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SUMMARY

Despite its clinical and fundamental importance, our understanding of early human development
remains limited. Stem cell-derived, embryo-like structures (or embryoids) allowing studies of
early development without using natural embryos can potentially help fill the knowledge gap of
human development. Herein, transcriptome at the single-cell level of a human embryoid model,
which recapitulates aspects of lineage diversification and three-dimensional tissue architecture of
the human embryo from the implantation to the onset of gastrulation, was profiled at different
time points. Molecular maps of lineage diversifications from the pluripotent human epiblast
towards the amniotic ectoderm, primitive streak / mesoderm, and primordial germ cells were
constructed and compared with in vivo primate data. Similarly, chimpanzee embryoids were
generated and profiled to reveal transcriptome dynamics during the early post-implantation
chimpanzee development. Our comparative transcriptome analyses reveal a critical role of
NODAL signaling in human mesoderm and primordial germ cell specification, which is further
functionally validated. Through comparative transcriptome analyses and validations with human
blastocysts and in vitro cultured cynomolgus embryos, we further proposed stringent criteria for
distinguishing between human blastocyst trophectoderm and early amniotic ectoderm cells.
Altogether, this study provides new knowledge of the lineage diversification roadmap of early

human development and will serve as a valuable resource for studying human development.
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INTRODUCTION

Development of multicellular organisms is one of nature's greatest triumphs. Development is a
tightly orchestrated process, following stereotypic lineage diversifications and morphogenetic
tissue patterning events in a precise spatiotemporal order. Scientists commonly use animal
models to study the key transcriptional and signaling activities that underlie pattern formation,
morphogenesis, cell differentiation, and tissue growth (Gilbert, 2000; Schoenwolf, 2020;
Solnica-Krezel, 2020). However, cross-species genetic and morphological divergence is evident
between humans and commonly used animal models (Rossant, 2015; Rossant and Tam, 2017).
To address this issue, there is a significant current interest in improving in vitro culture protocols
of human and non-human primate (NHP) monkey embryos for experimental observations and
mechanistic studies (Deglincerti et al., 2016; Ma et al., 2019; Niu et al., 2019; Shahbazi et al.,
2016; Xiang et al., 2020; Yang et al., 2021). However, experimentations on human and NHP
monkey embryos remain challenging due to limited access to and bioethical constraints on these
natural specimens (Clark et al., 2021; Hyun et al., 2016; Lovell-Badge et al., 2021). As such,
knowledge of human development remains limited; this is particularly true for early post-
implantation human development, when the basic human body plan is laid down and when the
human embryo in vivo is at its most inaccessible phase for experimentation.

Recently, stem cell-derived embryo-like structures (or embryoids) that could recapitulate
certain aspects of mammalian early embryogenesis are emerging as tractable experimental tools
for studying human development (Beccari et al., 2018; Haremaki et al., 2019; Harrison et al.,
2017; Liu et al., 2021; Moris et al., 2020; Rivron et al., 2018; Shao et al., 2017a; Shao et al.,
2017b; Simunovic et al., 2019; Warmflash et al., 2014; Xue et al., 2018; Yanagida et al., 2021;
Yu et al., 2021; Zheng et al., 2019a; Zheng et al., 2019b). Particularly, we have recently
developed a human pluripotent stem cell (hPSC)-based embryoid, termed post-implantation
amniotic sac embryoid (PASE), that appears to recapitulate different developmental events of the
early post-implantation human embryo in a three-dimensional (3D), human-relevant tissue
architecture (Shao et al., 2017a; Shao et al., 2017b). These developmental events include
landmarks of the development of the epiblast (Epi) and amniotic ectoderm (AM) parts of the
human embryo, including lumenogenesis of the Epi and the resultant pro-amniotic cavity,
symmetry breaking of the Epi sac to form the bipolar amniotic sac, and specification of

primordial germ cells (PGCs) and primitive streak cells (PSs). By using controllable microfluidic
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tools, we have further successfully developed a microfluidic PASE (uPASE) system (Zheng et
al., 2019b), allowing the development of PASEs in a highly controllable, reproducible and
scalable fashion.

To fill the critical knowledge gap of early post-implantation human development, herein
we studied transcriptome dynamics during the progressive development of uPASE at the single-
cell resolution using single-cell RNA sequencing (scRNA-seq) and provided detailed analyses of
cell lineage diversifications, developmental trajectories, regulatory networks and signaling
pathways involved in this previously unexplored yet critical stage of human development. We
also developed chimpanzee nPASEs using chimpanzee PSCs and profiled their transcriptome
using scRNA-seq. The scRNA-seq data from human and chimpanzee uPASEs were compared
with recently published data from a Carnegie Stage 7 (CS7) human gastrula (Tyser et al., 2021)
and those from in vivo and in vitro cultured human and NHP monkey embryos (Ma et al., 2019;
Nakamura et al., 2016; Sasaki et al., 2016; Yang et al., 2021). Our comparative transcriptome
analyses reveal the developmental coordination among different primate species and further
highlight a critical role of NODAL signaling in mesoderm (Meso) and PGC specification, which
was further functionally validated. To address current confusions in distinguishing between
human early AM cells vs. blastocyst trophectoderm cells, we established stringent criteria for
identifying these two lineages by profiling and comparing related transcriptomes from in vivo
samples (Blakeley et al., 2015; Petropoulos et al., 2016; Tyser et al., 2021), and further evaluated
the authenticity of related cells included in different human embryoids and in vitro
differentiation protocols. Finally, we proposed a few cell fate markers that could be utilized to
reliably distinguish human early AM and blastocyst trophectoderm cells and further validated
expression of these markers using in vitro fertilization (IVF) human blastocysts and in vitro
cultured NHP monkey embryos. Altogether, our sSCRNA-seq datasets and related analyses as well
as experimental results from both in vitro and in vivo models provide new insights into the
lineage diversification roadmap of early human development and will serve as a valuable

resource for studying human development.

RESULTS
Single-cell transcriptomic profiling of nPASE development
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The microfluidic device for generating uPASEs consists of three parallel channels, partitioned by
evenly spaced supporting posts (Zheng et al., 2021; Zheng et al., 2019b). Preloaded Geltrex in
the central gel channel forms concave gel pockets between adjacent supporting posts during
gelation. Singly dissociated hPSCs are loaded into the cell loading channel and are guided to
form individual cell clusters in each concave gel pocket. After initial clustering of hPSCs
(designated as ¢ = 0 h), culture medium in the device is switched to a basal medium comprised of
Essential 6 and FGF2, with BMP4 further supplemented only into the cell loading channel
(Figure 1A). Development of uPASE involves successive cell morphogenetic and lineage
specification events that recapitulate early post-implantation human development up to the onset
of gastrulation (Figure 1A) (Zheng et al., 2021; Zheng et al., 2019b). Specifically, owing to their
intrinsic lumenogenic property, each hPSC cluster undergoes lumenogenesis and epithelization
to establish apical-basal polarity and form a single central apical lumen by = 12 h (Figures 1B
and S1A). hPSCs exposed directly to exogeneous BMP4 stimulation in each cluster initiate
amniogenesis, evidenced by continuous flattening of cell morphology, resolving into a thin layer
of squamous amniotic cells (Figure 1B). Inductive effects of AMLCs in the pPASEs lead to
hPSCs at the opposite pole to undergo epithelial-mesenchymal transition (EMT) and
gastrulation-like events (Zheng et al., 2021; Zheng et al., 2019b), with gastrulating cells
disseminating away from uWPASEs from ¢ = 36 h onwards (Figure 1B), leading to disintegration
of the uPASE structure. By ¢ = 48 h, the uPASE contains only AMLCs, MeLCs and PGCLCs,
without the presence of EpiLCs (Figures 1B and 1C).

To investigate dynamics of pPASE development at the transcriptome level, single-cell
suspensions of pPASEs at =24 h, 36 h, and 48 h were prepared before single-cell RNA-
sequencing (scCRNA-seq) using 10x Genomics. We performed UMAP (uniform manifold
approximation and projection) dimension reduction using the Seurat R package (Butler et al.,
2018; Satija et al., 2015) for scRNA-seq datasets at each time point (Figure 1C), as well as for
the integrated scRNA-seq dataset from all three time points (Figure 1D). These analyses reveal
distinct cell clusters in the nPASE based on expression patterns of key lineage markers (Figures
1C-1E, S1B and S1C). Consistent with our previous findings (Zheng et al., 2021; Zheng et al.,
2019b), in the uPASE, hPSCs develop progressively from a pluripotent epiblast-like cell
(EpiLC) stage to three distinct cell populations by ¢ = 48 h: amniotic ectoderm-like cells
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(AMLCs), mesoderm-like cells (MeLCs), and primordial germ cell-like cells (PGCLCs)
(Figures 1C-1E, S1D and S1E).

To understand how hPSCs transit from the EpiLC stage to AMLCs, MeLCs and PGCLCs
during pPASE development, RNA velocity analysis (Bergen et al., 2020; La Manno et al., 2018)
was conducted for the integrated scRNA-seq dataset, with RNA velocity vectors overlaid on the
integrated UMAP plot (Figure 1D). This RNA velocity analysis reveals developmental
trajectories of the AMLC lineage (EpiLC — nascent AMLC or NasAMLC — AMLC1 —
AMLC?2) and MeLC lineage (EpiLC — primitive streak-like cell or PSLC — MeLC1 / MeLC2)
(Figure 1D). However, developmental trajectory of PGCLCs is not as clear from the RNA
velocity analysis (Figure 1D). To further examine lineage relations between different uPASE
cell clusters, partition-based graph abstraction (PAGA) analysis (Wolf et al., 2018) was
conducted, revealing that PGCLCs correlate best with the NasAMLC cluster (Figure 1F). To
reveal gene regulatory network (GRN) underlying each cell cluster, we performed GRN analysis
using SCENIC (Aibar et al., 2017) (single-cell regulatory network inference and clustering;
Figures 1G and 1H). Notably, AM markers ISL/ and GATA3 (Yang et al., 2021), PS / Meso
markers EOMES, MIXL1, TBX6 and GATA6, and PGC markers SOX17 and NANOG are
identified by SCENIC as regulons of corresponding cell lineages (Figures 1G and 1H).

Trajectory inference and gene expression dynamics analysis

To infer developmental trajectories of different uPASE cell lineages, we plotted a three-
dimensional (3D) diffusion map based on PCA embeddings of the integrated scRNA-seq dataset
(Figure 2A and Video S1) (Angerer et al., 2016). The AMLC, MeLC and PGCLC lineages
display distinct and well separated trajectories in the 3D diffusion map (Figure 2A). To analyze
transcriptome dynamics during AMLC lineage development, EpiLC, NasAMLC and AMLC1 /2
clusters were isolated from the integrated scRNA-seq dataset and re-plotted using two-
dimensional (2D) diffusion maps (Figure 2B). Similarly, to analyze MeLC lineage development,
EpiLC, PSLC and MeLC1 / 2 clusters were isolated from the integrated scRNA-seq dataset
before re-plotting using 2D diffusion maps (Figure 2C). Expression dynamics of selected genes
related to AM and PS or Meso was plotted against diffusion pseudotime (dpt) (Figures 2D, 2E,
S2A and S2B). Notably, in the AMLC lineage, expression of 7TFAP2A, MSX2 and ID2, which
are commonly used AM markers (Ma et al., 2019; Sasaki et al., 2016; Yang et al., 2021), is
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quickly upregulated following exogeneous BMP4 stimulation (Figures 2D and S2A). Similarly,
GATA3 and ISLI become upregulated relatively early during AMLC lineage development
(Figures 2D and S2A). In contrast, expression of GABRP, IGFBP3 and WNT6 shows delayed
upregulation, whereas 7BXT is only transiently expressed during early AMLC lineage
development (Figures 2D and S2A).

On the 2D diffusion map, the MeLC lineage branches into two separate paths
corresponding to MeLC1 and MeLC2 clusters (Figure 2C). Both MeLC1 and MeLC2 lineages
show upregulated expression of common Meso markers, yet with some key genes exhibiting
distinct expression levels (Figures 2E and S2B). For example, compared with MeLC1, MeLC2
expresses relatively higher levels of MIXL1, EOMES and GATA6 (Figures 2E and S2B),
presumably corresponding to a lateral plate / intermediate Meso fate (Daoud et al., 2014;
Prummel et al., 2019). MeLCl1 lineage, in contrast, expresses higher levels of CDX2 and HOXB6
(Figures 2E and S2B), presumably corresponding to a paraxial Meso fate (Casaca et al., 2016;
Chawengsaksophak et al., 2004). We further conducted immunostaining for selected AM and
Meso markers in uPASEs at =24 h, 36 h, and 48 h to validate lineage fate specification
(Figures 2F and S2C-S2E). GATA6 S TBX TE"MIXL 1M8"CDX2!°Y MeLC2 appears as leading
cells in the migratory gastrulating cell population, whereas
GATA6°YTBXT*MIXL1"°"CDX2"eh MeLC1 appears as trailing cells in this population
(Figure S2F).

Patterning of AMLCs and PSLCs was evident in the uPASE by ¢ = 24 h, with positive
immunostaining for ISL1, GATA3 and TFAP2A in incipient AMLCs and for TBXT and MIXL1
in incipient MeLCs (Figures S2C and S2D, Video S2). Notably, expression of AM marker
GABRP (Yang et al., 2021) is restricted on the apical surface of AMLCs, whereas expression of
HEY1, another AM marker (Yang et al., 2021), is evident in both the nucleus and cytoplasm of
AMLC:s (Figure 2F). AMLCs appear to actively proliferate during puPASE development (Figure
S$2G). To reveal transcriptome changes during AMLC development, we conducted differentially
expressed gene (DEG) and pathway enrichment analysis to compare NasAMLC, AMLCI and
AMLC?2 (Figure S2H and Table S3).

