised learning. Supervised learning aims to define a function that can map input 
images to their outputs or labels (normal cells, abnormal cells, cancer cells, and other 
parameters) such as classification or segmentation problems. On the other hand, the purpose of 
unsupervised learning is to define another function that can extract the latent features and 
structures from unlabeled data such as clustering problems, dimensional reduction, and super-
high-resolution problems. Several studies use CNNs for nuclei segmentation [6-10]. Those 
methods can surpass the traditional methods such as Otsu segmentation [11], Watershed 
method [12], and K-mean clustering [13]  since the traditional methods are sensitive to 
parameter setting and could be effective for specific data types. CNNs based approaches have 
become practical tools for nuclei and cell segmentation tasks as they can achieve a resounding 
success. HoverNet [14] is one of the effective CNNs for nuclei segmentation. The model 
predicts horizontal and vertical distance between a nucleus centroid to its corresponding 
foreground pixels. Masker-controlled watershed is then applied as the post-processing method 
to obtain nucleus instances. However, the HoverNet results can be sensitive to the noise in the 
distance maps because of the marker-controlled watershed. StarDIST [15] is another CNNs for 
nuclei segmentation that predicts centroid probability maps to localize the nuclei. The predicted 
centroids are applied to generate polygons to determine the boundary and the number of cells.   
The downside of the StarDIST is that polygons are only predicted using the centroid pixels’ 
features. These results in a lack of contextual information for large nucleus instances and could 
affect prediction accuracy. CPP-Net [16] extends the StarDIST by integrating the rich 
contextual information from a sampled point set for each centroid pixel and applying the Shape-
Award Perceptual loss that constrains CPP-Net’s predictions regarding the nucleus shape. 

U-net architecture is a renowned convolution neural network architecture for image 
segmentation. It is widely used for biomedical image segmentation [17]. Its structure is simple 
convolution blocks, and the skip connections are added from decoder to encoder. The U-net 



architecture allows for simultaneously using global location and context and it works with very 
few samples to improve the model performance. In addition, it is an end-to-end process for the 
entire image in the forward pass and directly generates the segmentation image. Its structure is 
also simple to be modified or assembled with other models. Potentially, the performance of the 
U-net can be improved by using different effective convolution architectures to replace the 
simple convolution blocks. In recent years, CNNs have also been applied for super high-
resolution biomedical images with a wide range of imaging modalities [18-24] such as 
fluorescence imaging, light-sheet imaging, and color imaging of pathological slides. However, 
those works employed the same concept of SRGAN [25] that the generator is built using the 
ResNet architecture or residual structure [26]. Indeed, several architectures can surpass the 
residual structure. Exploring one of them and applying it to the generative adversarial network 
(GAN) will be more worthwhile. For instance, the DenseNet [27] network is applied as the 
backbone for SGAN namely ESRGAN [28] showing the impressive result and surpassing the 
original SRGAN Model. According to the Top-1 and Top-5 accuracy vs. computational 
complexity testing reported on Benchmark Analysis of Representative Deep Learning Neural 
Networks Architectures [29], the ResNeXt CNNs architectures can outperform state-of-the-art 
(SOTA) architectures such as ResNet, DenseNet, Inception, etc., even the complexity of 
ResNeXt is somewhat less than others. Recently, deep learning techniques based on 
Transformer architectures [30] have emerged as an alternative to CNNs architectures since they 
can provide better results on large datasets. However, Transformer architectures are more 
complicated and require a high computation cost. If the model is excessively complicated, it 
will be challenging to build the jointly trained models to simultaneously update the weights of 
the joint models due to the restriction of computing resources (time, memory, speed, etc.). 

To overcome limitations in digital pathological diagnosis, we describe a novel method for 
transforming LR digital pathological images derived from low-cost microscopes to super-
resolution (SR) images (equivalent to a 40x magnification) with a super-resolution generative 
adversarial convolution neural network technique based on ResNeXt architecture [31] 
(SRGAN-ResNeXt) [22]. Most SRGAN deep learning works for biomedical image 
enhancement used a single residual network (ResNet) in each layer to capture and extract image 
features, while our deep learning used the ResNeXt architecture instead. Typically, the ResNet 
architecture can exceptionally perform on very deep convolution layers since the skip 
connection in the ResNet adds the input information to the output of the convolution layers. 
Therefore, the output of ResNet contains the representative features from the convolution 
operation and the critical information from the original input. Moreover, the skip connection 
allows the gradient to effortlessly backpropagate and update the weight to minimize the loss 
value. However, the single residual block might be insufficient to capture all significant 
features. Therefore, to increase the model capability, we apply residual blocks in parallel 
(stacking the same topology blocks) for each layer (ResNeXt architecture). Utilizing the 
ResNeXt architecture not only improves the feature capturing, but also reduces the complexity 
of the model in preference to make it deeper since hyper-parameters (width, filter sizes, etc.) 
are shared. This approach can provide considerable resolution enhancement for poor-quality 
images. Training the SRGAN-ResNeXt Model requires a dataset consisting of high-resolution 
images (ground truth) and corresponding low-resolution images. We used a commercial 
microscope (Nikon Eclipse Ci) to prepare a dataset for training this model. Peak Signal to Noise 
Ratio (PSNR) and Structural image similarity method (SSIM) were used to evaluate the 
generated images from our model, which are 32.92 dB and 0.93, respectively. These are 
promising results as they are higher than the original SRGAN Model’s evaluation results that 
were trained on the same data set (H&E images). Furthermore, we applied the Inception U-net 
Model [32], the improved U-net Model by using Inception architecture as a backbone in the U-
net network for H&E image segmentation. To train the Inception U-net Model, a large number 
of H&E images are required to be accurately masked on nuclei areas which are very time-



