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Abstract

Microbial interactions in harmful algal bloom (HAB) communities have been examined in
marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interac-
tions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Micro-
cystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five
isolates (Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp.
JMULES, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULES.) were sequenced on a
PacBio Sequel system. These genomes ranged in size from 3.1 Mbp (Exiguobacterium sp.
JMULE?1) to 5.7 Mbp (Enterobacter sp. JMULE2). The genomes were analyzed for genes
relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All
five of the sequenced genomes contained genes that could be used in potential signaling
and nutrient exchange between the bacteria and cyanobacteria such as Microcystis. Gene
expression signatures of algal-derived carbon utilization for two isolates were identified in
Microcystis blooms in Lake Erie and Lake Tai (Taihu) at low levels, suggesting these organ-
isms are active and may have a functional role during Microcystis blooms in aggregates, but
were largely missing from whole water samples. These findings build on the growing evi-
dence that the bacterial microbiome associated with bloom-forming algae have the func-
tional potential to contribute to nutrient exchange within bloom communities and interact
with important bloom formers like Microcystis.

Introduction

Cyanobacterial harmful algal blooms (cHABs) occur annually in both freshwater and marine
systems. These blooms have the potential to be disruptive to aquatic ecosystems due to both
the scale of accumulated biomass and the release of secondary metabolites that have metabolic
consequences for other organisms [1, 2]. Microcystis is a pervasive genus of cyanobacteria that
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forms blooms on every continent except Antarctica [2]. Some species of Microcystis produce
microcystins, potent hepatotoxins that can limit access to potable water [3, 4]. The threats to
ecosystem services and public health posed by cHABs have resulted in numerous and diverse
mitigation and management strategies ranging from simple aeration of small freshwater sys-
tems [5] to application of chemicals [6, 7] or barley straw [8]. In the last decade, considerable
advancements have been made in the application of biotic solutions that inhibit cHABs,
including those based on microorganisms, although these technologies have yet to be success-
fully validated beyond laboratory-scale, albeit environmentally relevant, studies [9]. Several
bacteria have been identified that are capable of degrading microcystins produced by cyano-
bacteria or are algicidal [10-12]. Previous work suggests such antagonistic interactions may
occur in the Microcystis phycosphere [13, 14], a microenvironment that surrounds phyto-
plankton cells analogous to the rhizosphere in plant roots [15]. However, bacterial-phyto-
plankton interactions are not exclusively antagonistic, as evidence from marine phytoplankton
studies suggests mutualistic relationships also exist [16]. The phycosphere provides a nutrient-
rich environment for heterotrophic bacteria due to the release of organic molecules by the phy-
toplankton, including dissolved organic carbon [17]. In the early phases of cell growth, phyto-
plankton release lower molecular weight molecules, such as amino acids and carbohydrates,
while higher molecular weight molecules, such as polysaccharides, nucleic acids, and proteins,
can be released into the phycosphere during lysis [17]. The release of molecules by phytoplank-
ton can attract heterotrophic bacteria to the phycosphere, ultimately leading to a potential
exchange of nutrients between the bacteria and phytoplankton [16, 17].

The physiology of Microcystis spp. makes them well-suited for nutrient exchange with het-
erotrophic bacterial partners. Microcystis spp. are colonial cyanobacteria surrounded by an
exopolysaccharide layer with which bacteria are tightly coupled [18-20]. Previously, multiple
strains of bacteria have been found to impact the formation of Microcystis colonies and exopo-
lysaccharide production [21]. Furthermore, the species of bacteria associated with the Micro-
cystis phycosphere differ based on whether they are particle associated (> 10 um) or free-living
[22]. While we know that heterotrophic bacteria are closely associated with Microcystis colo-
nies [23], the potential mechanisms of exchange between the partners in the freshwater cHAB
phycosphere have yet to be characterized. In the current study we provide genomic data that
support the previously proposed interaction by which heterotrophic bacteria (heterobionts)
utilize the carbon released by Microcystis, while Microcystis may benefit from nutrient or vita-
min products released by the heterotrophic bacteria [23].

Here, we report on the genomic content of five bacterial strains isolated from Microcystis
aggregates in western Lake Erie in August 2017, focusing on the genetic potential for interac-
tion with Microcystis. Access to the genomic information of Microcystis-associated heterotro-
phic bacteria has provided new insight into the potential microbial interactions and metabolic
pathways that occur within Microcystis blooms, specifically that nutrient exchange may occur
in the Microcystis phycosphere. To demonstrate the ecological relevance of these strains, we
surveyed available metatranscriptomic data from Microcystis spp. blooms in North America
and China. These observations show the potential for bidirectional, mutualistic interactions in
the Microcystis phycosphere which could serve as a future target for cHAB mitigation.

Results and discussion
Sample collection and environmental conditions

Surface samples were collected from four stations in the Western Basin of Lake Erie in August
2017 (WE02, WE04, WE13, and MB18) using 20 um and 80 um mesh plankton nets. These
pore sizes were chosen to exclude free-living bacteria and enrich for those bacteria that are
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associated with Microcystis aggregates. Previous studies have characterized Microcystis-associ-
ated bacteria in size fractions ranging from > 3 pm up to 100 pm. Environmental conditions
at the time of sample collection were reported by Boedecker et al. [24].