To explore potential mechanisms underlying lineage choices between NasAMLCs vs.
PSLCs for EpiLCs, we examined DEGs upregulated in NasAMLCs and PSLCs relative to
EpiLCs and noticed significant overlaps (144 out of 342 genes for NasAMLCs, 144 out of 184
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genes for PSLCs) (Figure S21 and Table S$3). KEGG pathway analysis suggests that
development of both NasAMLCs and PSLCs requires TGF-B signaling (KEGG: 04350; Figure
$2J), which is not surprising given that exogenous BMP4 is supplemented in the uPASE
protocol. However, WNT signaling pathway (KEGG: 04310) is evident only in PSLCs but not in
NasAMLC:s (Figure 2G), suggesting a critical role of WNT signaling in Meso induction but not
in amniogenesis. When IWP2, a small molecule inhibitor blocking the transport, secretion or
signaling activity of all WNT molecules (Chen et al., 2009; Kadowaki et al., 1996; Zhai et al.,
2004), was supplemented into the microfluidic device, development of PSLCs and MeLCs in the
uPASE was completely inhibited, as evidenced by negative immunostaining for TBXT or
MIXLI1 (Figure 2H). In contrast, AMLC:s still emerge under IWP2 treatment, as evidenced by
positive immunostaining for ISL1, TFAP2A and GATA3 in flattened, presumptive AMLCs
directly exposed to exogeneous BMP4 stimulation (Figure 2H). Consistently, the sSCRNA-seq
data obtained from IWP2-treated nPASEs at # = 48 h show absence of PSLCs or MeLCs; instead,
the majority of cells remain pluripotent, retaining the EpiLC identity (Figures 21 and 2J),
further supporting the requirement of WNT signaling in PSLC/MeLC development. It should be
noted that under IWP2 treatment, AMLCs show lower expression of several AM marker genes,
such as ISL1, GABRP and GATA3, and there are much less PGCLCs in IWP2-treated pPASEs
(Figures S2K and 2I, and Table S3).

PGCLC specification
During nPASE development, incipient PGCLCs emerge together with NasAMLCs and PSLCs
by ¢t =24 h (Figure 1C). To explore the origin and specification of PGCLCs in the uPASE, a 2D
diffusion map with EpiLC, PSLC, MeLC1 and PGCLC clusters isolated from the integrated
scRNA-seq dataset was plotted, which, however, did not show a continuous developmental
trajectory connecting EpiLCs, PSLCs, MeLCs with PGCLCs (Figure S3A). In addition, in this
2D diffusion map, K-branch algorithm (Chlis et al., 2017) did not identify a branching point or
branches with proper confidence (Figure S3A). Thus, PGCLCs in the pPASE are unlikely
originated from PSLCs or MeLCs.

In contrast, 2D diffusion map analysis with EpiLC, NasAMLC, AMLC1 /2 and PGCLC
clusters clearly shows lineage progression and bifurcation of NasAMLCs into PGCLCs and

AMLC:s (Figure 3A). RNA velocity vectors were also computed and overlaid onto the diffusion



238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

map in Figure 3A, revealing that NasAMLCs have the closest lineage relation with PGCLCs,
consistent with the PAGA analysis in Figure 1F. Our observation here is consistent with recent
studies of cynomolgus monkey embryos reporting that primate PGCs could emerge in the
nascent AM prior to the gastrulation (Sasaki et al., 2016). Expression of selected genes relevant
to PGC development, including SOX17, NANOG, TFAP2C, PRDM1, NANOS3, TFAP2A, TBXT,
SOX15, POUSF1, ISL1, PDPN, IGF1, PEG10, BAMBI, WNT5B and WNT2, was also plotted
against diffusion pseudotime, revealing their upregulated expression during PGCLC lineage
development (Figures 3B and S3B). Immunofluorescence analyses of uPASEs at =24 h, 36 h,
and 48 h further confirmed spatiotemporal expression of some key PGC markers, including
TFAP2C, NANOG, SOX17 and BLIMPI, in incipient PGCLCs (Figures 3C and S3C).
Correlation coefficient analysis based on PGC ontogenic genes identified from the cynomolgus
embryo transcriptome data suggests that the transcriptome of PGCLCs in the uPASE is similar
to that of Day 2 hPGCLCs derived from conventional protocols (Chen et al., 2019; Sasaki et al.,
2015) (Figure S3D). It is worth noting that the uPASE essentially is a posteriorized embryonic-
like structure, mimicking the posterior portion of the amnion and epiblast compartments. As
such, the development of pPASE gives rise to a greater number of hPGCLCs but lack the
development of ectoderm.

Using K-branch algorithm, we identified developmental branches and the branching point
for the 2D diffusion map with EpiLC, NasAMLC, AMLC1/2 and PGCLC clusters (Figure 3A).
The K-branch analysis further allowed us to separate NasAMLCs into three sub-clusters, with
each sub-cluster merged with EpiLCs, AMLCs and PGCLCs, respectively, and annotated as
EpiLC-branch NasAMLC, AMLC-branch NasAMLC and PGCLC-branch NasAMLC,
respectively (Figure 3A). To explore mechanisms underlying lineage choices between AMLCs
vs. PGCLCs for NasAMLCs, DEGs upregulated in AMLC-branch NasAMLCs and PGCLC-
branch NasAMLCs, as compared to EpiLC-branch NasAMLCs, were examined (Figure 3D;
Table S4). KEGG pathway analysis of these DEGs reveals that PGCLC-branch NasAMLCs
show upregulated WNT signaling, whereas AMLC-branch NasAMLCs exhibit upregulated
Hippo activity (Figure 3E). We further performed pharmacological inhibition assays to explore
the roles of different signaling pathways during uWPASE development. When IWP2 was
supplemented into the microfluidic device, development of PGCLCs was almost completely

abolished in the uPASE (Figure 3F). PGCLCs show upregulated HIF-1 signaling activity
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compared to PGCLC-branch NasAMLCs (Figure S3E). When HIF-1 signaling was repressed by
supplementing L Y294002, which functions through binding to phosphoinositide 3-kinases
(PI3Ks), in the microfluidic device, the percentage of PGCLCs was significantly reduced
(Figures S3F and S3G).

Our scRNA-seq data analysis suggests that progenitors of PGCLCs likely pass through a
transient transcriptome state similar to that of NasAMLCs before their full commitment to the
PGCLC fate. Our data, however, do not exclude the possibility that cells at the junction between
the AMLC and PSLC / MeLC compartments, or from the PSLC / MeLC pole of the uPASE,
with a transient transcriptome state similar to that of NasAMLCs, can also give rise to PGCLCs.
After all, NasAMLCs and PSLCs share a similar transcriptome, and cells in the early post-
implantation human embryo might remain plastic (Chen et al., 2019; Irie et al., 2015; Kobayashi
et al., 2017; Sasaki et al., 2015).

Transcriptomic comparison between pnPASEs and Carnegie Stage 7 human gastrula

The uPASE recapitulates certain aspects of human development from early implantation to the
onset of gastrulation. Notably, single-cell transcriptome data of a CS7 human gastrula recently
became available (Tyser et al., 2021). Thus, we conducted transcriptomic comparison between
UPASEs and the CS7 human gastrula. We first downsampled the uPASE dataset by randomly
selecting 100 cells from each cluster and integrated this downsampled dataset with the CS7
human gastrula dataset (Figure S4). Based on the transcriptome proximity in the UMAP plot,
the pPASE contains cells corresponding to “Epiblast”, “Primitive Streak”, “Nascent Mesoderm”,
“Emergent Mesoderm”, “Amniotic/embryonic ectoderm”, and “PGC” cells in the human
gastrula. We next selected only these cells from the CS7 human gastrula dataset to integrate with
the whole pPASE dataset. A UMAP plot of the integrated scRNA-seq dataset shows cell
clustering similar to that from the uPASE scRNA-seq data alone (Figure 4A). Cells from the
CS7 human gastrula are evident in all cell clusters of the UMAP plot (Figure 4A). Furthermore,
for each annotated cell cluster, expression patterns of key lineage markers are consistent between
cells from the CS7 human gastrula and uPASEs (Figure 4B). Most of the cells from the CS7
human gastrula fall into different cell clusters consistent with their lineage annotations in the
original publication (Tyser et al., 2021), except for some cells originally classified as “Epiblast”

or “Primitive Streak” that fall into NasAM or AM1 clusters (Figure 4C). Notably, PGCs in the

10
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CS7 human gastrula can be easily distinguished in the PGC cluster of the integrated dataset in
the UMAP plot (Figure 4A).

In the original publication of the CS7 human gastrula (Tyser et al., 2021), a UMAP plot
was generated with all the cells in the human gastrula, including those at relatively late
developmental stages, such as “Hemogenic Endothelial Progenitors™ and “Erythrocytes”, which
could negatively affect the resolution of cell clustering analysis, especially for those closely
related cell lineages. To address this issue, we re-generated a UMAP plot using only the
“Epiblast”, “Primitive Streak”, “Nascent Mesoderm”, “Emergent Mesoderm”,
“Amniotic/embryonic ectoderm” and “PGC” clusters from the human gastrula dataset (Figure
4D). Interestingly, this UMAP plot reveals distinct cell clusters corresponding to Meso and AM,
supported by feature plots showing expression patterns of key Meso and AM markers (Figures
4D and 4E). Notably, human PGCs identified in the original publication is clustered together
with AM cells in the UMAP plot (Figure 4D), supporting their close lineage relation. We further
isolated the Epi, AM, and PGCs from the CS7 human gastrula to generate a diffusion map
(Figure 4F). Surprisingly, AM and PGC seemingly display lineage bifurcation trajectories from
the Epi (Figure 4F), similar to pPASEs in Figure 3A. In addition, as shown in Figure 4G,
pseudotime gene expression dynamics of AM cells from the CS7 human gastrula is highly
consistent with that of AMLCs in uPASEs in Figure 2D. However, due to the low number of
PGCs, AM and PGC lineage bifurcation is not as evident as that shown in the puPASE diffusion
map (Figure 3A); and we could not obtain pseudotime gene expression dynamics for PGCs.

To characterize pluripotency state transition in EpiLCs during the progressive
development of the uPASE, we further performed scRNA-seq for cultured hPSCs and pPASEs
at =0 h and = 12 h. No distinguishable cell clusters or populations were observed when the
scRNA-seq data were analyzed using Seurat R package (Figures S5A-S5C). Notably, although
WPASEs at ¢t = 12 h show upregulated 7FAP2A expression owing to exogeneous BMP4
treatment, transcriptomes of cells in the uPASE have not yet changed sufficiently for the cells to
emerge as distinct clusters in the UMAP. We then downsampled these datasets and compared
them with transcriptome data of the human morula, pre-implantation epiblast from human
blastocysts (Petropoulos et al., 2016), early post-implantation epiblast from days post-
fertilization (d.p.f) 9 and d.p.f 11 in-vitro cultured human embryos (Mole¢ et al., 2021), and late
post-implantation epiblast from the CS7 human gastrula (Tyser et al., 2021). As suggested by the

11
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principal component analysis (PCA) plot (Figures S5D and S5E), cultured hPSCs and EpiLCs
in the uPASE share comparable transcriptome states and are both at a developmental stage
between d.p.f 11 and d.p.f 16 epiblast. Thus, there was no compelling evidence showing

heterogeneous pluripotency states or transitions at early stages of uPASE development.

Transcriptomic coordination of early development across different primate species
NHP monkey embryos, including cynomolgus (Macaca fascicularis) embryos, have been used
successfully as an in vivo model to study primate development (Ma et al., 2019; Nakamura et al.,
2016; Sasaki et al., 2016; Yang et al., 2021). Compared with NHP monkeys, chimpanzees share
much more of human DNA (99%), making them our closest living relatives (Gibbs et al., 2007;
Mikkelsen et al., 2005). Thus, we sought to generate puPASEs from chimpanzee induced
pluripotent stem cells (iPSCs) to examine whether chimpanzee pPASEs (or C_puPASEs) would
develop in a fashion similar as pPASEs made from hPSCs (or H_uPASEs). To this end, the
same microfluidic protocol for H pPASE development was used for C_uPASE formation.
Under exogeneous human BMP4 stimulation, C_uPASEs also display prominent molecular and
morphogenetic asymmetry, with the pole exposed to BMP4 differentiating progressively into
squamous, flattened AMLCs positive for AM markers ISL1, GATA3 and TFAP2A, and the
opposite pole developing into germ layer lineages positive for TBXT and MIXL1 (Figure 5A).
Similar to H pPASEs, PGCLCs also emerge in C_uPASEs, as evidenced by positive
immunostaining for SOX17, TFAP2C, NANOG and BLIMP1 (Figure 5A). However, distinct
from H uPASEs, FOXA2+BLIMP1+ endoderm-like cells (EndoLCs) also emerge in
C_pPASE:s, and these EndoLCs randomly intermix with MeLCs and PGCLCs (Figure 5A).
scRNA-seq analysis of C_uPASEs obtained at # = 48 h further confirms the presence of
EndoLCs in C_uPASEs (Figures 5B and 5C). It is worth noting that C_uPASEs do not develop
a prominent central lumen (the pro-amniotic-like cavity) as in H_ uPASEs (Figure 5A).
Transcriptomic comparisons between related corresponding cell clusters in H_uPASEs,
C_uPASESs, and human and cynomolgus embryos (Ma et al., 2019; Nakamura et al., 2016;
Sasaki et al., 2016; Tyser et al., 2021; Yang et al., 2021) reveal that such cell clusters from these
in vitro and in vivo systems, regardless in the Meso (Figure 5D), AM (Figure 5E) or PGC
(Figure 5F) lineages, show strong correlations based on ontogenic genes identified from

cynomolgus embryo transcriptome data (Nakamura et al., 2016; Sasaki et al., 2016; Yang et al.,
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2021). Thus, despite systematic variations that might be resulted from different sequencing
platforms, related corresponding cell types of different primate species still demonstrate
relatively high transcriptomic correlation and developmental coordination (Figure 5E-5F), e.g.,
human mesoderm cells and MeLCs from the H uPASE at later developmental stages correlate
better with chimpanzee or monkey mesoderm cells at later stages. Additionally, corresponding
cell types from the CS7 human gastrula and H uPASEs correlate better with cells from
C_pPASE:s, as compared to cells from cynomolgus embryos, which may reflect the greater
genetic similarity between humans and chimpanzees. Consistently, when IWP2 was
supplemented into C_uPASEs, developments of PSLCs and PGCLCs were inhibited, whereas
ISL1+GATA3+ AMLC:s still emerged, similar with IWP2-treated H pPASEs (Figure 5G).

