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Abstract

We present a two step procedure called the dynamical self-energy mapping (DSEM) that

allows us to find a sparse Hamiltonian representation for molecular problems. In the first

part of this procedure, the approximate self-energy of a molecular system is evaluated using a

low level method and subsequently a sparse Hamiltonian is found that best recovers this low

level dynamic self-energy. In the second step, such a sparse Hamiltonian is used by a high

level method that delivers a highly accurate dynamical part of the self-energy that is employed

in later calculations. The tests conducted on small molecular problems show that the sparse

Hamiltonian parametrizations lead to very good total energies. DSEM has potential to be used

as a classical-quantum hybrid algorithm for quantum computing where the sparse Hamiltonian

containing only O(n2) terms in a Gaussian orbital basis, where n is the number of orbitals in

the system, could reduce the depth of the quantum circuit by at least an order of magnitude

when compared with simulations involving a full Hamiltonian.
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1 Introduction

Creating model Hamiltonians is especially important in condensed matter physics when only a few

“important degrees” of freedom need to be modeled at a more accurate level while the reminder

of the physical system of interest can be treated approximately. Such e↵ective Hamiltonians can

make intractable physical problems accessible to regular classical computations as well as provide

a conceptual understanding of the physical processes present in the system. E↵ective Hamiltonians

are commonly used in embedding methods capable of treating strongly correlated problems1–3

where many of such Hamiltonians are recovered as a result of a downfolding procedure. In such

a procedure, a 1-body Hamiltonian is obtained from a density functional theory (DFT) calculation

which is then followed by a projection onto Wannier orbitals4,5 and estimation of the lattice model

with all the necessary hopping parameters. Subsequently, the 2-body interactions are produced

from constrained DFT or random phase approximation (RPA). E↵ective Hamiltonians can be also

obtained as a result of canonical transformation procedure,6–8 Löwdin orthogonalization method,9

or density matrix downfolding.10,11 E↵ective Hamiltonian formalism has a long history, especially

in the context of multi-reference coupled cluster methods (both in Fock as well as in Hilbert space

formulations) that result in some form of e↵ective Hamiltonians. This continues to be an active area

of development and some important research papers are cited in Refs.[12–36] In all these methods,

a full, computationally demanding solution of a problem is replaced by a computationally less

demanding two step procedure involving the construction of a model Hamiltonian and accurate

computation with the resulting Hamiltonian.

It is straightforward to envision that a variant of such a procedure could be used in quantum

chemistry computations involving quantum computers and here in particular calculations on noisy

intermediate-scale quantum (NISQ) devices.37 Since in quantum computing applications the num-

ber of measurements scales with the number of non-zero terms in the Hamiltonian, handling the full

Hamiltonian containing n4 2-body terms, where n is the number of orbitals present in a molecular

problem is very challenging particularly for NISQ devices, where the number of accessible qubits,

gates, and circuits depths are very limited. Consequently, classical–quantum hybrid algorithms
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resulting in sparse Hamiltonians are naturally best suited computing solutions.38–40 The advent of

classical-quantum hybrid algorithms has resulted recently in multiple algorithms suitable for this

mode of execution, most notably a subspace VQE methods by Takeshita et al.,41 coupled-cluster

downfolding methods by Bauman et al.,42–44 and algorithms by Somma et al. for Hamiltonian

simulations in the low energy subspaces.45

In this paper, we discuss a two step procedure that we call the dynamical self-energy mapping

(DSEM) that can in the future be employed as a classical–quantum hybrid algorithm. The first part

of this algorithm is using a polynomially scaling algorithm with respect to the number of orbitals

present in the problem in order to produce a total approximate Green’s function and self-energy

of the molecular problem. The resulting self-energy is then used to parameterize an e↵ective

Hamiltonian. This e↵ective Hamiltonian containing only a small parameterized subset of 2-body

integrals describes a fictitious system that has the same dynamical part of the self-energy as the

parent molecular problem containing all 2-body integrals. Subsequently, this fictitious system

described by the sparse Hamiltonian is passed to and solved by an accurate solver yielding non-

perturbative dynamical part of the self-energy.