consuming. Thus, we used a dataset from a cancer imaging archive [33] to train our Inception 
U-net Model. Our Inception U-net Model’s Intersection over Union (IoU) and Dice Similarity 
Coefficient (DSC) are 0.869 and 0.893, respectively. Since the SRGAN-ResNeXt and Inception 
U-net Models were separately trained, the performance of both models could be improved by 
jointly training them together as the segmentation loss and the generator loss could be 
effectively back propagated to update the weights for the generator model and Inception U-net 
Model with a joint optimization.

Fig. 1. The workflow of super high resolution and segmentation deep learning. (a) Fresh breast tumor tissues. (b) 
The corresponding H&E stained tissue slides. (c) A commercial microscope (Nikon Eclipse Ci) for capturing the 
H&E stained tissue slide images. (d) High-resolution images acquired by the microscope. (e) Simulated low-
resolution images. (f) The training SRGAN- ResNeXt network. (g) The unseen low-resolution image. (h) The 
generator model from SRGAN-ResNeXt. (i) The generated high-resolution image. (j) The Inception U-net Model 
for segmentation. (k) The segmented H&E image.

Fig. 1 shows the overall workflow of the models. First, the breast tumor H&E slides were 
prepared on biopsy slides (Fig. 1(a)-(b)) to be imaged with a 40x magnification (Fig. 1(c)), then 
acquired the images’ quality was downgraded by downsampling and adding blurring noise. 
Therefore, the model has both corresponding ground truth (high-resolution images) and low-
resolution images for training the SRGAN-ResNeXt (Fig. 1(d)-(f)). Eventually, the well-trained 
generator model from the SRGAN-ResNeXt (Fig. 1(h)) was applied to the unseen low-
resolution image (Fig. 1(g)) to enhance its quality by generating the high-resolution image (Fig. 
1(i)). Furthermore, the generated high-resolution image was characterized as its resolution was 
substantially improved and contained considerable details that were impossible to perform 
before applying the model. In other words, our approach can tackle those low-resolution images 
by applying the Inception U-net Model (Fig. 1(j)) to the generated high-resolution images (the 
output of the generator model from SRGAN-ResNeXt). As a result, the newly generated image 
can be segmented and quantified to characterize the nuclei’s density, size, and morphology. 

2. Methods
2.1 Proposed SRGAN-ResNeXt architecture 

Here, we propose SRGAN-ResNeXt architecture built from scratch to synthesize super-
resolution images from low-resolution images. The concept of the SRGAN-ResNeXt is similar 
to the traditional GAN that consists of generator and discriminator models. The generator and 
discriminator models of our SRGAN-ResNeXt are depicted in Fig. 2(a) and Fig. 2(b), 
respectively. The generator model takes a low-resolution image as the input and generates a 
high-resolution image after passing through the convolution, residual, and upsampling layers. 
The discriminator model is utilized to distinguish the generated image from the ground-truth 
image by taking them as the input and providing probability as the output. The ultimate goal of 



SRGAN-ResNeXt is to train the generator model to synthesize the image that can fool the 
discriminator completely. To achieve this, we need to design the generator model properly, use 
a large number of images as the dataset to train the models, and fine-tune the hyperparameters 
thoroughly. To train SRGAN-ResNeXt, we first trained the discriminator model by freezing the 
generator model. Next step, we used an adversarial network to train the generator model. The 
adversarial network (Fig. 2(c)) is the combined models, which are the generator model, 
discriminator model, and VGG19-the latter works as the feature extractor [34]. 

