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ABSTRACT

Representation learning on static graph-structured data has shown

a significant impact on many real-world applications. However, less

attention has been paid to the evolving nature of temporal networks,

in which the edges are often changing over time. The embeddings of

such temporal networks should encode both graph-structured infor-

mation and the temporally evolving pattern. Existing approaches

in learning temporally evolving network representations fail to

capture the temporal interdependence. In this paper, we propose

Toffee, a novel approach for temporal network representation

learning based on tensor decomposition. Our method exploits the

tensor-tensor product operator to encode the cross-time informa-

tion, so that the periodic changes in the evolving networks can be

captured. Experimental results demonstrate that Toffee outper-

forms existing methods on multiple real-world temporal networks

in generating effective embeddings for the link prediction tasks.
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1 INTRODUCTION

Network data has gained increasing popularity due to its ubiqui-

tous applications in multiple domains, including recommendation

systems, knowledge base, and biological informatics. Learning effec-

tive embeddings over network data involves efficiently projecting

the structural properties of the network data into low-dimensional

feature representationswhich can be further utilized bymany down-

streaming tasks, such as node label classification, link prediction,

community detection and network reconstruction. The proposal

of DeepWalk [10] has inspired the development of many network

embedding techniques [2, 4, 11, 15]. However, these techniques are
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all designed for static networks. While in most real-world appli-

cations, networks are usually dynamic and evolve over time. For

example, in a social network, users’ friend relations tend to change

over time, which alters the low-dimensional feature representation.

Similarly, in a co-authorship network, authors’ relationship will

fluctuate from time to time according to their new research projects.

Therefore, it is essential to encode the temporal information into

the network representation to improve the predictive power.

To capture the evolving pattern and the temporal interaction

between nodes, several temporal network embedding algorithms

have been proposed. [8] proposed CTDNE, a temporal version of

random walks to capture the evolving graph structure. HTNE [18]

extended CTDNE by generating neighbors using the Hawkes pro-

cess. [12] proposed HNIP, a temporal random walk that preserves

high-order proximity and used an auto-encoder to capture the non-

linearity of the network structure. All these neighborhood-based

algorithms have an inherent disadvantage that their local struc-

ture inferences are heavily reliant on neighborhood relations and

can overlook the global structure at large, which may incur poor

performance especially when the graph is densely connected. This

problem is further exacerbated for temporal network embedding.

Besides, these methods lack interpretability, and require heavy

tuning of hyper-parameters and model structures.

Tensors are an efficient way to model high-dimensional, multi-

aspect data, such as spatio-temporal data [3, 17], where the spatial

distribution at a specific timestamp will be modeled as a frontal

slice of the tensor. Built on the success of the matrix factorization-

based network embeddingmethods [2, 11] in revealing useful global

structure information of the network, tensors are able to capture

both the global network structure and the temporal node interac-

tions at the same time. Due to the inefficacy of traditional tensor

factorization approaches such as CANDECOMP/PARAFAC (CP)

and Tucker decomposition to take advantage of the slice-wise cor-

relations, RESCAL [9] was proposed to learn representations of

multi-relational data. Nonetheless, RESCAL is still insufficient in

capturing the temporal evolution by a single embedding matrix.

In this paper, we propose a Tensor factorization algorithm for

temporal network embedding (Toffee), which models the tem-

poral network structure as a three-way tensor, and learns unique

representations for the temporal network through a novel tensor

factorization algorithm. Toffee is superior to RESCAL by captur-

ing the cross-time relation. This is empowered by the tensor-tensor

product (t-product) [6, 16], which has demonstrated great poten-

tial in image/video domain by exploiting the circular convolution

operator along the temporal dimension.

We briefly summarize our contributions as follows. 1) We pro-

pose Toffee, a new tensor factorization model that incorporates

the t-product for temporal network embedding. Toffee manifests

superior capability in capturing both the global structure informa-

tion and the temporal interactions between nodes. 2) Toffee is
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Dataset HTNE CTDNE HNIP TNE t-SVD RESCAL Toffee
-
Toffee

fb-forum 0.8615 0.8567 0.8091 0.6493 0.8885 0.8010 0.9280 0.9420

email-Eu-core 0.8737 0.8320 0.8312 0.6615 0.8684 0.8812 0.8912 0.9010

ia-primary-school-proximity 0.7957 0.7806 0.7957 0.6043 0.8213 0.8102 0.8162 0.8218

ia-contacts-hypertext2009 0.6956 0.5831 0.5832 0.6526 0.7669 0.7788 0.7687 0.9661

ia-workplace-contacts 0.7834 0.6653 0.7834 0.6082 0.7835 0.7146 0.7913 0.8366

aves-wildbird-network 0.8869 0.8901 0.8066 0.7018 0.9778 0.9202 0.9851 0.9936

Table 2: Link Prediction Results (Micro-F1). The best scores for each operators on each dataset are underlined, the best-

performance operator algorithm is in bold.

high average degrees d̄) to verify the effectiveness of Toffee in cap-

turing global structure information. The statistics of the temporal

networks are summarized in Table 1.