While in this paper, we employ a classical computer to validate this approach, in the future

such a solver can be replaced by a quantum machine that produces the self-energy. Since in such

a procedure the quantum machine deals only with a very sparse Hamiltonian containing at most

n2 2-body integrals, the number of gates and the circuit depth are severely reduced as compared

to a case when all n4 2-body interactions are present in the molecular Hamiltonian. Note, that

the DSEM algorithm results in a sparse Hamiltonian parameterization for the fictitious system and

it gives access to the evaluation of all relevant observables and the electronic energy since it has

the same dynamic part of self-energy as the parent system. The ability to rightfully reproduce the

self-energy is not always present in the traditional model Hamiltonians that may be designed to

reproduce only specific properties.

This paper proceeds as follows. In Sec. 2, we explain the basics of the DSEM procedure and

discuss how the self-energy necessary for the model Hamiltonian evaluation can be approximated.
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In Sec. 3, we demonstrate the accuracy of our procedure. We conclude in Sec. 4.

2 Method

We define a general Hamiltonian for a chemical system of interest as

Ĥfull =

nX

i j

ti ja†i a j +
1
2

nX

i jkl

vi jkla†i a†kala j, (1)

where vi jkl, denoted in short as hi j|kli, are 2-body Coulomb interactions defined as

vi jkl =

Z Z
dr1dr2�

⇤

i (r1)� j(r1)
1

r12
�⇤k(r2)�l(r2) (2)

and containing n4 terms, where n is the number of orbitals present in the full molecular problem.

The 1-body operator is defined as

ti j =

Z
dr1�

⇤

i (r1)h(r1)� j(r1), (3)

h(r1) = �
1
2
r2(r1) �

X

A

ZA

|r1 � RA|
. (4)

For a molecular system of interest the exact Green’s function is related to its non-interacting

Green’s function via Dyson equation

⌃1 + ⌃(!) = [G0(!)]�1
� [G(!)]�1, (5)

where ⌃1 and ⌃(!) are the static and the dynamical, frequency dependent part of the self-energy,

respectively.46 Both these self-energies arise due to electronic correlations present in the system of

interest. The zeroth order Green’s function is defined as

G0(!) = [(! + µ)S � F]�1, (6)
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where µ, S , and F are chemical potential, overlap, and Fock matrix, respectively. Note that here

the Fock matrix is defined as

Fi j = ti j +
X

kl

�kl(vi jkl � 0.5vilk j) (7)

and can be evaluated using a 1-body density matrix � that does not necessarily need to come from

Hartree-Fock but may come from a correlated method.

The first assumption of the DSEM procedure is that for a molecular system, we will be able

to produce an approximate self-energy at a low polynomial cost. In the future when DSEM will

be employed as a classical-quantum hybrid algorithm, this approximation to the true self-energy

will be produced in the classical part of the algorithm and it can be evaluated in multiple ways,

for details see Sec. 2.1. In this paper, we approximated the exact dynamical self-energy either as

⌃1, the first coe�cient of the high frequency expansion47 or as ⌃(2)(!), the dynamical second-order

self-energy from the second order, finite temperature, fully self-consistent Green’s function method

(GF2).48–51 In principle, on a classical machine, the approximate self-energy can be evaluated using

any polynomially scaling algorithm capable of treating a large number of orbitals (eq. GW,52

FLEX,53,54 Møller-Plesset second order (MP2)55).

The second assumption of our algorithm is that using this approximate self-energy, a Hamilto-

nian of the fictitious system, Hfic can be evaluated in such a way that with only a subset of 2-body

integrals (here at most n2) and all 1-body integrals of the original problem it recovers very well

the approximate self-energy of the original molecular problem. This sparse Hfic is then used to

produce a Green’s function and subsequently a self-energy using a high level non-perturbative

method. When DSEM would be executed as quantum-classical hybrid then this part is performed

on a quantum machine. In such a case, the sparse fictitious Hamiltonian Hfic will result in a shallow

quantum circuit requiring only a limited number of qubits due to the sparsity of the 2-body inte-

grals. Note that here, the quantum machine evaluated self-energy is exact for a fictitious, auxiliary

system defined using a classical machine, however, it is not an exact self-energy of the Hamiltonian

6



containing all interactions. Nevertheless, we expect that the self-energy of the fictitious system will

approximate the exact self-energy of the true molecular system very well as we will show in the

subsequent sections. The self-energy evaluated using the high level method can then be used to

evaluate the total electronic energy and other desired properties.