2.1.1 Generator model

The generator network is a deep convolution network containing the pre-residual layer, 16 
parallel-residual layers (ResNeXt), a post-residual layer, two upsampling layers, and the final 
convolution layer as shown in Fig. 2(a). To assemble the generator model, the pre-residual 
block is the first block, which contains a single 2D convolution layer and ReLU is used as the 
activation function. The second block is 16 parallel-residual layers (ResNeXt architecture). 
Each layer after convolution layers is followed by a batch normalization with 0.8 of momentum 
value and the activation function is also ReLU. For the ResNeXt block, the size of 
transformation sets or branch numbers is defined as cardinality. Increasing the number of 
cardinalities can improve and better the performance of the convolution neural network. 
However, the excessive number of cardinalities could lead to expensive computation. Thus, we 
use eight cardinalities for our generator model [Fig. 2(a)], which is the optimal number of our 
task. The next block is the post-residual block, the simple convolution layer, and batch 
normalization (momentum =0.8). After that, the fourth block is the upsampling block, which 
has two sub-pixel convolution layers [35], upsampling the scale by four times. Lastly, the last 
convolution layer uses the Tanh activation function to form the generated image with R, G, and 
B color channels. To train the generator model, we need to use the joint model, which is the 
adversarial network [Fig. 2(c)]. The discriminator and VGG19 models are untrainable during 
training the generator model.

2.1.2 Discriminator model

The discriminator network [36] is a relatively simple convolution network, comprising eight 
convolutional layers and two fully connected layers, designed to evaluate the similarity between 
the ground truth and generated images. After each convolution block, a batch normalization 
layer is used, followed by an activation function named the Leaky ReLU function (α=0.2). The 
number of 3x3 filter kernels increases by a factor of 2 from 64 (the first layer) to 512 (the eighth 
layer) kernels similar to the VGG network. The last two layers are dense layers working as a 
classification block, predicting the probability of an image being either real or fake. We have 
to freeze the generator model or make it untrainable to train the discriminator model. The 
learning progress of the discriminator model is remarkably faster than the generator model. 
Therefore, during the training generator model, it must be slowed down learning progress which 
will be further discussed in the next section below.



Fig. 2. Super-resolution generative adversarial network-based on SRGAN-ResNeXt. (a) Generator model. (b) 
Discriminator model. (c) The combined models so-called adversarial model for training Generator model.



2.1.3 Loss functions

The perceptual loss function (𝐼𝑆𝑅) is highly significant to the performance of the generator 
model in the SRGAN-ResNeXt network. It is the weighted sum of a content loss (VGG19 
loss, ISR

X ) and adversarial loss (Discriminator loss, ISR
Gen)  as shown in equation (1) as 

         𝐼𝑆𝑅 = 𝐼𝑆𝑅𝑋 + 𝐶𝑤𝐼𝑆𝑅𝐺𝑒𝑛.                                       (1)

The generator exploits this loss function to optimize and update its trainable parameters. To 
achieve the well-trained generator model, the weight, 𝐶𝑤, was assigned to the loss value from 
the discriminator model to slow down the learning progress since the discriminator model can 
be trained faster than the generator model. If the discriminator model can excessively perform 
well to distinguish between the generated image and the ground truth image, we would not be 
able to come up with the exceptional generator model since the generated image cannot fool 
the discriminator model. In the original SRGAN training, 𝐶𝑤 is a constant for the whole 
learning process. However, this weight started from 0.5 and increased to 0.05 for every 10,000 
epochs in our model. Since the generator model will gradually improve its performance and 
capability, we have to balance the performance of both the generator and discriminator models. 
The total number of epochs for training our model was 50,000. Therefore, 𝐶𝑤 was varied from 
0.5 to 0.7. 

Albeit using the pixel-wise mean square error (MSE) to distinguish between the ground truth 
and the reconstructed image is undemanding to optimize, it returns a poor-quality image in 
terms of human perception. The output of MSE is the average features’ difference of two data. 
Therefore, it cannot extract high-dimensional features. However, the content loss or VGG loss 
(𝐼𝑆𝑅𝑋 ) , is defined as the Euclidean distance between the feature map of the generated image 𝐺𝜃𝐺
(𝐼𝐻𝑅) and the ground truth, 𝐼𝐻𝑅, can help solve this problem. The  𝐼𝑆𝑅𝑋  loss is based on ReLU 
activation layers of the pre-train 19-layer VGG network and it can be calculated following 
equation (2) as shown as

                   𝐼𝑆𝑅𝑉𝐺𝐺 =  
1

𝑊𝑖,𝑗𝐻𝑖,𝑗
∑𝑊𝑖,𝑗
𝑥=1 ∑

𝐻𝑖,𝑗
𝑦=1(  Ø𝑖,𝑗(𝐼𝐻𝑅)𝑥,𝑦 ―  Ø𝑖,𝑗(𝐺𝜃𝐺(𝐼𝐿𝑅)𝑥,𝑦),                      (2)

where 𝑊𝑖,𝑗 𝑎𝑛𝑑 𝐻𝑖,𝑗 describe the dimensions of the respective feature maps within the VGG 
network. The features map (Ø𝑖,𝑗), can be obtained by the j-th convolution before the 𝑖𝑡ℎ 
maxpooling layer within the VGG19 network. Apart from using a feature map from VGG loss, 
the adversarial loss (𝐼𝑆𝑅𝐺𝑒𝑛) is also employed to differentiate the similarity of the two images. It 
is defined as the probabilities varying from 0 to 1, which is the result of the discriminator model 
(𝐷𝜃𝐷(𝐺𝜃𝐺(𝐼𝐿𝑅))) as shown in equation (3) below as