NODAL is essential for mesoderm development

Our DEG and pathway analyses of uPASE scRNA-seq data in Figures 2G, 2H, 3D-3F, S2F and
S2G suggest complex cell-cell interactions involved in early post-implantation human
development. Thus, nPASE scRNA-seq data at ¢ = 24 h were further analyzed using CellChat
(Jin et al., 2021) for inference and analysis of ligand-receptor interactions (Figures S6A-S6C).
Among cell clusters present in uPASEs at # =24 h, AMLCs and PSLCs were identified as major
sources of signaling ligands involved in key developmental pathways, such as BMP and WNT
pathways (Ben-Haim et al., 2006; Bernardo et al., 2011; Clevers, 2006; Rivera-Perez and
Magnuson, 2005; Wang et al., 2014; Zhao, 2003) (Figures S6A-S6C). This is consistent with a
recent study of pre-gastrulation cynomolgus embryos (Yang et al., 2021), which shows that both
AM and PS / Meso cells upregulate BMP4 and WNT5B and extraembryonic mesenchyme cells
show high expression of BMP2 and BMP4 (Figures S6D-S6F). nPASEs lack extraembryonic
mesenchyme cells, the effects of which might have been substituted by exogeneous
supplementation of BMP4 in the uPASE protocol. For comparison, ligand-receptor interaction
analysis was also conducted using CellChat on scRNA-seq data from E6.5 mouse embryos
(Pijuan-Sala et al., 2019), revealing the extraembryonic ectoderm as the only source of BMP and
WNT signals (Figures S6G-S6l). Interestingly, during the development of both uPASEs and
pre-gastrulation cynomolgus embryos, non-canonical WNT pathways show a greater signaling
strength than canonical WNT, whereas the opposite is observed for E6.5 mouse embryos

(Figures S6A, S6D and S6G).
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Our ligand-receptor interaction analysis for uPASEs using CellChat further reveals that,
compared to BMP and WNT pathways identified as an “incoming signal” for multiple cell
clusters, NODAL signals appear to be perceived only by PSLCs (Figures S6A and S6B),
suggesting a critical role of NODAL signaling in PSLC development. To study the functional
role of NODAL, NODAL-knockout (KO) hPSC lines were generated and used for uPASE
development (Figures S7A-S7E). By ¢ = 48 h, majority of cells in NODAL-KO pPASEs appear
to have developed into flattened ISLI+GATA3+ AMLCs, and there are no cells disseminating
away from the uPASE structure, in distinct contrast with wildtype control uPASEs (Figures 6A-
6D and S7F). Consistently, scRNA-seq data obtained from NODAL-KO pPASEs at =48 h
showed a dominant population of AMLCs at the expense of MeLCs (Figures 6B,6C,6E-6G),
further supporting the critical role of NODAL in MeLC development. PGCLCs were still evident
in NODAL-KO pPASEs at ¢t = 48 h, albeit with a much less percentage compared with those in
wildtype controls (8.1% vs. 28.2%; Figures 6D,6E-6G and S7G). This observation suggests that
in pPASEs, NODAL signaling is involved not only in MeLC development, but also in PGCLC
specification.

We further conducted DEG and Gene Ontology (GO) enrichment analyses for PSLCs
from NODAL-KO and wildtype control pPASEs (Figure 6H and 6l; Table S7). In NODAL-KO
PSLCs, BMP target genes, such as ID2, TFAP2A and ISL1, are upregulated, whereas PS / Meso-
related genes, such as MESPI and MIXL1, and EMT related genes, including SNAI/I and VIM,
are downregulated (Figure 6H). PI3K-Akt, WNT and focal adhesion signaling pathways appear
to be downstream targets of NODAL signaling in PSLCs (Figure 61). We speculate that lineage
bifurcation between AMLCs and PSLCs from EpiLL.Cs might be regulated by a competition
between BMP and NODAL signaling. Absence or repression of NODAL signaling in the uPASE
could lead to “hyper” BMP activities, which in turn causes excessive AMLC development
(marked by an expanded ISL1 domain) and greater BMP activities in PSLCs. We also compared
PGCLCs from wildtype and NODAL-KO uPASEs (Figure S7H and Table S7). Consistently,
when SB431542, a pharmacological NODAL signaling inhibitor, was supplemented into the
microfluidic device, development of PSLCs/MeLCs in uPASEs was completely inhibited
(Figure S7I). Impaired development of MeLCs in NODAL-KO nPASEs can be efficiently
reversed by supplementing ACTIVIN A, a NODAL pathway agonist, into the channel opposite
to BMP4 stimulation. In addition to rescuing MeLC development, supplementing ACTIVIN A to
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NODAL-KO pPASE:s also leads to the specification of BLIMP1+FOXA2+ EndoLCs (Figure
S7J). Supplementing ACTIVIN A to wildtype nPASEs also results in specification of
BLIMPI1+FOXA2+ EndoLCs (Figure S7K). We also successfully generated pPASEs using a
different hPSC line, including its corresponding NODAL-KO line, and a different chimpanzee
1PSC line, and repeated IWP2 and SB431542 treatment assays with consistent results (Figure
S8).

Stringent criteria for distinguishing human trophoblast and amniotic ectoderm

In vivo, blastocyst trophoblast and pre-gastrulation AM both appear as flattened, squamous
epithelium, and these two cell types share many lineage markers (Blakeley et al., 2015;
Petropoulos et al., 2016; Tyser et al., 2021; Yang et al., 2021). Unique markers that can
distinguish between these two cell types remain elusive, leading to confusions about true cell
lineage identities in different human embryoids (Xu et al., 2002; Zhao et al., 2021). Through
comparative transcriptome analysis of AM cells in the CS7 human gastrula (Tyser et al., 2021)
and trophoblast cells in human blastocysts (Blakeley et al., 2015; Petropoulos et al., 2016), we
identified a Trophoblast Amnion ontogenic gene list (Figures S9A and S9B; Table S8) and
applied this list to examine the properties of human trophoblast-like cells or AMLCs reported
previously (Figure 7A). This ontogenic gene list contains several previously reported AM
makers, such as ISLI, GABRP and IGFBP3 (Yang et al., 2021), and trophoblast makers, such as
GCM1, HAVCRI and CGA (Li et al., 2019; Okae et al., 2018; Pillai et al., 2019). Notably,
several pan-preimplantation embryo markers, including DPPA3 and DNMT3L (Guo et al., 2021;
lo et al., 2021; Yanagida et al., 2021) are found to be quite efficient markers for distinguishing
between blastocyst trophoblast and pre-gastrulation AM. Based on quantified correlation
coefficients between previously reported human trophoblast-like cells or AMLCs and human
trophoblast or AM cells, we conclude that the transcriptome of BMP4-treated primed hPSCs, as
in uPASEs, in 2D Transwell membrane-based AMLC differentiation assays (Zheng et al.,
2019b) and in 2D patterned gastrulation models (Minn et al., 2020), is similar to that of human
AM cells, whereas the transcriptome of trophoblast-like cells derived from naive hPSCs (Dong et
al., 2020; Guo et al., 2021; o et al., 2021; Yanagida et al., 2021) is consistent with that of human

blastocyst trophoblast. However, transcriptome of trophoblast-like cells derived from extended
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pluripotent stem (EPS) cells as well as that of trophoblast-like cells present in recently reported
human blastocyst-like structures fall somewhat in-between (Liu et al., 2021; Yu et al., 2021).

Using stringent criteria, we further identified a subset of DEGs within the
Trophoblast Amnion ontogenic gene list useful for distinguishing between human blastocyst
trophoblast and pre-gastrulation AM and thus between human trophoblast-like cells and AMLCs
(see Methods; Figures 7B, S9A and S9B). Specifically, markers expressed in human blastocyst
trophoblast but not in pre-gastrulation AM include FABP3, GCM1, S1004A14, DNMT3L, DPPA3,
HAVCRI, CGA, GTSF1 and SNORD9Y; conversely, genes expressed in human pre-gastrulation
AM but not in blastocyst trophoblast include ISLI, HEY1, GABRP, MIF, PLA2G2A4, IGFBP7
and /GFBP3 (Figure 7B). Many commonly used markers for human trophoblast or AM,
including GATA3, TFAP2A, TFAP2C, CDX2, KRT7 and KRT19, are shared between them
(Figure 7B). We should note that although AM transcriptome is obtained from the CS7 human
gastrula (Tyser et al., 2021), which remains as the only bona fide human pre-gastrulation AM
data currently available, most of pre-gastrulation AM markers identified here, including ISL/,
HEYI, GABRP and IGFBP3, are upregulated in the pre-gastrulation AM of cynomolgus embryos
(Yang et al., 2021).

We further conducted immunofluorescence analyses of IVF human blastocysts (D6), in
vitro cultured cynomolgus embryos (D14), trophoblast stem cells (TSCs) (Okae et al., 2018), and
AMLCs derived from BMP4-treated primed hPSCs (Zheng et al., 2019b), to ascertain these
newly identified human blastocyst trophoblast and pre-gastrulation AM markers (Figures 7C-7E
and S9C). Consistently, trophoblast cells of D6 human blastocysts show positive
immunostaining for GCM1, FABP3, DPPA3 and HAVCRI1, but are negative for ISL1 or
GABRP (Figure 7C). In contrast, AM cells in D14 cynomolgus embryos show clear
immunostaining for ISL1 and GABRP (Figure 7D). GATA3, TFAP2A and TFAP2C show
positive immunostaining in both trophoblast cells of D6 human blastocysts and AM cells of D14
cynomolgus embryos (Figures 7C and 7E). Immunofluorescence analyses of TSCs (Okae et al.,
2018), AMLCs (Zheng et al., 2019b) and uPASEs at ¢ = 36 h further support that ISL1, GCM1
and HAVCRI1 can be utilized for distinguishing between trophoblast-like cells and AMLCs,
whereas GATA3, TFAP2A or TFAP2C could not (Figure S9C and S9D). We should note that
ISL1 is a particular useful nuclear marker for distinguishing between human blastocyst

trophoblast and pre-gastrulation AM and thus between human trophoblast-like cells and AMLCs
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(Figures 7C-7E and S6C). The function of ISL1 in the AM in inducing Meso development in
cynomolgus embryos has recently been documented (Yang et al., 2021).

DISCUSSION
Due to bioethical restrictions and practical limitations, experimentations with post-implantation
human or NHP monkey embryos remain challenging. As an ethically acceptable alternative,
human embryoids are emerging as promising tractable experimental tools for advancing
fundamental knowledge of human development (Fu et al., 2021; Rossant and Tam, 2021). As
demonstrated by nPASEs, with the aid of integrative bioengineering strategies, human
embryoids can faithfully recapitulate certain morphogenetic and cell fate patterning events
during the early post-implantation human development, with superior controllability and
reproducibility. uPASEs are particularly suitable for studying the specification of AM and PGC:s,
since pPASE development shows spatiotemporal tissue patterning and architecture reminiscent
of those in the early post-implantation human embryo. By studying transcriptome kinetics during
progressive uPASE development, molecular maps of lineage diversifications from pluripotent
Epi towards AM, PS / Meso, and PGCs are constructed and further compared with in vivo human
and cynomolgus monkey data. Our data reveal that both WNT and NODAL signaling are
critically involved in Meso and PGC induction, but not for AM development, which is further
confirmed using NODAL-KO hPSC lines and drug inhibition assays. Through comparative
transcriptome analyses and validations with human and cynomolgus embryos, we further
propose some stringent criteria for distinguishing between human trophectoderm and AM cells.
Altogether, this study provides new knowledge of the lineage diversification roadmap of early
human development and will serve as a valuable resource for studying human development.
Experimentation on human embryoids can lead to a better understanding of the
mechanisms of human development and offers opportunities for functional genomic studies of
disease-causing mechanisms, identification of therapeutic targets, and preclinical modeling of
advanced therapeutics for precision medicine (Fu et al., 2021; Rossant and Tam, 2021).
Continuous development of human embryoids should lead to more authentic human
development models, with in vivo-like tissue architectures and spatiotemporal cell patterning and
organization reminiscent of those in natural human embryos. This is essential for understanding

the autonomy, self-organizing principles, and innate cell-cell interactions involved in human
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development. Importantly, molecular insights generated from embryoids, if at all possible,
should be functionally validated using in vivo models (Yang et al., 2021). When developing new
embryoids or improving existing embryoids, rigorous scientific scrutiny must be implemented to
avoid incorrect interpretations or overstatements (Posfai et al., 2021; Zhao et al., 2021).
Currently, there are few lineage markers accepted for distinguishing between human
trophectoderm and AM cells, and most existing embryoids are still limited in imitating sequential
cell lineage diversifications and 3D tissue organizations exhibited stereotypically in natural
embryos. Besides using cell lineage markers, validation and authentication of embryoids are
currently commonly conducted through comparative transcriptome studies (e.g., through
integration of scRNA-seq datasets from embryoids and in vivo models) (Posfai et al., 2021; Zhao
et al., 2021). However, caution should be taken when interpreting such integrated datasets, since,
although seemingly “unbiased”, existing scRNA-seq data analysis tools still have notable
artifacts depending on the cell types present, cell numbers and percentages of each cell type, and
specific computational algorithms used in the analysis tools. For instance, AM cells only account
for a very small cell population in post-implantation primate embryos; such a small AM cell
number can cause significant issues when scRNA-seq data of AM cells are integrated with
human blastocyst datasets wherein trophoblast cells are abundant. Thus, we propose that in order
to validate cell identities in peri-implantation human embryoids, expression of key cell fate
markers need to be clearly demonstrated, in addition to transcriptome comparison based on
scRNA-seq data. The cell identity markers established in this work for distinguishing between

human trophoblast and AM cells represent one step towards this important direction.