Evaluate e↵ective 2-body interactions ṽ
that best approximate the original self energy

⌃(!, v) ⇡ ⌃(!, ṽ)

Construct e↵ective molecular
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Figure 1: Dynamical self-energy mapping (DSEM) algorithm to produce a sparse Hamiltonian
for a fictitious molecular system. DSEM can be used as a classical-quantum hybrid algorithm
for quantum computing, in which case, the high level method will be executed on the quantum
machine.

Here, we summarize the two part DSEM algorithm. LLP denotes a part executed by an ap-

proximate perturbative method, while HLP is employed to describe an accurate high level, non-

perturbative solver. Note that if DSEM was executed as a classical–quantum hybrid algorithm

then LLP is executed on a classical machine while HLP part is employing a quantum machine. A

schematic picture showing the DSEM algorithm is presented in Fig. 1.

LLP0 Using the Hamiltonian Ĥfull from Eq. 1 containing all interactions perform a HF calculation

for the system of interest.

LLP1 Employ Ĥfull to evaluate a self-energy defined as ⌃1(tfull, vfull)+⌃(!)(tfull, vfull) using a poly-

nomially scaling method (in this paper, we are using GF2). Note, that here we explicitly
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denote that both parts of the approximate self-energy are evaluated using full 1- and 2-body

integrals.

LLP2 Use the least square fit to find e↵ective integrals ṽ for which ⌃(!)(F̃, ṽ) best approximates

⌃(!)(tfull, vfull) evaluated with full integrals. Note that ⌃(!)(F̃, ṽ) is evaluated using fictitious

Hamiltonian Hfic that contains e↵ective 2-body integrals. For details see Sec. 2.1 and 2.2.

HLP0 The fictitious Hamiltonian given by Eq. 17 and obtained by a perturbative method is passed

to a non-perturbative solver (or a quantum machine).

HLP1 Evaluate Green’s function G(!)(F̃, ṽ) using a high level solver such as exact diagonaliza-

tion, quantum Monte Carlo, or one of the truncated configuration interaction (CI) schemes.

In a case of quantum execution of this step the Green’s function evaluation can be done based

on one of the algorithms described in Refs.56–65

LLP3 Evaluate the self-energy ⌃(!)(F̃, ṽ) using the Dyson equation.

LLP4 Employ the self-energy evaluated in HLP1 to calculate the new Green’s function G(!)

according to

G(!) = [(! + µ)S � F � ⌃(!)(F̃, ṽ)]�1 (8)

Note that by writing ⌃(!)(F̃, ṽ), we explicitly denote that this self-energy came from the

solution of the fictitious problem solved in HLP1.

LLP5 Find chemical potential µ yielding a proper number of electrons.

LLP6 Evaluate a new density matrix � from the Green’s function obtained in CP4 and a new Fock

matrix.

LLP7 Evaluate 1-body electronic energy as

E1b =
1
2

X

i, j

�i j(ti j + Fi j). (9)
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LLP8 Using the new Green’s function and self-energy evaluate 2-body energy according to

E2b =
2
�

X

i, j

Re[
X

!

Gi j(!)⌃i j(!)(F̃, ṽ)]. (10)

LLP9 Using the Green’s function defined in LLP4, it is possible to re-evaluate the self-energy in

the LLP part of the algorithm and find a new set of e↵ective integrals and continue iterating

until electronic energies stop to change

Note that iterations described in LLP9 are optional, in Sec 3, we report results without them.

Our observations indicated that the di↵erence between performing only the first iteration and all

iterations is small (usually below 1 mEh) for the systems studied.

2.1 Approximating self-energy

Here, we focus on possible approximations to the exact self-energy evaluated in the LLP part of

the algorithm that can be computed with a polynomial cost. This approximate self-energy is later

used to find best e↵ective 2-body integrals for the fictitious Hamiltonian.

2.1.1 High frequency expansion of the self-energy

In our previous work,47 we showed that in certain molecular cases, a good approximation to the

exact self-energy is obtained by using a high frequency expansion of the self-energy

⌃(!) =
⌃1

!
+
⌃2

!2 +
⌃3

!3 + O
� 1
!4

�
(11)

that is then truncated only to preserve

⌃(!) ⇡
⌃1

!
, (12)

where ⌃1 is the first coe�cients of the high frequency expansion. This coe�cient can be evaluated

either in approximate perturbative theories or by employing formulas listed in Ref.47 that use both

1- and 2-body density matrices. Such a simple approximation for the self-energy can be then
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employed to evaluate fictitious Hamiltonian containing only on-site 2-body integrals given by the

following expression

ṽiiii =

s
2[⌃1]ii

�ii(1 � 1
2�ii)
, (13)

where �ii is the on-site 1-body density matrix.