                         𝐼𝑆𝑅𝐺𝑒𝑛 = ∑𝑁
𝑛=1 ―𝑙𝑜𝑔𝐷𝜃𝐷(𝐺𝜃𝐺(𝐼𝐿𝑅)).                                                     (3)

The perceptual loss effectively leverages the combination of these two loss functions to train 

the generator model that can generate high-detailed images

2.2 Dataset for training SRGAN-ResNeXt Model

To obtain breast cancer H&E images, the female MUC1 double-transgenic mice with breast 
tumors [37] were euthanized and their tumors were sent out to the histopathology lab (MSU-
IHPL Research facility) to prepare the H&E stained breast tumor slides. All procedures 



performed on animals were approved by the University’s Institutional Animal Care & Use 
Committee (AUF 06/18-082-00) and were within the guideline of human care of laboratory 
animals. Four tumor mice were euthanized, and a tumor of each mouse was surgically removed 
to prepare four different tumor H&E slides. The H&E slides were then imaged by the 
commercial microscope (Nikon Eclipse Ci) with 40x magnifications to prepare the dataset for 
training SRGAN-ResNeXt. The size of each whole slide image is greater than 80,000 x 80,000 
pixels and the image patches with a size of 256 x 256 pixels were extracted from each whole 
slide image with a 50 % overlapping area. The data augmentation was applied to these extracted 
image patches. The total number of image patches including the augmented images is over 
13,000 images, which were used for training only. To prepare the low-resolution images, we 
downed sampling 4 times from the original high-resolution image patch and added blurring 
noise using the normalized boxed filter with kernel shown in equation (4) below. We increased 
the kernel size until we could not discriminate the nuclei boundary and the simulated low-
resolution images are even worse than some native low-resolution images.

                                    𝐾 =
1

𝑘𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ ∗ 𝑘𝑠𝑖𝑧𝑒.ℎ𝑒𝑖𝑔ℎ𝑡

1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

,                             (4)

Where K is the blurring normalized boxed filter, ksize.width is the kernel width, and 
ksize.height is the kernel height.

Fig. 3(a) shows the cropping area from the large FOV H&E images. Fig. 3(b) are the small 
patches that were cropped from the large FOV image. 

Fig. 3. Data set preparation for training SRGAN-ResNeXt, cropped image with 50% overlapping area. (a) Large 
field of view H&E image, (b) The small patches of the large image (a) with 50% overlapping area.



2.3 The Inception U-net architecture 

The conventional CNNs for image segmentation tasks have two main components: an encoder 
and a decoder. Similarly, the U-net architecture has these two parts, but the skip connection is 
the crucial mechanism that allows U-net to surpass the conventional method and perform better. 
This concept is akin to the residual block that the input (encoder part) will concatenate to the 
output (decoder part) at the same dimension. However, each layer of the original U-net 
architecture is a simple convolution block, which might be insufficient to extract some crucial 
information. For this reason, the Inception architecture [38] was applied to improve the 
capability of the U-net Model. Inception architecture uses a wide range of kernel sizes for the 
same input to simultaneously extract global and local features. A larger kernel size is suitable 
for the information distributed globally, whereas a smaller kernel size is appropriate for the 
information distributed locally. Consequently, the Inception CNN architecture can be 
satisfactorily performed to extract the feature from the data. Here, we applied four different 
kernel sizes of the Inception blocks in our U-net Model as shown in Fig. 4 below by replacing 
each convolution block in the original U-net architecture with the Inception blocks.  

Fig. 4. Inception U-net architecture for H&E image segmentation.  Every single blue box corresponds to a multi-
channel feature map. The value over the boxes represents the number of channels. 

Fig. 4 illustrates the Inception U-net architecture. The first part is the encoder (the left side of 
Fig. 4) where the Inception convolution blocks are utilized instead of the simple convolution 
blocks. All Inception blocks in this part consist of different sizes (3x3, 5x5, and 1x1) parallel 
filters (Inception structure) followed by a rectified linear unit (ReLU) and a 2x2 max pooling 
operation with the stride of 2 steps for downsampling, respectively and this is the repeated 
process. The number of feature channels is double at each downsampling step. The second part 
is the decoder (the right side of Fig. 4). It consists of a feature map upsampling followed by a 
2x2 up-convolution (halving the number of feature channels), a corresponding concatenation 
from the decoder part, and Inception blocks. The ReLU activation is used for each block. The 
H&E images and their corresponding segmentation masks are implemented to train this model 
as input and output, respectively. The loss function for U-net is a mean squared error (MSE) 
function as shown in equation (5) shown below as  



                𝑀𝑆𝐸 = 1
𝑁 ∑𝑁

𝑖=1 (𝑦𝑖 ― 𝑦𝑖)2,              (5)

where the MSE is the average of the squared differences between ground truth (𝑦𝑖) and 
predicted value from our model (𝑦𝑖) and N is the number of samples.

