Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development Yi Zheng^{1*}, Robin Zhexuan Yan¹, Shivu Sun¹, Mutsumi Kobayashi², Lifeng Xiang³, Ran Yang⁴, Alexander Goedel⁴, Yu Kang⁶, Xuefeng Xue¹, Sajedeh Nasr Esfahani¹, Yue Liu¹, Agnes M. Resto Irizarry¹, Weisheng Wu⁵, Yunxiu Li³, Weizhi Ji⁶, Yuyu Niu⁶, Kenneth R. Chien⁴, Tianqing Li⁶, Toshihiro Shioda^{2,7}, and Jianping Fu^{1,8,9}* ¹Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; ²Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA; ³Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China; ⁴Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden; ⁵BRCF Bioinformatics Core, University of Michigan, Ann Arbor, Michigan 48109, USA; ⁶State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; ⁷Department of Medicine, Harvard Medical School, MA 02115, USA; ⁸Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; ⁹Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA. *Correspondence and requests for materials should be addressed to Y.Z. and J.F. (email: zhengum@umich.edu, jpfu@umich.edu).

SUN	M	A	RY
-----	---	---	----

32

Despite its clinical and fundamental importance, our understanding of early human development 33 remains limited. Stem cell-derived, embryo-like structures (or embryoids) allowing studies of 34 early development without using natural embryos can potentially help fill the knowledge gap of 35 human development. Herein, transcriptome at the single-cell level of a human embryoid model, 36 which recapitulates aspects of lineage diversification and three-dimensional tissue architecture of 37 the human embryo from the implantation to the onset of gastrulation, was profiled at different 38 time points. Molecular maps of lineage diversifications from the pluripotent human epiblast 39 towards the amniotic ectoderm, primitive streak / mesoderm, and primordial germ cells were 40 constructed and compared with in vivo primate data. Similarly, chimpanzee embryoids were 41 generated and profiled to reveal transcriptome dynamics during the early post-implantation 42 chimpanzee development. Our comparative transcriptome analyses reveal a critical role of 43 NODAL signaling in human mesoderm and primordial germ cell specification, which is further 44 functionally validated. Through comparative transcriptome analyses and validations with human 45 blastocysts and in vitro cultured cynomolgus embryos, we further proposed stringent criteria for 46 47 distinguishing between human blastocyst trophectoderm and early amniotic ectoderm cells. Altogether, this study provides new knowledge of the lineage diversification roadmap of early 48 49 human development and will serve as a valuable resource for studying human development.

50

51

KEYWORDS

- 52 Human embryoid, single-cell transcriptome, NODAL signaling, primate development, amnion,
- 53 primitive streak, primordial germ cell, mesoderm, trophoblast, microfluidics

INTRODUCTION

54

Development of multicellular organisms is one of nature's greatest triumphs. Development is a 55 tightly orchestrated process, following stereotypic lineage diversifications and morphogenetic 56 tissue patterning events in a precise spatiotemporal order. Scientists commonly use animal 57 models to study the key transcriptional and signaling activities that underlie pattern formation, 58 59 morphogenesis, cell differentiation, and tissue growth (Gilbert, 2000; Schoenwolf, 2020; Solnica-Krezel, 2020). However, cross-species genetic and morphological divergence is evident 60 61 between humans and commonly used animal models (Rossant, 2015; Rossant and Tam, 2017). To address this issue, there is a significant current interest in improving *in vitro* culture protocols 62 of human and non-human primate (NHP) monkey embryos for experimental observations and 63 mechanistic studies (Deglincerti et al., 2016; Ma et al., 2019; Niu et al., 2019; Shahbazi et al., 64 65 2016; Xiang et al., 2020; Yang et al., 2021). However, experimentations on human and NHP monkey embryos remain challenging due to limited access to and bioethical constraints on these 66 67 natural specimens (Clark et al., 2021; Hyun et al., 2016; Lovell-Badge et al., 2021). As such, knowledge of human development remains limited; this is particularly true for early post-68 69 implantation human development, when the basic human body plan is laid down and when the human embryo *in vivo* is at its most inaccessible phase for experimentation. 70 71 Recently, stem cell-derived embryo-like structures (or embryoids) that could recapitulate certain aspects of mammalian early embryogenesis are emerging as tractable experimental tools 72 73 for studying human development (Beccari et al., 2018; Haremaki et al., 2019; Harrison et al., 2017; Liu et al., 2021; Moris et al., 2020; Rivron et al., 2018; Shao et al., 2017a; Shao et al., 74 75 2017b; Simunovic et al., 2019; Warmflash et al., 2014; Xue et al., 2018; Yanagida et al., 2021; Yu et al., 2021; Zheng et al., 2019a; Zheng et al., 2019b). Particularly, we have recently 76 77 developed a human pluripotent stem cell (hPSC)-based embryoid, termed post-implantation 78 amniotic sac embryoid (PASE), that appears to recapitulate different developmental events of the early post-implantation human embryo in a three-dimensional (3D), human-relevant tissue 79 architecture (Shao et al., 2017a; Shao et al., 2017b). These developmental events include 80 landmarks of the development of the epiblast (Epi) and amniotic ectoderm (AM) parts of the 81 82 human embryo, including lumenogenesis of the Epi and the resultant pro-amniotic cavity, symmetry breaking of the Epi sac to form the bipolar amniotic sac, and specification of 83 primordial germ cells (PGCs) and primitive streak cells (PSs). By using controllable microfluidic 84

tools, we have further successfully developed a microfluidic PASE (μ PASE) system (Zheng et al., 2019b), allowing the development of PASEs in a highly controllable, reproducible and scalable fashion.

To fill the critical knowledge gap of early post-implantation human development, herein we studied transcriptome dynamics during the progressive development of µPASE at the singlecell resolution using single-cell RNA sequencing (scRNA-seq) and provided detailed analyses of cell lineage diversifications, developmental trajectories, regulatory networks and signaling pathways involved in this previously unexplored yet critical stage of human development. We also developed chimpanzee µPASEs using chimpanzee PSCs and profiled their transcriptome using scRNA-seq. The scRNA-seq data from human and chimpanzee µPASEs were compared with recently published data from a Carnegie Stage 7 (CS7) human gastrula (Tyser et al., 2021) and those from in vivo and in vitro cultured human and NHP monkey embryos (Ma et al., 2019; Nakamura et al., 2016; Sasaki et al., 2016; Yang et al., 2021). Our comparative transcriptome analyses reveal the developmental coordination among different primate species and further highlight a critical role of NODAL signaling in mesoderm (Meso) and PGC specification, which was further functionally validated. To address current confusions in distinguishing between human early AM cells vs. blastocyst trophectoderm cells, we established stringent criteria for identifying these two lineages by profiling and comparing related transcriptomes from in vivo samples (Blakeley et al., 2015; Petropoulos et al., 2016; Tyser et al., 2021), and further evaluated the authenticity of related cells included in different human embryoids and in vitro differentiation protocols. Finally, we proposed a few cell fate markers that could be utilized to reliably distinguish human early AM and blastocyst trophectoderm cells and further validated expression of these markers using in vitro fertilization (IVF) human blastocysts and in vitro cultured NHP monkey embryos. Altogether, our scRNA-seq datasets and related analyses as well as experimental results from both in vitro and in vivo models provide new insights into the lineage diversification roadmap of early human development and will serve as a valuable resource for studying human development.

113 RESULTS

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

114

Single-cell transcriptomic profiling of µPASE development

The microfluidic device for generating µPASEs consists of three parallel channels, partitioned by 115 evenly spaced supporting posts (Zheng et al., 2021; Zheng et al., 2019b). Preloaded Geltrex in 116 117 the central gel channel forms concave gel pockets between adjacent supporting posts during gelation. Singly dissociated hPSCs are loaded into the cell loading channel and are guided to 118 form individual cell clusters in each concave gel pocket. After initial clustering of hPSCs 119 (designated as t = 0 h), culture medium in the device is switched to a basal medium comprised of 120 Essential 6 and FGF2, with BMP4 further supplemented only into the cell loading channel 121 (Figure 1A). Development of µPASE involves successive cell morphogenetic and lineage 122 specification events that recapitulate early post-implantation human development up to the onset 123 of gastrulation (Figure 1A) (Zheng et al., 2021; Zheng et al., 2019b). Specifically, owing to their 124 intrinsic lumenogenic property, each hPSC cluster undergoes lumenogenesis and epithelization 125 126 to establish apical-basal polarity and form a single central apical lumen by t = 12 h (Figures 1B) and S1A). hPSCs exposed directly to exogeneous BMP4 stimulation in each cluster initiate 127 128 amniogenesis, evidenced by continuous flattening of cell morphology, resolving into a thin layer of squamous amniotic cells (**Figure 1B**). Inductive effects of AMLCs in the µPASEs lead to 129 130 hPSCs at the opposite pole to undergo epithelial-mesenchymal transition (EMT) and gastrulation-like events (Zheng et al., 2021; Zheng et al., 2019b), with gastrulating cells 131 132 disseminating away from μ PASEs from t = 36 h onwards (**Figure 1B**), leading to disintegration of the μ PASE structure. By t = 48 h, the μ PASE contains only AMLCs, MeLCs and PGCLCs, 133 134 without the presence of EpiLCs (Figures 1B and 1C). To investigate dynamics of µPASE development at the transcriptome level, single-cell 135 136 suspensions of μ PASEs at t = 24 h, 36 h, and 48 h were prepared before single-cell RNAsequencing (scRNA-seq) using 10× Genomics. We performed UMAP (uniform manifold 137 138 approximation and projection) dimension reduction using the Seurat R package (Butler et al., 139 2018; Satija et al., 2015) for scRNA-seq datasets at each time point (Figure 1C), as well as for the integrated scRNA-seq dataset from all three time points (Figure 1D). These analyses reveal 140 distinct cell clusters in the µPASE based on expression patterns of key lineage markers (Figures 141 1C-1E, S1B and S1C). Consistent with our previous findings (Zheng et al., 2021; Zheng et al., 142 143 2019b), in the μPASE, hPSCs develop progressively from a pluripotent epiblast-like cell (EpiLC) stage to three distinct cell populations by t = 48 h: amniotic ectoderm-like cells 144

(Figures 1C-1E, S1D and S1E). 146 147 To understand how hPSCs transit from the EpiLC stage to AMLCs, MeLCs and PGCLCs during µPASE development, RNA velocity analysis (Bergen et al., 2020; La Manno et al., 2018) 148 was conducted for the integrated scRNA-seq dataset, with RNA velocity vectors overlaid on the 149 150 integrated UMAP plot (Figure 1D). This RNA velocity analysis reveals developmental trajectories of the AMLC lineage (EpiLC \rightarrow nascent AMLC or NasAMLC \rightarrow AMLC1 \rightarrow 151 AMLC2) and MeLC lineage (EpiLC \rightarrow primitive streak-like cell or PSLC \rightarrow MeLC1 / MeLC2) 152 (Figure 1D). However, developmental trajectory of PGCLCs is not as clear from the RNA 153 velocity analysis (**Figure 1D**). To further examine lineage relations between different μPASE 154 cell clusters, partition-based graph abstraction (PAGA) analysis (Wolf et al., 2018) was 155 156 conducted, revealing that PGCLCs correlate best with the NasAMLC cluster (Figure 1F). To reveal gene regulatory network (GRN) underlying each cell cluster, we performed GRN analysis 157 158 using SCENIC (Aibar et al., 2017) (single-cell regulatory network inference and clustering; Figures 1G and 1H). Notably, AM markers ISL1 and GATA3 (Yang et al., 2021), PS / Meso 159 160 markers EOMES, MIXL1, TBX6 and GATA6, and PGC markers SOX17 and NANOG are identified by SCENIC as regulons of corresponding cell lineages (Figures 1G and 1H). 161 162 163 Trajectory inference and gene expression dynamics analysis 164 To infer developmental trajectories of different µPASE cell lineages, we plotted a threedimensional (3D) diffusion map based on PCA embeddings of the integrated scRNA-seq dataset 165 166 (Figure 2A and Video S1) (Angerer et al., 2016). The AMLC, MeLC and PGCLC lineages display distinct and well separated trajectories in the 3D diffusion map (Figure 2A). To analyze 167 168 transcriptome dynamics during AMLC lineage development, EpiLC, NasAMLC and AMLC1 / 2 169 clusters were isolated from the integrated scRNA-seq dataset and re-plotted using twodimensional (2D) diffusion maps (Figure 2B). Similarly, to analyze MeLC lineage development, 170 EpiLC, PSLC and MeLC1 / 2 clusters were isolated from the integrated scRNA-seq dataset 171 before re-plotting using 2D diffusion maps (Figure 2C). Expression dynamics of selected genes 172 173 related to AM and PS or Meso was plotted against diffusion pseudotime (dpt) (Figures 2D, 2E, **S2A and S2B**). Notably, in the AMLC lineage, expression of *TFAP2A*, *MSX2* and *ID2*, which 174 are commonly used AM markers (Ma et al., 2019; Sasaki et al., 2016; Yang et al., 2021), is 175

(AMLCs), mesoderm-like cells (MeLCs), and primordial germ cell-like cells (PGCLCs)

145

quickly upregulated following exogeneous BMP4 stimulation (Figures 2D and S2A). Similarly, 176 GATA3 and ISL1 become upregulated relatively early during AMLC lineage development 177 178 (Figures 2D and S2A). In contrast, expression of GABRP, IGFBP3 and WNT6 shows delayed upregulation, whereas TBXT is only transiently expressed during early AMLC lineage 179 development (Figures 2D and S2A). 180 181 On the 2D diffusion map, the MeLC lineage branches into two separate paths corresponding to MeLC1 and MeLC2 clusters (Figure 2C). Both MeLC1 and MeLC2 lineages 182 183 show upregulated expression of common Meso markers, yet with some key genes exhibiting distinct expression levels (Figures 2E and S2B). For example, compared with MeLC1, MeLC2 184 expresses relatively higher levels of MIXL1, EOMES and GATA6 (Figures 2E and S2B), 185 presumably corresponding to a lateral plate / intermediate Meso fate (Daoud et al., 2014; 186 Prummel et al., 2019). MeLC1 lineage, in contrast, expresses higher levels of CDX2 and HOXB6 187 (Figures 2E and S2B), presumably corresponding to a paraxial Meso fate (Casaca et al., 2016; 188 Chawengsaksophak et al., 2004). We further conducted immunostaining for selected AM and 189 Meso markers in μ PASEs at t = 24 h, 36 h, and 48 h to validate lineage fate specification 190 (Figures 2F and S2C-S2E). GATA6highTBXThighMIXL1highCDX2low MeLC2 appears as leading 191 cells in the migratory gastrulating cell population, whereas 192 GATA6^{low}TBXT^{low}MIXL1^{low}CDX2^{high} MeLC1 appears as trailing cells in this population 193 (Figure S2F). 194 Patterning of AMLCs and PSLCs was evident in the μ PASE by t = 24 h, with positive 195 immunostaining for ISL1, GATA3 and TFAP2A in incipient AMLCs and for TBXT and MIXL1 196 197 in incipient MeLCs (Figures S2C and S2D, Video S2). Notably, expression of AM marker 198 GABRP (Yang et al., 2021) is restricted on the apical surface of AMLCs, whereas expression of 199 HEY1, another AM marker (Yang et al., 2021), is evident in both the nucleus and cytoplasm of AMLCs (Figure 2F). AMLCs appear to actively proliferate during µPASE development (Figure 200 **S2G**). To reveal transcriptome changes during AMLC development, we conducted differentially 201 expressed gene (DEG) and pathway enrichment analysis to compare NasAMLC, AMLC1 and 202 203 AMLC2 (Figure S2H and Table S3). To explore potential mechanisms underlying lineage choices between NasAMLCs vs. 204 PSLCs for EpiLCs, we examined DEGs upregulated in NasAMLCs and PSLCs relative to 205 206 EpiLCs and noticed significant overlaps (144 out of 342 genes for NasAMLCs, 144 out of 184

207	genes for PSLCs) (Figure S2I and Table S3). KEGG pathway analysis suggests that
208	development of both NasAMLCs and PSLCs requires TGF-β signaling (KEGG: 04350; Figure
209	S2J), which is not surprising given that exogenous BMP4 is supplemented in the μ PASE
210	protocol. However, WNT signaling pathway (KEGG: 04310) is evident only in PSLCs but not in
211	NasAMLCs (Figure 2G), suggesting a critical role of WNT signaling in Meso induction but not
212	in amniogenesis. When IWP2, a small molecule inhibitor blocking the transport, secretion or
213	signaling activity of all WNT molecules (Chen et al., 2009; Kadowaki et al., 1996; Zhai et al.,
214	2004), was supplemented into the microfluidic device, development of PSLCs and MeLCs in the
215	$\mu PASE$ was completely inhibited, as evidenced by negative immunostaining for TBXT or
216	MIXL1 (Figure 2H). In contrast, AMLCs still emerge under IWP2 treatment, as evidenced by
217	positive immunostaining for ISL1, TFAP2A and GATA3 in flattened, presumptive AMLCs
218	directly exposed to exogeneous BMP4 stimulation (Figure 2H). Consistently, the scRNA-seq
219	data obtained from IWP2-treated μ PASEs at $t = 48$ h show absence of PSLCs or MeLCs; instead
220	the majority of cells remain pluripotent, retaining the EpiLC identity (Figures 21 and 2J),
221	further supporting the requirement of WNT signaling in PSLC/MeLC development. It should be
222	noted that under IWP2 treatment, AMLCs show lower expression of several AM marker genes,
223	such as ISL1, GABRP and GATA3, and there are much less PGCLCs in IWP2-treated μPASEs
224	(Figures S2K and 2I, and Table S3).
225	
226	PGCLC specification
227	During $\mu PASE$ development, incipient PGCLCs emerge together with NasAMLCs and PSLCs
228	by $t = 24$ h (Figure 1C). To explore the origin and specification of PGCLCs in the μ PASE, a 2D
229	diffusion map with EpiLC, PSLC, MeLC1 and PGCLC clusters isolated from the integrated
230	scRNA-seq dataset was plotted, which, however, did not show a continuous developmental
231	trajectory connecting EpiLCs, PSLCs, MeLCs with PGCLCs (Figure S3A). In addition, in this
232	2D diffusion map, K-branch algorithm (Chlis et al., 2017) did not identify a branching point or
233	branches with proper confidence (Figure S3A). Thus, PGCLCs in the $\mu PASE$ are unlikely
234	originated from PSLCs or MeLCs.
235	In contrast, 2D diffusion map analysis with EpiLC, NasAMLC, AMLC1 / 2 and PGCLC
236	clusters clearly shows lineage progression and bifurcation of NasAMLCs into PGCLCs and
237	AMLCs (Figure 3A). RNA velocity vectors were also computed and overlaid onto the diffusion