Isolate characteristics. Five isolates were targeted for full genome sequencing from a
library of over 100 individual isolates generated from the Lake Erie bloom samples. These iso-
lates were selected based on their N-utilization and pigment production capabilities. The five
isolates selected to be sequenced were identified at the genus level via 16S rRNA and rpoB gene
sequences from genomic data as an Exiguobacterium sp. (JMULEL), an Enterobacter sp.
(JMULE2), a Deinococcus sp. (JMULE3), a Paenibacillus sp. JMULE4), and an Acidovorax sp.
(JMULES5) (S1-S5 Figs in S1 File). Exiguobacterium sp. JMULEI is a gram-positive, rod-
shaped, motile bacterium that produces orange pigmented colonies. Members of this genus
have previously been shown to impact colony formation in individual strains of Microcystis,
both positively [25] and negatively [26], depending on the strains tested. Enterobacter sp.
JMULE2 is a gram-negative, rod-shaped bacterium from the class Gammaproteobacteria.
Multiple Enterobacter strains have been found to have microcystin degradation capabilities
and induce cell aggregation by Microcystis [21, 27, 28]. Deinococcus sp. JMULES3 is a gram-pos-
itive rod-shaped bacterium belonging to the class Deinococci that produces pink-orange pig-
mented colonies; members of the Deinococcus-Thermus phylum have been previously
identified in Microcystis metagenomes [13, 29]. Paenibacillus sp. JMULE4 is a gram-negative,
rod-shaped bacterium in the class Bacilli that produces endospores, and members of this
genus have been previously identified in cyanobacterial bloom communities [30]. Isolates of
Paenibacillus are commonly applied as algal bioflocculants, as they induce algal cell aggrega-
tion [31, 32]. Acidovorax sp. JMULES is a gram-negative, rod-shaped bacterium belonging to
the class Betaproteobacteria. Several strains of this genus have been isolated from samples of
Microcystis, both in culture [33] and from the environment [34].

The microbiome of freshwater lakes and rivers is often dominated by members of the phy-
lum Actinobacteria. While none of the bacteria isolated for this study were members of the
Actinobacteria phylum, this is consistent with recent work demonstrating that this phylum is
significantly depleted in populations closely associated with the Microcystis phycosphere [35].
In fact, members of the phyla Proteobacteria and Firmicutes are enriched in Microcystis aggre-
gate samples compared to free water bloom samples in several studies [22, 25, 35, 36]. It has
been hypothesized that Actinobacteria likely do not rely on Microcystis-derived carbon due to
actinorhodopsin activity [35, 37]. Furthermore, one benefit to phycosphere bacteria may be
protection from predation by zooplankton, to which ultramicrobacterial Actinobacteria are
not as vulnerable [38, 39].

Sequencing output, assembly, and annotation

The number of raw reads ranged from 197,286 (Deinococcus sp. JMULE3) to 455,299 reads
(Enterobacter sp. JMULE2) (S1 Table in S1 File). Read correction done within the PacBio de
novo assembly pipeline resulted in 27,959 (Deinococcus sp. JMULE3) to 69,289 reads (Entero-
bacter sp. JMULE2) (S1 Table in S1 File). Genome completeness was assessed with the
PATRIC Genome Assembly tool and ranged from 98.2% (Paenibacillus sp. JMULE4) to 100%
(Enterobacter sp. IMULE2 and Acidovorax sp. JIMULES5) (Table 1).

Acidovorax sp. JMULES was the only isolate for which a single contig was obtained
(Table 1). Its closest sequenced relative, Acidovorax sp. KKS102 was originally isolated from
soil and has been shown to degrade polychlorobiphenyl (PCB) (Table 2 [40]). Recently, a
strain of Acidovorax was isolated from a Microcystis bloom in Korea, but genomic information
is not currently available for this isolate [33]. At 5,742,593 bp, the genome of Enterobacter sp.

PLOS ONE | https://doi.org/10.1371/journal.pone.0257017  September 22, 2021 3/19


https://doi.org/10.1371/journal.pone.0257017

PLOS ONE

Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere

Table 1. Characteristics of genome assemblies obtained from the PacBio de novo assembly pipeline in the CLC Genome Finishing Module.

Isolate # of Contigs
Exiguobacterium sp. JMULEL 2
Enterobacter sp. JMULE2 20
Deinococcus sp. JMULE3 5
Paenibacillus sp. IMULE4 19
Acidovorax sp. JMULES5 1

https://doi.org/10.1371/journal.pone.0257017.t001

N50 (Mbp) GC % Total Length (Mbp) Coding Sequences Genome Completeness
3.11 47.13 3.15 3,289 99.5%
0.61 54.79 5.74 5,736 100%
3.28 69.75 4.22 4,208 99.5%
0.39 49.95 5.40 5,888 98.2%
5.45 64.48 5.45 5,101 100%