2.4 Data set for training the segmentation models

Since image segmentation is a supervised task, the outputs or targets need to be labeled, which 
is expensive and time-consuming. Fortunately, several datasets provide the H&E images and 
their corresponding nuclei masks. Here, we used the dataset from the cancer imaging 
archive[33]. This dataset provides nucleus segmentation for the whole cancer slide over 1,000 
images in the cancer genome atlas (TCGA) repository. These images are from 10 different 
cancer types such as bladder urothelial carcinoma (BLCA), invasive breast carcinoma (BRCA), 
cervical squamous cell carcinoma, and endocervical adenocarcinoma (CESC).  

2.5 Jointly trained SRGAN-ResNeXt and Inception U-net Models

The SRGAN-ResNeXt and Inception U-net Models were jointly trained by using the separately 

trained weights of the SRGAN-ResNeXt Model and the Inception U-net Model as the pre-

trained weights for transfer learning. Fig. 5(a) shows the joint models for training the generator 

model. The conception of the jointly trained generator (JTG) Model is akin to the adversarial 

model shown in Fig. 2(c). Still, the JTG Model employs not only the content loss (returned by 

the VGG19 Model) and the adversarial loss (returned by the discriminator model) but also the 

segmentation loss of the generated high-resolution image and ground truth high-resolution 

image (returned by the jointly trained Inception U-net). The combined loss of the JTG Model 

is shown in equation (6) as 

                                           𝐼𝐽𝐺 = 𝐼𝑆𝑅𝑋 + 𝐶𝑤𝐼𝑆𝑅𝐺𝑒𝑛 + 𝐶𝑤2𝐼𝑆𝑅𝑆𝐺𝑒𝑛𝑆,  (6)

Where 𝐼𝐽𝐺is the combined loss of the jointly trained generator model, ISR
X  is the content loss 

(VGG19 loss), ISR
X  is the adversarial loss (Discriminator loss), 𝐼𝑆𝑅𝑆𝐺𝑒𝑛𝑆 is the segmentation loss 

(Jointly trained Inception U-net loss), and 𝐶𝑤 & 𝐶𝑤2 are hyperparameters. The VGG19 Model, 

the discriminator model, and the jointly trained Inception U-net Model are fixed as untrainable 

during training the JTG Model.

The jointly trained Inception U-net (JTIU) Model was trained using the generated high-
resolution image (returned by the JTG Model) and the ground truth of the high-resolution image 
as the model’s inputs. The outputs of both inputs have the same ground truth to calculate the 
loss value. Therefore, the JTIU can learn how to generate the same quality segmentation image 
from both generated high-resolution images and native high-resolution images. During training 
the JTIU Model, the JTG Model was fixed as well. 



  
Fig. 5. Jointly trained SRGAN-ResNeXt Model and Inception U-net Model. (a) The assembled models for the 
jointly trained generator (JTG) Model. (b) The assembled models for the jointly trained Inception U-net (JTIU) 
Model.  

2.6 Data set for the jointly trained SRGAN-ResNeXt and Inception U-net Models

Two other tumor mice were sacrificed, and a tumor of each mouse was prepared for H&E 
slides. Therefore, we have two tumor H&E slides from different mice for training the jointly 
trained models. The 220 image patches with a size of 256 x 256 pixels were randomly extracted 
from these H&E slides (110 patches per slide). 210 and 10 patches were used for training and 
testing, respectively. Each image patch was manually labeled for the ground truth of 
segmentation. Thus, this dataset contains low-resolution, high-resolution and segmentation 
images.

2.7 Training implementations 

The separately trained SRGAN-ResNeXt and Inception U-net models were trained on Google 
Colaboratory-Pro (or Google Colab-pro) and implemented on the computer with 9th Gen Intel 
Core i7-9750H CPU, 16 GB RAM, and NVIDIA RTX 2060 graphic card. Since the jointly 
trained models require more resources for training due to the combination of several models, 
they were trained on Google Colaboratory-Pro+ (Google Colab Pro+), which provides Faster 
GPUs and significantly more memory than the Google Colab-pro. 