LIMITATIONS OF STUDY

As demonstrated in this study, uPASEs provide a promising tractable experimental model for
exploring previously inaccessible phases of early post-implantation human development.
However, uPASEs lack a few key embryonic and extraembryonic lineages in the post-
implantation human embryo, including the hypoblast (or extraembryonic endoderm),
extraembryonic mesoderm, or trophoblast cells. The hypoblast is known to play a critical role in
anterior-posterior patterning of the epiblast prior to gastrulation. Therefore, pPASEs only
recapitulate certain aspects of the lineage diversification and development of the posterior end of

the embryonic sac during the early post-implantation human development. Additionally,
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uPASEs disintegrate and lose their embryonic-like structure soon after 48 h in culture, as
differentiating MeLCs that are undergoing EMT emigrate from the uPASE structure, which
limits the potential of puPASEs for prolonged culture to investigate cell lineage development and
embryonic tissue formation at later developmental stages. It should also be noted that cell type
annotations and lineage inference analyses of the uPASE in this work are solely based on
transcriptomic studies. Thus, caution should be taken when interpreting these results included in

this Resource.
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METHODS

Ethics statement

UPASE lacks both the primitive endoderm and trophoblast and thus cannot form the yolk sac or
placenta. Therefore, uPASE does not have human organismal form or potential. Furthermore,
UPASE disassembles and lose structural integrity after # = 48 h, and all experiments were
terminated by no later than # = 72 h. All protocols with hPSCs were approved by the Human
Pluripotent Stem Cell Research Oversight Committee at the University of Michigan, Ann Arbor.
Protocols of human embryo experiments were approved by the Medicine Ethics Committee of
the First People’s Hospital of Yunnan Province (KHLL2020-KY064). This Medicine Ethics
Committee has 13 members, including lawyers, scientists and clinicians with relevant expertise.
This committee evaluated the scientific merits and ethical justification of human embryo
experiments and conducted a full review of the donation and use of human embryo samples. All
human embryos donated to this study were surplus frozen embryos from couples who had at
least one healthy baby after in vitro fertilization. All donor couples signed informed consents for
voluntary donations at the Department of Reproductive Medicine in the First People’s Hospital
of Yunnan Province. No economic benefits were offered during the process. Couples were
informed that their embryos would be used for experimental studies of human development and

that their donation would not affect their in vitro fertilization processes.

Cell culture

H9 (WAO09, WiCell; NIH registration number: 0062, female) and ESI-017 (BioTime, Inc.; NIH
registration number: 0093, male) hPSCs and chimpanzee iPSC lines (C3651, male and C4955,
female) (Gallego Romero et al., 2015; Pavlovic et al., 2018) were maintained in a feeder-free
culture system using mTeSR medium (STEMCELL Technologies). For hPSCs, culture plate was
coated with 1% lactate dehydrogenase-elevating virus (LDEV)-free, hESC cell-qualified reduced
growth factor basement membrane matrix Geltrex (Thermo Fisher Scientific; derived from
Engelbreth-Holm-Swarm mouse tumors) before cell seeding. For chimpanzee iPSCs, culture
plate was coated with 1% Matrigel (Thermo Fisher Scientific; extracted from Engelbreth-Holm-
Swarm mouse sarcoma). Cells were visually examined during each passage to ensure absence of
spontaneously differentiated, mesenchymal-like cells in culture. Cells were used before P70.

Both human and chimpanzee cells have been authenticated by original sources as well as in-
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617  house by immunostaining for pluripotency markers and successful differentiation into the three
618  germ layers. Cells were maintained for at least ten passages and authenticated as karyotypically
619  normal. Karyotype analysis was performed by Cell Line Genetics. Both human and chimpanzee
620  cell lines were tested negative for mycoplasma contamination (LookOut Mycoplasma PCR

621  Detection Kit, Sigma-Aldrich).

622

623  Generation of NODAL-knockout hPSCs

624  To generate NODAL-knockout (KO) hPSCs, a 58-bp portion of genomic DNA within NODAL
625  exon 1 was deleted by CRISPR/Cas9 using two crRNA purchased from Thermo Fisher Scientific
626 [NODAL crRNA 1: 5’-AGGCUCAGCAUGUACGCCAG-3’; NODAL crRNA 2:5°-

627 AGACAUCAUCCGCAGCCUAC-3’] (Figures S7A-S7C). Deplexes of crRNA:tracrRNA
628  were prepared using a standard protocol and introduced into H9 hPSCs with the Cas9 enzyme
629  and the pPCXLE-EGFP expression plasmid (a gift from Shinya Yamanaka; Addgene plasmid #
630 27082; RRID: Addgene 27082) for constitutional expression of EGFP using the NEON

631  electroporation system (Thermo Fisher Scientific). EGFP-expressing single cells were collected
632  and seeded onto Matrigel-coated 96-well plates by fluorescence-activated cell sorting

633  (FACSAria Fusion, BD Biosciences) with CloneR single-cell culture supplement diluted with
634 mTeSR Plus medium (STEMCELL Technologies). To detect the anticipated deletion, genomic
635 DNA was isolated from single-cell derived clones and subjected to PCR using the following
636  primers designed for amplification of NODAL exon 1 [Forward Primer: 5°-

637 CTTCCTTCTGCACGCCTGGTGG-3’; Reverse Primer: 5°-

638 CCAACCCACAGCACTTCCCGAG-3’]. Resulting amplicons were subjected to Sanger

639  sequencing using a primer 5’-CTTCCTTCTGCACGCCTGGTGG-3’. ESI-017 NODAL-KO
640  hPSC line is a generous gift from Aryeh Warmflash at Rice University (Chhabra et al., 2019).
641

642  Western blotting

643  Wildtype and NODAL-KO hPSCs were exposed to GSK3 inhibitor CHIR99021 (CHIR, 10 puM;
644  Cayman Chemical) for 24 h to augment expression of NODAL protein before cells were lysed
645  with RIPA buffer containing the cOmplete protease inhibitor cocktail (Roche). Protein

646  concentration was determined by the Bradford assay using Protein Assay Dye Reagent

647  Concentrate (Bio-Rad). An equal amount of protein (80 pg) from cell lysates of widetype and

22



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

NODAL-KO hPSCs was resolved on 10% SDS-PAGE and transferred onto PVDF membranes
(Thermo Fisher Scientific). Immunostaining was performed by blocking PVDF membranes with
5% skim milk for 1 h at room temperature followed by incubation overnight at 4 °C with mouse
monoclonal antibodies to human NODAL (Abcam ab55676; 1:500 dilution) or human GAPDH
(Sigma-Aldrich G8795; 1:20000 dilution) diluted in 5% skim milk. Membranes were washed
with phosphate buffered saline (PBS) containing 0.1% Tween-20 (PBS-T) and stained with
HRP-conjugated anti-mouse IgG antibody (Santa Cruz sc-516102; 1:3000 dilution) diluted in 5%
skim milk for 1 h at room temperature. Protein bands were detected by a chemiluminescence
assay using SuperSignal West Pico Plus and SuperSignal West Femto reagents (Thermo Fisher

Scientific).

Cynomolgus macaque

Healthy cynomolgus monkeys (Macaca fascicularis), aged from 5 to 8 years old, were used in
this study. All animals were housed either at the facility of the Yunnan Key Laboratory of
Primate Biomedical Research (LPBR) in China, or at the Astrid Fagraus laboratory of the
Karolinska Institutet in Sweden. Both facilities are accredited by AAALAC international.
Experimental protocols for using cynomolgus macaque embryos were approved by the
Institutional Animal Care and Use Committee of LPBR in China (KBI K001115033/01,01) and
by the Jordbruksverket in Sweden (Ethical Permit Number N277/14). Animals involved in this

study were never used for other treatments.

In vitro fertilization and culture of cynomolgus macaque embryo

In vitro fertilized cynomolgus macaque embryos were generated as described previously (Niu et
al., 2014). Briefly, healthy female cynomolgus monkeys aged 5 to 8 years old with regular
menstrual cycles were selected as oocyte donors. Cynomolgus monkeys were treated with
recombinant human follicle stimulation hormone (Merck, Gonal-f) for 8 days, followed by
administration of recombinant human chorionic gonadotropin (Merck, Ovidrel) on day 9. After
32-35 h, oocytes were collected by laparoscopic follicular aspiration. Metaphase II (MII) oocytes
were used for intracytoplasmic sperm injection to generate zygotes, and fertilization was
confirmed by the presence of two pronuclei. Zygotes were cultured in embryo culture medium-9

(polyvinyl alcohol (0.1 mg/mL), calcium chloride (1.9 mM), magnesium chloride (0.46 mM),
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potassium chloride (3.0 mM), sodium chloride (113.8 mM), sodium bicarbonate (25.0 mM),
sodium lactate (4.5 mM), Minimum Essential Medium (MEM) amino acid, MEM nonessential
amino acid, and gentamicin (10 mg/mL)) containing 10% fetal calf serum in 37 °C incubator
supplied with 5% CO- until the blastocyst stage. In vitro culture of NHP monkey blastocysts
beyond the implantation stage has been described previously (Yang et al., 2021). In brief, frozen
NHP monkey blastocysts were thawed using Thawing Media (Kizatato) and cultured in
blastocyst culture medium (Origio) for at least 4 h to recover. Blastocysts were then treated with
Acidic Tyrode’s solution (Sigma) to remove zona pellucida before being transferred onto an
ibiTreat 8-well p-plate (Ibidi) containing 300 pL of pre-equilibrated in vitro culture medium 1
(advanced DMEM/F12, 20% FBS, I-Glutamine, 1-cysteine, 1x Penicillin/Streptomycin, 1x ITS-
X, supplemented with beta-estradiol, progesterone). On the second day, 150 uL of culture
medium was aspirated, before 200 pL of pre-equilibrated in vitro culture medium 2 (advanced
DMEM/F12, 30% KSR, 1-Glutamine, l-cysteine, 1x Penicillin/Streptomycin, 1x ITS-X,
supplemented with beta-estradiol, progesterone) was added into the ibiTreat 8-well p-plate.

Embryo growth was recorded daily, and culture medium was replenished every two days till Day

14.

NHP monkey embryo cryosection and immunocytochemistry

Day 14 NHP monkey embryos were fixed using 2% paraformaldehyde (PFA; buffered in PBS)
overnight at 4 °C before being washed with PBS. Fixed embryos were dehydrated by 30%
sucrose overnight at 4 € before embedded in Tissue-Tek O.C.T. compound (Sakura) and frozen
in liquid nitrogen. Frozen blocks were used for cryosection using CryoStar NX70 Cryostat
(Thermo Fisher Scientific) according to manufacturer’s protocol. Immunofluorescence staining
was then performed according to a standard procedure. Briefly, sections were thawed and air-
dried at room temperature. After washing with PBS, sections were incubated in blocking buffer
(3% FBS) diluted in PBS with 0.1% Triton X-100) for 1 h at room temperature and then
incubated overnight at 4 °C with primary antibodies diluted in blocking buffer. The sections
were washed with PBS-T and incubated with secondary antibodies diluted in blocking buffer for
2 h at room temperature. After washing thoroughly with PBS-T, sections were mounted and
imaged. Secondary antibodies were used in dilution of 1:500. Images were acquired by a Zeiss

700 LSM Confocal Microscope and analyzed by iMaris.
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Immunocytochemistry for D6 human embryos

D6 human embryos were fixed with 4% PFA for 20 min at room temperature in a 96-well plate,
washed with PBS, and then permeabilized and blocked by 0.2% Triton X-100 supplemented with
3% bovine serum albumin (BSA) overnight at 4 °C. Embryos were then transferred onto a new
well with primary antibodies for 16 - 18 h at 4 °C. Embryos were washed 3 times with PBS
containing 0.05% Tween-20, 15 min every time, before being transferred to secondary antibody
solutions for 4 h at room temperature. Embryos were then washed 3 times in PBS containing
0.05% Tween-20, 15 min every time, before being transferred onto an ibiTreat 8-well p-plate.

All antibodies were diluted by 1% BSA solutions.