JMULE2 is comparable to the most closely related isolate based on rpoB identity, Enterobacter
asburiae sp. L1 (~5.4 Mbp; Table 2 [41]). Based on rpoB identity and the two-way average
nucleotide identity between the two genomes [42], it is unlikely that E. asburiae sp. L1 and the
JMULE?2 isolate are the same species (Table 2) [43]. However, Exiguobacterium sp. JMULEI is
likely the same species as its most closely related sequence isolate, Exiguobacterium sp. MH3,
with a two-way ANI score > 95% (Table 2) [43]. Exiguobacterium sp. MH3 was isolated from
the rhizosphere of duckweed (Lemna minor) and has both growth promoting and stress allevi-
ating effects on its freshwater eukaryotic host [44, 45]. Paenibacillus napthalovorans sp. 32-OY
is likely also the same species as Paenibacillus JMULE4, with an ANI score > 95% (Table 2). P.
napthalovorans sp. 32-OY was originally isolated from soil and can metabolize dibenzothio-
phene, an organosulfur compound [46, 47]. The ability to degrade high molecular weight com-
pounds is a signature of bacteria associated with Microcystis aggregates and may indicate an
important role in the transformation of algal-derived organic compounds in bloom communi-
ties [22, 48].

Functional annotation

To better understand the dominant metabolic pathways encoded by each Lake Erie isolate, the
protein families of each genome were annotated using the Subsystems (SEED) approach [49,
50]. Overall, the five genomes contain the highest number of subsystems related to the Carbo-
hydrates, Amino Acids and Derivatives, and Protein Metabolism categories (Fig 1). The
genome of Paenibacillus sp. JIMULE4 contained the greatest number of pathways related to
Carbohydrates, while Exiguobacterium sp. JMULEL and Deinococcus sp. JMULE3 contained a
proportionately greater number of pathways related to Protein Metabolism (Fig 1). As isolates
of Paenibacillus have been shown to be capable of degrading complex carbohydrates, this may
be indicative of similar capabilities for the Lake Erie isolate of this genus [51, 52] and bacteria
associated with Microcystis aggregates [22, 36]. The Paenibacillus sp. JMULE4 genome also
contained the most genes related to Dormancy and Sporulation, and this is the only isolate of
the five observed to produce endospores (Fig 1).

Table 2. Closest sequenced relatives of each isolate based on rpoB identity and ANI score.

Lake Erie Isolate Closest sequenced relative Genome Size GC % | Genes rpoB % Two-Way ANI Score Citation
(Mbp) Identity (%)
Exiguobacterium sp. Exiguobacterium sp. Strain MH3 3.16 472 | 3,273 99.8 98.2 Tang et al., 2013
JMULE1
Enterobacter sp. JMULE2 Enterobacter asburiae sp. L1 4.56 56.1 | 4,426 98.5 90.0 Lau et al. 2014
Deinococcus sp. IMULE3 Deinococcus soli N5 3.24 70.2 | 3,146 97.0 92.4 Joo et al., 2015
Paenibacillus sp. JMULE4 Paenibacillus 5.20 49.7 | 5,103 99.5 99.3 Butler et al., 2016)
napthalenovorans320-Y
Acidovorax sp. JMULES Acidovorax sp. KKS102 5.20 64.9 | 4,883 92.5 87.3 Ohtsubo et al.,

https://doi.org/10.1371/journal.pone.0257017.t002

2012
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Fig 1. Percent of annotated genes in each Subsystems (SEED) category. Subsystem coverage for each of the isolates
was 30% for Exiguobacterium sp. JMULEL, 33% for Enterobacter sp. JMULE2, 23% for Deinococcus sp. JMULE3, 26%
for Paenibacillus sp. JMULE4, and 31% for Acidovorax sp. JIMULES5.

https://doi.org/10.1371/journal.pone.0257017.9001

Nitrogen utilization

Bacterial heterobionts are thought to be a source of nitrogen (N) to algae in the phycosphere
[35, 36, 53]. In many ways this is self-evident, as respiration of biological materials from phyto-
plankton results in the loss of C (as CO,) and residual, excess N [54, 55]. The presence of sev-
eral different N-transformation genes in the bacterial genomes we examined suggests that
these bacteria have the capability to act as an external source of ammonium for Microcystis. All
the genomes except Exiguobacterium sp. JMULEL] contain genes for the reduction of nitrate
and nitrite to ammonium (Table 3; S2-S6 Tables in S1 File). Enrichment for this function has
been previously identified in metagenomes generated from Microcystis aggregates in Lake Erie
compared to whole water samples [35]. The denitrifying reductase gene clusters in the Acido-
vorax sp. JMULES5 genome includes genes for nitric and nitrous oxide reductase as well as cya-
nate hydrolysis (Table 3; $2 Table in S1 File). Cyanate is a by-product of the urea cycle and
produces bicarbonate and ammonium ions upon hydrolysis via the enzyme cyanase (cynS)
[56]. Microcystis populations have been shown to upregulate transcription of cynS in response
to urea additions [57], indicating Microcystis has the genetic capability to use cyanate derived
from associated bacterial populations in systems such as Lake Erie during periods of N
limitation.

While previous work has identified diazotrophic bacterial constituents of Microcystis
blooms and culture consortia, none of the five Lake Erie isolates have the genetic capacity to
produce nitrogenases [20, 23, 58]. Members of the genus Paenibacillus have the ability to fix
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Table 3. Nitrogen genes called by RAST and PGAP and their roles in the bacterial isolates.