2.1.2 Frequency dependent self-energy from the second order finite temperature Green’s

function perturbation theory (GF2)

For molecular systems, the self-energy obtained in the GF2 method

⌃(2)
i j (⌧) = �

X

klmnpq

Gkl(⌧)Gmn(⌧)Gpq(�⌧) ⇥ vimqk(2vlpn j � vnpl j) (14)

is a very good approximation to the exact self-energy. Therefore, we evaluate it in a lower level

part of the algorithm using the full molecular Hamiltonian. This evaluation scales as n5n⌧, where

n is the number of orbitals in the molecular problem while n⌧ is the size of imaginary time grid.

Since in this approach, all the elements of the self-energy matrix are produced, we use the least

square fitting to find a set of sparse 2-body integrals that yield the best approximation to the second

order self-energy, namely

⌃(2)
i j (⌧, t f ull, v f ull) ⇡ ⌃(2)

i j (⌧, F̃, ṽ). (15)

We require the sparse 2-body integrals ṽ depend at most on two indices thus resulting in only n2

2-body integrals. These optimizations are done in the imaginary time domain. We calculate the

distance between the self-energies for a given imaginary time grid point and use the Frobenius

norm of the resulting di↵erence matrix as our cost function. All the values for all time grid points

were then summed up to create the total objective function

f =
t=⌧maxX

t=⌧1

k ⌃(2)
i j (⌧, t f ull, v f ull) � ⌃(2)

i j (⌧, F̃, ṽ)k. (16)

The optimization is stopped when the desired threshold of 0.001 is reached.
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To check the accuracy of this approximation we tested and included multiple groups of inte-

grals starting from just the on-site integrals and then gradually increasing the set to n2 integrals

containing at most two independent indices.

2.2 Fictitious Hamiltonian

Note that using the e↵ective integrals obtained either in Sec. 2.1.1 or 2.1.2, the sparse Hamiltonian

that is used subsequently by the high level solver has the following form

Ĥfic =
X

i j

F̃i ja†i a j +
1
2

X

i jkl

ṽi jkla†i a†jakal, (17)

where ṽi jkl are non-zero only for the chosen integrals groups. The modified Fock matrix F̃i j is

given by the following equation

F̃i j = ti j +
X

kl

�kl(vi jlk �
1
2

vikl j) �
X

kl

�kl(ṽi jlk �
1
2

ṽikl j), (18)

where Fi j = ti j +
P

kl �kl(vi jlk �
1
2vikl j) is the Fock matrix produced in GF2, where � is the 1-body

density matrix from GF2 and vi jkl are the full 2-body integrals. The term
P

kl �kl(ṽi jlk �
1
2 ṽikl j)

corresponds to the double counting correction that should be evaluated with the e↵ective 2-body

integrals evaluated as discussed either in Sec 2.1.1 or 2.1.2.

3 Results

In this section, we will examine our results from di↵erent fictitious Hamiltonian parameterizations,

namely (p1) hii|iii on-site 2-body integrals, (p2) both on-site integrals as well as hii| j ji, hi j|i ji in-

tegrals, and (p3) on-site integrals and all modified two body integrals with two varying indices out

of the total of four indices, namely hii| j ji, hi j|i ji, and hi j| j ji integrals. Note that while the DSEM

scheme is designed to be used as a classical–quantum hybrid algorithm, here, to provide valida-

tions and benchmarking of this procedure, we performed it entirely on a regular, classical machine.
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All the parametrizations performed here were done in symmetrized atomic orbitals (SAO). It is an

important fact since paramatrizations performed in di↵erent orbital bases can lead to di↵erent

structure of the 2-body integrals. To best preserve the existing symmetries, we are retaining all

integrals that are equivalent due to symmetry and their final values are made equal.