3. Results and discussion  
3.1 Super high-resolution image reconstruction and segmentation.

The goal of SRGAN-ResNeXt is to have a well-trained generator model to reconstruct high-
resolution images. We could not feed the large image into the generator model due to the 
computation restriction during implementation. Therefore, the large images were divided into 
serval small images. Furthermore, the overlapping area between these divided images was 



required to stitch them back to obtain the same field of view (FOV) as the original large image. 
Fig. 6 shows the results of applying both the SRGAN-ResNeXt and the Inception U-net Models 
to a breast tumor H&E image. Fig. 6(a1), 6(b1), and 6(c1) are the small patches of the whole 
slide image from different areas. All these small images were downscaled and added blurring 
noise as shown in Fig. 6(a2), 6(b2), and 6(c2). The SRGAN-ResNeXt Model was employed to 
enhance these low-resolution images by synthesizing high-resolution images (Fig. 6(a3), 6(b3), 
and 6(c3)). The Inception U-net was then applied to these generated high-resolution images for 
segmentation (Fig. 6(a4), 6(b4), and 6(c4)).  

Fig. 6. The whole slide image (WSI) of a breast tumor H&E slide and the result of our deep learning model. (a1, 
b1, and c1) The high-resolution images of the WSI from different areas. (a2, b2, and c2) The low-resolution images. 
(a3, b3, and c3) The reconstructed high-resolution images using our deep learning model (SRGAN-ResNeXt). (a4, 
b4, and c4) The corresponding nuclei segmentation to (a3, b3, and c3) using the Inception U-net Model.

Fig. 7(a1) and 7(b1) show the low-resolution image and the enhanced-resolution image 
generated by the SRGAN-ResNeXt Model, respectively. They were fed into the Inception U-
net Model for nuclei segmentation. Fig. 7(a2) shows the segmentation result of the low-
resolution image and Fig. 7(b2) shows the segmentation result of the enhanced image. It is 
relatively demanding to perform the image segmentation for the low-resolution image without 
enhancing its resolution first. The CNNs cannot extract meaningful features from the blurry 
pixels resulting in unsatisfactory segmentation performance. The mean square error (MSE) of 
blurry images and generated high-resolution images are 21.24 and 2.75, respectively. The MSE 
of the blurry image is significantly higher than the generated high-resolution image. To 
circumvent this issue, we propose to apply the SRGAN-ResNeXt Model to improve the poor-
quality image before characterizing or performing segmentation to obtain better results. Fig. 
7(c1) and 7(c2) show the ground truth for high-resolution image and segmentation image, 
respectively. 



 
Fig.7. The H&E image segmentation of the low-resolution image and the enhanced-resolution image. (a1-a2) The 
low-resolution image and its segmentation image (output of the Inception U-net). (b1-b2) The enhanced-resolution 
image (output of the SRGAN-ResNeXt) and its segmentation image (output of the Inception U-net). (c1-c2) The 
ground truth of the high-resolution image and the segmentation image. (g) Ground truth preparation for both of the 
high-resolution image and the segmented image. 

3.2 Performance of the SRGAN-ResNeXt Model  

Peak signal to noise ratio (PSNR) is one of the ubiquitous methods used to quantify the quality 
of the generated image compared to the original image (ground truth) [31]. It is a ratio between 
the maximum possible power of a signal and the power of distorting noise, affecting its 
representation quality. The higher the PSNR, the better the quality of the generated image. To 
compute the PSNR, we have to calculate the mean squire error (MSE) first and use the equation 
(7) below to define PSNR as

                                      𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10(
𝑀𝐴𝑋𝑓
𝑀𝑆𝐸) .  (7)

The MSE is defined as the following

  𝑀𝑆𝐸 =  1
𝑚𝑛∑

𝑚―1
0 ∑𝑛―1

0 ‖𝑓(𝑖,𝑗) ― 𝑔(𝑖,𝑗)‖2,   (8)

Where f is the matrix data of the ground truth, 
g is the matrix data of the generated image, 
m is the number of rows of pixels of the images,
I represents the index of that row,
n is the number of columns of pixels of the image,
 j represents the index of that column, and
𝑀𝐴𝑋𝑓 is the maximum signal value that exists in our ground truth.

Structural similarity index measure (SSIM) is a perception-based model. It considers image 
distortion in terms of perceived change structural information (loss of correlation, luminance 
distortion, and contrast distortion) [39]. 

                                        𝑆𝑆𝐼𝑀 (𝑥,𝑦) =
(2μ𝑥μ𝑦 + c1)(2σ + c2)

(μ2
𝑥 +μ2

𝑦 + c1)(σ2
𝑥 + σ2

𝑦 + c2) ,                                      (9)
Where 
μ𝑥 denotes the average of x, 
μ𝑦 denotes the average of y,



σ2
𝑥 denotes the variance of x,

 σ2
𝑦denotes the variance of y,

σ denotes the covariance of x and y, 
and c1 and c2 are two variables to stabilize the division with a weak denominator.