Gene Role Isolate(s)
nirD Nitrate reductase small subunit JMULE2, JMULE3, JMULE4, JMULE5
nirB Nitrate reductase large subunit JMULE2, JMULE3, JMULE4, JMULE5
narG Respiratory nitrate reductase alpha chain JMULE2, JMULES5
narH Respiratory nitrate reductase beta chain JMULE2, JMULE5
narl Respiratory nitrate reductase gamma chain JMULE2, JMULE5
nar] Respiratory nitrate reductase delta chain JMULE2
norR Anaerobic nitric oxide reductase transcription regulator JMULE2, JIMULE5
nsrR Nitrite-sensitive transcriptional repressor JMULE1, JMULE2
gitB Glutamate synthase large chain JMULEL, JMULE3 JMULE5
gitD Glutamate synthase small chain JMULEI1, JMULE3 JMULE5
ginN Glutamine synthetase type IIT JMULE3
cynS Cyanate hydratase JMULE5
cynR Cyn operon transcriptional activator JMULE5
nosF nosR, nosY Nitrous oxide reductase maturation protein JMULE5
norB Nitric-oxide reductase subunit B JMULES5

https://doi.org/10.1371/journal.pone.0257017.t1003

N, [59, 60], however, the IMULE4 isolate only encodes a NifU-like protein, which is a nones-
sential protein for nitrogen fixation in organisms such as Dolichospermum (Anabaena) [61].
The role of these isolates in potentially providing reduced N to Microcystis likely comes from
the breakdown other exogenous N sources, such as urea and nitrate.

Urease is an enzyme that catalyzes the hydrolysis of urea to ammonia and carbon dioxide
(CO,) [62]. In addition to serving as an N source for freshwater cyanobacteria, including
Microcystis, the CO, released during urea hydrolysis also can act as a carbon source for Micro-
cystis during periods of high biomass [63, 64]. As the pH increases during bloom events, it
becomes increasingly difficult for additional CO, to dissolve in the water. CO, availability can
be impacted by static conditions (no aeration), which can cause Microcystis to stop growing
[65]. The genomes of Enterobacter, Paenibacillus, and Acidovorax spp. contain genes encoding
the alpha (ureC), beta (ureB), and gamma (ureA) subunits of the urease enzyme complex. The
Deinococcus sp. JMULE3 genome contains genes for the alpha (ureC) and gamma (ureA) ure-
ase subunits. The Deinococcus sp. JIMULE3 and Acidovorax sp. IMULES genomes contain all
of the urease accessory genes (ureEFGD), while the Enterobacter sp. JMULE2 and Paenibacillus
sp. JMULE4 genomes encode a subset of these accessory genes (ureEFD and ureFGD respec-
tively). Enterobacter sp. IMULE2, Deinococcus sp. JIMULE3, and Acidovorax sp. JMULES were
all confirmed to be ureolytic by inducing a color change on urea slants and can grow with urea
as their sole N source. Urease is a metalloenzyme that binds to and requires nickel to function
[66, 67]. The genomes of Enterobacter sp. IMULE2 and Acidovorax sp. JMULES contain the
nickel-binding accessory genes ureJ and hupE. Genes for nickel incorporation proteins
(hypAB) were identified in the Enterobacter sp. JMULE2 and Deinococcus sp. JMULE3
genomes. Due to its potential as a source of CO,, the breakdown of urea by heterotrophic bac-
teria in the phycosphere could act as a dual source of both carbon and N for Microcystis, as has
been shown in marine systems [68].

Carbon utilization

The monosaccharide composition of Microcystis extracellular polysaccharides (EPS) has been
extensively characterized, and multiple species of bacteria can use components of the Microcys-
tis EPS as a sole carbon source [69-71]. The genomes of Paenibacillus sp. JMULE4 and
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Enterobacter sp. JMULE2 contain genes for xylose utilization, a key monosaccharide in the
EPS of Microcystis [69, 70]. In both freshwater and marine phycosphere communities, xylose
is a known low molecular weight (LMW) carbohydrate source for associated bacteria [72-74].
Paenibacillus sp. JMULE4 genome contains genes for xylose isomerase, transporters, and bind-
ing components, while Enterobacter sp. JMULE2 has genes encoding XylFGHR proteins that
allow for transcriptional regulation, xylose transport, and ATP binding (52-S6 Tables in S1
File). All five of the isolates’ genomes also contain genes for mannose utilization (S2-S6 Tables
in S1 File), another component of the Microcystis EPS [69, 70]. All of the isolates have the
genetic capacity to produce mannose-6-phosphate (M6P) isomerase (S2-S6 Tables in S1 File),
which converts M6P to fructose-6-phosphate (F6P), an intermediate of glycolysis.