The regularization parameters λA and λR in Toffee is deter-

mined through grid-search among {1−4, 1−3, 1−2, 1−1}. To fairly

compare with RESCAL and t-SVD, we use the same embedding

construction method as Toffee in eq.(4) to encode sufficient tem-

poral information (for RESCAL we use matrix product instead of

t-product). For CTDNE, HNIP, and HTNE, we adopt the same hyper-

parameter settings as in paper [12]. For TNE, we take the embed-

dings of last timestamp for evaluations. For all the tested algorithms,

the embedding dimension is set to 128 (ia-contacts-hypertext2009

and ia-workplace-contacts have embedding dimension as 64 since

the number of nodes are less than 128).

For the link prediction task, we adopt the same experiment set-

tings as in [8] that we select the first 75% of the temporal links for

learning the embeddings, and train a logistic regression classifier on

the rest 25% of the temporal links as positive examples, combined

with the same number of negative examples generated by random

sampling from the non-existing links. The links between two nodes

are defined as edge representations and are calculated with four

different operators defined in [4]. We report the average Micro-F1

score of 10 replications based on 10 different seeds of initializations.

4.3 Link Prediction

Similar to [8, 11, 18], we evaluate the effectiveness of the Toffee ex-

tracted embeddings on the link prediction task. The aim of link

prediction task is to determine whether there will be an edge be-

tween two nodes in the future based on the embeddings learned

from the past to measure the prediction ability of the embeddings.

Table 2 shows theMicro-F1 score for the link prediction task with

edge representation computed by multiple operators. First of all,

results demonstrate that Toffee significantly outperforms other

baselines considering the best-performance operator (RQ1). This

is due to the fact that Toffee can better exploit the global network

structure compared with the baselines which infer the network em-

beddings based on neighborhood information. Specifically, all ten-

sor based algorithms including t-SVD, RESCAL, and Toffee have

better performance compared with the neighborhood-based algo-

rithms CTDNE, HNIP, and HTNE considering the best-achievable

operator, which also verifies that tensor based methods can bet-

ter capture the global structure information. Those tensor-based

methods also beat the matrix-based method TNE, indicating the su-

periority of tensors in jointly modeling the temporal and structural

information between nodes. In addition, it is also worth noticing

that even with no regularizations on tensorA andR, Toffee- can

outperform the baselines. This means that Toffee can help reduc-

ing the effort of hyper-parameter tuning.

Fig. 2 shows that Toffee achieves significantly better accuracy

with more time cost compared with HTNE, HNIP, CTDNE ś il-

lustrating that in order to get more accurate network representa-

tions, we have to sacrifice some time cost. However, compared with

tensor-based methods, t-SVD and RESCAL, which offer superior

performance than HTNE, HNIP, CTDNE, Toffee is able to achieve

better accuracy with little trade-off in terms of computational cost.

Furthermore, we observe that Toffee outperforms both t-SVD

and RESCAL (RQ2). The performance gain over RESCAL verifies

that Toffee benefits from the tensor product which will help bet-

ter capture the temporal correlation by the circular convolution

operator. Notice that without regularization, Toffee- resembles

the results of t-SVD with slight higher accuracy. This is because

each slice in tensorR is able to capture the directional information

between the latent groups of each node, which is not efficiently

encoded in the results of t-SVD with information concentrated only

on the diagonals. In addition to this, Toffee largely outperforms

t-SVD thanks to the regularization terms on tensors A and R.

5 CONCLUSION

In this paper, we have proposed Toffee, an advanced tensor decom-

position algorithm for temporal network embedding. The exploita-

tion of t-product enables Toffee to better capture the cross-time in-

formation among different temporal slices of the temporal network.

We demonstrate the effectiveness of Toffee with the temporal link

prediction task with multiple real-world datasets. Experiment re-

sults show significant improvement over state-of-the-art temporal

network embedding algorithms. Future works include involving the

attribute information and further demonstrating the effectiveness

of Toffee on other downstreaming tasks.
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