Here, we calculated the PSNR [dB] and SSIM index between the generated images 
reconstructed by our model and high-resolution images (ground truth) by using data from two 
different H&E breast cancer slides, which are not used to train the model (unseen data). For 
each slide, we used the random 54 small low-resolution images with a size of 64x64 pixels to 
reconstruct high-resolution images with a size of 256x 256 pixels compared to the ground. The 
results of PSNR/SSIM are shown in Table 1 below. In order to compare the performance of the 
generator models with different backbone architectures (ResNet (original SRGAN), 
Transformer, DenseNet, and ResNeXt), we trained them with the same dataset we acquired 
from the breast cancer H&E slides. The proposed model can provide better results, which the 
average PSNR/SSIM of the data from both H&E slides is over 30 dB/0.92, whereas the average 
result from the traditional method (Bicubic interpolation), the typical SRGAN, SRGAN-
DenseNet, and SRGAN-Transformer are 24.10 dB/0.848, 27.51 dB/0.915, 27.55 dB/0.93, and 
18.50 dB/0.69, respectively.   

Table 1. PSNR/SSIM compares results between the high-resolution generated and the ground truth (realistic 
high-resolution image) dataset.

PSNR/SSIM Breast cancer1
40x

Breast cancer2
40x

Average 

Bicubic interpolation 24.13 dB/ 0.84 24.07 dB/0.86 24.1 dB/0.85
SRGAN Model 27.84 dB/0.91 27.18 dB/0.92 27.51 dB/0.915

SRGAN-DenseNet 27.96 dB/0.93 27.15 dB/0.93 27.55 dB/0.93
SRGAN-Transformer 18.68 dB / 0.69 18.33 dB /0.68 18.50 dB/ 0.69

Our model 
(SRGAN-ResNeXt)

32.34 dB/ 0.93 31.92 dB/0.93 32.13 dB/0.93

Ground truth
(high-resolution image)

∞/1 ∞/1 ∞/1

Fig. 8 compares the reconstruction results of the typical SRGAN, SRGAN-Transformer, 
SRGAN-DenseNet, and our SRGAN-ResNeXt. Fig. 8(a) and 8(b) illustrate the original high-
resolution (ground truth) breast tumor H&E image and bicubic interpolation of a low-resolution 
image, respectively. Fig. 8(c), 8(d), 8(e), and 8(f) show the generated high-resolution H&E 
image reconstructed by the traditional SRGAN, the SRGAN-Transformer, the SRGAN-
DenseNet, and our SRGAN-ResNeXt, respectively. The contrast of some areas of SRGAN-
DenseNet results looks slightly better than SRGAN, and SRGAN-ResNeXt results. However, 
some small details of the SRGAN-DenseNet results are missing as shown in Fig. 8(g) pointed 
out by the red arrows. For the SRGAN-Transformer, it cannot surpass the SRGAN based on 
CNNs architectures by training with our limited custom dataset and computational resource. 
The model based on the Transformer architecture can potentially overcome the CNNs models 
if the dataset is sufficiently large and the computational resources have high performance 
enough to increase the model complexity (increasing the number of attention heads, 
Transformer encoders, multilayer perceptron, etc.) 



Fig. 8. Comparison of the results for our deep-learning model based on ResNeXt against bicubic interpolation of 
the low-resolution image, SRGAN, SRGAN-Transformer, and SRGAN-DenseNet. (a) The original ground truth 
image. (b) Bicubic interpolation of the low-resolution image. (c) The SRGAN result. (d) The SRGAN-Transformer 
result. (e) the SRGAN-DenseNet result. (f) Our model result. (g1-g6) Enlarged image in the red boxes from (a-f), 
respectively. (h1-h6) Enlarged images in the yellow boxes from (a-f), respectively. 
 

3.3 Performance of the Inception U-net architecture

Intersection over Union (IoU) as known as the Jaccard index is the benchmark used to evaluate 
the similarity between a predicted segmentation area and its labeled area (ground truth) [40]. 
The concept of IoU is to measure of pixels common between the target and predictions mask 
(intersection) divided by the total number of pixels present across both the prediction mask and 
ground truth (union) as shown in the equation below



𝐼𝑜𝑈 = 𝑡𝑎𝑟𝑔𝑒𝑡 ∩  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑡𝑎𝑟𝑔𝑒𝑡 ∪  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 .               (10)

The IoU ranges from 0 -1 (0-100%) with 0 indicating that there is no overlapping area, whereas 
1 indicates an impeccably overlapping area. 

Dice similarity coefficient (DSC) is another well-known parameter used to evaluate the 
similarity between the predicted area (our output) and ground truth [32]. The DSC can be 
calculated following the equation below 

𝐷𝑆𝐶 = 2 |𝑋 ∩  𝑌|
|𝑋| + |𝑌|  .                                                  (11)

It is remarkably similar to the IoU. They are positively correlated.
The unseen H&E cancer images from the cancer imaging archive [33] were used to evaluate 
the performance of our Inception U-net and the typical U-net Models. Table 2 shows their 
performance that the IoU and DSC from the Inception U-net Model are higher than the ones 
from the U-net Model. According to this result, Inception U-net Model can surpass the original 
U-net Model by using the Inception architecture as a core structure instead of a simple 
convolution block. 