map in **Figure 3A**, revealing that NasAMLCs have the closest lineage relation with PGCLCs, 238 consistent with the PAGA analysis in **Figure 1F**. Our observation here is consistent with recent 239 240 studies of cynomolgus monkey embryos reporting that primate PGCs could emerge in the 241 nascent AM prior to the gastrulation (Sasaki et al., 2016). Expression of selected genes relevant to PGC development, including SOX17, NANOG, TFAP2C, PRDM1, NANOS3, TFAP2A, TBXT, 242 SOX15, POU5F1, ISL1, PDPN, IGF1, PEG10, BAMBI, WNT5B and WNT2, was also plotted 243 against diffusion pseudotime, revealing their upregulated expression during PGCLC lineage 244 development (**Figures 3B and S3B**). Immunofluorescence analyses of μ PASEs at t = 24 h, 36 h, 245 and 48 h further confirmed spatiotemporal expression of some key PGC markers, including 246 TFAP2C, NANOG, SOX17 and BLIMP1, in incipient PGCLCs (Figures 3C and S3C). 247 Correlation coefficient analysis based on PGC ontogenic genes identified from the *cynomolgus* 248 embryo transcriptome data suggests that the transcriptome of PGCLCs in the µPASE is similar 249 to that of Day 2 hPGCLCs derived from conventional protocols (Chen et al., 2019; Sasaki et al., 250 2015) (**Figure S3D**). It is worth noting that the μPASE essentially is a posteriorized embryonic-251 like structure, mimicking the posterior portion of the amnion and epiblast compartments. As 252 such, the development of µPASE gives rise to a greater number of hPGCLCs but lack the 253 development of ectoderm. 254 255 Using K-branch algorithm, we identified developmental branches and the branching point for the 2D diffusion map with EpiLC, NasAMLC, AMLC1/2 and PGCLC clusters (Figure 3A). 256 257 The K-branch analysis further allowed us to separate NasAMLCs into three sub-clusters, with each sub-cluster merged with EpiLCs, AMLCs and PGCLCs, respectively, and annotated as 258 259 EpiLC-branch NasAMLC, AMLC-branch NasAMLC and PGCLC-branch NasAMLC, 260 respectively (Figure 3A). To explore mechanisms underlying lineage choices between AMLCs 261 vs. PGCLCs for NasAMLCs, DEGs upregulated in AMLC-branch NasAMLCs and PGCLC-262 branch NasAMLCs, as compared to EpiLC-branch NasAMLCs, were examined (Figure 3D; Table S4). KEGG pathway analysis of these DEGs reveals that PGCLC-branch NasAMLCs 263 show upregulated WNT signaling, whereas AMLC-branch NasAMLCs exhibit upregulated 264 Hippo activity (Figure 3E). We further performed pharmacological inhibition assays to explore 265 266 the roles of different signaling pathways during µPASE development. When IWP2 was supplemented into the microfluidic device, development of PGCLCs was almost completely 267 abolished in the µPASE (Figure 3F). PGCLCs show upregulated HIF-1 signaling activity 268

compared to PGCLC-branch NasAMLCs (Figure S3E). When HIF-1 signaling was repressed by 269 supplementing LY294002, which functions through binding to phosphoinositide 3-kinases 270 271 (PI3Ks), in the microfluidic device, the percentage of PGCLCs was significantly reduced 272 (Figures S3F and S3G). Our scRNA-seq data analysis suggests that progenitors of PGCLCs likely pass through a 273 274 transient transcriptome state similar to that of NasAMLCs before their full commitment to the PGCLC fate. Our data, however, do not exclude the possibility that cells at the junction between 275 the AMLC and PSLC / MeLC compartments, or from the PSLC / MeLC pole of the μPASE, 276 with a transient transcriptome state similar to that of NasAMLCs, can also give rise to PGCLCs. 277 After all, NasAMLCs and PSLCs share a similar transcriptome, and cells in the early post-278 implantation human embryo might remain plastic (Chen et al., 2019; Irie et al., 2015; Kobayashi 279 et al., 2017; Sasaki et al., 2015). 280 281 282 Transcriptomic comparison between µPASEs and Carnegie Stage 7 human gastrula The uPASE recapitulates certain aspects of human development from early implantation to the 283 284 onset of gastrulation. Notably, single-cell transcriptome data of a CS7 human gastrula recently became available (Tyser et al., 2021). Thus, we conducted transcriptomic comparison between 285 286 μPASEs and the CS7 human gastrula. We first downsampled the μPASE dataset by randomly selecting 100 cells from each cluster and integrated this downsampled dataset with the CS7 287 288 human gastrula dataset (Figure S4). Based on the transcriptome proximity in the UMAP plot, the µPASE contains cells corresponding to "Epiblast", "Primitive Streak", "Nascent Mesoderm", 289 290 "Emergent Mesoderm", "Amniotic/embryonic ectoderm", and "PGC" cells in the human gastrula. We next selected only these cells from the CS7 human gastrula dataset to integrate with 291 292 the whole µPASE dataset. A UMAP plot of the integrated scRNA-seq dataset shows cell 293 clustering similar to that from the µPASE scRNA-seq data alone (Figure 4A). Cells from the CS7 human gastrula are evident in all cell clusters of the UMAP plot (Figure 4A). Furthermore, 294 for each annotated cell cluster, expression patterns of key lineage markers are consistent between 295 296 cells from the CS7 human gastrula and µPASEs (Figure 4B). Most of the cells from the CS7 297 human gastrula fall into different cell clusters consistent with their lineage annotations in the original publication (Tyser et al., 2021), except for some cells originally classified as "Epiblast" 298 299 or "Primitive Streak" that fall into NasAM or AM1 clusters (Figure 4C). Notably, PGCs in the

CS7 human gastrula can be easily distinguished in the PGC cluster of the integrated dataset in the UMAP plot (**Figure 4A**).

300

301

302 In the original publication of the CS7 human gastrula (Tyser et al., 2021), a UMAP plot was generated with all the cells in the human gastrula, including those at relatively late 303 developmental stages, such as "Hemogenic Endothelial Progenitors" and "Erythrocytes", which 304 305 could negatively affect the resolution of cell clustering analysis, especially for those closely related cell lineages. To address this issue, we re-generated a UMAP plot using only the 306 "Epiblast", "Primitive Streak", "Nascent Mesoderm", "Emergent Mesoderm", 307 "Amniotic/embryonic ectoderm" and "PGC" clusters from the human gastrula dataset (Figure 308 **4D**). Interestingly, this UMAP plot reveals distinct cell clusters corresponding to Meso and AM, 309 supported by feature plots showing expression patterns of key Meso and AM markers (Figures 310 311 **4D** and **4E**). Notably, human PGCs identified in the original publication is clustered together with AM cells in the UMAP plot (Figure 4D), supporting their close lineage relation. We further 312 313 isolated the Epi, AM, and PGCs from the CS7 human gastrula to generate a diffusion map (Figure 4F). Surprisingly, AM and PGC seemingly display lineage bifurcation trajectories from 314 315 the Epi (Figure 4F), similar to µPASEs in Figure 3A. In addition, as shown in Figure 4G, pseudotime gene expression dynamics of AM cells from the CS7 human gastrula is highly 316 317 consistent with that of AMLCs in µPASEs in Figure 2D. However, due to the low number of PGCs, AM and PGC lineage bifurcation is not as evident as that shown in the µPASE diffusion 318 319 map (**Figure 3A**); and we could not obtain pseudotime gene expression dynamics for PGCs. To characterize pluripotency state transition in EpiLCs during the progressive 320 321 development of the μPASE, we further performed scRNA-seq for cultured hPSCs and μPASEs at t = 0 h and t = 12 h. No distinguishable cell clusters or populations were observed when the 322 323 scRNA-seq data were analyzed using Seurat R package (Figures S5A-S5C). Notably, although 324 μ PASEs at t = 12 h show upregulated TFAP2A expression owing to exogeneous BMP4 treatment, transcriptomes of cells in the µPASE have not yet changed sufficiently for the cells to 325 emerge as distinct clusters in the UMAP. We then downsampled these datasets and compared 326 them with transcriptome data of the human morula, pre-implantation epiblast from human 327 328 blastocysts (Petropoulos et al., 2016), early post-implantation epiblast from days postfertilization (d.p.f) 9 and d.p.f 11 in-vitro cultured human embryos (Molè et al., 2021), and late 329 post-implantation epiblast from the CS7 human gastrula (Tyser et al., 2021). As suggested by the 330

L	principal component analysis (PCA) plot (Figures S5D and S5E), cultured hPSCs and EpiLCs
2	in the µPASE share comparable transcriptome states and are both at a developmental stage
3	between d.p.f 11 and d.p.f 16 epiblast. Thus, there was no compelling evidence showing
ļ	heterogeneous pluripotency states or transitions at early stages of µPASE development.
•	
	Transcriptomic coordination of early development across different primate species
	NHP monkey embryos, including cynomolgus (Macaca fascicularis) embryos, have been used
	successfully as an in vivo model to study primate development (Ma et al., 2019; Nakamura et al.,
	2016; Sasaki et al., 2016; Yang et al., 2021). Compared with NHP monkeys, chimpanzees share
	much more of human DNA (99%), making them our closest living relatives (Gibbs et al., 2007;
	Mikkelsen et al., 2005). Thus, we sought to generate µPASEs from chimpanzee induced
	pluripotent stem cells (iPSCs) to examine whether chimpanzee $\mu PASEs$ (or $C_{\mu}PASEs$) would
	develop in a fashion similar as $\mu PASEs$ made from hPSCs (or $H_\mu PASEs$). To this end, the
	same microfluidic protocol for $H_{\mu}PASE$ development was used for $C_{\mu}PASE$ formation.
	Under exogeneous human BMP4 stimulation, C_µPASEs also display prominent molecular and
	morphogenetic asymmetry, with the pole exposed to BMP4 differentiating progressively into
	squamous, flattened AMLCs positive for AM markers ISL1, GATA3 and TFAP2A, and the
	opposite pole developing into germ layer lineages positive for TBXT and MIXL1 (Figure 5A).
	Similar to H_μPASEs, PGCLCs also emerge in C_μPASEs, as evidenced by positive
	immunostaining for SOX17, TFAP2C, NANOG and BLIMP1 (Figure 5A). However, distinct
	from H_µPASEs, FOXA2+BLIMP1+ endoderm-like cells (EndoLCs) also emerge in
	C_μPASEs, and these EndoLCs randomly intermix with MeLCs and PGCLCs (Figure 5A).
	scRNA-seq analysis of C_ μ PASEs obtained at $t = 48$ h further confirms the presence of
	EndoLCs in C_μPASEs (Figures 5B and 5C). It is worth noting that C_μPASEs do not develop
	a prominent central lumen (the pro-amniotic-like cavity) as in H_μPASEs (Figure 5A).
	Transcriptomic comparisons between related corresponding cell clusters in H_μPASEs,
	C_μPASEs, and human and cynomolgus embryos (Ma et al., 2019; Nakamura et al., 2016;
	Sasaki et al., 2016; Tyser et al., 2021; Yang et al., 2021) reveal that such cell clusters from these
	in vitro and in vivo systems, regardless in the Meso (Figure 5D), AM (Figure 5E) or PGC
	(Figure 5F) lineages, show strong correlations based on ontogenic genes identified from
	cynomolgus embryo transcriptome data (Nakamura et al., 2016; Sasaki et al., 2016; Yang et al.,

362	2021). Thus, despite systematic variations that might be resulted from different sequencing
363	platforms, related corresponding cell types of different primate species still demonstrate
364	relatively high transcriptomic correlation and developmental coordination (Figure 5E-5F), e.g.,
365	human mesoderm cells and MeLCs from the H_µPASE at later developmental stages correlate
366	better with chimpanzee or monkey mesoderm cells at later stages. Additionally, corresponding
367	cell types from the CS7 human gastrula and H_µPASEs correlate better with cells from
368	C_µPASEs, as compared to cells from cynomolgus embryos, which may reflect the greater
369	genetic similarity between humans and chimpanzees. Consistently, when IWP2 was
370	supplemented into C_µPASEs, developments of PSLCs and PGCLCs were inhibited, whereas
371	ISL1+GATA3+ AMLCs still emerged, similar with IWP2-treated H_μPASEs (Figure 5G).
372	
373	NODAL is essential for mesoderm development
374	Our DEG and pathway analyses of $\mu PASE$ scRNA-seq data in Figures 2G, 2H, 3D-3F, S2F and
375	S2G suggest complex cell-cell interactions involved in early post-implantation human
376	development. Thus, μ PASE scRNA-seq data at $t = 24$ h were further analyzed using CellChat
377	(Jin et al., 2021) for inference and analysis of ligand-receptor interactions (Figures S6A-S6C).
378	Among cell clusters present in μ PASEs at $t = 24$ h, AMLCs and PSLCs were identified as major
379	sources of signaling ligands involved in key developmental pathways, such as BMP and WNT
380	pathways (Ben-Haim et al., 2006; Bernardo et al., 2011; Clevers, 2006; Rivera-Perez and
381	Magnuson, 2005; Wang et al., 2014; Zhao, 2003) (Figures S6A-S6C). This is consistent with a
382	recent study of pre-gastrulation cynomolgus embryos (Yang et al., 2021), which shows that both
383	AM and PS / Meso cells upregulate BMP4 and WNT5B and extraembryonic mesenchyme cells
384	show high expression of $BMP2$ and $BMP4$ (Figures S6D-S6F). $\mu PASEs$ lack extraembryonic
385	mesenchyme cells, the effects of which might have been substituted by exogeneous
386	supplementation of BMP4 in the $\mu PASE$ protocol. For comparison, ligand-receptor interaction
387	analysis was also conducted using CellChat on scRNA-seq data from E6.5 mouse embryos
388	(Pijuan-Sala et al., 2019), revealing the extraembryonic ectoderm as the only source of BMP and
389	WNT signals (Figures S6G-S6I). Interestingly, during the development of both $\mu PASEs$ and
390	pre-gastrulation cynomolgus embryos, non-canonical WNT pathways show a greater signaling
391	strength than canonical WNT, whereas the opposite is observed for E6.5 mouse embryos
392	(Figures S6A, S6D and S6G).

Our ligand-receptor interaction analysis for µPASEs using CellChat further reveals that, 393 compared to BMP and WNT pathways identified as an "incoming signal" for multiple cell 394 395 clusters, NODAL signals appear to be perceived only by PSLCs (Figures S6A and S6B), 396 suggesting a critical role of NODAL signaling in PSLC development. To study the functional role of NODAL, NODAL-knockout (KO) hPSC lines were generated and used for μPASE 397 398 development (Figures S7A-S7E). By t = 48 h, majority of cells in NODAL-KO μ PASEs appear to have developed into flattened ISL1+GATA3+ AMLCs, and there are no cells disseminating 399 400 away from the μPASE structure, in distinct contrast with wildtype control μPASEs (Figures 6A-**6D and S7F**). Consistently, scRNA-seq data obtained from *NODAL*-KO μ PASEs at t = 48 h401 showed a dominant population of AMLCs at the expense of MeLCs (Figures 6B,6C,6E-6G), 402 further supporting the critical role of NODAL in MeLC development. PGCLCs were still evident 403 404 in NODAL-KO μ PASEs at t = 48 h, albeit with a much less percentage compared with those in wildtype controls (8.1% vs. 28.2%; Figures 6D,6E-6G and S7G). This observation suggests that 405 in µPASEs, NODAL signaling is involved not only in MeLC development, but also in PGCLC 406 specification. 407 408 We further conducted DEG and Gene Ontology (GO) enrichment analyses for PSLCs from NODAL-KO and wildtype control µPASEs (Figure 6H and 6I; Table S7). In NODAL-KO 409 410 PSLCs, BMP target genes, such as ID2, TFAP2A and ISL1, are upregulated, whereas PS / Meso-411 related genes, such as MESP1 and MIXL1, and EMT related genes, including SNAI1 and VIM, 412 are downregulated (Figure 6H). PI3K-Akt, WNT and focal adhesion signaling pathways appear to be downstream targets of NODAL signaling in PSLCs (**Figure 61**). We speculate that lineage 413 414 bifurcation between AMLCs and PSLCs from EpiLCs might be regulated by a competition between BMP and NODAL signaling. Absence or repression of NODAL signaling in the µPASE 415 416 could lead to "hyper" BMP activities, which in turn causes excessive AMLC development 417 (marked by an expanded ISL1 domain) and greater BMP activities in PSLCs. We also compared PGCLCs from wildtype and NODAL-KO µPASEs (Figure S7H and Table S7). Consistently, 418 when SB431542, a pharmacological NODAL signaling inhibitor, was supplemented into the 419 microfluidic device, development of PSLCs/MeLCs in µPASEs was completely inhibited 420 421 (Figure S7I). Impaired development of MeLCs in NODAL-KO μPASEs can be efficiently reversed by supplementing ACTIVIN A, a NODAL pathway agonist, into the channel opposite 422 to BMP4 stimulation. In addition to rescuing MeLC development, supplementing ACTIVIN A to 423

424	NODAL-KO μPASEs also leads to the specification of BLIMP1+FOXA2+ EndoLCs (Figure
425	S7J). Supplementing ACTIVIN A to wildtype µPASEs also results in specification of
426	BLIMP1+FOXA2+ EndoLCs (Figure S7K). We also successfully generated µPASEs using a
427	different hPSC line, including its corresponding NODAL-KO line, and a different chimpanzee
428	iPSC line, and repeated IWP2 and SB431542 treatment assays with consistent results (Figure
429	<mark>S8).</mark>
430	
431	Stringent criteria for distinguishing human trophoblast and amniotic ectoderm
432	In vivo, blastocyst trophoblast and pre-gastrulation AM both appear as flattened, squamous
433	epithelium, and these two cell types share many lineage markers (Blakeley et al., 2015;
434	Petropoulos et al., 2016; Tyser et al., 2021; Yang et al., 2021). Unique markers that can
435	distinguish between these two cell types remain elusive, leading to confusions about true cell
436	lineage identities in different human embryoids (Xu et al., 2002; Zhao et al., 2021). Through
437	comparative transcriptome analysis of AM cells in the CS7 human gastrula (Tyser et al., 2021)
438	and trophoblast cells in human blastocysts (Blakeley et al., 2015; Petropoulos et al., 2016), we
439	identified a Trophoblast_Amnion ontogenic gene list (Figures S9A and S9B; Table S8) and
440	applied this list to examine the properties of human trophoblast-like cells or AMLCs reported
441	previously (Figure 7A). This ontogenic gene list contains several previously reported AM
442	makers, such as ISL1, GABRP and IGFBP3 (Yang et al., 2021), and trophoblast makers, such as
443	GCM1, HAVCR1 and CGA (Li et al., 2019; Okae et al., 2018; Pillai et al., 2019). Notably,
444	several pan-preimplantation embryo markers, including DPPA3 and DNMT3L (Guo et al., 2021;
445	Io et al., 2021; Yanagida et al., 2021) are found to be quite efficient markers for distinguishing
446	between blastocyst trophoblast and pre-gastrulation AM. Based on quantified correlation
447	coefficients between previously reported human trophoblast-like cells or AMLCs and human
448	trophoblast or AM cells, we conclude that the transcriptome of BMP4-treated primed hPSCs, as
449	in $\mu PASEs$, in 2D Transwell membrane-based AMLC differentiation assays (Zheng et al.,
450	2019b) and in 2D patterned gastrulation models (Minn et al., 2020), is similar to that of human
451	AM cells, whereas the transcriptome of trophoblast-like cells derived from naïve hPSCs (Dong e
452	al., 2020; Guo et al., 2021; Io et al., 2021; Yanagida et al., 2021) is consistent with that of human
453	blastocyst trophoblast. However, transcriptome of trophoblast-like cells derived from extended

pluripotent stem (EPS) cells as well as that of trophoblast-like cells present in recently reported 454 human blastocyst-like structures fall somewhat in-between (Liu et al., 2021; Yu et al., 2021). 455 456 Using stringent criteria, we further identified a subset of DEGs within the 457 Trophoblast Amnion ontogenic gene list useful for distinguishing between human blastocyst trophoblast and pre-gastrulation AM and thus between human trophoblast-like cells and AMLCs 458 459 (see Methods; Figures 7B, S9A and S9B). Specifically, markers expressed in human blastocyst trophoblast but not in pre-gastrulation AM include FABP3, GCM1, S100A14, DNMT3L, DPPA3, 460 HAVCR1, CGA, GTSF1 and SNORD99; conversely, genes expressed in human pre-gastrulation 461 AM but not in blastocyst trophoblast include ISL1, HEY1, GABRP, MIF, PLA2G2A, IGFBP7 462 and IGFBP3 (Figure 7B). Many commonly used markers for human trophoblast or AM, 463 including GATA3, TFAP2A, TFAP2C, CDX2, KRT7 and KRT19, are shared between them 464 465 (**Figure 7B**). We should note that although AM transcriptome is obtained from the CS7 human gastrula (Tyser et al., 2021), which remains as the only bona fide human pre-gastrulation AM 466 467 data currently available, most of pre-gastrulation AM markers identified here, including ISL1, HEY1, GABRP and IGFBP3, are upregulated in the pre-gastrulation AM of cynomolgus embryos 468 469 (Yang et al., 2021). We further conducted immunofluorescence analyses of IVF human blastocysts (D6), in 470 471 vitro cultured cynomolgus embryos (D14), trophoblast stem cells (TSCs) (Okae et al., 2018), and AMLCs derived from BMP4-treated primed hPSCs (Zheng et al., 2019b), to ascertain these 472 473 newly identified human blastocyst trophoblast and pre-gastrulation AM markers (Figures 7C-7E and S9C). Consistently, trophoblast cells of D6 human blastocysts show positive 474 475 immunostaining for GCM1, FABP3, DPPA3 and HAVCR1, but are negative for ISL1 or GABRP (Figure 7C). In contrast, AM cells in D14 cynomolgus embryos show clear 476 477 immunostaining for ISL1 and GABRP (Figure 7D). GATA3, TFAP2A and TFAP2C show positive immunostaining in both trophoblast cells of D6 human blastocysts and AM cells of D14 478 cynomolgus embryos (Figures 7C and 7E). Immunofluorescence analyses of TSCs (Okae et al., 479 2018), AMLCs (Zheng et al., 2019b) and μ PASEs at t = 36 h further support that ISL1, GCM1 480 481 and HAVCR1 can be utilized for distinguishing between trophoblast-like cells and AMLCs, 482 whereas GATA3, TFAP2A or TFAP2C could not (Figure S9C and S9D). We should note that ISL1 is a particular useful nuclear marker for distinguishing between human blastocyst 483 trophoblast and pre-gastrulation AM and thus between human trophoblast-like cells and AMLCs 484

(**Figures 7C-7E and S6C**). The function of ISL1 in the AM in inducing Meso development in *cynomolgus* embryos has recently been documented (Yang et al., 2021).