Generation of nPASEs

The microfluidic device was fabricated by bonding a polydimethylsiloxane (PDMS) structure
layer to a glass coverslip. Singly dissociated hPSCs or chimpanzee iPSCs were loaded into the
cell loading channel and guided to settle into preformed, concave Geltrex pockets by tilting the
device by 90° for 10 min. hPSCs were then maintained in mTeSR containing 10 pM Y27632
(Tocris) for 18 h to allow for cell clustering. At #= 0 h, culture medium in all medium reservoirs
of the device was switched to a fresh basal medium comprising Essential 6 medium (E6; Thermo
Fisher Scientific) and FGF2 (20 ng mL™'; GlobalStem), with additional 50 ng mL~! BMP4 (R&D
Systems) supplemented only in the cell loading channel. A detailed protocol for microfluidic
device fabrication and generation of pWPASEs can be found elsewhere(Zheng et al., 2021; Zheng
et al., 2019b). To examine possible involvements of different signaling pathways involved in the
development of uPASEs, IWP2 (10 uM; Tocris), SB 431542 (10 uM; Cayman Chemical) or
LY294002 (20 uM; BioVision) was supplemented into basal medium from ¢ = 0 h. For assays
with ACTVIN A, 100 ng mL™' ACTIVIN A (R&D Systems) was supplemented into the channel
opposite to BMP4 stimulation from ¢ = 0 h. For in situ proliferation measurements, Click-iT EdU
Kit (Invitrogen) was used as per manufacturer's protocol. Diluted EdU solution (10 uM) was
introduced into all reservoirs of the device at # = 24 h. After 3 h of incubation, the uPASEs was

fixed and imaged.

Immunocytochemistry for uPASEs
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uPASEs were fixed with 4% PFA for 12 h before being permeabilized in 0.1% SDS solution
(sodium dodecyl sulphate, dissolved in PBS) for 3 h. uPASEs were then blocked in 4% donkey
serum (Sigma-Aldrich) at 4 °C for 24 h, followed by incubation with primary antibody solutions
at 4 °C for another 24 h. Samples were then labelled with donkey-raised secondary antibodies
(1:500 dilution) at 4 °C for 24 h. 4',6-diamidino-2-phenylindole (DAPI; Thermo Fisher
Scientific) was used for counterstaining cell nuclei. Both primary and secondary antibodies were
prepared in 4% donkey serum supplemented with 0.1% NaN3. 70 pL antibody solutions were
added to each medium reservoir of the microfluidic device for immunostaining. All primary and
secondary antibodies used in this study are listed in Table S9. All confocal micrographs of
UPASEs were acquired by a NIKON A1SI Confocal Microscope equipped with a
photomultiplier tube (PMT) detector and processed using ImageJ 1.53c.

Quantification of SOX17+ cells

UPASEs at ¢t = 48 h with or without LY294002 were stained for SOX17 using the protocol
described above. All confocal micrographs captured at the central focal plane of structure (50 pm
above the microfluidic device bottom surface) were used for quantification. The percentage of
SOX17+ cells was calculated as the ratio between the area of SOX17 channel and DAPI channel
for each uPASE. The binarization and measurement of the images was conducted using ImageJ
1.53c. Quantitative results were analyzed using independent, two-tailed Student's t-test in Excel

(Microsoft). P < 0.05 was considered statistically significant.

Trophoblast stem cells and derivation of AMLCs using BMP4
Human trophoblast stem cells (hTSCs) derived from blastocysts were generously provided by
Dr. H. Okae and Dr. T. Arima (Okae et al., 2018). hTSCs were maintained in 1% Geltrex coated
6-well plates in DMEM/F12 supplemented with 0.05 mM 2-mercaptoethanol, 0.2% fetal bovine
serum (FBS), 0.5% knockout serum replacement (KSR), 0.5% penicillin-streptomycin, 0.3%
BSA, 1% ITS-X supplement, 1.5 ug mL™! L-ascorbic acid, 50 ng mL! epidermal growth factor
(EGF), 2 uM CHIR99021, 1 uM A83-01, 1 uM SB431542, 0.8 mM valproic acid (VPA) and 5
UM Y27632, and passaged using TrypLE.

To obtain AMLCs by treating hPSCs with BMP4, singly dissociated hPSCs were
suspended in mTesR1 containing 10 pM Y27632 and seeded in a 1% Geltrex coated 6-well plate

26



772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

at a density of 2.5 x 10° cells cm™. Note that this cell seeding density is optimized to avoid
extensive cell death (when cell density is too low) or emergence of PSLCs in culture through an
unspecified inductive effect of incipient AMLCs (Zheng et al., 2019b). 18 h after cell seeding,
culture medium was switched to Essential 6 medium containing FGF2 (20 ng mL™") and BMP4

(50 ng mL™). Resulting AMLCs were fixed and stained after 48 h of BMP4 treatment.

Single cell dissociation and RNA-sequencing

uPASEs (H9) at different time points were washed twice with DMEM/F12 for 10 min and
incubated with Accutase for 1 h. After incubation, uPASEs in the microfluidic device were
dissociated into single cells by gentle agitating. Single cells from six microfluidic devices were
collected and pooled into PBS containing 0.5% BSA before being centrifuged at 300 g for 5 min.
The resultant cell pellet was re-suspended in PBS containing 0.5% BSA. Within 1 h after cell
dissociation, cells were loaded into the 10X Genomics Chromium system (10X Genomics). 10X
Genomics v.3 libraries were prepared according to the manufacturer’s instructions. Libraries
were then sequenced using paired-end sequencing with a minimum coverage of 20,000 raw reads
per cell using an [llumina NovaSeq-6000. scRNA-seq data were aligned and quantified using
Cell Ranger Single-Cell Software Suite (v.3.1.0, 10X Genomics) against the Homo sapiens
(human) genome assembly GRCh38.p13 from ENSEMBL. Chimpanzee pPASEs (C3651) were
dissociated and sequenced following the same protocol. scRNA-seq data from chimpanzee

uPASEs were aligned against Pan _tro 3.0 from ENSEMBL.

Data integration, dimensionality reduction and clustering
Analysis of scRNA-seq data and integration of sScRNA-seq datasets were performed using Seurat

R package (v.4.0.0.0, https://satijalab.org/seurat/) (Butler et al., 2018; Satija et al., 2015). Default

setups were used unless noted otherwise. Briefly, a single batch of sScRNA-seq dataset was
filtered based on total number of genes detected and percentage of total mitochondrial genes.
Gene expression was then calculated by normalizing the raw count with the total count before
multiplying by 10,000 and log transformed. Cell cycle was regressed out based on cell cycle
scores (CellCycleScoring) during data scaling process (ScaleData). PCA analysis (RunPCA) was
then performed on filtered data followed by embedding into low dimensional space with

Uniform Manifold Approximation and Projection (UMAP; RunUMAP). Identification of cell
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clusters by a shared nearest neighbor (SNN) modularity optimization-based clustering algorithm
was achieved using the FindClusters function in the Seurat R package. For integration of
different scRNA-seq datasets, count matrices of different datasets were filtered and normalized
separately before being integrated using the IntegrateData function based on 2,000 anchor
features. After integration, the integrated scRNA-seq dataset was analyzed following the
standard Seurat pipeline. Annotation of cell clusters was based on expression of canonical

lineage marker genes.

RNA velocity analysis and partition-based graph abstraction analysis (PAGA)

Bam files generated by the Cell Ranger pipeline was used for RNA velocity analysis. Genome
annotations GRCh38.p13 were used for counting spliced and unspliced mRNA of individual
cells. Python package scVelo (v.0.2.2, https://scvelo.readthedocs.io) was employed to perform
RNA velocity analysis using dynamical modeling (scv.tl.velocity) (Bergen et al., 2020; La
Manno et al., 2018). Function ‘scv.pl.velocity embedding_stream’ was used to project RNA
velocities onto UMARP plots or diffusion maps. All default parameters were used unless noted
otherwise. Python package Scanpy (v.1.8.0, https://scanpy.readthedocs.io/en/stable/) was used
for evaluating the relationship between different cell clusters by the partition-based graph
abstraction (PAGA) analysis (Wolf et al., 2018). Briefly, Seurat object was converted to “Loom”
file and passed to Scanpy. Neighborhood graph of observations was then computed using 20 PCs
(sc.pp.neighbors). Finally, PAGA graph was plotted with a “eq_tree” layout.

Gene regulatory network analysis

Regulatory activity of transcription factors associated with specific cell types was assessed using
the R-package SCENIC (Single Cell rEgulatory Network Inference and Clustering, v.1.1.2-2,
https://github.com/aertslab/SCENIC) (Aibar et al., 2017). Briefly, regulatory modules were first

identified by inferring co-expression with transcription factors using GENIE3. Each co-
expression module was then analyzed using cis-regulatory motif analyses (RcisTarget). Only
modules with significant motif enrichment of the correct upstream regulator were retained. The
human motif collection v9 and the cisTarget databases for hg38 were used in the pipeline
(https://resources.aertslab.org/cistarget/). Filtered counts of the integrated Seurat object were

used as input of SCENIC. All default parameters were used in SCENIC unless noted otherwise.
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Trajectory interference using diffusion map and pseudotime

Diffusion maps were obtained by the R-package Density
(https://bioconductor.org/packages/release/bioc/html/destiny.html), which computes kernel
density estimates with parametric starts and asymmetric kernels (Angerer et al., 2016). To
generate three-dimensional diffusion maps, PCA embeddings of the integrated Seurat object
were used as input of ‘diffmap’ function. Cells in the three-dimensional diffusion map were
color-coded consistently with the UMAP plot of the integrated Seurat object. Three-dimensional
visualization was realized using R-package rgl (3D Visualization Using OpenGL). For trajectory
inference and pseudotime analysis of specific cell lineages, relevant cell clusters of the integrated
Seurat object were extracted using Subset function (Seurat). PCA embeddings of selected cell
clusters were then used as the input of ‘diffmap’ function. To visualize gene expression
dynamics, diffusion pseudotime (dpt) was utilized. The roots of the diffusion map were
automatically chosen by the algorithm; and the EpiLC cluster was arbitrarily made as the initial
cell type. Expression levels of selected genes were fitted as a function of the pseudotime with
“loess” method by using ‘geom smooth’ function in ggplot2 R package (v.3.3.3). Cells with
extreme dpt values were counted as outliner and excluded from gene expression dynamic
analysis. RNA velocity vectors were computed as described above and superimposed onto the
diffusion maps. In the case of lineage bifurcation, branching point and branches of different
lineages were identified by locally fitting half-lines to single-cell data in the diffusion map using

K-Branches R package (https://github.com/theislab/kbranches) (Chlis et al., 2017).

Differential gene expression, gene ontology enrichment and pathway analyses

Gene expression data depicted in feature plots and dot plots in this paper were calculated from
raw counts after NormalizeData function followed by ScaleData function of the Seurat package,
unless noted otherwise. Differentially expressed genes (DEGs) between different cell types were
identified using FindMarkers function (Seurat), with a minimal fold difference of 0.25 in the
logarithmic scale and > 10% detection rate in either of the two cell types under comparison.
Gene ontology (GO) enrichment and pathway analyses were performed using online tool
iPathwayGuide (Advaita Bioinformatics) referencing AmiGO Gene Ontology database and
KEGG PATHWAY Database, respectively.
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Integration, re-analysis and PCA of published human embryo data

The scRNA-seq dataset of the CS7 human gastrula was integrated with uPASE scRNA-seq
datasets. Since pWPASEs contain AMLCs, PGCLCs and PSLCs / MeLCs, only relevant cell types
from the human gastrula (Amniotic/embryonic ectoderm, Epiblast, Primitive Streak, Nascent
Mesoderm, Emergent Mesoderm) were extracted according to the annotations in the original
publication. Human gastrula scRNA-seq dataset was generated using Smart-seq2. To compare
with pPASE scRNA-seq datasets generated using the 10X Genomics Chromium system, raw
counts of each cell in the human gastrula were normalized to exon sizes before being utilized to
create the Seurat object (input count = raw count / exon size x 1,000). Exon size information was
obtained from GRCh38.p13, ENSEMBL. To integrate scRNA-seq data from the human gastrula
with those of uPASEs, uPASE scRNA-seq datasets from the three time points (¢ =24 h, 36 h and
48 h) were first filtered. Normalization, Scaling (including cell cycle regression) and PCA were
then performed separately on each of the datasets after which they were combined using the
reciprocal PCA approach (IntegrateData function, Seurat) based on 30 dimensions and 2,000
anchor features. Dimensionality reduction and clustering were then performed as described
above. Downsampling of large scRNA-seq datasets was performed using Seurat R package
(Subset), which randomly selects 100 cells from every cluster in the original datasets to form a
new Seurat object. This step helps prevent larger datasets from dominating the downstream
analysis.

For re-analysis of human gastrula scRNA-seq dataset, relevant cell types were processed
with the default Seurat pipeline. Trajectory inference using diffusion map and pseudotime
analysis was achieved using the same pipeline as for uPASEs, as descried earlier. For PCA,
large datasets were first downsampled; then the normalized counts of epiblast ontogenetic genes
(Table S5) from different datasets were merged into a matrix. The matrix was scaled to ensure
each gene has zero average and unit variance. PCAs was calculated and visualized using Seurat

R package.
Cross-species comparison

Cross-species comparisons utilize sSCRNA-seq datasets from the CS7 human gastrula, human

UPASEs (=24 h, 36 h and 48 h), chimpanzee uPASEs (¢ =48 h), in vivo cynomolgus embryos
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(D13 - 17), and in vitro cultured cynomolgus embryos (D11 - 17) (Ma et al., 2019; Nakamura et
al., 2016; Sasaki et al., 2016; Tyser et al., 2021; Yang et al., 2021). To mitigate artifacts resulted
from different sequencing platforms, for datasets generated using Smart-seq2, raw counts were
first normalized to exon length, as described above. Exon size information of cynomolgus
monkey was obtained from Macaca fascicularis 6.0, ENSEMBLE. Average raw counts
normalized by exon length for specific cell types in different datasets were then transformed into
log2(counts per million reads + 1) and used as gene expression levels for calculating the
correlation coefficient matrix and heat map plotting.