The genomes of Deinococcus sp. JMULE3, Paenibacillus sp. JMULEA4, and Acidovorax sp.
JMULES contain the glcD gene for glycolate dehydrogenase, indicating they likely have the
ability to use algal-derived glycolate as a carbon source (S2-S6 Tables in S1 File). Glycolate is
an organic carbon source produced from the oxygenase activity of RuBisCO during photores-
piration by phytoplankton, with rates of excretion dependent upon the form of N available
[73, 75]. The potential utilization of glycolate by heterotrophic bacteria is indicated by the
presence of the glcD gene, which encodes glycolate oxidase; this gene is now considered a bio-
marker for the ability to consume algal-derived carbon [76, 77]. Bacterial utilization of glyco-
late released by phytoplankton has been examined in both marine systems and lakes [77, 78].
To determine whether these organisms actively attempt to access glycolate pools during bloom
events, we examined the genetic potential of bloom communities to use this C source in meta-
genomes from Lake Greenfield (Iowa, USA) and the active transcription of glcD in a set of
transcriptomes from Lake Erie (North America) and Lake Tai (Taihu) and (Table 4). Signa-
tures of Paenibacillus or Deinococcus glcD expression are largely non-existent (Table 4), indi-
cating they were not actively using (or capable of using) glycolate during the bloom events
sampled. While overall few reads recruited to glcD from the bloom metatranscriptomes, the
greatest number of reads recruited to the Acidovorax JMULES glcD gene, indicating that there
is some active transcription of this gene during bloom events by this species and other mem-
bers of the Comamonadaceae during bloom events in Taihu and Lake Erie (Table 4). The
increased recruitment of reads from the Greenfield metagenomes is likely a function of sam-
ples being DNA rather than RNA, indicating the potential of these organisms to use glycolate,
rather than active transcription. The low number of reads which recruited to the glcD
sequences in these bloom libraries is likely a function of the sample collection, as these were all
whole water samples rather than Microcystis-aggregates. Furthermore, little is known about
seasonality of bacterial interactions in the phycosphere. There may be a specific bloom stage
during which phycosphere bacteria may actively consume algal-derived carbon such as glyco-
late. These organisms are members of phyla that are significantly reduced in whole water sam-
ples compared to aggregates [14, 35], where Actinobacteria are universally dominant in
freshwater systems [14, 79, 80]. Unfortunately, few if any datasets exist that measure gene
expression specific to bacteria within Microcystis aggregates, although several recent studies

Table 4. Metatranscriptome and metagenome reads recruited to the glcD gene of Acidovorax JMULES, Deinococcus JMULE3, and Paenibacillus JMULE4. Libraries
from Lake Erie metatranscriptomes (Steffen et al., 2017; Stough et al., 2019), Taihu metatranscriptomes (Stough et al., 2019), and Greenfield metagenomes were recruited
to each glcD gene.

Lake Acidovorax (Comamonadaceae) Deinococcus (Denococcaceae) Paenibacillus (Paenibacillaceae)
Taihu 12 (128) 0 (0) 0 (0)
Erie 38 (252) 0(0) 0(0)
Greenfield 3,205 (21,536) 0(0) 4(0)

https://doi.org/10.1371/journal.pone.0257017.t1004
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have reconstructed bacterial functional potential within aggregates using metagenomics [22,
25, 35, 36]. Furthermore, it is likely that the type of interactions between Microcystis and its
associated bacteria may vary between synergistic or mutualistic and antagonistic depending
on the stage of bloom development [74]. Taken together, the content of these isolates’ genomes
likely indicates carbon exchange in the Microcystis phycosphere.

Iron utilization

Iron deprivation affects phytopigment production and photosynthetic efficiency of Microcystis
spp. [81]. Enterobacter sp. IMULE2, Paenibacillus sp. JMULEA4, and Deinococcus sp. JMULE3
genomes all contain genes encoding various siderophore transporters, biosynthetic pathways,
and utilization proteins (S3 Table in S1 File).

The Enterobacter sp. IMULE2 genome contains genes encoding FepBCDEG proteins for
the transport of ferric enterobactin (S3 Table in S1 File). Genes encoding the enterobactin
biosynthesis pathway proteins EntBSH are also present (S3 Table in S1 File). Enterobactin
siderophores are characteristic of the Enterobacteriaceae family and are amongst the strongest
siderophores with a high affinity for iron [82]. The genomes of 115 Microcystis aeruginosa iso-
lates in Genbank do not contain a gene encoding enterobactin esterase (fes), the enzyme neces-
sary to remove iron from the enterobactin siderophore. If Microcystis spp. cannot use
enterobactin, it is possible that iron scavenging by phycosphere bacteria could be competitive
with their cyanobacterial host during specific phases of bloom development [74]. The Entero-
bacter sp. JIMULE2 genome also contains iucA-D genes necessary for aerobactin synthesis (S3
Table in S1 File). Aerobactin siderophores do not have as strong an affinity for iron as entero-
bactins, but have an advantage for bacterial growth in iron-limited conditions [83]. Members
of the bloom-forming genus Dolichospermum (formerly Anabaena) can use ferric aerobactin
in culture, although it is not considered a robust iron donor for cyanobacteria [84].

The genome of Deinococcus sp. IMULE3 contains genes for isochorismate synthase (S3
Table in S1 File), a precursor of siderophores including enterobactin [85]. Isochorismate
synthase is necessary for the synthesis of salicylic acid for plant defense [86]. The Paenibacillus
sp. JMULE4 genome contains genes related to bacillibactin and anthrachelin siderophores (S3
Table in S1 File). The genome also contains genes for Feu A-C proteins for Fe-bacillibactin
transport [87]. Bacillibactins are catechol-based siderophores that are structurally like entero-
bactin siderophores which are produced by different members of the Bacillus genus, including
Bacillus anthracis [88]. These siderophores have also been described in a Paenibacillus honey-
bee pathogen [89]. Paenibacillus sp. JMULE4 genome contains genes for anthrachelin uptake
transporters (S3 Table in S1 File).