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

485

486

DISCUSSION

Due to bioethical restrictions and practical limitations, experimentations with post-implantation human or NHP monkey embryos remain challenging. As an ethically acceptable alternative, human embryoids are emerging as promising tractable experimental tools for advancing fundamental knowledge of human development (Fu et al., 2021; Rossant and Tam, 2021). As demonstrated by µPASEs, with the aid of integrative bioengineering strategies, human embryoids can faithfully recapitulate certain morphogenetic and cell fate patterning events during the early post-implantation human development, with superior controllability and reproducibility. µPASEs are particularly suitable for studying the specification of AM and PGCs, since µPASE development shows spatiotemporal tissue patterning and architecture reminiscent of those in the early post-implantation human embryo. By studying transcriptome kinetics during progressive µPASE development, molecular maps of lineage diversifications from pluripotent Epi towards AM, PS / Meso, and PGCs are constructed and further compared with in vivo human and cynomolgus monkey data. Our data reveal that both WNT and NODAL signaling are critically involved in Meso and PGC induction, but not for AM development, which is further confirmed using NODAL-KO hPSC lines and drug inhibition assays. Through comparative transcriptome analyses and validations with human and cynomolgus embryos, we further propose some stringent criteria for distinguishing between human trophectoderm and AM cells. Altogether, this study provides new knowledge of the lineage diversification roadmap of early human development and will serve as a valuable resource for studying human development.

Experimentation on human embryoids can lead to a better understanding of the mechanisms of human development and offers opportunities for functional genomic studies of disease-causing mechanisms, identification of therapeutic targets, and preclinical modeling of advanced therapeutics for precision medicine (Fu et al., 2021; Rossant and Tam, 2021). Continuous development of human embryoids should lead to more authentic human development models, with *in vivo*-like tissue architectures and spatiotemporal cell patterning and organization reminiscent of those in natural human embryos. This is essential for understanding the autonomy, self-organizing principles, and innate cell-cell interactions involved in human

development. Importantly, molecular insights generated from embryoids, if at all possible, should be functionally validated using in vivo models (Yang et al., 2021). When developing new embryoids or improving existing embryoids, rigorous scientific scrutiny must be implemented to avoid incorrect interpretations or overstatements (Posfai et al., 2021; Zhao et al., 2021). Currently, there are few lineage markers accepted for distinguishing between human trophectoderm and AM cells, and most existing embryoids are still limited in imitating sequential cell lineage diversifications and 3D tissue organizations exhibited stereotypically in natural embryos. Besides using cell lineage markers, validation and authentication of embryoids are currently commonly conducted through comparative transcriptome studies (e.g., through integration of scRNA-seq datasets from embryoids and in vivo models) (Posfai et al., 2021; Zhao et al., 2021). However, caution should be taken when interpreting such integrated datasets, since, although seemingly "unbiased", existing scRNA-seq data analysis tools still have notable artifacts depending on the cell types present, cell numbers and percentages of each cell type, and specific computational algorithms used in the analysis tools. For instance, AM cells only account for a very small cell population in post-implantation primate embryos; such a small AM cell number can cause significant issues when scRNA-seq data of AM cells are integrated with human blastocyst datasets wherein trophoblast cells are abundant. Thus, we propose that in order to validate cell identities in peri-implantation human embryoids, expression of key cell fate markers need to be clearly demonstrated, in addition to transcriptome comparison based on scRNA-seq data. The cell identity markers established in this work for distinguishing between human trophoblast and AM cells represent one step towards this important direction. LIMITATIONS OF STUDY As demonstrated in this study, µPASEs provide a promising tractable experimental model for exploring previously inaccessible phases of early post-implantation human development. However, µPASEs lack a few key embryonic and extraembryonic lineages in the postimplantation human embryo, including the hypoblast (or extraembryonic endoderm), extraembryonic mesoderm, or trophoblast cells. The hypoblast is known to play a critical role in

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

recapitulate certain aspects of the lineage diversification and development of the posterior end of

anterior-posterior patterning of the epiblast prior to gastrulation. Therefore, µPASEs only

the embryonic sac during the early post-implantation human development. Additionally,

547	$\mu PASEs$ disintegrate and lose their embryonic-like structure soon after 48 h in culture, as
548	differentiating MeLCs that are undergoing EMT emigrate from the $\mu PASE$ structure, which
549	limits the potential of $\mu PASEs$ for prolonged culture to investigate cell lineage development and
550	embryonic tissue formation at later developmental stages. It should also be noted that cell type
551	annotations and lineage inference analyses of the µPASE in this work are solely based on
552	transcriptomic studies. Thus, caution should be taken when interpreting these results included in
553	this Resource.
554	
555	ACKNOWLEDGEMENTS
556	Studies of µPASE is supported by the Michigan-Cambridge Research Initiative (J.F.), the
557	National Institutes of Health (R21 NS113518 and R21 HD100931, J.F.), the National Science
558	Foundation (CMMI 1917304 and CBET 1901718, J.F.), and the 21st Century Jobs Trust Fund
559	received through the Michigan Strategic Fund from the State of Michigan (Grant CASE-315037,
560	J.F.). Studies of human blastocysts are supported by the Open Project of Yunnan Provincial
561	Reproductive and Obstetrics and Gynecology Clinical Medicine Center (zx2019-01-01 and
562	2020LCZXKF-SZ04, L.X.). Non-human primate monkey studies are supported by the National
563	Key Research and Development Program of China (2016YFA0101401), the Major Basic
564	Research of Yunnan from China (2019FY002), and a Grant for Swedish-Chinese collaboration
565	from the Swedish Research Council (Dnr 539-2013-7002). MK and TS are partially supported by
566	the RICBAC Foundation. K.C. is partially supported by a Grant for Distinguished Professors
567	from the Swedish Research Council (Dnr 541-2013-8351). A.M.R.I. is partially supported by the
568	National Science Foundation Graduate Research Fellowship under grant no. DGE 1256260. The
569	Lurie Nanofabrication Facility at the University of Michigan is acknowledged for support with
570	microfabrication.
571	
572	AUTHOR CONTRIBUTIONS
573	Y.Z. and J.F. conceived and initiated the project; Y.Z. designed and performed microfluidic
574	embryoid experiments, and conducted scRNA-seq data analyses and interpretations; R.Z.Y.
575	conducted CellChat analysis and participated in data analysis; S.S. participated in microfluidic
576	embryoid experiments and repeated experiments with additional cell lines; M.K. and T.S.
577	established and characterized NODAL-KO hPSC lines; L.X., Y.L. and T.L. performed human

578	embryo experiments; R.Y., A.G., W.J., Y.N., and K.C. performed monkey embryo experiments;
579	X.X., S.N.E., Y.L. and A.R helped with microfluidic embryoid experiments; W.W. helped with
580	scRNA-seq data analyses; Y.Z. and J.F. wrote the manuscript; J.F. supervised the study. All
581	authors edited and approved the manuscript.
582	
583	COMPETING INTERESTS
584	Two patents related to this work have been filed (US20190321415 / WO2018106997 by J. Fu, Y
585	Zheng and S.N. Esfahani; US2020049721 / PCT/US20/49721 by J. Fu and Y. Zheng).

METHODS 586 587 **Ethics statement** μPASE lacks both the primitive endoderm and trophoblast and thus cannot form the yolk sac or 588 placenta. Therefore, µPASE does not have human organismal form or potential. Furthermore, 589 μ PASE disassembles and lose structural integrity after t = 48 h, and all experiments were 590 terminated by no later than t = 72 h. All protocols with hPSCs were approved by the Human 591 Pluripotent Stem Cell Research Oversight Committee at the University of Michigan, Ann Arbor. 592 593 Protocols of human embryo experiments were approved by the Medicine Ethics Committee of the First People's Hospital of Yunnan Province (KHLL2020-KY064). This Medicine Ethics 594 Committee has 13 members, including lawyers, scientists and clinicians with relevant expertise. 595 This committee evaluated the scientific merits and ethical justification of human embryo 596 597 experiments and conducted a full review of the donation and use of human embryo samples. All human embryos donated to this study were surplus frozen embryos from couples who had at 598 least one healthy baby after in vitro fertilization. All donor couples signed informed consents for 599 voluntary donations at the Department of Reproductive Medicine in the First People's Hospital 600 601 of Yunnan Province. No economic benefits were offered during the process. Couples were informed that their embryos would be used for experimental studies of human development and 602 603 that their donation would not affect their *in vitro* fertilization processes. 604 605 Cell culture H9 (WA09, WiCell; NIH registration number: 0062, female) and ESI-017 (BioTime, Inc.; NIH 606 607 registration number: 0093, male) hPSCs and chimpanzee iPSC lines (C3651, male and C4955, female) (Gallego Romero et al., 2015; Pavlovic et al., 2018) were maintained in a feeder-free 608 609 culture system using mTeSR medium (STEMCELL Technologies). For hPSCs, culture plate was 610 coated with 1% lactate dehydrogenase-elevating virus (LDEV)-free, hESC cell-qualified reduced growth factor basement membrane matrix Geltrex (Thermo Fisher Scientific; derived from 611 Engelbreth-Holm-Swarm mouse tumors) before cell seeding. For chimpanzee iPSCs, culture 612 plate was coated with 1% Matrigel (Thermo Fisher Scientific; extracted from Engelbreth-Holm-613 Swarm mouse sarcoma). Cells were visually examined during each passage to ensure absence of 614 spontaneously differentiated, mesenchymal-like cells in culture. Cells were used before P70. 615 Both human and chimpanzee cells have been authenticated by original sources as well as in-616

617	house by immunostaining for pluripotency markers and successful differentiation into the three
618	germ layers. Cells were maintained for at least ten passages and authenticated as karyotypically
619	normal. Karyotype analysis was performed by Cell Line Genetics. Both human and chimpanzee
620	cell lines were tested negative for mycoplasma contamination (LookOut Mycoplasma PCR
621	Detection Kit, Sigma-Aldrich).
622	
623	Generation of NODAL-knockout hPSCs
624	To generate NODAL-knockout (KO) hPSCs, a 58-bp portion of genomic DNA within NODAL
625	exon 1 was deleted by CRISPR/Cas9 using two crRNA purchased from Thermo Fisher Scientific
626	[NODAL_crRNA_1: 5'-AGGCUCAGCAUGUACGCCAG-3'; NODAL_crRNA_2: 5'-
627	AGACAUCAUCCGCAGCCUAC-3'] (Figures S7A-S7C). Deplexes of crRNA:tracrRNA
628	were prepared using a standard protocol and introduced into H9 hPSCs with the Cas9 enzyme
629	and the pCXLE-EGFP expression plasmid (a gift from Shinya Yamanaka; Addgene plasmid #
630	27082; RRID: Addgene_27082) for constitutional expression of EGFP using the NEON
631	electroporation system (Thermo Fisher Scientific). EGFP-expressing single cells were collected
632	and seeded onto Matrigel-coated 96-well plates by fluorescence-activated cell sorting
633	(FACSAria Fusion, BD Biosciences) with CloneR single-cell culture supplement diluted with
634	mTeSR Plus medium (STEMCELL Technologies). To detect the anticipated deletion, genomic
635	DNA was isolated from single-cell derived clones and subjected to PCR using the following
636	primers designed for amplification of NODAL exon 1 [Forward Primer: 5'-
637	CTTCCTTCTGCACGCCTGGTGG-3'; Reverse Primer: 5'-
638	CCAACCCACAGCACTTCCCGAG-3']. Resulting amplicons were subjected to Sanger
639	sequencing using a primer 5'-CTTCCTTCTGCACGCCTGGTGG-3'. ESI-017 NODAL-KO
640	hPSC line is a generous gift from Aryeh Warmflash at Rice University (Chhabra et al., 2019).
641	
642	Western blotting
643	Wildtype and NODAL-KO hPSCs were exposed to GSK3 inhibitor CHIR99021 (CHIR, 10 μM ;
644	Cayman Chemical) for 24 h to augment expression of NODAL protein before cells were lysed
645	with RIPA buffer containing the cOmplete protease inhibitor cocktail (Roche). Protein
646	concentration was determined by the Bradford assay using Protein Assay Dye Reagent
647	Concentrate (Bio-Rad). An equal amount of protein (80 µg) from cell lysates of widetype and

NODAL-KO hPSCs was resolved on 10% SDS-PAGE and transferred onto PVDF membranes 648 (Thermo Fisher Scientific). Immunostaining was performed by blocking PVDF membranes with 649 5% skim milk for 1 h at room temperature followed by incubation overnight at 4 °C with mouse 650 monoclonal antibodies to human NODAL (Abcam ab55676; 1:500 dilution) or human GAPDH 651 (Sigma-Aldrich G8795; 1:20000 dilution) diluted in 5% skim milk. Membranes were washed 652 with phosphate buffered saline (PBS) containing 0.1% Tween-20 (PBS-T) and stained with 653 HRP-conjugated anti-mouse IgG antibody (Santa Cruz sc-516102; 1:3000 dilution) diluted in 5% 654 655 skim milk for 1 h at room temperature. Protein bands were detected by a chemiluminescence assay using SuperSignal West Pico Plus and SuperSignal West Femto reagents (Thermo Fisher 656 Scientific). 657 658 659 Cynomolgus macaque 660 Healthy cynomolgus monkeys (Macaca fascicularis), aged from 5 to 8 years old, were used in 661 this study. All animals were housed either at the facility of the Yunnan Key Laboratory of Primate Biomedical Research (LPBR) in China, or at the Astrid Fagræus laboratory of the 662 663 Karolinska Institutet in Sweden. Both facilities are accredited by AAALAC international. Experimental protocols for using cynomolgus macaque embryos were approved by the 664 Institutional Animal Care and Use Committee of LPBR in China (KBI K001115033/01,01) and 665 by the Jordbruksverket in Sweden (Ethical Permit Number N277/14). Animals involved in this 666 667 study were never used for other treatments. 668 In vitro fertilization and culture of cynomolgus macaque embryo 669 *In vitro* fertilized cynomolgus macaque embryos were generated as described previously (Niu et 670 al., 2014). Briefly, healthy female cynomolgus monkeys aged 5 to 8 years old with regular 671 672 menstrual cycles were selected as oocyte donors. Cynomolgus monkeys were treated with 673 recombinant human follicle stimulation hormone (Merck, Gonal-f) for 8 days, followed by administration of recombinant human chorionic gonadotropin (Merck, Ovidrel) on day 9. After 674 32-35 h, oocytes were collected by laparoscopic follicular aspiration. Metaphase II (MII) oocytes 675 were used for intracytoplasmic sperm injection to generate zygotes, and fertilization was 676 confirmed by the presence of two pronuclei. Zygotes were cultured in embryo culture medium-9 677 (polyvinyl alcohol (0.1 mg/mL), calcium chloride (1.9 mM), magnesium chloride (0.46 mM), 678

potassium chloride (3.0 mM), sodium chloride (113.8 mM), sodium bicarbonate (25.0 mM), 679 sodium lactate (4.5 mM), Minimum Essential Medium (MEM) amino acid, MEM nonessential 680 681 amino acid, and gentamicin (10 mg/mL)) containing 10% fetal calf serum in 37 °C incubator supplied with 5% CO₂ until the blastocyst stage. *In vitro* culture of NHP monkey blastocysts 682 beyond the implantation stage has been described previously (Yang et al., 2021). In brief, frozen 683 684 NHP monkey blastocysts were thawed using Thawing Media (Kizatato) and cultured in blastocyst culture medium (Origio) for at least 4 h to recover. Blastocysts were then treated with 685 Acidic Tyrode's solution (Sigma) to remove zona pellucida before being transferred onto an 686 ibiTreat 8-well μ-plate (Ibidi) containing 300 μL of pre-equilibrated in vitro culture medium 1 687 (advanced DMEM/F12, 20% FBS, 1-Glutamine, 1-cysteine, 1x Penicillin/Streptomycin, 1x ITS-688 X, supplemented with beta-estradiol, progesterone). On the second day, 150 µL of culture 689 690 medium was aspirated, before 200 µL of pre-equilibrated in vitro culture medium 2 (advanced DMEM/F12, 30% KSR, 1-Glutamine, 1-cysteine, 1x Penicillin/Streptomycin, 1x ITS-X, 691 supplemented with beta-estradiol, progesterone) was added into the ibiTreat 8-well μ-plate. 692 Embryo growth was recorded daily, and culture medium was replenished every two days till Day 693 694 14. 695 696 NHP monkey embryo cryosection and immunocytochemistry Day 14 NHP monkey embryos were fixed using 2% paraformaldehyde (PFA; buffered in PBS) 697 698 overnight at 4 °C before being washed with PBS. Fixed embryos were dehydrated by 30% sucrose overnight at 4 °C before embedded in Tissue-Tek O.C.T. compound (Sakura) and frozen 699 700 in liquid nitrogen. Frozen blocks were used for cryosection using CryoStar NX70 Cryostat 701 (Thermo Fisher Scientific) according to manufacturer's protocol. Immunofluorescence staining 702 was then performed according to a standard procedure. Briefly, sections were thawed and air-703 dried at room temperature. After washing with PBS, sections were incubated in blocking buffer (3% FBS) diluted in PBS with 0.1% Triton X-100) for 1 h at room temperature and then 704 incubated overnight at 4 °C with primary antibodies diluted in blocking buffer. The sections 705 706 were washed with PBS-T and incubated with secondary antibodies diluted in blocking buffer for 707 2 h at room temperature. After washing thoroughly with PBS-T, sections were mounted and imaged. Secondary antibodies were used in dilution of 1:500. Images were acquired by a Zeiss 708 709 700 LSM Confocal Microscope and analyzed by iMaris.