3.1 Hamiltonians with parameterized on-site integrals from high frequency

expansion

Initially, we parameterized simple molecular Hamiltonians used for the self-energy evaluation to

contain only on-site e↵ective integrals. These integrals can be defined as the 2-body integrals

of the form ṽiiii = hii|iii where i is the orbital number. In this paper, to simulate a classical–

quantum hybrid computing process, the self-energy was calculated using a polynomially scaling

GF2 algorithm. In this section, we focus on the parameterization of the Hamiltonian using only

the on-site 2-body integrals coming from the high frequency expansion of the GF2 self-energy.

In Tab. 1, for the H6 ring in the STO-6G basis, we list the 2-body integrals obtained from

the high frequency expansion of the GF2 self-energy. The 1-body energies and 2-body energies

listed were obtained by employing Eq. 9 and Eq. 10, respectively. The GF2 and FCI results were

evaluated using all n4 integrals, where n is the total number of orbitals in the problem. By FCI(ṽ),

we denote an FCI energy evaluated using e↵ective on-site ṽiiii 2-body integrals parameterized using

the GF2 self-energy. We note that the total energy that is recovered by FCI(ṽ) is very close to the

true FCI energy and constitutes 102% of the original correlation energy. The e↵ective on-site

integral evaluated in the symmetrized atomic orbital (SAO) basis ṽiiii = 0.598096 is smaller than

the bare on-site Coulomb integral viiii = 0.9060789 as is expected since it includes the e↵ects of

other non-local integrals.

To assess the e↵ect of the basis set increase, we also performed calculations in the DZ basis.

In Tab. 2, we list results for H6 ring at R=0.95 Å in the DZ basis. Here, the solution of FCI(ṽ) with

parameterized on-site integrals recovers 94% of correlation energy. Note also the values of the

e↵ective integrals ṽiiii = 1.001197 and ṽ j j j j = 0.424057 are smaller than the bare on-site Coulumb
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Table 1: Energy values obtained using GF2, FCI and parameterized FCI(ṽ) for H6 ring with
interatomic distance R=0.95 Å in the STO-6G basis. The second row lists 2-body integrals
that were used in the evaluation of self-energies. All values of energy are listed in a.u. In case
of FCI(ṽ), ṽiiii denotes the value of the 2-body on-site integral for i = 1, . . . , 6, all other 2-body
integrals are equal to zero.

GF2 FCI FCI(ṽ)

2-body integrals all integrals all integrals ṽiiii = 0.598096

1-body energy -9.221596 -9.162680 -9.194815

2-body energy -0.104371 -0.185912 -0.155320

correlation energy -0.052695 -0.075320 -0.076999

total energy -9.325966 -9.348592 -9.350271

integrals viiii = 1.20619 and v j j j j = 0.447542. Such a di↵erence is expected and it is arising due to

inclusion of the non-local e↵ects.

Table 2: Energy values obtained using GF2, FCI and parameterized FCI(ṽ) for H6 ring with
interatomic distance R=0.95 Å in the DZ basis. The second row lists 2-body integrals that
were used in the evaluation of self-energies. All values of energy are listed in a.u. In case of
FCI(ṽ), ṽiiii denotes the value of the 2-body on-site integral for 1s i = 1, . . . , 6, ṽ j j j j denotes the
value of the 2-body on-site integral for 2s, all other 2-body integrals are equal to zero.

GF2 FCI FCI(ṽ)

2-body integrals all integrals all integrals ṽiiii=1.001197

ṽ j j j j=0.424057

1-body energy -9.257054 -9.204537 -9.248869

2-body energy -0.132880 -0.206746 -0.157235

correlation energy -0.066384 -0.087733 -0.082553

total energy -9.389935 -9.411284 -9.406104

While these results are encouraging, in most cases for more complicated molecular exam-

ples, employing only on-site 2-body e↵ective integrals cannot lead to the full recovery of the o↵-

diagonal elements of the self-energy. Since here the o↵-diagonal elements are only evaluated as a

result of the following multiplication ⌃(2)
i j (⌧) = �

P
i j[Gi j(⌧)]2Gi j(�⌧)ṽiiiiṽ j j j j not enough freedom
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may be present to find best on-site integrals ṽiiii that lead to best approximation ⌃(2)
i j (⌧, t f ull, v f ull) ⇡

⌃(2)
i j (⌧, F̃, ṽiiii). We illustrate this observation in Fig. 2 by displaying the elements of imaginary part

of the self-energy for the H6 chain in the DZ basis. It is evident that while the diagonal elements