The Ton and Tol transport systems are used to transport ferric-siderophore complexes and
vitamin B, across the cell membrane [90]. The genomes of Acidovorax sp. JIMULES5, Deinococ-
cus sp. JIMULES3, and Enterobacter sp. JMULE2 contain genes involved in the Ton and Tol
transport systems. All three organisms also have genes for TonB-dependent receptors (S3
Table in S1 File). Enterobacter sp. JMULE2 and Acidovorax sp. JMULES have genes for the
TolA protein (S3 Table in S1 File). The Enterobacter sp. JMULE2 genome contains the gene
encoding aerobactin siderophore receptor, iutA (S3 Table in S1 File).

Production of auxins

Each of the five sequenced bacterial genomes encode genes for the biosynthesis of tryptophan,
and four encode homologues of ipdC, the gene which encodes indole-3-pyruvate decarboxyl-
ase (S82-S5 Tables in S1 File; Fig 2). Sequences of ipdC fall into four clusters based on similar-
ity to sequences of known function; Enterobacter sp. JMULE2 belongs to cluster I, encoding
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Fig 2. Phylogenetic tree of bacterial homologues of indolepyruvate decarboxylase (IpdC). Clusters are based on
similarity to sequences of known function, specifically indolepyruvate decarboxylase (Group I), a-keto decarboxylase
(Group II), acetolactate synthase (Group III), and phenylpyruvate decarboxylase (Group IV). Sequence alignment (527
amino acids) was performed using T-coffee (Notredame et al., 2000; Di Tomasso et al., 2011) and the Neighborhood-
Joining phylogenetic tree was generated in Mega X (Kumar ef al., 2018) with a bootstrap test of phylogeny (1000).

https://doi.org/10.1371/journal.pone.0257017.9002

indolepyruvate decarboxylase, along with other members of the Enterobacter genus and close
relatives such as Citrobacter (Fig 2). Acidovorax sp. JMULES falls in cluster II, whose members
encode an a-keto decarboxylase, while Exiguobacterium sp. JMULEL and Paenibacillus sp.
JMULE 4 belong to cluster IV, which encodes a phenylpyruvate decarboxylase (Fig 2). IpdC
and its homologues catalyze the second reaction in the indole-3-pyruvic acid (IPA) IAA syn-
thesis pathway, converting IPA to indole-3-acetaldehyde (IAAld) (Fig 2). When supplemented
with 5 mM tryptophan, all five isolates were confirmed to produce IAA via colorimetric assay,
with a range of 3.3 uM (Exiguobacterium sp. JMULE1) to 47.3 uM (Acidovorax sp. JMULE5)
after a 24-hour incubation (S6 Table in S1 File). The closest relative of JMULEL, Exiguobacter-
ium sp. MH3, produces auxins that are hypothesized to play a role in growth-promoting activ-
ity in its aquatic plant host [44]. Production of auxins by native bacteria increases cell density
of freshwater eukaryotic microalgae [91]. Tryptophan is an important precursor for indole-
3-acetic acid (IAA), the main auxin that occurs in plants. Amin et al. (2015) found that a bacte-
rial consortium promoted diatom cell division due to the secretion of an auxin synthesized
from diatom-derived tryptophan. Microcystis aeruginosa NIES 843 has the genetic capability
to produce tryptophan and could therefore serve in a similar role [16, 92]. The production of
auxins like IAA by these isolates suggests a possible important growth-promoting effect of the
bacteria on Microcystis and other freshwater cHAB formers.

Quorum sensing and signaling

The Enterobacter sp. IMULE2 genome contains genes for AI-2 transport and processing. Quo-
rum sensing, or cell-to-cell communication in bacteria, relies on the production of signaling
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molecules known as autoinducers [93]. Autoinducer 2 (AI-2) is an autoinducer produced by
many different bacterial species. This IsrACDBFGE operon has also been described in Salimo-
nella enterica and Escherichia coli [94, 95], both members of the Enterobacteriaceae family
with Enterobacter. In these organisms, the IsrACDB genes encode AI-2 transporter compo-
nents while the rest of the genes in the operon are needed from processing AI-2 once it is inter-
nalized [95]. Its closest relative (based on rpoB identity), E. asburiae sp. L1 (Table 3) is known
to produce an array of quorum sensing molecules, including AHLs [41].