710	
711	Immunocytochemistry for D6 human embryos
712	D6 human embryos were fixed with 4% PFA for 20 min at room temperature in a 96-well plate,
713	washed with PBS, and then permeabilized and blocked by 0.2% Triton X-100 supplemented with
714	3% bovine serum albumin (BSA) overnight at 4 °C. Embryos were then transferred onto a new
715	well with primary antibodies for 16 - 18 h at 4 °C. Embryos were washed 3 times with PBS
716	containing 0.05% Tween-20, 15 min every time, before being transferred to secondary antibody
717	solutions for 4 h at room temperature. Embryos were then washed 3 times in PBS containing
718	0.05% Tween-20, 15 min every time, before being transferred onto an ibiTreat 8-well μ -plate.
719	All antibodies were diluted by 1% BSA solutions.
720	
721	Generation of μPASEs
722	The microfluidic device was fabricated by bonding a polydimethylsiloxane (PDMS) structure
723	layer to a glass coverslip. Singly dissociated hPSCs or chimpanzee iPSCs were loaded into the
724	cell loading channel and guided to settle into preformed, concave Geltrex pockets by tilting the
725	device by 90° for 10 min. hPSCs were then maintained in mTeSR containing 10 μM Y27632
726	(Tocris) for 18 h to allow for cell clustering. At $t = 0$ h, culture medium in all medium reservoirs
727	of the device was switched to a fresh basal medium comprising Essential 6 medium (E6; Thermo
728	Fisher Scientific) and FGF2 (20 ng $mL^{-1};$ GlobalStem), with additional 50 ng mL^{-1} BMP4 (R&D
729	Systems) supplemented only in the cell loading channel. A detailed protocol for microfluidic
730	device fabrication and generation of $\mu PASEs$ can be found elsewhere (Zheng et al., 2021; Zheng
731	et al., 2019b). To examine possible involvements of different signaling pathways involved in the
732	development of μPASEs, IWP2 (10 μM; Tocris), SB 431542 (10 μM; Cayman Chemical) or
733	LY294002 (20 μ M; BioVision) was supplemented into basal medium from $t = 0$ h. For assays
734	with ACTVIN A, 100 ng mL ⁻¹ ACTIVIN A (R&D Systems) was supplemented into the channel
735	opposite to BMP4 stimulation from $t = 0$ h. For <i>in situ</i> proliferation measurements, Click-iT EdU
736	Kit (Invitrogen) was used as per manufacturer's protocol. Diluted EdU solution (10 μM) was
737	introduced into all reservoirs of the device at $t = 24$ h. After 3 h of incubation, the μ PASEs was
738	fixed and imaged.
739	

$Immunocytochemistry \ for \ \mu PASEs$

μPASEs were fixed with 4% PFA for 12 h before being permeabilized in 0.1% SDS solution 741 (sodium dodecyl sulphate, dissolved in PBS) for 3 h. uPASEs were then blocked in 4% donkey 742 743 serum (Sigma-Aldrich) at 4 °C for 24 h, followed by incubation with primary antibody solutions at 4 °C for another 24 h. Samples were then labelled with donkey-raised secondary antibodies 744 (1:500 dilution) at 4 °C for 24 h. 4',6-diamidino-2-phenylindole (DAPI; Thermo Fisher 745 Scientific) was used for counterstaining cell nuclei. Both primary and secondary antibodies were 746 prepared in 4% donkey serum supplemented with 0.1% NaN₃. 70 µL antibody solutions were 747 added to each medium reservoir of the microfluidic device for immunostaining. All primary and 748 secondary antibodies used in this study are listed in **Table S9**. All confocal micrographs of 749 μPASEs were acquired by a NIKON A1SI Confocal Microscope equipped with a 750 photomultiplier tube (PMT) detector and processed using ImageJ 1.53c. 751 752

Quantification of SOX17+ cells

- μ PASEs at t = 48 h with or without LY294002 were stained for SOX17 using the protocol
- described above. All confocal micrographs captured at the central focal plane of structure (50 μm
- above the microfluidic device bottom surface) were used for quantification. The percentage of
- 757 SOX17+ cells was calculated as the ratio between the area of SOX17 channel and DAPI channel
- for each μPASE. The binarization and measurement of the images was conducted using ImageJ
- 759 1.53c. Quantitative results were analyzed using independent, two-tailed Student's t-test in Excel
- 760 (Microsoft). P < 0.05 was considered statistically significant.

761 762

753

Trophoblast stem cells and derivation of AMLCs using BMP4

- 763 Human trophoblast stem cells (hTSCs) derived from blastocysts were generously provided by
- Dr. H. Okae and Dr. T. Arima (Okae et al., 2018). hTSCs were maintained in 1% Geltrex coated
- 6-well plates in DMEM/F12 supplemented with 0.05 mM 2-mercaptoethanol, 0.2% fetal bovine
- serum (FBS), 0.5% knockout serum replacement (KSR), 0.5% penicillin-streptomycin, 0.3%
- BSA, 1% ITS-X supplement, 1.5 µg mL⁻¹ L-ascorbic acid, 50 ng mL⁻¹ epidermal growth factor
- 768 (EGF), 2 μM CHIR99021, 1 μM A83-01, 1 μM SB431542, 0.8 mM valproic acid (VPA) and 5
- 769 μM Y27632, and passaged using TrypLE.
- To obtain AMLCs by treating hPSCs with BMP4, singly dissociated hPSCs were
- 771 suspended in mTesR1 containing 10 μM Y27632 and seeded in a 1% Geltrex coated 6-well plate

at a density of 2.5×10^3 cells cm⁻². Note that this cell seeding density is optimized to avoid 772 extensive cell death (when cell density is too low) or emergence of PSLCs in culture through an 773 774 unspecified inductive effect of incipient AMLCs (Zheng et al., 2019b). 18 h after cell seeding, culture medium was switched to Essential 6 medium containing FGF2 (20 ng mL⁻¹) and BMP4 775 (50 ng mL⁻¹). Resulting AMLCs were fixed and stained after 48 h of BMP4 treatment. 776 777 Single cell dissociation and RNA-sequencing 778 μPASEs (H9) at different time points were washed twice with DMEM/F12 for 10 min and 779 incubated with Accutase for 1 h. After incubation, µPASEs in the microfluidic device were 780 dissociated into single cells by gentle agitating. Single cells from six microfluidic devices were 781 collected and pooled into PBS containing 0.5% BSA before being centrifuged at 300 g for 5 min. 782 783 The resultant cell pellet was re-suspended in PBS containing 0.5% BSA. Within 1 h after cell dissociation, cells were loaded into the 10X Genomics Chromium system (10X Genomics). 10X 784 Genomics v.3 libraries were prepared according to the manufacturer's instructions. Libraries 785 were then sequenced using paired-end sequencing with a minimum coverage of 20,000 raw reads 786 787 per cell using an Illumina NovaSeq-6000. scRNA-seq data were aligned and quantified using Cell Ranger Single-Cell Software Suite (v.3.1.0, 10X Genomics) against the Homo sapiens 788 789 (human) genome assembly GRCh38.p13 from ENSEMBL. Chimpanzee μPASEs (C3651) were dissociated and sequenced following the same protocol. scRNA-seq data from chimpanzee 790 791 μPASEs were aligned against Pan tro 3.0 from ENSEMBL. 792 793 Data integration, dimensionality reduction and clustering Analysis of scRNA-seq data and integration of scRNA-seq datasets were performed using Seurat 794 795 R package (v.4.0.0.0, https://satijalab.org/seurat/) (Butler et al., 2018; Satija et al., 2015). Default 796 setups were used unless noted otherwise. Briefly, a single batch of scRNA-seq dataset was 797 filtered based on total number of genes detected and percentage of total mitochondrial genes. Gene expression was then calculated by normalizing the raw count with the total count before 798 799 multiplying by 10,000 and log transformed. Cell cycle was regressed out based on cell cycle 800 scores (CellCycleScoring) during data scaling process (ScaleData). PCA analysis (RunPCA) was then performed on filtered data followed by embedding into low dimensional space with 801

Uniform Manifold Approximation and Projection (UMAP; RunUMAP). Identification of cell

802

clusters by a shared nearest neighbor (SNN) modularity optimization-based clustering algorithm 803 was achieved using the FindClusters function in the Seurat R package. For integration of 804 805 different scRNA-seq datasets, count matrices of different datasets were filtered and normalized 806 separately before being integrated using the IntegrateData function based on 2,000 anchor features. After integration, the integrated scRNA-seq dataset was analyzed following the 807 808 standard Seurat pipeline. Annotation of cell clusters was based on expression of canonical lineage marker genes. 809 810 RNA velocity analysis and partition-based graph abstraction analysis (PAGA) 811 Bam files generated by the Cell Ranger pipeline was used for RNA velocity analysis. Genome 812 annotations GRCh38.p13 were used for counting spliced and unspliced mRNA of individual 813 814 cells. Python package scVelo (v.0.2.2, https://scvelo.readthedocs.io) was employed to perform RNA velocity analysis using dynamical modeling (scv.tl.velocity) (Bergen et al., 2020; La 815 Manno et al., 2018). Function 'scv.pl.velocity embedding stream' was used to project RNA 816 velocities onto UMAP plots or diffusion maps. All default parameters were used unless noted 817 otherwise. Python package Scanpy (v.1.8.0, https://scanpy.readthedocs.io/en/stable/) was used 818 for evaluating the relationship between different cell clusters by the partition-based graph 819 820 abstraction (PAGA) analysis (Wolf et al., 2018). Briefly, Seurat object was converted to "Loom" 821 file and passed to Scanpy. Neighborhood graph of observations was then computed using 20 PCs 822 (sc.pp.neighbors). Finally, PAGA graph was plotted with a "eq tree" layout. 823 824 Gene regulatory network analysis Regulatory activity of transcription factors associated with specific cell types was assessed using 825 826 the R-package SCENIC (Single Cell rEgulatory Network Inference and Clustering, v.1.1.2-2, https://github.com/aertslab/SCENIC) (Aibar et al., 2017). Briefly, regulatory modules were first 827 identified by inferring co-expression with transcription factors using GENIE3. Each co-828 expression module was then analyzed using cis-regulatory motif analyses (RcisTarget). Only 829 830 modules with significant motif enrichment of the correct upstream regulator were retained. The 831 human motif collection v9 and the cisTarget databases for hg38 were used in the pipeline (https://resources.aertslab.org/cistarget/). Filtered counts of the integrated Seurat object were 832 used as input of SCENIC. All default parameters were used in SCENIC unless noted otherwise. 833

834 Trajectory interference using diffusion map and pseudotime 835 836 Diffusion maps were obtained by the R-package Density (https://bioconductor.org/packages/release/bioc/html/destiny.html), which computes kernel 837 density estimates with parametric starts and asymmetric kernels (Angerer et al., 2016). To 838 839 generate three-dimensional diffusion maps, PCA embeddings of the integrated Seurat object were used as input of 'diffmap' function. Cells in the three-dimensional diffusion map were 840 color-coded consistently with the UMAP plot of the integrated Seurat object. Three-dimensional 841 visualization was realized using R-package rgl (3D Visualization Using OpenGL). For trajectory 842 inference and pseudotime analysis of specific cell lineages, relevant cell clusters of the integrated 843 Seurat object were extracted using Subset function (Seurat). PCA embeddings of selected cell 844 845 clusters were then used as the input of 'diffmap' function. To visualize gene expression dynamics, diffusion pseudotime (dpt) was utilized. The roots of the diffusion map were 846 automatically chosen by the algorithm; and the EpiLC cluster was arbitrarily made as the initial 847 cell type. Expression levels of selected genes were fitted as a function of the pseudotime with 848 849 "loess" method by using 'geom smooth' function in ggplot2 R package (v.3.3.3). Cells with extreme dpt values were counted as outliner and excluded from gene expression dynamic 850 851 analysis. RNA velocity vectors were computed as described above and superimposed onto the diffusion maps. In the case of lineage bifurcation, branching point and branches of different 852 853 lineages were identified by locally fitting half-lines to single-cell data in the diffusion map using K-Branches R package (https://github.com/theislab/kbranches) (Chlis et al., 2017). 854 855 Differential gene expression, gene ontology enrichment and pathway analyses 856 857 Gene expression data depicted in feature plots and dot plots in this paper were calculated from 858 raw counts after NormalizeData function followed by ScaleData function of the Seurat package, unless noted otherwise. Differentially expressed genes (DEGs) between different cell types were 859 identified using FindMarkers function (Seurat), with a minimal fold difference of 0.25 in the 860 861 logarithmic scale and > 10% detection rate in either of the two cell types under comparison. 862 Gene ontology (GO) enrichment and pathway analyses were performed using online tool iPathwayGuide (Advaita Bioinformatics) referencing AmiGO Gene Ontology database and 863 KEGG PATHWAY Database, respectively. 864

865 866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

Integration, re-analysis and PCA of published human embryo data

The scRNA-seq dataset of the CS7 human gastrula was integrated with μPASE scRNA-seq datasets. Since µPASEs contain AMLCs, PGCLCs and PSLCs / MeLCs, only relevant cell types from the human gastrula (Amniotic/embryonic ectoderm, Epiblast, Primitive Streak, Nascent Mesoderm, Emergent Mesoderm) were extracted according to the annotations in the original publication. Human gastrula scRNA-seq dataset was generated using Smart-seq2. To compare with µPASE scRNA-seq datasets generated using the 10X Genomics Chromium system, raw counts of each cell in the human gastrula were normalized to exon sizes before being utilized to create the Seurat object (input count = raw count / exon size \times 1,000). Exon size information was obtained from GRCh38.p13, ENSEMBL. To integrate scRNA-seq data from the human gastrula with those of μ PASEs, μ PASE scRNA-seq datasets from the three time points (t = 24 h, 36 h and 48 h) were first filtered. Normalization, Scaling (including cell cycle regression) and PCA were then performed separately on each of the datasets after which they were combined using the reciprocal PCA approach (IntegrateData function, Seurat) based on 30 dimensions and 2,000 anchor features. Dimensionality reduction and clustering were then performed as described above. Downsampling of large scRNA-seq datasets was performed using Seurat R package (Subset), which randomly selects 100 cells from every cluster in the original datasets to form a new Seurat object. This step helps prevent larger datasets from dominating the downstream analysis.

For re-analysis of human gastrula scRNA-seq dataset, relevant cell types were processed with the default Seurat pipeline. Trajectory inference using diffusion map and pseudotime analysis was achieved using the same pipeline as for µPASEs, as descried earlier. For PCA, large datasets were first downsampled; then the normalized counts of epiblast ontogenetic genes (Table S5) from different datasets were merged into a matrix. The matrix was scaled to ensure each gene has zero average and unit variance. PCAs was calculated and visualized using Seurat R package.

892

893

894

895

Cross-species comparison

Cross-species comparisons utilize scRNA-seq datasets from the CS7 human gastrula, human μ PASEs (t = 24 h, 36 h and 48 h), chimpanzee μ PASEs (t = 48 h), $in \ vivo$ cynomolgus embryos

(D13 - 17), and in vitro cultured cynomolgus embryos (D11 - 17) (Ma et al., 2019; Nakamura et 896 al., 2016; Sasaki et al., 2016; Tyser et al., 2021; Yang et al., 2021). To mitigate artifacts resulted 897 898 from different sequencing platforms, for datasets generated using Smart-seq2, raw counts were first normalized to exon length, as described above. Exon size information of cynomolgus 899 monkey was obtained from Macaca fascicularis 6.0, ENSEMBLE. Average raw counts 900 normalized by exon length for specific cell types in different datasets were then transformed into 901 log2(counts per million reads + 1) and used as gene expression levels for calculating the 902 correlation coefficient matrix and heat map plotting. 903 Ontogenic genes of mesoderm and PGC lineages were identified through DEG analysis 904 of in vivo cynomolgus embryo datasets. Briefly, for mesoderm lineage ontogenic genes, DEGs of 905 "Gast1", "Gast2a" and "Gast2b" as compared to "PostL-EPI" were identified using FindMarkers 906 function (Seurat)(Nakamura et al., 2016). All DEGs, with a minimal fold difference of 2 in the 907 logarithmic scale (logfc), > 10% detection rate in either of the two cell types under comparison, 908 and adjusted P-value < 0.05, were used as mesoderm lineage ontogenic genes (**Table S6**). To 909 identify PGC lineage ontogenic genes, DEGs of "ePGC" as compared to "PostL-EPI" (Sasaki et 910 al., 2016), with a minimal fold difference of 2 in the logarithmic scale (logfc), > 10% detection 911 rate in either of the two cell types under comparison, and adjusted P-value < 0.05, were used as 912 PGC lineage ontogenic genes (**Table S6**). Amniotic ectoderm ontogenic genes were obtained 913 through DEG analysis of Day 14 in vitro cultured cynomolgus embryos (Yang et al., 2021). 914 915 Specifically, DEGs of "early-Amnion" and "late-Amnion" as compared to "EPI" were identified using FindMarkers function (Seurat). All DEGs, with a minimal fold difference of 0.75 in the 916 917 logarithmic scale (logfc), > 10% detection rate in either of the two cell types under comparison, and adjusted P-value < 0.01, were used as amniotic lineage ontogenic genes (**Table S6**). 918 919 920 **Analysis of cell-cell interactions** R package CellChat was used to perform cell-cell communication analysis 921 (http://www.cellchat.org/) (Jin et al., 2021). Briefly, based on manually curated databases that 922 consider known structural compositions of ligand-receptor interactions, CellChat infers and 923 analyzes intercellular communication networks from scRNA-seq data using network analysis and 924 pattern recognition. Seurat object including count matrix and clustering results from each dataset 925 is imported to CellChat. The default human database was used for µPASE and cynomolgus 926

embryo dataset analyses, whereas the default mouse database was used for mouse embryo 927 dataset analysis. For both databases, only secreted signaling pathways from Kyoto Encyclopedia 928 929 of Genes and Genomes (KEGG) were used. Default values were used for all parameters, except that the truncated mean was lowered to 5% to increase algorithm sensitivity. 930 931 932 Comparisons between human trophoblast and amniotic ectoderm Several published RNA-seq datasets related to human blastocyst trophoblast and amniotic 933 ectoderm were surveyed in this work. Datasets generated from bulk RNA-sequencing or Smart-934 seq2 were first normalized by exon sizes as described earlier. Specifically, blastocyst trophoblast 935 cells annotated in (Blakeley et al., 2015; Petropoulos et al., 2016) were utilized as the reference 936 of human blastocyst trophoblast. Both two datasets were analyzed in this work to mitigate batch 937 938 effects and systematic variations. Amniotic/embryonic ectoderm cells from the CS7 human gastrula were utilized as the reference of human amniotic ectoderm (Tyser et al., 2021). DEGs 939 between trophoblast and amniotic ectoderm were first identified using trophoblast cells from 940 (Blakeley et al., 2015; Petropoulos et al., 2016), respectively, as compared to 941 amniotic/embryonic ectoderm cells from the CS7 human gastrula, with a minimal fold difference 942 of 0.75 in the logarithmic scale (logfc) and adjusted P-value < 0.05. Overlapped DEGs identified 943 944 from both comparative transcriptome analyses were used as Trophoblast Amnion ontogenic genes (n = 299) to calculate correlation coefficients of published datasets as well as AMLCs 945 946 from this work with human blastocyst trophoblast and amniotic/embryonic ectoderm (Table **S8**). Correlation coefficients and gene expression heatmap were calculated based on averages of 947 experimental repeats, if any. The average gene expression level of the two trophoblast datasets 948 was used to calculate correlation coefficients of surveyed cells with the human blastocyst 949 950 trophoblast. To identify the most reliable markers for distinguishing trophoblast cells from 951 amniotic ectoderm cells, more stringent criteria were applied than those for identifying Trophoblast Amnion ontogenic genes. Among Trophoblast Amnion ontogenic genes with 952 953 logfc > 2, only the genes that are negative in the other cell type (normalized count < 0.05) were identified as reliable markers. Overlapped markers revealed for both trophoblast datasets were 954 955 proposed as markers for distinguishing human trophoblast cells from amniotic ectoderm cells.