Ontogenic genes of mesoderm and PGC lineages were identified through DEG analysis
of in vivo cynomolgus embryo datasets. Briefly, for mesoderm lineage ontogenic genes, DEGs of
“Gastl”, “Gast2a” and “Gast2b” as compared to “PostL-EPI” were identified using FindMarkers
function (Seurat)(Nakamura et al., 2016). All DEGs, with a minimal fold difference of 2 in the
logarithmic scale (logfc), > 10% detection rate in either of the two cell types under comparison,
and adjusted P-value < 0.05, were used as mesoderm lineage ontogenic genes (Table S6). To
identify PGC lineage ontogenic genes, DEGs of “ePGC” as compared to “PostL-EPI”(Sasaki et
al., 2016), with a minimal fold difference of 2 in the logarithmic scale (logfc), > 10% detection
rate in either of the two cell types under comparison, and adjusted P-value < 0.05, were used as
PGC lineage ontogenic genes (Table S6). Amniotic ectoderm ontogenic genes were obtained
through DEG analysis of Day 14 in vitro cultured cynomolgus embryos (Yang et al., 2021).
Specifically, DEGs of “early-Amnion” and “late-Amnion” as compared to “EPI” were identified
using FindMarkers function (Seurat). All DEGs, with a minimal fold difference of 0.75 in the
logarithmic scale (logfc), > 10% detection rate in either of the two cell types under comparison,

and adjusted P-value < 0.01, were used as amniotic lineage ontogenic genes (Table S6).

Analysis of cell-cell interactions
R package CellChat was used to perform cell-cell communication analysis

(http://www.cellchat.org/) (Jin et al., 2021). Briefly, based on manually curated databases that

consider known structural compositions of ligand-receptor interactions, CellChat infers and
analyzes intercellular communication networks from scRNA-seq data using network analysis and
pattern recognition. Seurat object including count matrix and clustering results from each dataset

is imported to CellChat. The default human database was used for pPASE and cynomolgus
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embryo dataset analyses, whereas the default mouse database was used for mouse embryo
dataset analysis. For both databases, only secreted signaling pathways from Kyoto Encyclopedia
of Genes and Genomes (KEGGQG) were used. Default values were used for all parameters, except

that the truncated mean was lowered to 5% to increase algorithm sensitivity.

Comparisons between human trophoblast and amniotic ectoderm

Several published RNA-seq datasets related to human blastocyst trophoblast and amniotic
ectoderm were surveyed in this work. Datasets generated from bulk RNA-sequencing or Smart-
seq2 were first normalized by exon sizes as described earlier. Specifically, blastocyst trophoblast
cells annotated in (Blakeley et al., 2015; Petropoulos et al., 2016) were utilized as the reference
of human blastocyst trophoblast. Both two datasets were analyzed in this work to mitigate batch
effects and systematic variations. Amniotic/embryonic ectoderm cells from the CS7 human
gastrula were utilized as the reference of human amniotic ectoderm (Tyser et al., 2021). DEGs
between trophoblast and amniotic ectoderm were first identified using trophoblast cells from
(Blakeley et al., 2015; Petropoulos et al., 2016), respectively, as compared to
amniotic/embryonic ectoderm cells from the CS7 human gastrula, with a minimal fold difference
of 0.75 in the logarithmic scale (logfc) and adjusted P-value < 0.05. Overlapped DEGs identified
from both comparative transcriptome analyses were used as Trophoblast Amnion ontogenic
genes (n =299) to calculate correlation coefficients of published datasets as well as AMLCs
from this work with human blastocyst trophoblast and amniotic/embryonic ectoderm (Table
$8). Correlation coefficients and gene expression heatmap were calculated based on averages of
experimental repeats, if any. The average gene expression level of the two trophoblast datasets
was used to calculate correlation coefficients of surveyed cells with the human blastocyst
trophoblast. To identify the most reliable markers for distinguishing trophoblast cells from
amniotic ectoderm cells, more stringent criteria were applied than those for identifying
Trophoblast Amnion ontogenic genes. Among Trophoblast Amnion ontogenic genes with

logfc > 2, only the genes that are negative in the other cell type (normalized count < 0.05) were
identified as reliable markers. Overlapped markers revealed for both trophoblast datasets were

proposed as markers for distinguishing human trophoblast cells from amniotic ectoderm cells.

Code availability
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RStudio and Python scripts used in this work are available from the corresponding authors upon

request.

Data availability

All processed datasets are available at https://umichibbl.shinyapps.io/shinyapp/. Data supporting
findings of this study are available within the article and its Supplemental Information files and
from the corresponding authors upon request. ScRNA-seq data are also available at the Gene
Expression Omnibus under accession no. GSE185643. All source data for graphs included in the

paper are available in the online version of the paper.
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Figure 1. Single-cell transcriptomic profiling of pPASE development.

(A) Development of pPASEs. Single hPSCs were guided to form uniform-sized clusters at
prescribed locations in the microfluidic device. Asymmetric stimulation with exogeneous BMP4
from 7 =0 — 48 h led to progressive development of uPASEs. E6: Essential 6. See Methods for
the uPASE protocol.

(B) Bright-field images showing progressive development of uPASEs over time, including
thinning and flattening of the incipient amniotic ectoderm and thickening of the incipient
mesoderm cells before their dissemination from the uPASE structure.

(C) Dimension reduction presentation via UMAP and cell identity annotations of single-cell
transcriptome datasets obtained for uPASEs at indicated time points. n indicates cell numbers
analyzed for each time point.

(D) UMAP of integrated single-cell transcriptome datasets of WPASEs from ¢ =24, 36 and 48 h
(shown in (C)), color-coded according to cell identity annotations (/eff) or time points (middle).
RNA velocity vectors were projected onto the UMAP-based embeddings (right). n indicates the
total number of cells combined from the three time points.

(E) Dot plot showing expression of key marker genes across the cell clusters as indicated. The
sizes and colors of dots indicate the proportion of cells expressing the corresponding genes and
their averaged scaled values of log-transformed expression, respectively.

(F) Partition-based graph abstraction (PAGA) analysis of the integrated single-cell transcriptome
dataset shown in (D). The thickness of lines connecting pairs of cell clusters indicates the degree
of correlation between the cell cluster pairs. Lines with a correlation weight less than 0.05 are not
shown. Pie charts for each cell cluster show percentages of indicated cell types from the three
time points. Pie chart size is proportional to the total number of indicated cell types. See Table
S1.

(G) Heatmap of regulon activities calculated from gene regulatory network interference. Selected
master regulators of different cell clusters are depicted as indicated. See Table S2 and
Supplemental HTML Document 1.

(H) Gene set activity of selected regulons overlaid on the integrated UMAP plot from (D).

EpiLC: epiblast-like cell; PSLC: primitive streak-like cell; MeLC1/2: mesoderm-like cell 1/2;

AMLC1/2: amniotic ectoderm-like cell 1/2; NasAMLC: nascent amniotic ectoderm-like cell;
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1222 PGCLC: primordial germ cell-like cell. In (B), experiments were repeated more than twenty
1223 times with similar results. Scale bars, 50 um.
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Figure 2. Trajectory inference and gene expression dynamics during pnPASE development.

(A) Three-dimensional diffusion map based on embeddings of the UMAP plot in Figure 1D,
showing developmental trajectories of AMLC, PSLC / MeLC and PGCLC lineages. The UMAP
plot is color-coded according to cell identity annotations. See Video S1

(B) left: Trajectory inference (diffusion map) of AMLC lineage (EpiLC, NasAMLC, AMLCI1
and AMLC?2). right: Pseudotime analysis (color-coded) based on the AMLC lineage diffusion
map.

(C) left: Trajectory inferences (diffusion map) of PSLC / MeLC lineage (EpiLC, PSLC and
MeLC1 or MeLC2). right: Pseudotime analysis (color-coded) based on the PSLC / MeLC
lineage diffusion map.

(D) Expression dynamics (pseudotime) of selected genes during AMLC lineage development.
Level of confidence (0.95) is indicated by band width.

(E) Expression dynamics (pseudotime) of selected genes during PSLC / MeLC lineage
development. Level of confidence (0.95) is indicated by band width.

(F) Representative confocal micrographs showing pPASEs at # = 36 h stained for ISL1, GATA3
and TBXT (i); TFAP2A, MIXL1 and TBXT (ii); ISL1, GABRP and TBXT (iii, with zoom-in
view showing apical expression of GABRP); ISL1, HEY1, and TBXT (iv).

(G) Differentially expressed genes (DEGs) related to WNT signaling pathway (KEGG: 04310)
in PSLC compared to EpiLC.

(H) Representative confocal micrographs showing pPASEs at # = 36 h stained for ISL1, GATA3
and TBXT (top); TFAP2A, MIXL1 and TBXT (bottom) with IWP2 supplemented into the basal
medium from =0 h.

(I) UMAP and cell identity annotations of single-cell transcriptome data obtained for uPASEs at
¢t =48 h with IWP2 supplemented into the basal medium from # = 0 h. » indicates cell numbers of
indicated cell types.

(J) Dot plot showing expression of key marker genes across the cell clusters as indicated. The
sizes and colors of dots indicate the proportion of cells expressing the corresponding genes and

their averaged scaled values of log-transformed expression, respectively.

In F and H, experiments were repeated four times with similar results. Nuclei were

counterstained with DAPI. Scale bars, 50 um.
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Figure 3. PGCLC specification during pPASE development.
(A) Trajectory inference of PGCLC lineage. left: Diffusion map using EpiLC, NasAMLC,
AMLCI1, AMLC2, and PGCLC clusters from the UMAP plot in Figure 1D. Dotted lines show

the branching point and branches identified by K-Branches algorithm. middle left: Pseudotime

analysis based on the diffusion map. middle right: RNA velocity vectors overlaid on the

diffusion map. right: Branches and the branching point identified by K-Branches algorithm. Note

that NasAMLC cluster is separated into three branches, which after merging with EpiLC,
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AMLCI1/2 and PGCLC, respectively, are annotated as EpiLC-branch NasAMLC, AMLC-branch
NasAMLC and PGCLC-branch NasAMLC, respectively.

(B) Expression dynamics (pseudotime) of selected genes during PGCLC lineage development.
Level of confidence (0.95) is indicated by band width.

(C) Representative confocal micrographs showing pPASEs at # = 48 h stained for TFAP2C,
NANOG and SOX17 (top) and TFAP2C, BLIMP1 and SOX17 (bottom).

(D) Venn diagram showing upregulate genes of AMLC-branch and PGCLC-branch NasAMLCs
when compared to EpiLC-branch NasAMLCs. Note that only a subset of these genes is specified
in the diagram.

(E) Pathway analysis of DEGs in PGCLC-branch NasAMLCs and AMLC-branch NasAMLC:s,
as compared to EpiLC-branch NasAMLCs. Green and blue colors indicate genes or pathways
identified only for PGCLC-branch NasAMLCs and AMLC-branch NasAMLCs, respectively.
(F) Representative confocal micrographs showing uPASEs at # = 48 h stained for TFAP2C,
NANOG and SOX17, with IWP2 supplemented into the basal medium from 7= 0 h.

In C and F, experiments were repeated four times with similar results. Nuclei were

counterstained with DAPI. Scale bars, 50 um.

47



1283

Figure 4

Epi
NasAM
AMA1
AM2
PS
Mesa1
Meso2
PGC

(AR NN NN N ]

human
PGC| pase

| humand-
AMZ || pagE

| human
AM1 LPASE

human
NasAM | UPASE

Cell cluster

human

Ps| HPASE

human
MPASE.

Epi|

FLIEE

eq@) <<f5

o :\v"@ K

T e

P

\5\, P@? ‘;\\* &P ‘0*" ‘bqg +:: &‘,x\ ‘.?’

Expression level

04
02
0.0

SOX2

IsL1

TFAP2A

Epiblast Primitive streak Nascent mesoderm

High . . .

@ Epi
Emergent mesoderm  Amniotic/embryonic ® NasAM
Ectoderm o AM1
Low & AM2
® PS
Percent @ Meso1
expressed @ Meso2
. 25 ® PGC
® 50
[ B
®
TBXT MESP1 CLDN10
TFAP2A Sox17 NANOS3
High
Y,
5 '
b
‘a o ’ Low
GATA3 1sL1 MsSx2
3
06 23
03 1.0 2
0.5 1
0.0 oo & &

0.0 02 04 06 0.8

TBXT

0.0 02 04 0.6 08 0.0 0.2 04 06 08 00 02 04 06 08

GABRP ANXA3 IGFBP3

ava

o =MW
o = M ow

000204 086 0.8

48

00 02 04 06 08 0.0 0.2 04 06 08 00 02 04 08 08

pseudotime



1284  Figure 4. Transcriptomic comparison between pnPASEs and Carnegie Stage 7 human

1285  gastrula.

1286  (A) left: UMAP of integrated dataset of puPASEs from ¢ =24, 36 and 48 h (18,335 cells; grey)
1287  and CS7 human gastrula (647 cells, excluding irrelevant cells; red). right: UMAP project of
1288  integrated dataset with cell identity annotations.

1289  (B) Dot plot comparing expression of key marker genes across different cell clusters from

1290 uPASEs and CS7 human gastrula as indicated. The sizes and colors of dots indicate the

1291  proportion of cells expressing the corresponding genes and their averaged scaled values of log-
1292  transformed expression, respectively.

1293  (C) Comparisons between human gastrula cell annotations in the original publication and

1294  annotations in the integrated dataset. The original annotations are indicated above the pie charts.
1295  See Table S5

1296 (D) Re-analysis of related cells from CS7 human gastrula (647 cells). Cell identity annotations
1297  are color coded as indicated. Note that primordial germ cells (PGCs) appear in the

1298  amniotic/embryonic ectoderm (AM) cluster.