Vitamin production

Many algae, including some cyanobacteria [96-98], require vitamin B, for growth yet are
unable to produce it and must rely on exogenous B, [97]. Microcystis requires vitamin B, for
the methionine biosynthesis pathway. This pathway requires B, as a cofactor for a type-1I
MetH enzyme [48, 97]. Microalgae can obtain vitamin B, directly from bacterial interactions
[97]. Paenibacillus sp. IMULEA4, Acidovorax sp. JMULES, and Deinococcus sp. JMULE3
genomes all contain genes for cobalamin (vitamin B,,) synthesis (MTR, cobY, cobU, cobQ,
bluB) (S1-S5 Tables in S1 File). Vitamin B, (biotin) is a cofactor that is essential for carboxyl-
ase enzymes, including acetyl coenzyme A (CoA) carboxylase which is used in the production
of fatty acids. As with vitamin By,, cultures of Microcystis are supplemented with B in the
growth medium. All five of the bacterial genomes contain genes for biotin biosynthesis (S1-S5
Tables in S1 File). In marine systems, 22% of HAB forming organisms are vitamin B, (thia-
mine) auxotrophs [99]. The Enterobacter sp. IMULE2, Paenibacillus sp. JMULEA4, and Acido-
vorax sp. JMULES5 genomes contain genes for vitamin B, synthesis (S1-S5 Tables in S1 File)
and could provide Microcystis with this essential nutrient in natural populations.

Potential for interaction in the Microcystis physcosphere

The reductionist approach to understanding the dynamics of HABs is shifting toward a more
dynamic model. No organism lives in isolation, including the phytoplankton which form
HABs. The phycosphere, a potential hotbed for interactions between algae and their heterotro-
phic bacterial microbiome, can be considered a counterpart of the terrestrial rhizosphere.
Within this microenvironment, exchange of nutrients and other compounds drive the mutual-
istic relationships between phytoplankton like Microcystis and their associated bacteria. Geno-
mic analysis of five bacterial isolates from a 2017 Microcystis bloom in Lake Erie indicate these
bacteria have the genetic potential for bidirectional exchange of nutrients and other growth-
promoting compounds such as vitamins and hormones with their photosynthetic partner. The
carbon-rich EPS produced by Microcystis contains the sugars mannose and xylose, which can
be taken up and utilized by all five of the Lake Erie isolates (Fig 3). For decades, it has been
posited that the bacteria associated with the Microcystis mucilage likely benefit from access to
these various forms of carbon [38, 100]. Less is known, however, about how Microcystis may
benefit from this close association with heterotrophic bacteria. One potentially important
mechanism of exchange may be the bidirectional exchange of carbon. Bacteria respire CO,, as
well as produce it as a byproduct of the hydrolysis of urea. During peak bloom conditions,
Microcystis populations in Lake Erie have increased transcription of genes involved in carbon
concentration, suggesting the potential for CO, limitation in dense bloom populations [101].
Respiration by associated bacteria could provide a supplemental source of CO, for Microcystis
(Fig 3) [102]. Many phytoplankton, including Microcystis require an exogenous source of vita-
mins By,, By, and B, [97, 99]. Phycosphere bacteria have been identified as potential sources of
these vitamins for marine bacteria, and four of the five Lake Erie isolates may serve in this
capacity during Microcystis blooms (Fig 3). In addition to providing vitamins, these bacteria
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Fig 3. Proposed mechanisms of interaction in the Microcystis phycosphere. The genomes of the five sequenced Lake
Erie isolates indicate the genetic potential for bidirectional exchange of nutrients and other compounds with
Microcystis colonies.

https://doi.org/10.1371/journal.pone.0257017.9003

may also provide reduced N to Microcystis during periods of N stress, which is common in sys-
tems such as Lake Erie during peak bloom conditions (Fig 3). Interestingly, all five of the
sequenced Lake Erie isolates can produce the plant hormone IAA when supplemented with
tryptophan. IAA has been shown to have growth promoting effects on both freshwater and
marine algae [16, 91], and may have an important role in the mutualistic exchange that occurs
between Microcystis and its associated bacteria (Fig 3). The genetic capacity of these bacteria
to provide critical vitamins and other nutrients provides new insight into the role that biotic
interactions may have in the development of Microcystis blooms. Further culture studies will
reveal the mechanisms which underlie these hypothesized multidimensional interactions illus-
trated in the genomic potential of these five bacterial isolates.

Methods
Sample collection, isolation, and identification

Water samples were collected from Lake Erie on August 9, 2017 from the Ohio State Univer-
sity Stone Lab R/V Gilbraltar III. Samples were taken from four different stations: WE02 (N
41° 45.777, W 83° 12.931’), WE04 (N 41° 49.634’, W 83° 11.659’), WE13 (N 41° 44.619", W
83° 08.081”), and MB18 (N 41° 44.886’, W 83° 24.061’). 20 um and 80 um mesh plankton nets
were used to collect samples from each site to ensure only those bacteria tightly associated with
the Microcystis colonies would be isolated. 150 mL were collected and stored on ice until trans-
port back to the laboratory.
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Both general (LB agar) and selective (CT medium with 100 uM urea agar) media were used
for the isolation of bacterial samples [63]. Bacterial isolates are maintained on CT-TY, CT
medium with 1 g/L tryptone and 1 g/L yeast extract [103]. Roughly 500 pL of each water sam-
ple was plated onto each medium and incubated at 26°C and 32°C, for 48 hours (LB/CT-TY)
or seven days (CT-urea). Single colonies were re-streaked onto new plates of the respective
media until the isolates were pure as confirmed by microscopy.