Code availability

956

957

958 RStudio and Python scripts used in this work are available from the corresponding authors upon 959 request. 960 Data availability 961 All processed datasets are available at https://umichibbl.shinyapps.io/shinyapp/. Data supporting 962 findings of this study are available within the article and its Supplemental Information files and 963 from the corresponding authors upon request. scRNA-seq data are also available at the Gene 964 Expression Omnibus under accession no. GSE185643. All source data for graphs included in the 965 paper are available in the online version of the paper. 966

REFERENCES

967

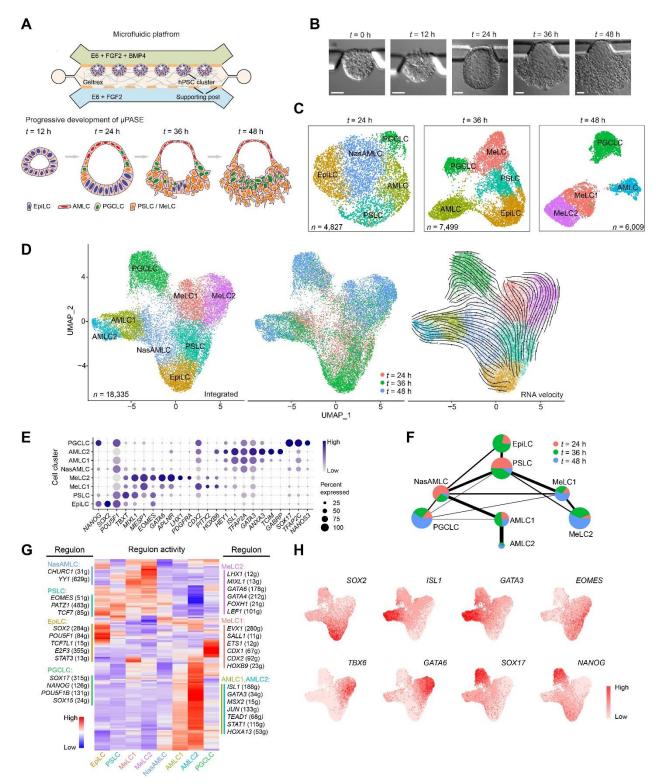
- Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G., Rambow, F.,
- 969 Marine, J.C., Geurts, P., Aerts, J., et al. (2017). SCENIC: single-cell regulatory network inference and
- 970 clustering. Nat Methods *14*, 1083-1086.
- Angerer, P., Haghverdi, L., Buttner, M., Theis, F.J., Marr, C., and Buettner, F. (2016). destiny: diffusion
- maps for large-scale single-cell data in R. Bioinformatics 32, 1241-1243.
- 973 Beccari, L., Moris, N., Girgin, M., Turner, D.A., Baillie-Johnson, P., Cossy, A.C., Lutolf, M.P., Duboule, D.,
- and Arias, A.M. (2018). Multi-axial self-organization properties of mouse embryonic stem cells into
- 975 gastruloids. Nature *562*, 272-276.
- 976 Ben-Haim, N., Lu, C., Guzman-Ayala, M., Pescatore, L., Mesnard, D., Bischofberger, M., Naef, F.,
- 977 Robertson, E.J., and Constam, D.B. (2006). The nodal precursor acting via activin receptors induces
- 978 mesoderm by maintaining a source of its convertases and BMP4. Dev Cell 11, 313-323.
- 979 Bergen, V., Lange, M., Peidli, S., Wolf, F.A., and Theis, F.J. (2020). Generalizing RNA velocity to transient
- ocell states through dynamical modeling. Nat Biotechnol 38.
- 981 Bernardo, A.S., Faial, T., Gardner, L., Niakan, K.K., Ortmann, D., Senner, C.E., Callery, E.M., Trotter, M.W.,
- Hemberger, M., Smith, J.C., et al. (2011). BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of
- 983 Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages. Cell Stem Cell 9,
- 984 144-155.
- 985 Blakeley, P., Fogarty, N.M.E., del Valle, I., Wamaitha, S.E., Hu, T.X., Elder, K., Snell, P., Christie, L., Robson,
- 986 P., and Niakan, K.K. (2015). Defining the three cell lineages of the human blastocyst by single-cell RNA-
- 987 seq (vol 142, pg 3151, 2015). Development *142*, 3613-3613.
- 988 Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell
- transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411-420.
- 990 Casaca, A., Nóvoa, A., and Mallo, M. (2016). Hoxb6 can interfere with somitogenesis in the posterior
- 991 embryo through a mechanism independent of its rib-promoting activity. Development 143, 437-448.
- 992 Chawengsaksophak, K., de Graaff, W., Rossant, J., Deschamps, J., and Beck, F. (2004). Cdx2 is essential
- 993 for axial elongation in mouse development. Proc Natl Acad Sci U S A 101, 7641-7645.
- 994 Chen, B., Dodge, M.E., Tang, W., Lu, J., Ma, Z., Fan, C.-W., Wei, S., Hao, W., Kilgore, J., Williams, N.S., et
- 995 al. (2009). Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and
- 996 cancer. Nature Chemical Biology 5, 100-107.
- 997 Chen, D., Sun, N., Hou, L., Kim, R., Faith, J., Aslanyan, M., Tao, Y., Zheng, Y., Fu, J., Liu, W., et al. (2019).
- 998 Human Primordial Germ Cells Are Specified from Lineage-Primed Progenitors. Cell Rep 29, 4568-4582
- 999 e4565.

- 1000 Chhabra, S., Liu, L., Goh, R., Kong, X., and Warmflash, A. (2019). Dissecting the dynamics of signaling
- events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human
- gastruloids. PLOS Biology 17, e3000498.
- 1003 Chlis, N.K., Wolf, F.A., and Theis, F.J. (2017). Model-based branching point detection in single-cell data
- by K-branches clustering. Bioinformatics *33*, 3211-3219.
- 1005 Clark, A.T., Brivanlou, A., Fu, J.P., Kato, K., Mathews, D., Niakan, K.K., Rivron, N., Saitou, M., Surani, A.,
- 1006 Tang, F.C., et al. (2021). Human embryo research, stem cell-derived embryo models and in vitro
- gametogenesis: Considerations leading to the revised ISSCR guidelines. Stem Cell Rep 16, 1416-1424.
- 1008 Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480.
- Daoud, G., Kempf, H., Kumar, D., Kozhemyakina, E., Holowacz, T., Kim, D.W., Ionescu, A., and Lassar, A.B.
- 1010 (2014). BMP-mediated induction of GATA4/5/6 blocks somitic responsiveness to SHH. Development 141,
- 1011 3978-3987.
- Deglincerti, A., Croft, G.F., Pietila, L.N., Zernicka-Goetz, M., Siggia, E.D., and Brivanlou, A.H. (2016). Self-
- organization of the in vitro attached human embryo. Nature 533, 251-254.
- Dong, C., Beltcheva, M., Gontarz, P., Zhang, B., Popli, P., Fischer, L.A., Khan, S.A., Park, K.-m., Yoon, E.-J.,
- 1015 Xing, X., et al. (2020). Derivation of trophoblast stem cells from naïve human pluripotent stem cells. Elife
- 1016 *9*, e52504.
- 1017 Fu, J., Warmflash, A., and Lutolf, M.P. (2021). Stem-cell-based embryo models for fundamental research
- 1018 and translation. Nat Mater 20, 132-144.
- Gallego Romero, I., Pavlovic, B.J., Hernando-Herraez, I., Zhou, X., Ward, M.C., Banovich, N.E., Kagan, C.L.,
- Burnett, J.E., Huang, C.H., Mitrano, A., et al. (2015). A panel of induced pluripotent stem cells from
- 1021 chimpanzees: a resource for comparative functional genomics. Elife 4, e07103.
- 1022 Gao, X.F., Nowak-Imialek, M., Chen, X., Chen, D.S., Herrmann, D., Ruan, D.G., Chen, A.C.H., Eckersley-
- 1023 Maslin, M.A., Ahmad, S., Lee, Y.L., et al. (2019). Establishment of porcine and human expanded potential
- 1024 stem cells. Nat Cell Biol 21, 687-+.
- Gibbs, R.A., Rogers, J., Katze, M.G., Bumgarner, R., Weinstock, G.M., Mardis, E.R., Remington, K.A.,
- Strausberg, R.L., Venter, J.C., Wilson, R.K., et al. (2007). Evolutionary and biomedical insights from the
- rhesus macaque genome. Science *316*, 222-234.
- 1028 Gilbert, S. (2000). Developmental Biology, 6th edition (Sinauer Associates).
- 1029 Guo, G., Stirparo, G.G., Strawbridge, S.E., Spindlow, D., Yang, J., Clarke, J., Dattani, A., Yanagida, A., Li,
- 1030 M.A., Myers, S., et al. (2021). Human naive epiblast cells possess unrestricted lineage potential. Cell
- 1031 Stem Cell 28, 1040-1056 e1046.

- Haremaki, T., Metzger, J.J., Rito, T., Ozair, M.Z., Etoc, F., and Brivanlou, A.H. (2019). Self-organizing
- 1033 neuruloids model developmental aspects of Huntington's disease in the ectodermal compartment. Nat
- 1034 Biotechnol *37*, 1198-1208.
- Harrison, S.E., Sozen, B., Christodoulou, N., Kyprianou, C., and Zernicka-Goetz, M. (2017). Assembly of
- 1036 embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356, eaal1810.
- 1037 Hyun, I., Wilkerson, A., and Johnston, J. (2016). Revisit the 14-day rule. Nature *533*, 169-171.
- 1038 Io, S., Kabata, M., Iemura, Y., Semi, K., Morone, N., Minagawa, A., Wang, B., Okamoto, I., Nakamura, T.,
- Kojima, Y., et al. (2021). Capturing human trophoblast development with naive pluripotent stem cells in
- 1040 vitro. Cell Stem Cell 28, 1023-1039 e1013.
- 1041 Irie, N., Weinberger, L., Tang, W.W.C., Kobayashi, T., Viukov, S., Manor, Y.S., Dietmann, S., Hanna, J.H.,
- and Surani, M.A. (2015). SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate. Cell 160, 253-
- 1043 268.
- Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.H., Myung, P., Plikus, M.V., and Nie,
- 1045 Q. (2021). Inference and analysis of cell-cell communication using CellChat. Nat Commun 12, 1088.
- 1046 Kadowaki, T., Wilder, E., Klingensmith, J., Zachary, K., and Perrimon, N. (1996). The segment polarity
- gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes
- 1048 & Development 10, 3116-3128.
- 1049 Kinoshita, M., Barber, M., Mansfield, W., Cui, Y., Spindlow, D., Stirparo, G.G., Dietmann, S., Nichols, J.,
- and Smith, A. (2021). Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency.
- 1051 Cell Stem Cell 28, 453-471.e458.
- 1052 Kobayashi, T., Zhang, H., Tang, W.W.C., Irie, N., Withey, S., Klisch, D., Sybirna, A., Dietmann, S.,
- 1053 Contreras, D.A., Webb, R., et al. (2017). Principles of early human development and germ cell program
- from conserved model systems. Nature *546*, 416-420.
- La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber, K., Kastriti,
- 1056 M.E., Lonnerberg, P., Furlan, A., et al. (2018). RNA velocity of single cells. Nature 560, 494-498.
- 1057 Li, Z., Kurosawa, O., and Iwata, H. (2019). Establishment of human trophoblast stem cells from human
- induced pluripotent stem cell-derived cystic cells under micromesh culture. Stem Cell Research &
- 1059 Therapy *10*, 245.
- Liu, X., Tan, J.P., Schroder, J., Aberkane, A., Ouyang, J.F., Mohenska, M., Lim, S.M., Sun, Y.B.Y., Chen, J.,
- 1061 Sun, G., et al. (2021). Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature
- 1062 *591*, 627-632.
- 1063 Lovell-Badge, R., Anthony, E., Barker, R.A., Bubela, T., Brivanlou, A.H., Carpenter, M., Charo, R.A., Clark,
- A., Clayton, E., Cong, Y.L., et al. (2021). ISSCR Guidelines for Stem Cell Research and Clinical Translation:
- 1065 The 2021 update. Stem Cell Rep 16, 1398-1408.

- 1066 Ma, H., Zhai, J., Wan, H., Jiang, X., Wang, X., Wang, L., Xiang, Y., He, X., Zhao, Z.A., Zhao, B., et al. (2019).
- 1067 In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366, eaax7890.
- Mikkelsen, T.S., Hillier, L.W., Eichler, E.E., Zody, M.C., Jaffe, D.B., Yang, S.P., Enard, W., Hellmann, I.,
- 1069 Lindblad-Toh, K., Altheide, T.K., et al. (2005). Initial sequence of the chimpanzee genome and
- 1070 comparison with the human genome. Nature 437, 69-87.
- Minn, K.T., Fu, Y.C., He, S., Dietmann, S., George, S.C., Anastasio, M.A., Morris, S.A., and Solnica-Krezel, L.
- 1072 (2020). High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human
- 1073 ESC gastruloid cultures. Elife 9.
- Molè, M.A., Coorens, T.H.H., Shahbazi, M.N., Weberling, A., Weatherbee, B.A.T., Gantner, C.W., Sancho-
- Serra, C., Richardson, L., Drinkwater, A., Syed, N., et al. (2021). A single cell characterisation of human
- 1076 embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat Commun
- 1077 *12*, 3679.
- 1078 Moris, N., Anlas, K., van den Brink, S.C., Alemany, A., Schroder, J., Ghimire, S., Balayo, T., van
- 1079 Oudenaarden, A., and Martinez Arias, A. (2020). An in vitro model of early anteroposterior organization
- during human development. Nature *582*, 410-415.
- Nakamura, T., Okamoto, I., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y., Nakamura, S.,
- 1082 Yamamoto, T., and Saitou, M. (2016). A developmental coordinate of pluripotency among mice,
- 1083 monkeys and humans. Nature *537*, 57-62.
- 1084 Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., et al. (2014).
- 1085 Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell
- 1086 embryos. Cell 156, 836-843.
- 1087 Niu, Y., Sun, N., Li, C., Lei, Y., Huang, Z., Wu, J., Si, C., Dai, X., Liu, C., Wei, J., et al. (2019). Dissecting
- primate early post-implantation development using long-term in vitro embryo culture. Science 366,
- 1089 eaaw5754.
- 1090 Okae, H., Toh, H., Sato, T., Hiura, H., Takahashi, S., Shirane, K., Kabayama, Y., Suyama, M., Sasaki, H., and
- 1091 Arima, T. (2018). Derivation of Human Trophoblast Stem Cells. Cell Stem Cell 22, 50-63.e56.
- 1092 Pavlovic, B.J., Blake, L.E., Roux, J., Chavarria, C., and Gilad, Y. (2018). A Comparative Assessment of
- Human and Chimpanzee iPSC-derived Cardiomyocytes with Primary Heart Tissues. Sci Rep 8, 15312.
- Petropoulos, S., Edsgard, D., Reinius, B., Deng, Q.L., Panula, S.P., Codeluppi, S., Reyes, A.P., Linnarsson,
- 1095 S., Sandberg, R., and Lanner, F. (2016). Single-Cell RNA-Seq Reveals Lineage and X Chromosome
- 1096 Dynamics in Human Preimplantation Embryos. Cell 165, 1012-1026.
- 1097 Pijuan-Sala, B., Griffiths, J.A., Guibentif, C., Hiscock, T.W., Jawaid, W., Calero-Nieto, F.J., Mulas, C., Ibarra-
- 1098 Soria, X., Tyser, R.C.V., Ho, D.L.L., et al. (2019). A single-cell molecular map of mouse gastrulation and
- early organogenesis. Nature 566, 490-+.

- 1100 Pillai, V.V., Siqueira, L.G.B., Das, M., Kei, T.G., Tu, L.N., Herren, A.W., Phinney, B.S., Cheong, S.H., Hansen,
- 1101 P.J., and Selvaraj, V. (2019). Physiological profile of undifferentiated bovine blastocyst-derived
- trophoblasts. Biology Open 8.
- 1103 Posfai, E., Schell, J.P., Janiszewski, A., Rovic, I., Murray, A., Bradshaw, B., Yamakawa, T., Pardon, T., El
- 1104 Bakkali, M., Talon, I., et al. (2021). Evaluating totipotency using criteria of increasing stringency. Nat Cell
- 1105 Biol 23.
- 1106 Prummel, K.D., Hess, C., Nieuwenhuize, S., Parker, H.J., Rogers, K.W., Kozmikova, I., Racioppi, C.,
- 1107 Brombacher, E.C., Czarkwiani, A., Knapp, D., et al. (2019). A conserved regulatory program initiates
- lateral plate mesoderm emergence across chordates. Nat Commun 10, 3857.
- 1109 Rivera-Perez, J.A., and Magnuson, T. (2005). Primitive streak formation in mice is preceded by localized
- activation of Brachyury and Wnt3. Dev Biol 288, 363-371.
- 1111 Rivron, N.C., Frias-Aldeguer, J., Vrij, E.J., Boisset, J.C., Korving, J., Vivie, J., Truckenmuller, R.K., van
- 1112 Oudenaarden, A., van Blitterswijk, C.A., and Geijsen, N. (2018). Blastocyst-like structures generated
- solely from stem cells. Nature 557, 106-111.
- 1114 Rossant, J. (2015). Mouse and human blastocyst-derived stem cells: vive les differences. Development
- 1115 *142*, 9-12.
- 1116 Rossant, J., and Tam, P.P.L. (2017). New Insights into Early Human Development: Lessons for Stem Cell
- 1117 Derivation and Differentiation. Cell Stem Cell 20, 18-28.
- 1118 Rossant, J., and Tam, P.P.L. (2021). Opportunities and challenges with stem cell-based embryo models.
- 1119 Stem Cell Rep 16, 1031-1038.
- 1120 Rostovskaya, M., Andrews, S., Reik, W., and Rugg-Gunn, P.J. (2022). Amniogenesis occurs in two
- independent waves in primates. Cell Stem Cell 29, 744-759.e746.
- 1122 Sasaki, K., Nakamura, T., Okamoto, K., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y., Nakamura, S.,
- 1123 Shiraki, N., Takakuwa, T., et al. (2016). The Germ Cell Fate of Cynomolgus Monkeys Is Specified in the
- 1124 Nascent Amnion. Dev Cell *39*, 169-185.
- Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., Ohta, H., Moritoki, Y.,
- 1126 Iwatani, C., Tsuchiya, H., et al. (2015). Robust In Vitro Induction of Human Germ Cell Fate from
- 1127 Pluripotent Stem Cells. Cell Stem Cell 17, 178-194.
- 1128 Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction of single-cell
- gene expression data. Nat Biotechnol 33, 495-502.
- 1130 Schoenwolf, G., Bleyl, S., Brauer, P., Francis-West, P. (2020). Larsen's Human Embryology 6th Edition
- 1131 (Elsevier).