Figure 2: The imaginary part of the self-energy for H6 chain in the DZ basis evaluated in FCI with
all integrals (denoted here as FCI(v)) and FCI with e↵ective, on-site 2-body integrals (denoted as
FCI(ṽiiii)). Top left: Im[⌃(i!)]00 element. Bottom left: Im[⌃(i!)]01 element. Top right: Im[⌃(i!)]11

element. Bottom right: Im[⌃(i!)]03 element.

of the self-energy are recovered reasonably well, the o↵-diagonal self-energy elements are not re-

covered well and are almost equal to zero. Consequently, we conclude that the Hamiltonians with

only on-site e↵ective interactions will yield accurate results for systems where the self-energy is

majorly diagonal. For other cases a larger number of 2-body integrals is necessary to recover the

o↵-diagonal elements of self-energy.
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3.2 Modified Hamiltonian parameterization using GF2 self-energy

Here, we focus on parameterization of the fictitious Hamiltonian by finding a small number of

e↵ective 2-body integrals that produced a best match between the original GF2 self-energy and

the GF2 self-energy evaluated with only the e↵ective ṽ integrals ⌃(2)
i j (⌧, t f ull, v f ull) ⇡ ⌃(2)

i j (⌧, F̃, ṽ) as

described in Sec. 2.1.2. In order to perform these fits we used the least-squares optimization sub-

routine from scipy.66 We investigate parameterizations with both only on-site and more extensive

parameterizations with up to n2 integrals. Here, we perform the DSEM procedure for several small

molecular systems such as H6 ring, H6 chain, H2O, and Be dimer. We believe that these systems

are good examples of molecular problems that at present can be solved using NISQ devices.

3.2.1 H6 ring in the STO-6G basis set

Both the correlation energies and total energies for the H6 ring in the STO-6G basis are presented

in Tab. 3. We observe that increasing the number of the e↵ective 2-body integrals leads to a sig-

nificant improvement in the match of the GF2 self-energies ⌃(2)
i j (⌧, t f ull, v f ull) ⇡ ⌃(2)

i j (⌧, F̃, ṽ) and

consequently a significant improvement of GF2 total and correlation energies when compared to a

GF2 energy evaluated with all the integrals. We analyze three previously mentioned parameteriza-

tions p1, p2, and p3. We observed that p2 and p3 parameterizations were completely su�cient to

recover the total energy beyond 4th digit after decimal point.

In Tab. 3, we also list the results of FCI (FCI(p1), FCI(p2), and FCI(p3)) performed using

the Hamiltonian parameterized at the GF2 level using the three previously discussed parameteriza-

tions. We observe that the results from p2 and p3 parameterizations are around 1 mEh per hydrogen

away from the FCI energy evaluated with all the integrals. Note also that we only applied a rel-

atively naive fitting where we do not use any sophisticated weighing scheme to di↵erently weigh

the diagonal and o↵-diagonal elements of the self-energy or the low- and high frequency behavior.
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Table 3: Energy values obtained using GF2, parameterized GF2, FCI, and parameterized
FCI. Symbol p1 stands for a parameterization using hii|iii integrals. Symbol p2 stands for a
parameterization using hii|iii, hi j|i ji, hi j| jii groups of the e↵ective integrals. Symbol p3 stands
for a parameterization that uses all the integrals from the p2 group as well as hi j| j ji e↵ective
integrals. All values of energy are listed in a.u.

H6 ring; Basis: STO-6G

GF2(v) GF2(p1) GF2(p2) GF2(p3) FCI(v) FCI(p1) FCI(p2) FCI(p3)

Correlation energy -0.05269 -0.06202 -0.05268 -0.05266 -0.07532 -0.06191 -0.08107 -0.06694

Total energy -9.32597 -9.33529 -9.32595 -9.32593 -9.34859 -9.33518 -9.35434 -9.34021

Table 4: Number of single qubit (SQG) gates and CNOT gates required to exponenti-
ate the full and fictitious Hamiltonian under various parameterizations for both Jordan-
Wigner(JW) and Bravyi-Kitaev(BK) transformations. Symbol p1 stands for a parameteriza-
tion using hii|iii integrals. Symbol p2 stands for a parameterization using hii|iii, hi j|i ji, hi j| jii
groups of the e↵ective integrals. Symbol p3 stands for a parameterization that uses all the
integrals from the p2 group as well as hi j| j ji e↵ective integrals.