Isolates that were grown on urea-supplemented CT were tested for urea utilization capabili-
ties. Briefly, the isolates were inoculated into urea broth and urea agar slants (Hardy Diagnos-
tics) and observed for color change to indicate urease activity via ammonia production. To
extract DNA for ureC screening, turbid overnight cultures were pelleted at 17949 x g. The pel-
let was resuspended in 500 pL of sterile water and heated at 95°C in a dry bath for 15 minutes.
After heating, the tubes were centrifuged again for one minute. The supernatant containing
the DNA template was used for PCR amplification of the ureC gene using primers IGKAGNP-
forward (5’ ATHGGIAARGCIGGIAAYCC3’)and HEDWGA-reverse (5’ IGYICCCCART
CYTCRTG 3') (modified from Collier et al. [104]). The PCR program was as follows: 94°C
for one minute, 25 cycles of 94°C for 30 seconds, 53°C for 30 seconds, and 72°C for 45 sec-
onds, with a final extension of 72°C for 10 minutes.

DNA extraction and sequencing

Isolates were grown from a single colony in CT-TY broth for 48 hours at 26°C or 32°C
(JMULE4). The DNeasy UltraClean Microbial Kit (Qiagen) was used for DNA extraction
according to manufacturer’s instructions. A NanoVue Plus (GE Healthcare) was used to check
the quantity and purity of the DNA. The genomic DNA was sent to Genewiz (South Plainfield,
NJ, USA) for sequencing on the PacBio Sequel System. The PacBio SMRTbell library was pre-
pared according to the manufacturer’s instructions. The SMRTbell libraries were then
sequenced with the PacBio Sequel System.

The SMRTLink suite was used to demultiplex the sequence libraries that were generated
from the PacBio Sequel platform. These demultiplexed sequence files (BAM and FASTQ) were
then provided by the GENEWIZ sequencing facility for assembly and annotation.

Genome assembly and annotation

The genomes were assembled using the PacBio de novo assembly pipeline on the CLC Geno-
mics Workbench plugin CLC Genome Finishing Module (Qiagen) using default parameters.
First, the raw reads were imported into CLC Genomics Workbench and corrected for
sequencing errors and untrimmed adapters. The error-corrected reads were then assembled
into contigs with the “de novo Assemble PacBio Reads” tool. The corrected reads were then
mapped to the contigs to close gaps and join contigs and subsequently mapped to the larger
contigs.

The genomes were annotated with the NCBI prokaryotic genome annotation pipeline
(PGAP) [105] and RAST [106, 107]. The annotated genomes were viewed on the RAST SEED
Viewer [50]. Genome assemblies and annotations are available through NCBI at BioProject
PRJNA521711 and RAST (6666666.419766— Exiguobacterium sp. JMULEL, 6666666.419768—
Enterobacter sp. JMULE2, 6666666.419773—Deinococcus sp. JMULE3, 6666666.419775—Pae-
nibacillus sp. IMULE4, 6666666.419779— Acidovorax sp. JMULE5). Average nucleotide iden-
tity (ANI) was calculated using the calculator at http://enve-omics.ce.gatech.edu/ani/ [42].
Amino acid alignments were generated using T-coffee (http://tcoffee.crg.cat/apps/tcottee/)
and phylogeny was calculated using the Maximum-Likelihood method with a Bootstrap test of
phylogeny (1000 iterations) in Mega X [108-110].
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Confirmation of IAA production

Bacterial isolates were tested for the capability to produce the auxin indole-3-acetic acid (IAA).
The isolates were inoculated in 1mL of CT-TY broth fortified with 5 mM L-tryptophan and
incubated while shaking at 26°C, with the exception of 32°C for Paenibacillus, for 48 hours.
200 pL of axenic Microcystis and 2 pL of broth containing each isolate were added to a 96-well
plate in triplicate. 200 uL of the isolate alone were also added in triplicate to the 96-well plate.
The well plate was then left to incubate for 24 hours at 26°C. 150 L of Salkowski’s reagent (0.5
M FeCl; and 70% perchloric acid) were added to each well in the dark [102]. The plate was
incubated in the dark for 30 minutes before measuring absorbance at 530 nm to observe color
change and compare to a standard curve.

Prevalence in environmental data

To determine whether these isolates are present during bloom conditions, we analyzed
sequence libraries from blooms that occurred in three locations: Taihu (China) [103], Lake
Erie (North America) [4, 103], and Lake Greenfield (North America). Recruitments were per-
formed in CLC Genomics Workbench with a similarity fraction of 0.8 and a length fraction of
0.5 to capture closely related organisms [104]. All recruited reads were then classified via blastn
in CLC Genomics Workbench, and those that did not match each isolate at the family- or
genus-level based on e-value were excluded. The Lake Greenfield samples were collected on 20
July 2018 from the dock and a second site at a drainage pipe. The samples were collected dur-
ing a period when the town of Greenfield detected microcystin in the drinking water supply.
One liter of water was filtered through Sterivex units and kept on ice until frozen at -20°C (~2
hours). Samples were extracted using the DNEasy® PowerWater® (Qiagen) extraction kit
[105]. Genomic DNA was sent to GeneWIZ®) for library preparation and sequencing on the
IMumina HiSeq4000 platform to generate 150 bp paired end reads. Reads are available at the
NCBI SRA under BioProject PRINA610583.
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