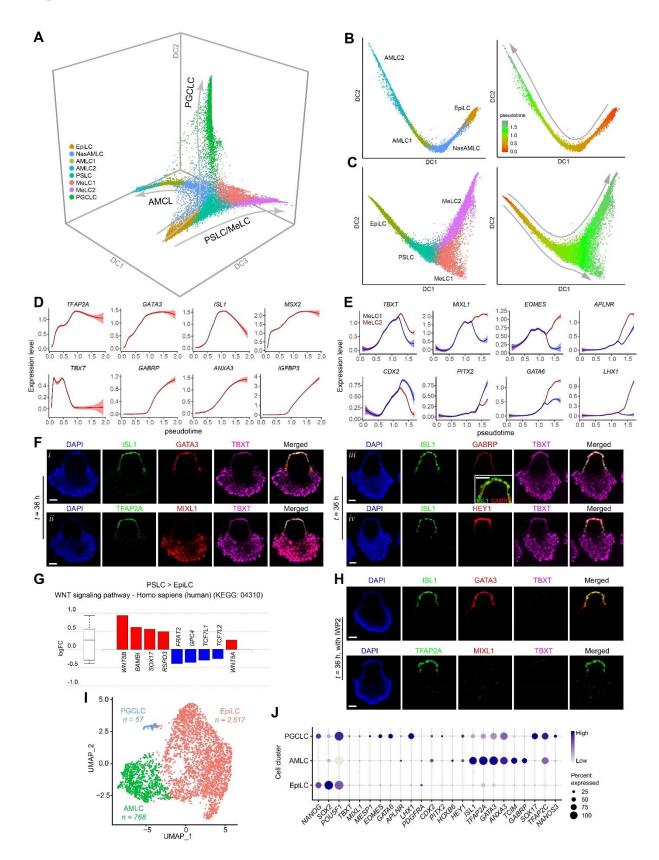

- 1132 Shahbazi, M.N., Jedrusik, A., Vuoristo, S., Recher, G., Hupalowska, A., Bolton, V., Fogarty, N.M.E.,
- 1133 Campbell, A., Devito, L.G., Ilic, D., et al. (2016). Self-organization of the human embryo in the absence of
- maternal tissues (vol 18, pg 700, 2016). Nat Cell Biol 18.
- 1135 Shao, Y., Taniguchi, K., Gurdziel, K., Townshend, R.F., Xue, X., Yong, K.M.A., Sang, J., Spence, J.R.,
- 1136 Gumucio, D.L., and Fu, J. (2017a). Self-organized amniogenesis by human pluripotent stem cells in a
- biomimetic implantation-like niche. Nat Mater 16, 419-425.
- 1138 Shao, Y., Taniguchi, K., Townshend, R.F., Miki, T., Gumucio, D.L., and Fu, J. (2017b). A pluripotent stem
- cell-based model for post-implantation human amniotic sac development. Nat Commun 8, 208.
- 1140 Simunovic, M., Metzger, J.J., Etoc, F., Yoney, A., Ruzo, A., Martyn, I., Croft, G., You, D.S., Brivanlou, A.H.,
- and Siggia, E.D. (2019). A 3D model of a human epiblast reveals BMP4-driven symmetry breaking. Nat
- 1142 Cell Biol *21*, 900-910.
- 1143 Solnica-Krezel, L. (2020). Gastrulation: From Embryonic Pattern to Form (Academic Press).
- 1144 Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J.,
- 1145 Mansfield, W., et al. (2014). Resetting Transcription Factor Control Circuitry toward Ground-State
- 1146 Pluripotency in Human. Cell *158*, 1254-1269.
- 1147 Tyser, R.C.V., Mahammadov, E., Nakanoh, S., Vallier, L., Scialdone, A., and Srinivas, S. (2021). Single-cell
- transcriptomic characterization of a gastrulating human embryo. Nature 600, 285-289.
- 1149 Wang, R.N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Zhang, Q., Ye, J., Yan, Z., Denduluri, S.,
- 1150 et al. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes
- 1151 Dis 1, 87-105.
- 1152 Wang, X., Xiang, Y., Yu, Y., Wang, R., Zhang, Y., Xu, Q., Sun, H., Zhao, Z.-A., Jiang, X., Wang, X., et al.
- 1153 (2021). Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell
- 1154 Research *31*, 526-541.
- 1155 Warmflash, A., Sorre, B., Etoc, F., Siggia, E.D., and Brivanlou, A.H. (2014). A method to recapitulate early
- embryonic spatial patterning in human embryonic stem cells. Nat Methods 11, 847-854.
- 1157 Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene expression data
- analysis. Genome Biol 19, 15.
- 1159 Xiang, L., Yin, Y., Zheng, Y., Ma, Y., Li, Y., Zhao, Z., Guo, J., Ai, Z., Niu, Y., Duan, K., et al. (2020). A
- developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature *577*, 537-542.
- 1161 Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., and Thomson, J.A. (2002). BMP4
- initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20, 1261-1264.
- 1163 Xue, X., Sun, Y., Resto-Irizarry, A.M., Yuan, Y., Aw Yong, K.M., Zheng, Y., Weng, S., Shao, Y., Chai, Y.,
- 1164 Studer, L., et al. (2018). Mechanics-guided embryonic patterning of neuroectoderm tissue from human
- pluripotent stem cells. Nat Mater 17, 633-641.

- 1166 Yanagida, A., Spindlow, D., Nichols, J., Dattani, A., Smith, A., and Guo, G. (2021). Naive stem cell
- blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28, 1016-1022 e1014.
- 1168 Yang, R., Goedel, A., Kang, Y., Si, C., Chu, C., Zheng, Y., Chen, Z., Gruber, P.J., Xiao, Y., Zhou, C., et al.
- 1169 (2021). Amnion signals are essential for mesoderm formation in primates. Nat Commun 12, 5126.
- 1170 Yu, L., Wei, Y., Duan, J., Schmitz, D.A., Sakurai, M., Wang, L., Wang, K., Zhao, S., Hon, G.C., and Wu, J.
- 1171 (2021). Blastocyst-like structures generated from human pluripotent stem cells. Nature 591, 620-626.
- 1172 Zhai, L., Chaturvedi, D., and Cumberledge, S. (2004). Drosophila Wnt-1 Undergoes a Hydrophobic
- 1173 Modification and Is Targeted to Lipid Rafts, a Process That Requires Porcupine. Journal of Biological
- 1174 Chemistry 279, 33220-33227.
- 1175 Zhao, C., Reyes, A.P., Schell, J.P., Weltner, J., Ortega, N., Zheng, Y., Björklund, Å.K., Rossant, J., Fu, J.,
- 1176 Petropoulos, S., et al. (2021). Reprogrammed iBlastoids contain amnion-like cells but not
- 1177 trophectoderm. bioRxiv, 2021.2005.2007.442980.
- 1178 Zhao, G.Q. (2003). Consequences of knocking out BMP signaling in the mouse. Genesis *35*, 43-56.
- 1179 Zheng, Y., Shao, Y., and Fu, J. (2021). A microfluidics-based stem cell model of early post-implantation
- human development. Nat Protoc 16, 309-326.
- 1181 Zheng, Y., Xue, X., Resto-Irizarry, A.M., Li, Z., Shao, Y., Zheng, Y., Zhao, G., and Fu, J. (2019a). Dorsal-
- 1182 ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Sci Adv 5,
- 1183 eaax5933.
- 1184 Zheng, Y., Xue, X., Shao, Y., Wang, S., Esfahani, S.N., Li, Z., Muncie, J.M., Lakins, J.N., Weaver, V.M.,
- 1185 Gumucio, D.L., et al. (2019b). Controlled modelling of human epiblast and amnion development using
- 1186 stem cells. Nature *573*, 421-425.

1188 FIGURES

11891190

Figure 1



- 1191 Figure 1. Single-cell transcriptomic profiling of μPASE development.
- 1192 (A) Development of μPASEs. Single hPSCs were guided to form uniform-sized clusters at
- prescribed locations in the microfluidic device. Asymmetric stimulation with exogeneous BMP4
- from t = 0 48 h led to progressive development of μ PASEs. E6: Essential 6. See **Methods** for
- 1195 the μ PASE protocol.
- 1196 (B) Bright-field images showing progressive development of μPASEs over time, including
- thinning and flattening of the incipient amniotic ectoderm and thickening of the incipient
- mesoderm cells before their dissemination from the μ PASE structure.
- 1199 (C) Dimension reduction presentation via UMAP and cell identity annotations of single-cell
- transcriptome datasets obtained for μ PASEs at indicated time points. n indicates cell numbers
- analyzed for each time point.
- 1202 **(D)** UMAP of integrated single-cell transcriptome datasets of μ PASEs from t = 24, 36 and 48 h
- (shown in (C)), color-coded according to cell identity annotations (*left*) or time points (*middle*).
- 1204 RNA velocity vectors were projected onto the UMAP-based embeddings (*right*). *n* indicates the
- total number of cells combined from the three time points.
- 1206 (E) Dot plot showing expression of key marker genes across the cell clusters as indicated. The
- sizes and colors of dots indicate the proportion of cells expressing the corresponding genes and
- their averaged scaled values of log-transformed expression, respectively.
- 1209 **(F)** Partition-based graph abstraction (PAGA) analysis of the integrated single-cell transcriptome
- dataset shown in (D). The thickness of lines connecting pairs of cell clusters indicates the degree
- of correlation between the cell cluster pairs. Lines with a correlation weight less than 0.05 are not
- shown. Pie charts for each cell cluster show percentages of indicated cell types from the three
- time points. Pie chart size is proportional to the total number of indicated cell types. See **Table**
- 1214 **S1**.

- 1215 (G) Heatmap of regulon activities calculated from gene regulatory network interference. Selected
- master regulators of different cell clusters are depicted as indicated. See **Table S2 and**
- 1217 Supplemental HTML Document 1.
- 1218 (H) Gene set activity of selected regulons overlaid on the integrated UMAP plot from (D).
- 1220 EpiLC: epiblast-like cell; PSLC: primitive streak-like cell; MeLC1/2: mesoderm-like cell 1/2;
- 1221 AMLC1/2: amniotic ectoderm-like cell 1/2; NasAMLC: nascent amniotic ectoderm-like cell;

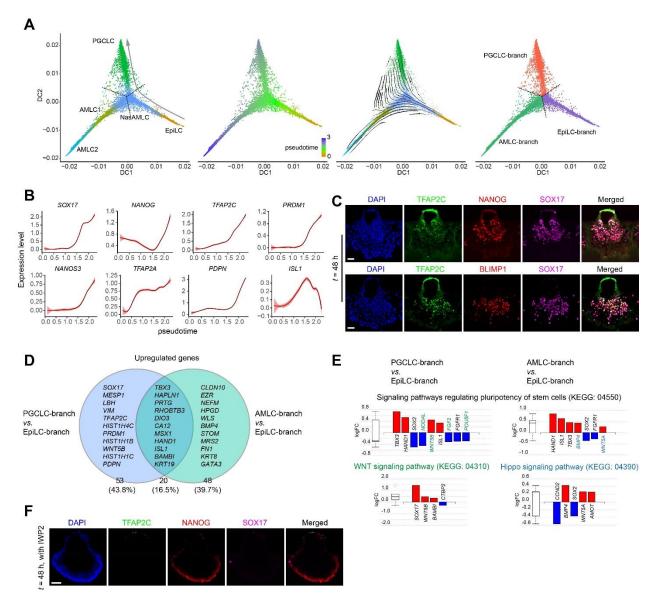
- PGCLC: primordial germ cell-like cell. In **(B)**, experiments were repeated more than twenty times with similar results. Scale bars, 50 μm.

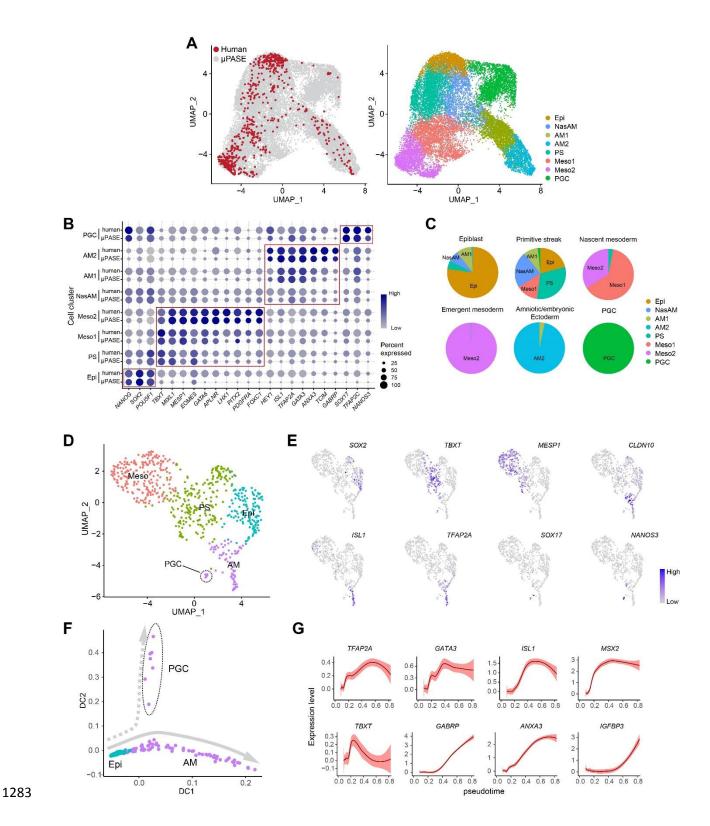
Figure 2

- 1226 Figure 2. Trajectory inference and gene expression dynamics during μPASE development.
- (A) Three-dimensional diffusion map based on embeddings of the UMAP plot in **Figure 1D**,
- showing developmental trajectories of AMLC, PSLC / MeLC and PGCLC lineages. The UMAP
- plot is color-coded according to cell identity annotations. See **Video S1**
- 1230 **(B)** *left:* Trajectory inference (diffusion map) of AMLC lineage (EpiLC, NasAMLC, AMLC1
- and AMLC2). right: Pseudotime analysis (color-coded) based on the AMLC lineage diffusion
- 1232 map.
- 1233 (C) left: Trajectory inferences (diffusion map) of PSLC / MeLC lineage (EpiLC, PSLC and
- MeLC1 or MeLC2). right: Pseudotime analysis (color-coded) based on the PSLC / MeLC
- lineage diffusion map.
- 1236 **(D)** Expression dynamics (pseudotime) of selected genes during AMLC lineage development.
- Level of confidence (0.95) is indicated by band width.
- 1238 (E) Expression dynamics (pseudotime) of selected genes during PSLC / MeLC lineage
- development. Level of confidence (0.95) is indicated by band width.
- (F) Representative confocal micrographs showing μ PASEs at t = 36 h stained for ISL1, GATA3
- and TBXT (i); TFAP2A, MIXL1 and TBXT (ii); ISL1, GABRP and TBXT (iii, with zoom-in
- view showing apical expression of GABRP); ISL1, HEY1, and TBXT (iv).
- (G) Differentially expressed genes (DEGs) related to WNT signaling pathway (KEGG: 04310)
- in PSLC compared to EpiLC.
- 1245 **(H)** Representative confocal micrographs showing μ PASEs at t = 36 h stained for ISL1, GATA3
- and TBXT (top); TFAP2A, MIXL1 and TBXT (bottom) with IWP2 supplemented into the basal
- medium from t = 0 h.
- 1248 (I) UMAP and cell identity annotations of single-cell transcriptome data obtained for μPASEs at
- 1249 t = 48 h with IWP2 supplemented into the basal medium from t = 0 h. n indicates cell numbers of
- indicated cell types.

- (J) Dot plot showing expression of key marker genes across the cell clusters as indicated. The
- sizes and colors of dots indicate the proportion of cells expressing the corresponding genes and
- their averaged scaled values of log-transformed expression, respectively.
- In F and H, experiments were repeated four times with similar results. Nuclei were
- 1256 counterstained with DAPI. Scale bars, 50 μm.

Figure 3




Figure 3. PGCLC specification during µPASE development.

(A) Trajectory inference of PGCLC lineage. *left:* Diffusion map using EpiLC, NasAMLC, AMLC1, AMLC2, and PGCLC clusters from the UMAP plot in **Figure 1D**. Dotted lines show the branching point and branches identified by K-Branches algorithm. *middle left:* Pseudotime analysis based on the diffusion map. *middle right:* RNA velocity vectors overlaid on the diffusion map. *right:* Branches and the branching point identified by K-Branches algorithm. Note that NasAMLC cluster is separated into three branches, which after merging with EpiLC,

- 1265 AMLC1/2 and PGCLC, respectively, are annotated as EpiLC-branch NasAMLC, AMLC-branch
- 1266 NasAMLC and PGCLC-branch NasAMLC, respectively.
- 1267 **(B)** Expression dynamics (pseudotime) of selected genes during PGCLC lineage development.
- Level of confidence (0.95) is indicated by band width.
- 1269 (C) Representative confocal micrographs showing μ PASEs at t = 48 h stained for TFAP2C,
- 1270 NANOG and SOX17 (top) and TFAP2C, BLIMP1 and SOX17 (bottom).
- 1271 **(D)** Venn diagram showing upregulate genes of AMLC-branch and PGCLC-branch NasAMLCs
- when compared to EpiLC-branch NasAMLCs. Note that only a subset of these genes is specified
- in the diagram.

- 1274 (E) Pathway analysis of DEGs in PGCLC-branch NasAMLCs and AMLC-branch NasAMLCs,
- as compared to EpiLC-branch NasAMLCs. Green and blue colors indicate genes or pathways
- identified only for PGCLC-branch NasAMLCs and AMLC-branch NasAMLCs, respectively.
- 1277 **(F)** Representative confocal micrographs showing μ PASEs at t = 48 h stained for TFAP2C,
- NANOG and SOX17, with IWP2 supplemented into the basal medium from t = 0 h.
- 1280 In C and F, experiments were repeated four times with similar results. Nuclei were
- 1281 counterstained with DAPI. Scale bars, 50 μm.

Figure 4

- 1284 Figure 4. Transcriptomic comparison between μPASEs and Carnegie Stage 7 human
- 1285 gastrula.
- 1286 (A) *left*: UMAP of integrated dataset of μ PASEs from t = 24, 36 and 48 h (18,335 cells; grey)
- and CS7 human gastrula (647 cells, excluding irrelevant cells; red). *right*: UMAP project of
- integrated dataset with cell identity annotations.
- 1289 (B) Dot plot comparing expression of key marker genes across different cell clusters from
- 1290 μPASEs and CS7 human gastrula as indicated. The sizes and colors of dots indicate the
- proportion of cells expressing the corresponding genes and their averaged scaled values of log-
- transformed expression, respectively.
- 1293 (C) Comparisons between human gastrula cell annotations in the original publication and
- annotations in the integrated dataset. The original annotations are indicated above the pie charts.
- 1295 See **Table S5**
- (D) Re-analysis of related cells from CS7 human gastrula (647 cells). Cell identity annotations
- are color coded as indicated. Note that primordial germ cells (PGCs) appear in the
- amniotic/embryonic ectoderm (AM) cluster.
- 1299 (E) Feature plots showing expression of selected lineage markers used for cell cluster
- annotations in (D).
- 1301 (F) Trajectory inference (diffusion map) of the AM cluster (including PGCs) in (D).
- 1302 (G) Expression dynamics (pseudotime) of selected genes during AM lineage development. Level
- of confidence (0.95) is indicated by band width.
- Epi: Epiblast; PS: primitive steak; Meso: Mesoderm; AM: amniotic ectoderm; PGC: primordial
- 1306 germ cell.