1299  (E) Feature plots showing expression of selected lineage markers used for cell cluster

1300 annotations in (D).

1301  (F) Trajectory inference (diffusion map) of the AM cluster (including PGCs) in (D).

1302  (G) Expression dynamics (pseudotime) of selected genes during AM lineage development. Level
1303  of confidence (0.95) is indicated by band width.

1304

1305  Epi: Epiblast; PS: primitive steak; Meso: Mesoderm; AM: amniotic ectoderm; PGC: primordial
1306  germ cell.

1307
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Figure 5. Transcriptomic coordination of primate early post-implantation development.
(A) Representative confocal micrographs showing chimpanzee pPASEs at ¢t = 48 h stained for
ISL1, GATA3 and TBXT (i); TFAP2A, MIXL1 and FOXA2 (ii); TFAP2C, NANOG, SOX17
(iii); TFAP2C, BLIMP1 and FOXA2 (iv).

(B) Left: Bright-field image showing a chimpanzee uPASE at ¢t = 48 h. Right: UMAP plot of
single-cell transcriptome dataset from chimpanzee uPASEs at # = 48 h. Cell identity annotations
are color coded as indicated. » indicates the total cell number. EndoLC: Endoderm-like cell.
(C) Dot plot showing expression of key marker genes across the cell clusters as indicated. The
sizes and colors of dots indicate the proportion of cells expressing the corresponding genes and
their averaged scaled values of log-transformed expression, respectively.

(D) Heat map of correlation matrix for primitive streak / mesoderm-related lineages including
those reported by others. Correlation coefficients between indicated cell types are calculated
based on mesoderm ontogenic genes identified from cynomolgus embryo transcriptome data
(131 in common). See Table S6.

(E) Heat map of correlation matrix for amnion-related lineages including those reported by
others. Correlation coefficients between indicated cell types are calculated based on amnion
ontogenic genes identified from cynomolgus embryo transcriptome data (142 in common). See
Table S6.

(F) Heat map of correlation matrix for PGC-related lineages including those reported by others.
Correlation coefficients between indicated cell types are calculated based on PGC ontogenic
genes identified for cynomolgus embryo transcriptome data (194 in common). See Table S6.
(G) Representative confocal micrographs showing chimpanzee uPASEs at ¢ = 48 h with IWP2
supplemented into the basal medium from ¢ = 0 h, stained for ISL1, GATA3 and TBXT (zop);
TFAP2C, NANOG and SOX17 (bottom),

In D-F, correlation coefficients are calculated using average ontogenic gene expression of single
cells. Original cell annotations in published datasets are used. Logx(reads per million + 1) and
Logo (transcripts per million + 1) are used for transcriptome datasets generated using 10x

Chrome and Smart-seq2, respectively.
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Human: human gastrula from Ref.(Tyser et al., 2021). Epi: epiblast; PS: primitive streak; Nas.:
Nascent mesoderm; Emgt.: emergent mesoderm; Ecto.: amniotic/embryonic ectoderm; PGC:
primordial germ cell. H uPASE and C_uPASE: uPASEs generated from human and
chimpanzee cells, respectively. In vivo monkey: in vivo cynomolgus embryo from
Ref.(Nakamura et al., 2016; Sasaki et al., 2016). 1 EPI: late epiblast; Gast: gastrulation; e PGC:
early primordial germ cell. In vitro monkey: in vitro cultured cynomolgus embryo from Ref.(Ma
et al., 2019; Yang et al., 2021). Trans: Transition; Meso: mesoderm; | EPI: late epiblast; e Gast:
early gastrulation; | Gast: late gastrulation; e AM: early amniotic ectoderm; I AM: late

amniotic ectoderm.

Expression of ontogenic genes is included in Table S6. In A and G, experiments were repeated

four times with similar results. Nuclei were counterstained with DAPI. Scale bars, 50 pm.
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Figure 6. NODAL is essential for mesoderm development in pPASEs.

(A) Representative bight-field images showing progressive development of uPASEs generated
from wildtype (fop) and NODAL-KO (bottom) hPSCs.

(B) UMAP plot of single-cell transcriptome data from NODAL-KO puPASE:s at ¢ = 48 h, with cell

identity annotations color coded. n indicates the total cell number.
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(C) Dot plot showing expression of key marker genes across the cell clusters in NODAL-KO
UPASE:s as indicated. The sizes and colors of dots indicate the proportion of cells expressing the
corresponding genes and their averaged scaled values of log-transformed expression,
respectively.

(D) Representative confocal micrographs showing nPASEs generated from wildtype and
NODAL-KO hPSCs at ¢ =48 h, stained for ISL1, GATA3 and TBXT (/eft) and TFAP2C,
NANOG and SOX17 (right).

(E) left: Integrated UMAP plot of wildtype nPASEs at ¢ = 24, 36, 48 h and NODAL-KO
uPASEs at ¢ = 48 h, color-coded according to cell identity annotations. right: data from wildtype
and NODAL-KO pPASEs are shown in different colors as indicated.

(F) UMAP plots of NODAL-KO (left) and wildtype (right) WPASEs at ¢t = 48 h, with data
isolated from E. Doted lines contour cell clusters corresponding to AMLC, PSLC / MeLC and
PGCLC lineages.

(G) Percentages of indicted cell types in wildtype (red) and NODAL-KO (blue) pPASE:s.

(H) Volcano plots showing DEGs between PSLCs from wildtype and NODAL-KO pPASEs,
with selected genes labelled.

(I) Enriched GO categories and KEGG pathways among DEGs between wildtype and NODAL-
KO PSLCs.

In D, experiments were repeated three times with similar results. Nuclei were counterstained

with DAPI. Scale bars, 50 um.
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Figure 7. Stringent criteria for identifying human trophoblast and amniotic ectoderm.

(A) Correlation coefficients of in vitro derived cells with human trophoblast and amniotic
ectoderm, computed using Trophoblast Amnion ontogenic genes. See Table S8.

(B) Heatmap showing expression levels of selected genes related to human trophoblast and
amniotic ectoderm. Identified human trophoblast and amniotic ectoderm markers are highlighted
in blue and red, respectively. Markers shared between human trophoblast and amniotic ectoderm
are highlighted in green.

(C) Representative confocal micrographs showing E6 human blastocysts, stained for GCMI,
NANOG and FABP3; SOX2, DPPA3 and HAVCRI (Images on the right show magnified views
of the trophectoderm); NANOG, GATA3 and GABRP; NANOG and TFAP2C; NANOG and
TFAP2A; and NANOG and ISLI1.

(D) Representative confocal micrographs showing in vitro cultured D14 cynomolgus embryos,
stained for OCT4 and ISL1; and GABRP. Images on the right show magnified views of the
epiblast and amniotic ectoderm.

(E) Representative confocal micrographs showing in vitro cultured D14 cynomolgus embryos,
stained for OCT4 and TFAP2A, TFAP2C and GATA3. Images on the right show magnified

views of the epiblast and amniotic ectoderm.

Human trophoblast (Ref.(Blakeley et al., 2015; Petropoulos et al., 2016)), Human amnion
(Ref.(Tyser et al., 2021)), Zheng Transwell (Ref.(Zheng et al., 2019b)), Gao C5, Gao H1, Gao
FH1(Ref.(Gao et al., 2019)), Minn (Ref.(Minn et al., 2020)), Liu (Ref.(Liu et al., 2021)), Yu
(Ref.(Yu et al., 2021)), Guo H9, Guo hNES1(Ref.(Guo et al., 2021)), lo (Ref.(Io et al., 2021)),
Yanagida (Ref.(Yanagida et al., 2021)), Dong H9, Dong WIBR3, Dong AN (Ref.(Dong et al.,
2020)), Rostovskaya EarlyAME, Rostovskaya LateAME (Ref.(Rostovskaya et al., 2022))

Correlation coefficients and gene expression heatmap were calculated based on averages of
experimental repeats, if any. When the published work contains transcriptome datasets from

multiple time points, datasets from the experimental endpoint are utilized.

In C-E, experiments were repeated twice with similar results. Nuclei were counterstained with

DAPI. Scale bars, 50 pm.
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Supplemental Figure 1. Single-cell transcriptomic profiling of uPASE development.
Related to Figure 1.

(A) Representative confocal micrographs showing uPASEs at ¢t = 0 h (leff) and ¢ = 12 h (right)
stained for OCT4 and NANOG. Plasma membrane is stained with fluorescently labelled wheat
germ agglutinin (WGA).

(B) Feature plots showing selected lineage markers used for cell identity annotations in the
UMAP plots of uPASEs at # =24, 36 and 48 h, respectively.

(C) UMAP plots of uPASEs at t = 24, 36, 48 h, separated from the integrated UMAP plot in
Figure 1D. » indicates the cell number.

(D) Integrated UMAP plots of datasets from uPASEs at =48 h and the published dataset in
Ref.(Zheng et al., 2019b). Left: Datasets are color-coded according to sources, with » indicating
the cell number; right: Cells are color-coded according to cell identity annotations.

(E) Dot plot showing expression of key marker genes across the cell clusters as indicated
(LPASEs at t =48 h from this paper (red) and Ref.(Zheng et al., 2019b) (blue)). The sizes and
colors of dots indicate the proportion of cells expressing the corresponding genes and their

averaged scaled values of log-transformed expression, respectively.

In A, experiments were repeated four times with similar results. Nuclei were counterstained with

DAPI. Scale bars, 50 pm.
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p ]

HAND? § CLDN1O GATAZ KRTE
A 06
2 2 04
1 1 0.2
T
20 0.0
= 00 05 10 15 20 00 05 10 15 20 00 05 10 15 00 05 1.0 15 20
=
2 D2 BMP4 WNTSE WNTE
@ 20 08 15
3 i ce 1.0
w 15 04 04
0 02 02 05
0.0 0.0 0.0
00 05 1.0 15 2.0 00510 1520 0005 1.0 15 2.0 00 05 1.0 15 z0
pseudotime

]

GATA3

Merged

-

GATAB

J NasAMLC > EpiLC

Merged

B

MESP1 HOXBE HOXB8 SNAHM
MelLC2
1.5 MeLG1 08 04 06
10 04 04
T 05 02 02 02
g oo 00 00 00
g 00 06 10 15 00 05 10 15 00 05 10 15 00 05 10 15
@ CDH2 BMP4 WNTSA WNTSE
Lo 15
10 1.0
u>j 0.75 10
0.50 05 05
0.25 03 o
0.004 0.0 0.0 0.0
00 45 10 15 00 05 10 15 00 05 10 15 00 05 10 15
pseudotime
DAPI| TBXT Merged

t=24h

36h

MIXL1

H |

AMLC1 > NasAMLC  AMLC2 > AMLC1

Top 20 Top 20
DIo3 8100410
STOM HAND1 TCiM
MALAT? CTSV LCP1
HAPLMNT IGFBP3 GABRP
EZR FLA2GZ2A ACTC?
wLs ATP2B1 FLRT3
1Lt EPAS?T S100A11
CXCL12 KRT19 wrpDc2
TAGLN2 . TPM1 | ACKRA
RGS5 DOK4 SESN3
CLDN?TO . LumM

PSLG > EpiLC K

Signaling pathways regulating pluripotency of stem cells - Homo sapiens (human) (KEGG: 04550)

] 150
@
%

[ [

00

50

59

NasAMLG > EpiLC PSLC > EpiLC
cLonto /HANDT — BAMBL.  mixi1
1SL1 cox2 GATA3 | TBXT
TFAP2C) VM 103 cDX1
BIP4 TFAP2A  JUND SERPINE2
ANxA2 | MSx2 KRT19 | GATAG
SAMDT | SAMDT1  MSXT NODAL
CDH1 WNTSA  TBX3 APLNR
Jallok] WNTEB  SOXT7 FOXH1

KRT8 WLS COHZ
198 144 40
(51.8%) (37.7%) (10.5%)
With IWP2 vs. W
RADS1 CDHT
\ A\
\.crsn \ ms l ‘J-"W\?»‘”

)

0 1
avg_log2FC



1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463

Supplemental Figure 2. Trajectory inference and gene expression dynamics during nPASE
development. Related to Figure 2.

(A) Expression dynamics (pseudotime) of selected genes during AMLC lineage development.
Level of confidence (0.95) is indicated by band width.

(B) Expression dynamics (pseudotime) of selected genes during PSLC / MeLC lineage
development. Level of confidence (0.95) is indicated by band width.

(C) Representative confocal micrographs showing pPASEs at indicated time points stained for
ISL1, GATA3 and TBXT.

(D) Representative confocal micrographs showing pnPASEs at indicated time points stained for
TFAP2A, MIXL1 and TBXT.

(E) Bright-field and immunofluorescence images showing an array of uPASEs at # =24 h,
stained for ISL1 and TBXT.

(F) Representative confocal micrographs showing uPASEs at # = 48 h stained for CDX2, MIXL1
and GATAG (top); CDX2, MIXL1 and TBXT (bottom). Intensity maps show relative intensities
of corresponding markers as indicated.

(G) Representative confocal micrographs showing proliferating cells in pPASEs. Images were
taken at =27 h. Cell nuclei with newly synthesized DNA within the last 3 hours were labeled
using Click-1T EAU Imaging Kit (Invitrogen). Note: The low intensity of the Edu signal from
cells embedded in the gel is caused by insufficient dye diffusion.

(H) Venn diagram showing top 20 upregulated genes in AMLC1 vs. NasAMLC and AMLC2 vs.
AMLCI. The full DEG lists can be found in Table S3.