Although the Inception U-net can slightly surpass the original U-net, these improvements will 
have a tremendous impact on the histopathology analyses because the histopathology image 
analysis needs to perform on the vast area of H&E images (whole slide image), the small 
accurate and inaccurate segmented nuclei of each small patch will be accumulated and lead to 
the correct and incorrect diagnosis results. For example, one of the criteria to determine tumor 
stages is the density of inflammatory cells. The segmentation area can be used to determine it. 
Suppose there is a small error in the segmentation of inflammatory cells in every small H&E 
image patch. In that case, the total number of inflammatory cells on the whole slide image 
might be less accurate than the actual one, so a pathologist could wrongly diagnose the tumor 
stage. 

Table 2. The comparison of tumor cell nuclei segmentation performances using U-net and Inception U-net 
architectures. 
U-net Inception U-net

IoU/Jaccard index 0.720 0.869
DSC/F1score 0.875 0.893



Fig. 9. Comparison results between the traditional U-net and Inception U-net by using H&E images and ground 
truth from the dataset [33]. (a) A low density of nuclei H&E image. (b) A high density of nuclei H&E image. The 
results from both models have been colored code such that green denotes false negative, yellow denotes true 
positive, and red denotes false positive pixels. 

3.2 Performance of the jointly trained SRGAN-ResNeXt and Inception U-net Models.   

After jointly training SRGAN-ResNeXt and Inception U-net Models on another unseen dataset, 
the performance of the ResNeXt generator was slightly improved due to the limited number of 
data (220 patches). Still, the performance of the Inception U-net was considerably enhanced as 
shown in Fig. 10, Table. 3, and Table. 4 below.

Fig. 10. The improvement of the SRGAN-ResNeXt and Inception U-net after training them jointly. (a) Low-
resolution image input. (b1-b2) The ResNeXt generator and Inception U-net models’ results. (c1-c2) The jointly 
trained models’ results. (d1-d2) High-resolution and segmentation ground truth images.  



Table 3 and Table 4 show the performance improvement of the jointly trained SRGAN-
ResNeXt and Inception U-net Models, respectively. Since the jointly trained models require to 
apply the dataset that contains not only low-resolution and high-resolution images but also the 
corresponding segmentation masks, preparing large data is expensive. Although the joint 
models were trained on the small dataset (220 patches from two different tumor mice), the 
results look promising. The performance of the jointly trained models can be potentially 
improved by training them on the larger dataset.

Table 3. PSNR/SSIM compares results between the high-resolution generated and the ground truth (realistic 
high-resolution image) dataset of the SRGAN-ResNeXt model and the jointly trained SRGAN-ResNeXt.

PSNR/SSIM SRGAN-ResNeXt Jointly trained SRGAN-ResNeXt
PSNR/SIIM 31.56 dB/ 0.91 31.63 dB/0.92

Table 4. The comparison of tumor cell nuclei segmentation performances using U-net and Inception U-net 
architectures. 

4. Conclusion 

In this work, we demonstrated a practical approach to enhancing low-resolution H&E stained 
images by using the state-of-the-art SRGAN-ResNeXt network. The model can deeply learn 
how to map the low-resolution images to their corresponding high-resolution images. Even 
though cell images contain sophisticated patterns and structures, the SRGAN-ResNeXt Model 
can still provide high-quality reconstruction results. Moreover, it can outperform the original 
SRGAN Model. Therefore, we take these advantages to characterize and quantify the nuclei 
from the generated high-resolution images. The nuclei from those generated images were 
segmented using another neural network: the Inception U-net architecture. Since we have 
generated both high-resolution H&E images and their nuclei segmentation, we can derive both 
nuclei area, pixel intensity, and other essential parameters to assist pathologists’ diagnosis. If 
the resolution of H&E images is poor and unfavorable, the characterization could be inaccurate 
leading to misdiagnosis. Moreover, the individually well-trained weights of SRGAN-ResNeXt 
and Inception U-net Models can be applied as the pre-trained weights (transfer learning) for the 
jointly trained SRGAN-ResNeXt and Inception U-net Models. The performance of the jointly 
trained models is noticeably improved and promising. We anticipate this work can be applied 
in broad applications such as retrieving image quality from a compressed archiving image for 
transferring among data networks and enhancing image quality from a low-cost microscope. 
For the latter, these custom CNNs can help solve the inaccessibility of advanced microscopes 
to acquire high-resolution images from low-performance microscopes located in most remote 
clinical settings in developing nations. In future work, we intend to apply the proposed CNNs 
to decrease image acquisition time for a WSI H&E scanner which typically uses a high NA 
objective lens in combination with a slow scan to acquire a high-resolution image. 
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