Figure 5

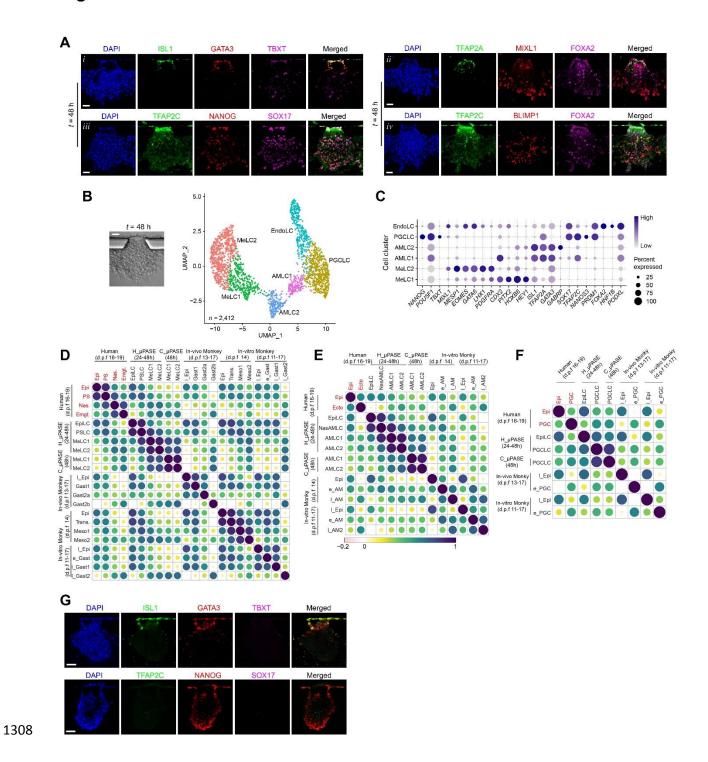


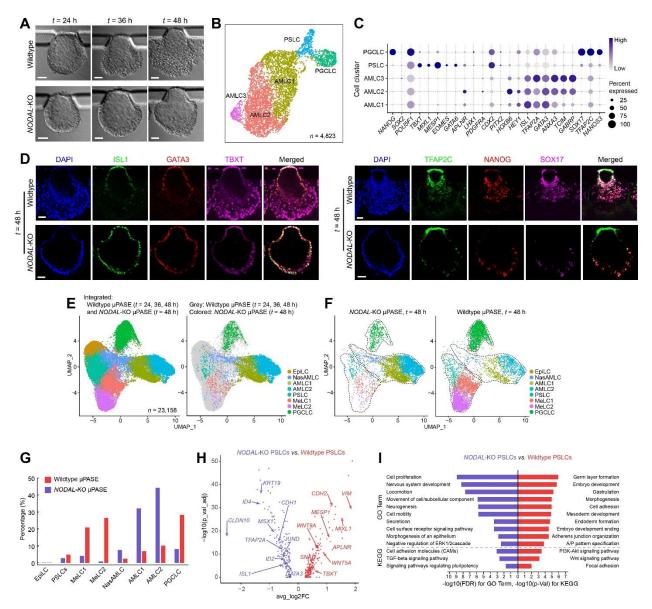
Figure 5. Transcriptomic coordination of primate early post-implantation development. 1309 (A) Representative confocal micrographs showing chimpanzee μ PASEs at t = 48 h stained for 1310 1311 ISL1, GATA3 and TBXT (i); TFAP2A, MIXL1 and FOXA2 (ii); TFAP2C, NANOG, SOX17 (iii); TFAP2C, BLIMP1 and FOXA2 (iv). 1312 **(B)** Left: Bright-field image showing a chimpanzee μ PASE at t = 48 h. Right: UMAP plot of 1313 single-cell transcriptome dataset from chimpanzee μ PASEs at t = 48 h. Cell identity annotations 1314 are color coded as indicated. *n* indicates the total cell number. EndoLC: Endoderm-like cell. 1315 (C) Dot plot showing expression of key marker genes across the cell clusters as indicated. The 1316 sizes and colors of dots indicate the proportion of cells expressing the corresponding genes and 1317 their averaged scaled values of log-transformed expression, respectively. 1318 (D) Heat map of correlation matrix for primitive streak / mesoderm-related lineages including 1319 1320 those reported by others. Correlation coefficients between indicated cell types are calculated based on mesoderm ontogenic genes identified from cynomolgus embryo transcriptome data 1321 (131 in common). See **Table S6**. 1322 (E) Heat map of correlation matrix for amnion-related lineages including those reported by 1323 1324 others. Correlation coefficients between indicated cell types are calculated based on amnion ontogenic genes identified from cynomolgus embryo transcriptome data (142 in common). See 1325 1326 Table S6. (F) Heat map of correlation matrix for PGC-related lineages including those reported by others. 1327 1328 Correlation coefficients between indicated cell types are calculated based on PGC ontogenic genes identified for cynomolgus embryo transcriptome data (194 in common). See **Table S6**. 1329 1330 (G) Representative confocal micrographs showing chimpanzee μ PASEs at t = 48 h with IWP2 supplemented into the basal medium from t = 0 h, stained for ISL1, GATA3 and TBXT (top); 1331 1332 TFAP2C, NANOG and SOX17 (bottom), 1333 1334 1335 In **D-F**, correlation coefficients are calculated using average ontogenic gene expression of single cells. Original cell annotations in published datasets are used. Log₂(reads per million + 1) and 1336 1337 Log₂ (transcripts per million + 1) are used for transcriptome datasets generated using 10×

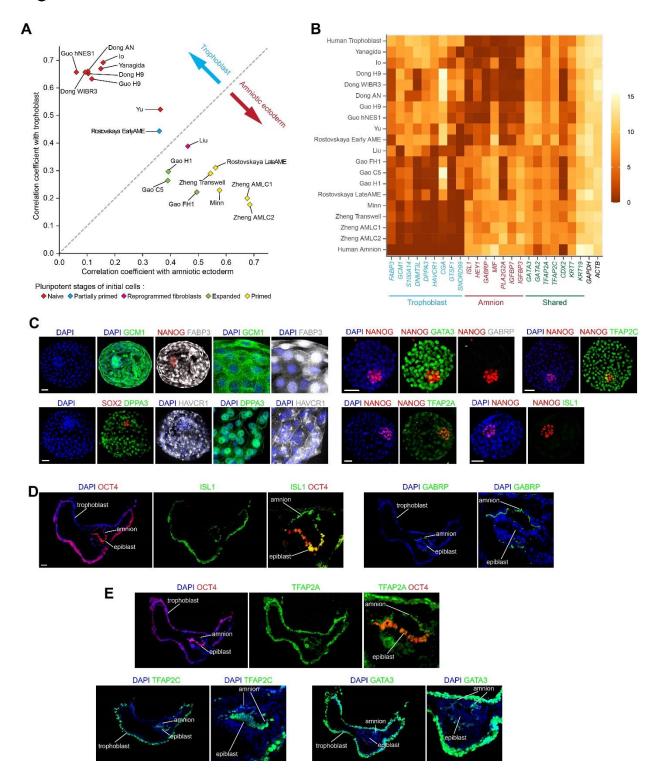
Chrome and Smart-seq2, respectively.

1338

1340 Human: human gastrula from Ref. (Tyser et al., 2021). Epi: epiblast; PS: primitive streak; Nas.: Nascent mesoderm; Emgt.: emergent mesoderm; Ecto.: amniotic/embryonic ectoderm; PGC: 1341 1342 primordial germ cell. H µPASE and C µPASE: µPASEs generated from human and chimpanzee cells, respectively. In vivo monkey: in vivo cynomolgus embryo from 1343 Ref.(Nakamura et al., 2016; Sasaki et al., 2016). 1 EPI: late epiblast; Gast: gastrulation; e PGC: 1344 early primordial germ cell. In vitro monkey: in vitro cultured cynomolgus embryo from Ref.(Ma 1345 et al., 2019; Yang et al., 2021). Trans: Transition; Meso: mesoderm; 1 EPI: late epiblast; e Gast: 1346 early gastrulation; 1 Gast: late gastrulation; e AM: early amniotic ectoderm; 1 AM: late 1347 amniotic ectoderm. 1348 1349 Expression of ontogenic genes is included in **Table S6**. In A and G, experiments were repeated 1350 four times with similar results. Nuclei were counterstained with DAPI. Scale bars, 50 μm. 1351

Figure 6

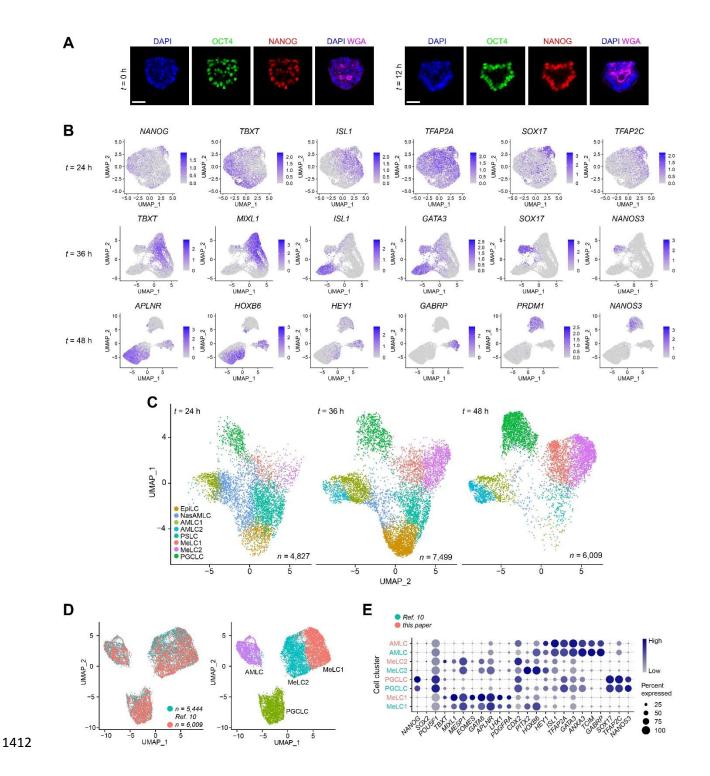


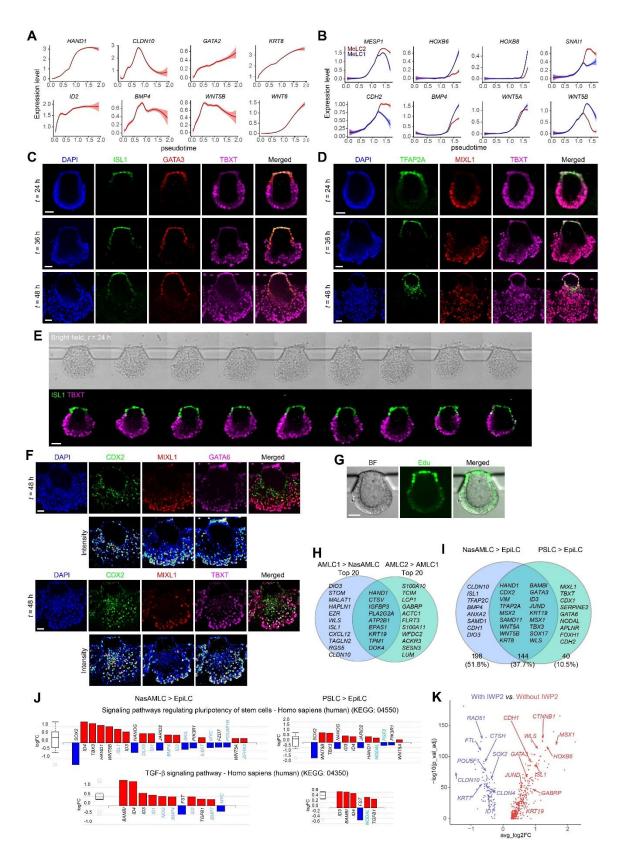

Figure 6. NODAL is essential for mesoderm development in μPASEs.

- (A) Representative bight-field images showing progressive development of μ PASEs generated from wildtype (*top*) and *NODAL*-KO (*bottom*) hPSCs.
- **(B)** UMAP plot of single-cell transcriptome data from *NODAL*-KO μ PASEs at t = 48 h, with cell identity annotations color coded. n indicates the total cell number.

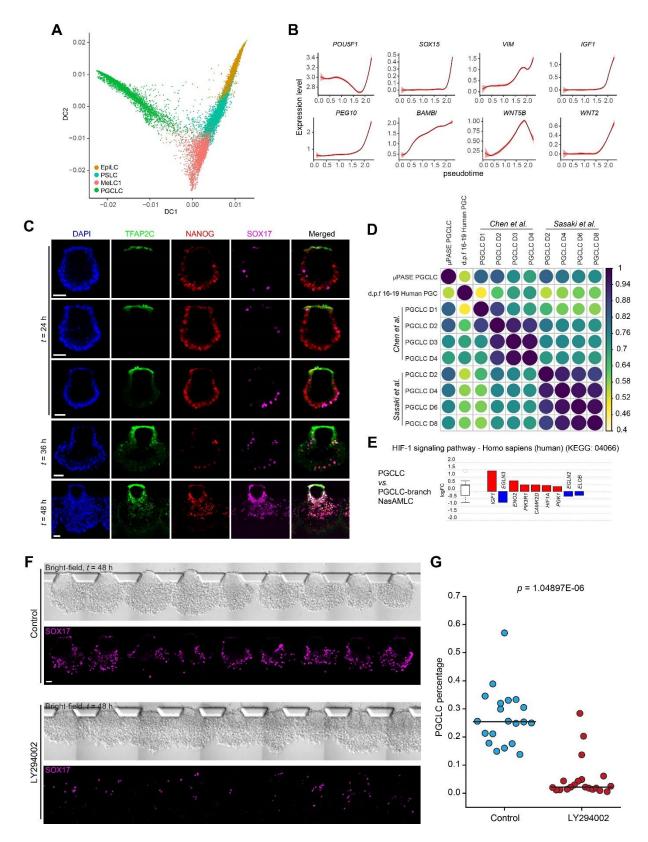
- 1358 (C) Dot plot showing expression of key marker genes across the cell clusters in *NODAL*-KO
- 1359 μPASEs as indicated. The sizes and colors of dots indicate the proportion of cells expressing the
- 1360 corresponding genes and their averaged scaled values of log-transformed expression,
- 1361 respectively.
- 1362 **(D)** Representative confocal micrographs showing μPASEs generated from wildtype and
- 1363 NODAL-KO hPSCs at t = 48 h, stained for ISL1, GATA3 and TBXT (left) and TFAP2C,
- 1364 NANOG and SOX17 (right).
- 1365 (E) *left*: Integrated UMAP plot of wildtype μ PASEs at t = 24, 36, 48 h and NODAL-KO
- 1366 μ PASEs at t = 48 h, color-coded according to cell identity annotations. *right*: data from wildtype
- and *NODAL*-KO μPASEs are shown in different colors as indicated.
- 1368 (F) UMAP plots of *NODAL*-KO (*left*) and wildtype (*right*) μ PASEs at t = 48 h, with data
- isolated from E. Doted lines contour cell clusters corresponding to AMLC, PSLC / MeLC and
- 1370 PGCLC lineages.
- 1371 **(G)** Percentages of indicted cell types in wildtype (red) and *NODAL*-KO (blue) μPASEs.
- 1372 (H) Volcano plots showing DEGs between PSLCs from wildtype and NODAL-KO μPASEs,
- with selected genes labelled.
- 1374 (I) Enriched GO categories and KEGG pathways among DEGs between wildtype and NODAL-
- 1375 KO PSLCs.

- 1377 In **D**, experiments were repeated three times with similar results. Nuclei were counterstained
- with DAPI. Scale bars, 50 μm.

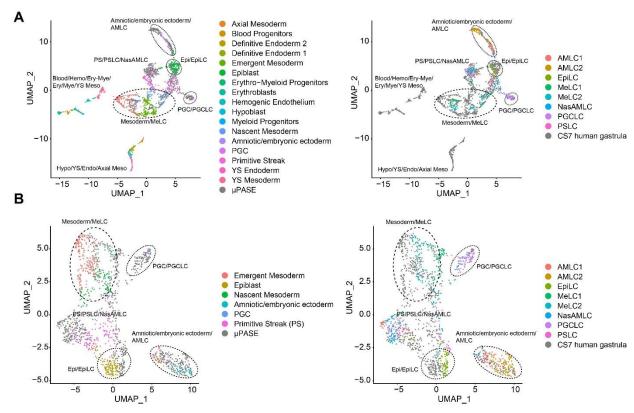

Figure 7


- Figure 7. Stringent criteria for identifying human trophoblast and amniotic ectoderm.
- (A) Correlation coefficients of *in vitro* derived cells with human trophoblast and amniotic
- ectoderm, computed using Trophoblast_Amnion ontogenic genes. See **Table S8**.
- 1384 **(B)** Heatmap showing expression levels of selected genes related to human trophoblast and
- amniotic ectoderm. Identified human trophoblast and amniotic ectoderm markers are highlighted
- in blue and red, respectively. Markers shared between human trophoblast and amniotic ectoderm
- are highlighted in green.
- 1388 (C) Representative confocal micrographs showing E6 human blastocysts, stained for GCM1,
- NANOG and FABP3; SOX2, DPPA3 and HAVCR1 (Images on the right show magnified views
- of the trophectoderm); NANOG, GATA3 and GABRP; NANOG and TFAP2C; NANOG and
- 1391 TFAP2A; and NANOG and ISL1.
- (D) Representative confocal micrographs showing *in vitro* cultured D14 cynomolgus embryos,
- stained for OCT4 and ISL1; and GABRP. Images on the right show magnified views of the
- epiblast and amniotic ectoderm.

1405

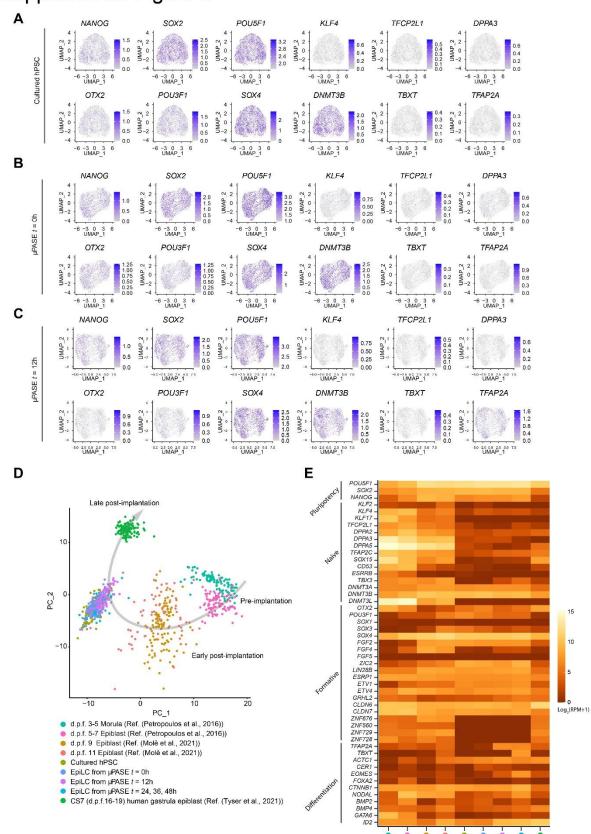

- 1395 (E) Representative confocal micrographs showing in vitro cultured D14 cynomolgus embryos,
- stained for OCT4 and TFAP2A, TFAP2C and GATA3. Images on the right show magnified
- views of the epiblast and amniotic ectoderm.
- Human trophoblast (Ref.(Blakeley et al., 2015; Petropoulos et al., 2016)), Human amnion
- 1400 (Ref.(Tyser et al., 2021)), Zheng Transwell (Ref.(Zheng et al., 2019b)), Gao C5, Gao H1, Gao
- 1401 FH1(Ref.(Gao et al., 2019)), Minn (Ref.(Minn et al., 2020)), Liu (Ref.(Liu et al., 2021)), Yu
- 1402 (Ref.(Yu et al., 2021)), Guo H9, Guo hNES1(Ref.(Guo et al., 2021)), Io (Ref.(Io et al., 2021)),
- 1403 Yanagida (Ref.(Yanagida et al., 2021)), Dong H9, Dong WIBR3, Dong AN (Ref.(Dong et al.,
- 1404 2020)), Rostovskaya EarlyAME, Rostovskaya LateAME (Ref.(Rostovskaya et al., 2022))
- 1406 Correlation coefficients and gene expression heatmap were calculated based on averages of
- experimental repeats, if any. When the published work contains transcriptome datasets from
- multiple time points, datasets from the experimental endpoint are utilized.
- 1410 In C-E, experiments were repeated twice with similar results. Nuclei were counterstained with
- 1411 DAPI. Scale bars, 50 µm.

- 1413 Supplemental Figure 1. Single-cell transcriptomic profiling of µPASE development.
- 1414 Related to Figure 1.
- 1415 (A) Representative confocal micrographs showing μ PASEs at t = 0 h (*left*) and t = 12 h (*right*)
- stained for OCT4 and NANOG. Plasma membrane is stained with fluorescently labelled wheat
- 1417 germ agglutinin (WGA).
- 1418 **(B)** Feature plots showing selected lineage markers used for cell identity annotations in the
- 1419 UMAP plots of μ PASEs at t = 24, 36 and 48 h, respectively.
- 1420 (C) UMAP plots of μ PASEs at t = 24, 36, 48 h, separated from the integrated UMAP plot in
- **Figure 1D**. *n* indicates the cell number.
- 1422 **(D)** Integrated UMAP plots of datasets from μ PASEs at t = 48 h and the published dataset in
- Ref.(Zheng et al., 2019b). *Left:* Datasets are color-coded according to sources, with *n* indicating
- the cell number; *right*: Cells are color-coded according to cell identity annotations.
- 1425 (E) Dot plot showing expression of key marker genes across the cell clusters as indicated
- 1426 (μ PASEs at t = 48 h from this paper (red) and Ref.(Zheng et al., 2019b) (blue)). The sizes and
- colors of dots indicate the proportion of cells expressing the corresponding genes and their
- averaged scaled values of log-transformed expression, respectively.
- In A, experiments were repeated four times with similar results. Nuclei were counterstained with
- 1431 DAPI. Scale bars, 50 µm.