H6 ring; Basis:STO-6G H6 chain; Basis: DZ H2O; Basis: DZ Be2; Basis: 6-31G

JW BK JW BK JW BK JW BK

H(v)
SQG [3.25⇥103,1.30⇥104] [4.23⇥103,1.72⇥104] [1.21⇥105,2.15⇥105] [1.95⇥105,3.46⇥105] [2.34⇥105,2.79⇥105] [3.90⇥105,4.49⇥105] [2.81⇥105, 2.90⇥105] [4.93⇥105, 10.66⇥105]

CNOT [5.01⇥103,1.97⇥104] [4.66⇥103,1.93⇥104] [3.12⇥105,5.54⇥105] [2.43⇥105,5.11⇥105] [7.29⇥105,8.46⇥105] [4.98⇥105,5.91⇥105] [10.83⇥105,10.66⇥105] [6.58⇥105, 6.72⇥105]

H(p1)
SQG 3.18⇥102 5.10⇥102 1.35⇥103 2.60⇥103 1.85⇥103 3.65⇥103 1.20⇥103 2.52⇥103

CNOT 5.72⇥102 5.12⇥102 4.59⇥103 2.96⇥103 7.30⇥103 4.23⇥103 6.39⇥103 2.96⇥103

H(p2)
SQG 9.18⇥102 8.70⇥102 4.00⇥103 4.19⇥103 5.02⇥103 4.97⇥103 7.24⇥103 6.15⇥103

CNOT 1.05⇥103 1.14⇥103 6.71⇥103 5.92⇥103 8.56⇥103 7.18⇥103 1.12⇥104 9.91⇥103

H(p3)
SQG 1.53⇥103 1.85⇥103 6.64⇥103 9.32⇥103 7.70⇥103 1.04⇥104 9.56⇥103 1.11⇥104

CNOT 2.17⇥103 2.07⇥103 1.59⇥104 1.14⇥104 1.98⇥104 1.31⇥104 2.40⇥104 1.54⇥104

3.2.2 H6 chain in the DZ basis set

We investigated how the accuracy of di↵erent parameterizations behaves as the number of orbitals

in the basis set is increased. In Tab. 5, results of these studies for the H6 chain in the DZ basis

are listed. We observe that the GF2 energy evaluated with all the integrals is recovered by pa-

rameterization p3 while parameterization p2 is di↵ering only by ⇡ 3 mEh. When Hamiltonian in

parameterization p3 is used in FCI, we observe that the result is approximately 1 mEh per hydrogen

di↵erent than the FCI result evaluated with all the integrals.
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Table 5: Energy values obtained using GF2, parameterized GF2, FCI, and parameterized
FCI. Symbol p1 stands for a parameterization using hii|iii integrals. Symbol p2 stands for a
parameterization using hii|iii, hi j|i ji, hi j| jii groups of the e↵ective integrals. Symbol p3 stands
for a parameterization that uses all the integrals from the p2 group as well as hi j| j ji e↵ective
integrals. All values of energy are listed in a.u.

H6 chain; Basis: DZ

GF2(v) GF2(p1) GF2(p2) GF2(p3) FCI(v) FCI(p1) FCI(p2) FCI(p3)

Correlation energy -0.06677 -0.08606 -0.06958 -0.06623 -0.09584 -0.05678 -0.08102 -0.10139

Total energy -8.13663 -8.15592 -8.13944 -8.13609 -8.16570 -8.12664 -8.15088 -8.17125

3.2.3 H2O in DZ basis set

Studying both the H6 chain and ring examples in two di↵erent basis sets allow us to confirm that

when the p3 parameterization in GF2 is very close to the original GF2 energy evaluated with all

the integrals then the FCI energies recovered from the p3 parameterization is also very close to

the original FCI energy. This observation prompts us to analyze examples where calculating the

Green’s function in the FCI procedure will result in a significant computational time and memory

use. For these cases, we will only examine the systematic improvement present in the p1, p2, and

p3 GF2 parameterizations.

In Tab. 6, we list GF2 energies resulting from the di↵erent parameterizations of the Hamilto-

nian. Note that both the p2 and p3 parameterizations are only 6 and 2 mEh away from the original

GF2 energy, respectively.