(I) Venn diagram showing selected upregulated genes in NasAMLC and PSLC, as compared to
EpiLC. The full DEG lists can be found in Table S3.

(J) DEGs related to pluripotency signaling pathway (KEGG: 04550) and TGF-p signaling
pathway (KEGG: 04350) in NasAMLC and PSLC, as compared to EpiLC. Blue and green colors
highlight genes identified only for NasAMLC and PSLC, respectively.

(K) Volcano plots showing DEGs between AMLCs from uPASEs with or without IWP2 at ¢ =
48 h, with selected genes labelled. The full DEG list can be found in Table S3.

In C-G, experiments were repeated three times with similar results. Nuclei were counterstained

with DAPI. Scale bars, 50 um.
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Supplemental Figure 3
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1465  Supplemental Figure 3. PGCLC specification during nPASE development. Related to
1466  Figure 3.

1467  (A) Diffusion map of EpiLC, PSLC, MeLC1 and PGCLC clusters from the UMAP plot in
1468  Figure 1D. PGCLC cluster is discontinuous from other clusters. K-Branches algorithm failed to
1469  identify branches or branching points with sufficient confidence.

1470  (B) Expression dynamics (pseudotime) of selected genes during PGCLC lineage development.
1471 Level of confidence (0.95) is indicated by band width.

1472 (C) Representative confocal micrographs showing unPASEs at indicated time points stained for
1473  TFAP2C, NANOG and SOX17.

1474 (D) Heat map of correlation matrix for PGCLCs in puPASEs, human PGCs (Ref. (Tyser et al.,
1475  2021)) and PGCLCs derived using other protocols (Ref. (Chen et al., 2019; Sasaki et al., 2015)).
1476  Correlation coefficients between indicated cell types are calculated based on PGC ontogenic
1477  genes identified for cynomolgus embryo transcriptome data.

1478  (E) DEGs related to HIF-1 signaling pathway (KEGG: 04066) in PGCLC as compared to

1479  PGCLC-branch NasAMLC.

1480  (F) Representative confocal micrographs showing arrays of pWPASEs at # = 48 h, stained for
1481  SOXI17; control (top); with LY294002 supplemented into the basal medium from #=0h

1482  (bottom).

1483 (G) Percentage of SOX17+ PGCLCs in uPASEs at # = 48 h under indicated conditions. n = 20
1484  pPASE:s for each condition. Data were pooled from n = 2 independent experiments. Red lines
1485  represent the median.

1486

1487 In C and F, experiments were repeated three times with similar results. Nuclei were

1488  counterstained with DAPI. Scale bars, 50 um.
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Supplemental Figure 4
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Supplemental Figure 4. scRNA-seq data integration of Carnegie Stage 7 human gastrula
and downsampled pnPASEs. Related to Figure 4.

(A) UMAP plots of integrated dataset of CS7 human gastrula (all 1,195 cells) and downsampled
UPASEs (from Figure 1D, 100 cells per cluster). Left: color-coded according to original cell
identity annotations of CS7 human gastrula; grey color indicates cells from pPASEs. Right:
color-coded according to cell identity annotations of uPASEs as indicated in Figure 1D; grey
color indicates cells from CS7 human gastrula.

(B) UMAP plots of integrated dataset of CS7 human gastrula (647 cells, excluding irrelevant
cells) and downsampled uPASEs (from Figure 1D,100 cells per cluster). Left: color-coded
according to original cell identity annotations of CS7 human gastrula; grey color indicates cells
from uPASEs. Right: color-coded according to cell identity annotations of uPASEs as indicated

in Figure 1D; grey color indicates cells from CS7 human gastrula.
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Supplemental Figure 5
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Supplemental Figure 5. Single-cell transcriptomic profiling of cultured hPSCs, nPASEs at ¢
=0 h and 7= 12 h. Related to Figure 4.

(A) Feature plots showing expression of selected markers in the UMAP plot of cultured hPSCs. n
=3782

(B) Feature plots showing selected expression of markers in the UMAP plot of uPASEs at =0
h. n=2948

(C) Feature plots showing selected expression of markers in the UMAP plot of uPASEs at 7 =12
h.n=2732

(D) Principal component analysis (PCA) plot of cultured hPSCs, pPASEs at = 0 h and pPASEs
at t= 12 h, EpiLCs from uPASEs in Figure 1D (at z = 24, 36 and 48 h), d.p.f. 9 (» = 108) and
d.p.f. 11 (n = 62) epiblasts from in vitro cultured human embryos (Ref.(Molé¢ et al., 2021)),
epiblasts from CS7 human gastrula (n = 133) (Ref. (Tyser et al., 2021)), d.p.f. 5-7 epiblasts from
human blastocysts and d.p.f. 3-5 human morula cells (Ref.(Petropoulos et al., 2016)). PCAs were
calculated using epiblast ontogenic genes identified from cynomolgus embryos (Nakamura et al.,
2016, see Table S5). To prevent datasets with high number of cells dominating PCA
calculation, cultured hPSCs, uPASEs at t =0 h, uPASEs at =12 h, EpiLCs from pPASEs (at ¢
=24,36 and 48 h), d.p.f. 5-7 epiblasts from human blastocysts and d.p.f. 3-5 human morula cells
were downsampled to 100 cells.

(E) Heatmap showing expression levels of selected genes reportedly related to human epiblast
pluripotency states (Kinoshita et al., 2021; Takashima et al., 2014; Wang et al., 2021). Color

codes are consistent with D.

In A-C, we could not identify reasonable distinct populations using unsupervised clustering

algorithm (Seurat R package).
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Supplemental Figure 6
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Supplemental Figure 6. Intercellular communication network analysis of pPASEs,
cynomolgus embryos and mouse embryos at the peri-gastrulation stage. Related to Figure
6.

(A), (D), (G), Heatmaps showing contributions of individual signaling pathways as incoming
and outgoing signals for each cell type in uPASEs at t =24 h (A), in vitro cultured cynomolgus
embryos at Day 12 (D), and mouse embryos at E6.5 (G). Grey bars on the right indicate relative
signal strengths of each pathway across all cell types within local tissue environments.

(B), (E), (H), Circle plots showing inferred signal networks of selected pathways in uPASEs at ¢
=24 h (B), in vitro cultured cynomolgus embryos at Day 12 (E), and mouse embryos at E6.5
(H). The dot size is proportional to the number of cells for each cell type, and the line thickness
corresponds to the communication probability.

(O), (F), (I), Dot plots showing expression levels of selected ligands and receptors in uPASEs at
t =24 h (C), in vitro cultured cynomolgus embryos at Day 12 (F), and mouse embryos at E6.5
(I). The sizes and colors of dots indicate the proportion of cells expressing the corresponding

genes and their averaged scaled values of log-transformed expression, respectively.
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Supplemental Figure 7
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Supplemental Figure 7. NODAL is essential for MeLC lineage development in nPASEs.
Related to Figure 6.

(A) Generation of NODAL-KO hPSCs. Two crRNA:tracrRNA duplexes were used
simultaneously to delete a 58-bp portion of genomic DNA within the exonl of NODAL.

(B), (C) Genomic DNA sequences of NODAL exonl before and after CRISPR/Cas9-mediated
gene deletion.

(D) Phase-contrast microscopy images of wildtype and NODAL-KO hPSC clones after exposure
to CHIR99021 (10 uM) for 36 h.

(E) Western blot showing NODAL protein expression in wildtype and NODAL-KO hPSCs after
exposure to CHIR 99021 (10 uM) for 24 h.

(F) Representative confocal micrographs showing NODAL-KO pPASEs at indicated time points
stained for ISL1, GATA3 and TBXT.

(G) Representative confocal micrographs showing NODAL-KO pPASEs at indicated time points
stained for TFAP2C, NANOG and SOX17.

(H) Volcano plot showing DEGs between PGCLCs from wildtype and NODAL-KO pPASE:s,
with selected genes labelled. The full DEG lists can be found in Table S7.

(I) Representative confocal micrographs showing wildtype pnPASEs with SB431542
supplemented into the basal medium from # = 0 h, stained for ISL1, GATA3 and TBXT (i);
TFAP2A, MIXL1 and TBXT (ii); TFAP2C, NANOG and SOX17 (iif).

(J) Representative confocal micrographs showing NODAL-KO pPASEs with ACTIVIN A
supplemented into the channel opposite to BMP4 stimulation from ¢ = 0 h, stained for ISL1,
GATA3 and TBXT (i); TFAP2C, NANOG and SOX17 (ii); TFAP2C, BLIMP1 and FOXA2
(#ii).

(K) Representative confocal micrographs showing wildtype pPASEs with ACTIVIN A
supplemented into the channel opposite to BMP4 stimulation from ¢ = 0 h, stained for ISL1,
GATA3 and TBXT (i); TFAP2C, NANOG and SOX17 (ii); TFAP2C, BLIMP1 and FOXA2

(iii).
In D, E and I-K, experiments were repeated twice with similar results. In F and G, experiments

were repeated three times with similar results, and nuclei were counterstained with DAPI. Scale

bars, 100 um (D) and 50 um (F, G, I-K).
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Supplemental Figure 8
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Supplemental Figure 8. pPASEs generated with ESI-017 hPSC line and C4955 chimpanzee
iPSC line.

(A) Representative confocal micrographs showing pnPASEs generated with ESI-017 hPSCs at ¢ =
48 h stained for ISL1, GATA3 and TBXT: wildtype (i), wildtype supplemented with IWP2 (i),
NODAL-KO (iii), wildtype supplemented with SB431542 (iv).
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(B) Representative confocal micrographs showing uPASEs generated with ESI-017 hPSCs at t =
48 h stained for TFAP2C, NANOG and SOX17: wildtype (7), wildtype supplemented with IWP2
(if), NODAL-KO (iii), wildtype supplemented with SB431542 (iv).

(C) Representative confocal micrographs showing chimpanzee uPASEs generated with C4955
chimpanzee iPSCs at t = 48 h stained for ISL1, GATA3 and TBXT (i); TFAP2A, MIXL1 and
FOXAZ2 (ii); TFAP2C, NANOG and SOX17 (iii); TFAP2C, BLIMP1 and FOXA2 (iv).

(D) Representative confocal micrographs showing chimpanzee uPASEs generated with C4955
chimpanzee iPSCs, supplemented with IWP2, at # = 48 h stained for ISL.1, GATA3 and TBXT
(top); TFAP2C, NANOG and SOX17 (bottom).

Experiments were repeated twice with similar results. Nuclei were counterstained with DAPI.

Scale bars, 50 pm.
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Supplemental Figure 9

A B

Trophoblast from Petropoulos et al. vs. Trophoblast from Blakeley et al. vs. Amniotic/fembryonic ectoderm from Tyser ef al. vs. Amnioticlembryonic ectoderm from Tyser ef al. vs.
Amniotic/embryonic ectoderm from Tyser ef al.  Amniotic/embryanic ectoderm from Tyser et al. Trophoblast from Petropoulos et al. Trophoblast from Blakeley et af.
a ACOT0970.1,
@ ® i R A oML GTSF1 S100A74 . NiE2 \_ACﬂ!ii;i;;g?m 3“”F B Acgpact 3:;:;35353.3
2 FABP3 s C11098"* RARRES:
o HAVCR1 sThontd * ppRRYonmTL » RNASEW_C”U?WSMRPN i 4 chamy?m Tt
3= ° el & RAMAC FYURF NIHE2 SNRPM
T
£ 15 stiofnas HavBRY FABe3 E 150 RABSIF RAUACTH
5 b 2 LINCO2381  GABRP 6 RMASEKHEYT GPCI o
‘_mw = eoht = SMORDS9 E s s 2 s et EhBRP
o = 3 2 2 s
S o os ] ACO07325.4 o LINCOZ3BT Erripe+
£%0 £ 320 . & 1GFEPTy
3 5 3 54
= o g D ¢ 8 g3 g .
ol T CEA @ T RARRES2 T AG007326.4
@ o L]
> a = i 1arard
2 S m
% = 1se1d 2 PLAZGZA
< 1GFBPY ™
m < crApP2 GFC3
FLAzG2 e~ CTHRET
2 0 o Tac31GFBP3 o

2 4
avg_log2FC

2 4
avg_log2FC

2 4 2 4
avg_log2FC avg_log2FC

HAVCR1 DAPI HAVCR1

AMLC

TsC

AMLC

TSC

36 h

HAVCR1 Merged

DAPI
1593 - . . . .

1594  Supplemental Figure 9. Stringent criteria for identifying human trophoblast and amniotic

=

1595  ectoderm. Related to Figure 7.

1596  (A) Highly expressed genes identified using stringent criteria in human trophoblast, as compared
1597  with the amniotic/embryonic ectoderm from Ref. (Tyser et al., 2021) shared between the
1598  trophoblast data from Ref. (Petropoulos et al., 2016) and Ref. (Blakeley et al., 2015) as indicated.
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(B) Highly expressed genes identified using stringent criteria in human amniotic/embryonic
ectoderm from Ref. (Tyser et al., 2021), as compared with the trophoblast from Ref.
(Petropoulos et al., 2016) and Ref. (Blakeley et al., 2015) as indicated.

(C) Representative micrographs showing human trophoblast stem cells (TSCs) and amniotic
ectoderm-like cells derived by treating hPSCs with BMP4, stained for ISL1 and GATA3; GCM1
and HAVCRI1; TFAP2A or TFAP2C, as indicated.

(D) Representative micrographs showing uPASEs at # = 36 h stained for GCM1, GATA3 and
TBXT (top); ISL1, MIXL1 and HAVCRI1 (bottom).

In C and D, experiments were repeated twice with similar results. Nuclei were counterstained
with DAPI. Scale bars, 50 um.
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