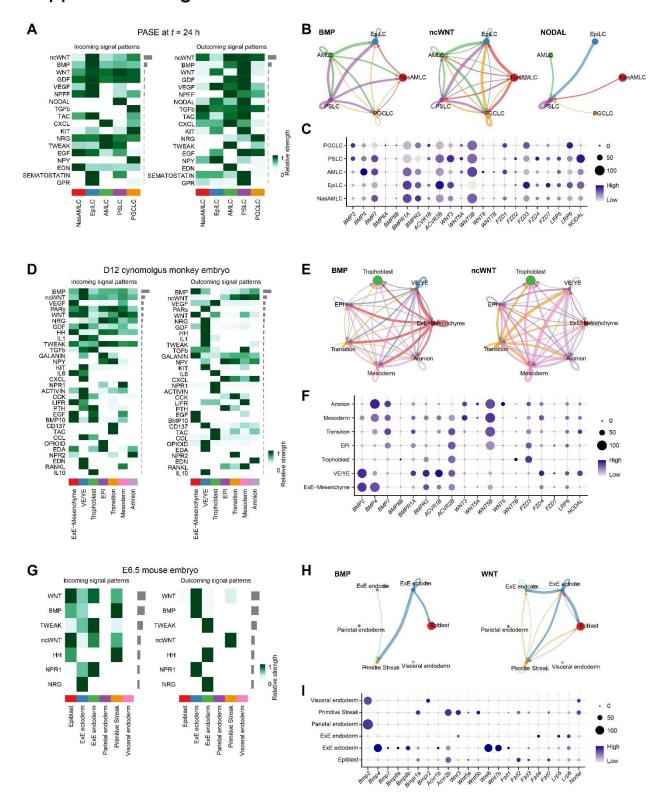
- 1433 Supplemental Figure 2. Trajectory inference and gene expression dynamics during μPASE
- development. Related to Figure 2.
- 1435 (A) Expression dynamics (pseudotime) of selected genes during AMLC lineage development.
- Level of confidence (0.95) is indicated by band width.
- 1437 **(B)** Expression dynamics (pseudotime) of selected genes during PSLC / MeLC lineage
- development. Level of confidence (0.95) is indicated by band width.
- 1439 (C) Representative confocal micrographs showing μPASEs at indicated time points stained for
- 1440 ISL1, GATA3 and TBXT.
- 1441 (D) Representative confocal micrographs showing μPASEs at indicated time points stained for
- 1442 TFAP2A, MIXL1 and TBXT.
- 1443 (E) Bright-field and immunofluorescence images showing an array of μ PASEs at t = 24 h,
- stained for ISL1 and TBXT.
- (F) Representative confocal micrographs showing μ PASEs at t = 48 h stained for CDX2, MIXL1
- and GATA6 (top); CDX2, MIXL1 and TBXT (bottom). Intensity maps show relative intensities
- of corresponding markers as indicated.
- (G) Representative confocal micrographs showing proliferating cells in μPASEs. Images were
- taken at t = 27 h. Cell nuclei with newly synthesized DNA within the last 3 hours were labeled
- using Click-iT EdU Imaging Kit (Invitrogen). Note: The low intensity of the Edu signal from
- cells embedded in the gel is caused by insufficient dye diffusion.
- (H) Venn diagram showing top 20 upregulated genes in AMLC1 vs. NasAMLC and AMLC2 vs.
- AMLC1. The full DEG lists can be found in **Table S3**.
- (I) Venn diagram showing selected upregulated genes in NasAMLC and PSLC, as compared to
- EpiLC. The full DEG lists can be found in **Table S3**.
- 1456 (J) DEGs related to pluripotency signaling pathway (KEGG: 04550) and TGF-β signaling
- pathway (KEGG: 04350) in NasAMLC and PSLC, as compared to EpiLC. Blue and green colors
- highlight genes identified only for NasAMLC and PSLC, respectively.
- 1459 **(K)** Volcano plots showing DEGs between AMLCs from μ PASEs with or without IWP2 at t =
- 1460 48 h, with selected genes labelled. The full DEG list can be found in **Table S3**.
- In C-G, experiments were repeated three times with similar results. Nuclei were counterstained
- 1463 with DAPI. Scale bars, 50 μm.

- Supplemental Figure 3. PGCLC specification during μPASE development. Related to
- 1466 Figure 3.
- 1467 (A) Diffusion map of EpiLC, PSLC, MeLC1 and PGCLC clusters from the UMAP plot in
- 1468 **Figure 1D**. PGCLC cluster is discontinuous from other clusters. K-Branches algorithm failed to
- identify branches or branching points with sufficient confidence.
- 1470 **(B)** Expression dynamics (pseudotime) of selected genes during PGCLC lineage development.
- Level of confidence (0.95) is indicated by band width.
- 1472 (C) Representative confocal micrographs showing μPASEs at indicated time points stained for
- 1473 TFAP2C, NANOG and SOX17.
- (D) Heat map of correlation matrix for PGCLCs in μPASEs, human PGCs (Ref. (Tyser et al.,
- 1475 2021)) and PGCLCs derived using other protocols (Ref. (Chen et al., 2019; Sasaki et al., 2015)).
- 1476 Correlation coefficients between indicated cell types are calculated based on PGC ontogenic
- genes identified for cynomolgus embryo transcriptome data.
- (E) DEGs related to HIF-1 signaling pathway (KEGG: 04066) in PGCLC as compared to
- 1479 PGCLC-branch NasAMLC.
- (F) Representative confocal micrographs showing arrays of μ PASEs at t = 48 h, stained for
- SOX17; control (top); with LY294002 supplemented into the basal medium from t = 0 h
- 1482 *(bottom)*.

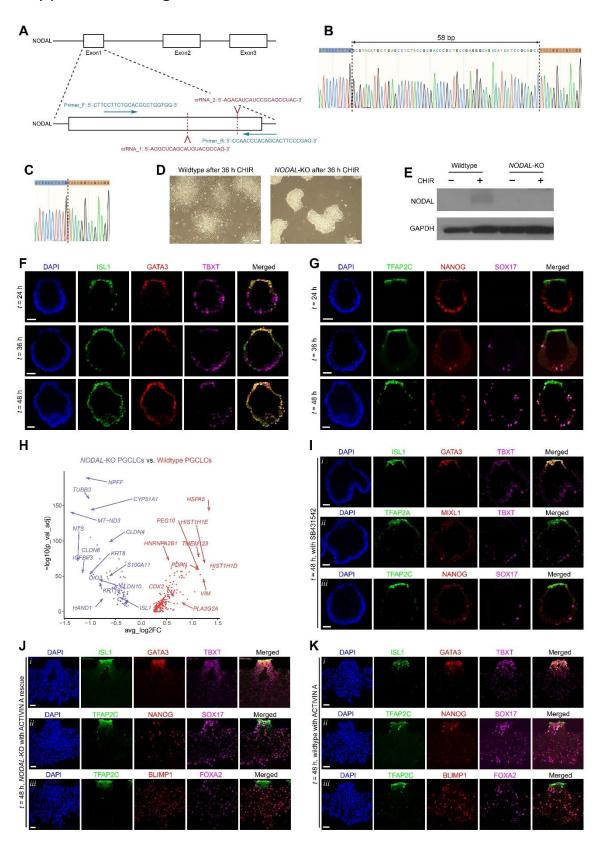

- 1483 (G) Percentage of SOX17+ PGCLCs in μ PASEs at t = 48 h under indicated conditions. n = 20
- 1484 μ PASEs for each condition. Data were pooled from n = 2 independent experiments. Red lines
- represent the median.
- In C and F, experiments were repeated three times with similar results. Nuclei were
- 1488 counterstained with DAPI. Scale bars, 50 μm.

Supplemental Figure 4. scRNA-seq data integration of Carnegie Stage 7 human gastrula and downsampled µPASEs. Related to Figure 4.

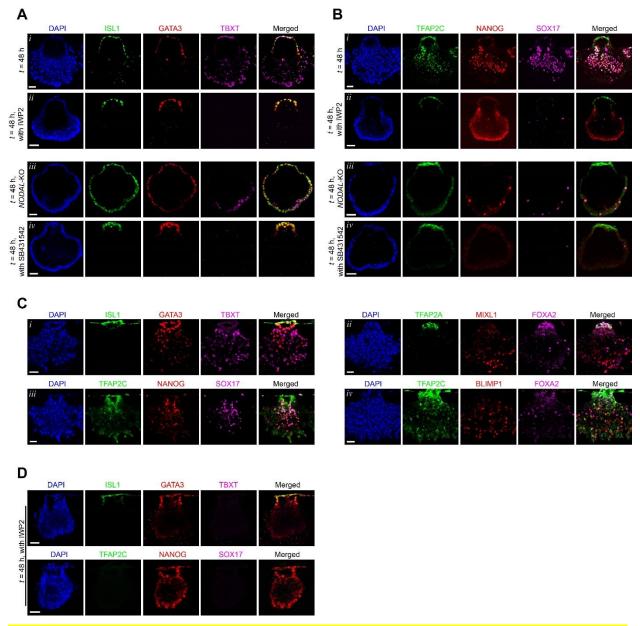
(A) UMAP plots of integrated dataset of CS7 human gastrula (all 1,195 cells) and downsampled μPASEs (from **Figure 1D**, 100 cells per cluster). *Left*: color-coded according to original cell identity annotations of CS7 human gastrula; grey color indicates cells from μPASEs. *Right*: color-coded according to cell identity annotations of μPASEs as indicated in **Figure 1D**; grey color indicates cells from CS7 human gastrula.


(B) UMAP plots of integrated dataset of CS7 human gastrula (647 cells, excluding irrelevant cells) and downsampled μPASEs (from **Figure 1D**,100 cells per cluster). *Left*: color-coded according to original cell identity annotations of CS7 human gastrula; grey color indicates cells from μPASEs. *Right*: color-coded according to cell identity annotations of μPASEs as indicated in **Figure 1D**; grey color indicates cells from CS7 human gastrula.

1503 Supplemental Figure 5. Single-cell transcriptomic profiling of cultured hPSCs, µPASEs at t 1504 = 0 h and t = 12 h. Related to Figure 4. 1505 (A) Feature plots showing expression of selected markers in the UMAP plot of cultured hPSCs. n 1506 = 3782(B) Feature plots showing selected expression of markers in the UMAP plot of μ PASEs at t=01507 h. n = 29481508 (C) Feature plots showing selected expression of markers in the UMAP plot of μ PASEs at t = 121509 h. n = 27321510 (D) Principal component analysis (PCA) plot of cultured hPSCs, μ PASEs at t = 0 h and μ PASEs 1511 at t = 12 h, EpiLCs from µPASEs in **Figure 1D** (at t = 24, 36 and 48 h), d.p.f. 9 (n = 108) and 1512 d.p.f. 11 (n = 62) epiblasts from in vitro cultured human embryos (Ref. (Molè et al., 2021)), 1513 epiblasts from CS7 human gastrula (n = 133) (Ref. (Tyser et al., 2021)), d.p.f. 5-7 epiblasts from 1514 human blastocysts and d.p.f. 3-5 human morula cells (Ref.(Petropoulos et al., 2016)). PCAs were 1515 calculated using epiblast ontogenic genes identified from cynomolgus embryos (Nakamura et al., 1516 2016, see **Table S5**). To prevent datasets with high number of cells dominating PCA 1517 1518 calculation, cultured hPSCs, μ PASEs at t = 0 h, μ PASEs at t = 12 h, EpiLCs from μ PASEs (at t= 24, 36 and 48 h), d.p.f. 5-7 epiblasts from human blastocysts and d.p.f. 3-5 human morula cells 1519 1520 were downsampled to 100 cells. (E) Heatmap showing expression levels of selected genes reportedly related to human epiblast 1521 1522 pluripotency states (Kinoshita et al., 2021; Takashima et al., 2014; Wang et al., 2021). Color codes are consistent with **D**. 1523 1524 1525 In A-C, we could not identify reasonable distinct populations using unsupervised clustering

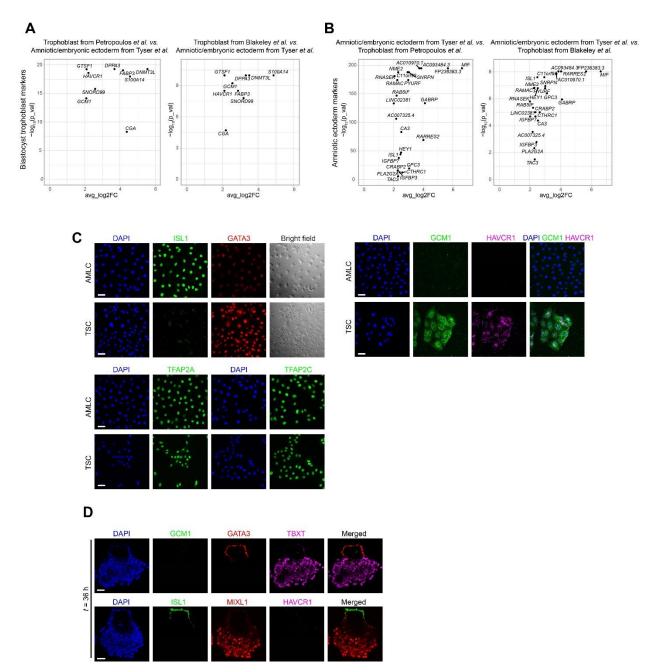

1526

algorithm (Seurat R package).


Supplemental Figure 6. Intercellular communication network analysis of μPASEs, 1528 cynomolgus embryos and mouse embryos at the peri-gastrulation stage. Related to Figure 1529 1530 (A), (D), (G), Heatmaps showing contributions of individual signaling pathways as incoming 1531 and outgoing signals for each cell type in μ PASEs at t = 24 h (A), in vitro cultured cynomolgus 1532 embryos at Day 12 (**D**), and mouse embryos at E6.5 (**G**). Grey bars on the right indicate relative 1533 signal strengths of each pathway across all cell types within local tissue environments. 1534 (B), (E), (H), Circle plots showing inferred signal networks of selected pathways in μ PASEs at t1535 = 24 h (B), in vitro cultured cynomolgus embryos at Day 12 (E), and mouse embryos at E6.5 1536 (H). The dot size is proportional to the number of cells for each cell type, and the line thickness 1537 corresponds to the communication probability. 1538 (C), (F), (I), Dot plots showing expression levels of selected ligands and receptors in µPASEs at 1539 t = 24 h (C), in vitro cultured cynomolgus embryos at Day 12 (F), and mouse embryos at E6.5 1540 (I). The sizes and colors of dots indicate the proportion of cells expressing the corresponding 1541

genes and their averaged scaled values of log-transformed expression, respectively.

- 1544 Supplemental Figure 7. NODAL is essential for MeLC lineage development in μPASEs.
- 1545 Related to Figure 6.
- 1546 (A) Generation of NODAL-KO hPSCs. Two crRNA:tracrRNA duplexes were used
- simultaneously to delete a 58-bp portion of genomic DNA within the exon1 of *NODAL*.
- 1548 **(B), (C)** Genomic DNA sequences of *NODAL* exon1 before and after CRISPR/Cas9-mediated
- 1549 gene deletion.
- 1550 **(D)** Phase-contrast microscopy images of wildtype and *NODAL*-KO hPSC clones after exposure
- 1551 to CHIR99021 (10 μ M) for 36 h.
- 1552 **(E)** Western blot showing NODAL protein expression in wildtype and *NODAL*-KO hPSCs after
- 1553 exposure to CHIR 99021 (10 μ M) for 24 h.
- 1554 **(F)** Representative confocal micrographs showing *NODAL*-KO μPASEs at indicated time points
- stained for ISL1, GATA3 and TBXT.
- 1556 (G) Representative confocal micrographs showing NODAL-KO μPASEs at indicated time points
- stained for TFAP2C, NANOG and SOX17.
- 1558 (H) Volcano plot showing DEGs between PGCLCs from wildtype and NODAL-KO μPASEs,
- with selected genes labelled. The full DEG lists can be found in **Table S7**.
- (I) Representative confocal micrographs showing wildtype μPASEs with SB431542
- supplemented into the basal medium from t = 0 h, stained for ISL1, GATA3 and TBXT (i);
- TFAP2A, MIXL1 and TBXT (ii); TFAP2C, NANOG and SOX17 (iii).
- (J) Representative confocal micrographs showing *NODAL*-KO μPASEs with ACTIVIN A
- supplemented into the channel opposite to BMP4 stimulation from t = 0 h, stained for ISL1,
- GATA3 and TBXT (i); TFAP2C, NANOG and SOX17 (ii); TFAP2C, BLIMP1 and FOXA2
- 1566 *(iii)*.
- 1567 (K) Representative confocal micrographs showing wildtype μPASEs with ACTIVIN A
- supplemented into the channel opposite to BMP4 stimulation from t = 0 h, stained for ISL1,
- 1569 GATA3 and TBXT (i); TFAP2C, NANOG and SOX17 (ii); TFAP2C, BLIMP1 and FOXA2
- 1570 *(iii)*.


- In D, E and I-K, experiments were repeated twice with similar results. In F and G, experiments
- were repeated three times with similar results, and nuclei were counterstained with DAPI. Scale
- bars, 100 μm (**D**) and 50 μm (**F**, **G**, **I-K**).

Supplemental Figure 8. μPASEs generated with ESI-017 hPSC line and C4955 chimpanzee iPSC line.

(A) Representative confocal micrographs showing μ PASEs generated with ESI-017 hPSCs at t = 48 h stained for ISL1, GATA3 and TBXT: wildtype (*i*), wildtype supplemented with IWP2 (*ii*), *NODAL*-KO (*iii*), wildtype supplemented with SB431542 (*iv*).

1581	(B) Representative confocal micrographs showing μPASEs generated with ESI-017 hPSCs at t =
1582	48 h stained for TFAP2C, NANOG and SOX17: wildtype (i), wildtype supplemented with IWP2
1583	(ii), NODAL-KO (iii), wildtype supplemented with SB431542 (iv).
1584	(C) Representative confocal micrographs showing chimpanzee µPASEs generated with C4955
1585	chimpanzee iPSCs at $t = 48$ h stained for ISL1, GATA3 and TBXT (i); TFAP2A, MIXL1 and
1586	FOXA2 (ii); TFAP2C, NANOG and SOX17 (iii); TFAP2C, BLIMP1 and FOXA2 (iv).
1587	(D) Representative confocal micrographs showing chimpanzee μPASEs generated with C4955
1588	chimpanzee iPSCs, supplemented with IWP2, at $t = 48$ h stained for ISL1, GATA3 and TBXT
1589	(top); TFAP2C, NANOG and SOX17 (bottom).
1590	
1591	Experiments were repeated twice with similar results. Nuclei were counterstained with DAPI.
1592	Scale bars, 50 um.

Supplemental Figure 9. Stringent criteria for identifying human trophoblast and amniotic ectoderm. Related to Figure 7.

(A) Highly expressed genes identified using stringent criteria in human trophoblast, as compared with the amniotic/embryonic ectoderm from Ref. (Tyser et al., 2021) shared between the trophoblast data from Ref. (Petropoulos et al., 2016) and Ref. (Blakeley et al., 2015) as indicated.

- 1599 (B) Highly expressed genes identified using stringent criteria in human amniotic/embryonic
- 1600 ectoderm from Ref. (Tyser et al., 2021), as compared with the trophoblast from Ref.
- 1601 (Petropoulos et al., 2016) and Ref. (Blakeley et al., 2015) as indicated.
- 1602 (C) Representative micrographs showing human trophoblast stem cells (TSCs) and amniotic
- ectoderm-like cells derived by treating hPSCs with BMP4, stained for ISL1 and GATA3; GCM1
- and HAVCR1; TFAP2A or TFAP2C, as indicated.
- (D) Representative micrographs showing μ PASEs at t = 36 h stained for GCM1, GATA3 and
- TBXT (top); ISL1, MIXL1 and HAVCR1 (bottom).
- In C and D, experiments were repeated twice with similar results. Nuclei were counterstained
- with DAPI. Scale bars, 50 μm.