Table 6: Energy values obtained using GF2, and parameterized GF2. Symbol p1 stands for a
parameterization using hii|iii integrals. Symbol p2 stands for a parameterization using hii|iii,
hi j|i ji, hi j| jii groups of the e↵ective integrals. Symbol p3 stands for a parameterization that
uses all the integrals from the p2 group as well as hi j| j ji e↵ective integrals. All values of
energy are listed in a.u.

H2O; Basis: DZ

GF2(v) GF2(p1) GF2(p2) GF2(p3)

Correlation energy -0.13287 -0.19069 -0.13844 -0.13519

Total energy(a.u.) -85.47654 -85.53436 -85.48212 -85.47886
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3.2.4 Be2 in 6-31G basis set

Finally, in Tab. 7, we analyze a small diatomic molecule Be2 that when calculated in the 6-31G

basis set is an ideal test case for calculations on small molecular systems. For this case, similar to

the previous cases the GF2 energy coming from the p1 parametrization is not acceptable. However,

the p2 parameterization results in energies that are very close to the original GF2 energy. The p3

parameterization yields the energy value with an error as small as 1 mEh.

Table 7: Energy values obtained using GF2, and parameterized GF2. Symbol p1 stands for a
parameterization using hii|iii integrals. Symbol p2 stands for a parameterization using hii|iii,
hi j|i ji, hi j| jii groups of the e↵ective integrals. Symbol p3 stands for a parameterization that
uses all the integrals from the p2 group as well as hi j| j ji e↵ective integrals. All values of
energy are listed in a.u.

Be2; Basis: 6-31G

GF2(v) GF2(p1) GF2(p2) GF2(p3)

Correlation energy -0.04814 -0.02047 -0.04463 -0.04651

Total energy -29.18194 -29.15427 -29.17843 -29.18031

3.3 Number of gates for di↵erent Hamiltonian parameterizations

The estimation of the cost of performing molecular calculations on quantum devices is critical to

gain insight into the e�ciency of such calculations. Such estimations were done most notably for

phase estimation in Ref.67 and subsequently for the VQE formalism .68 These estimations point to

the crucial dependence of the circuit depth on the sparsity of the Hamiltonian. To illustrate that

such DSEM simplified Hamiltonian parameterizations will lead to low circuit depths, we calculated

the number of gates for the fictitious Hamiltonians constructed in the previous section. Number of

gates required for exponentiation of full and fictitious Hamiltonians are listed in Tab. 4. We used

Jordan-Wigner69 and Bravyi-Kitaev70 transformations for expressing the molecular Hamiltonian

in terms of Pauli operators. These transformations were obtained using OpenFermion’s71 practical

implementation of these techniques. Number of gates required were calculated using these Pauli
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representations as described in Ref.72 For the parameterized cases (H(p1), H(p2), H(p3)), we have

worked in SAO basis, while for the full Hamiltonian, we evaluated the number of gates both in

SAO and molecular orbitals (MO) representation listing both cases. For the small molecular cases

analyzed here, we observe a reduction in the number of gates by about an order of magnitude

when using the fictitious Hamiltonian (even within p3 parameterization) in comparison to the full

Hamiltonian. Note, however, that as the system size increases, we expect that the di↵erence in the

number of gates necessary to perform a single Trotter step will increase for the full Hamiltonian.

Consequently, in the limit of a large molecular system, a parameterized Hamiltonian will result in

even larger reduction of necessary gates when compared to the full Hamiltonian.

4 Conclusions

We have presented a DSEM procedure which allows us to find a fictitious, sparse Hamiltonian that

recovers the self-energy evaluated with the full, original Hamiltonian containing all 2-body inte-

grals. DSEM procedure is a two step procedure which employs a polynomially scaling evaluation

of the self-energy that is necessary for finding a sparse, fictitious Hamiltonian that is then used to

evaluate an exact self-energy using a high level method. The high level solver deals only with the

sparse Hamiltonian containing at most n2 terms. We have compared the GF2 and FCI energies ob-

tained using the DSEM procedure to the original GF2 and FCI energies. From these comparisons,

we have demonstrated that the errors can be controlled and are small.

DSEM has a potential to be used as a classical-quantum algorithm in quantum computing. The

first part of the DSEM algorithm can be executed on a classical machine while the second part

relying on an accurate, non-perturbative solver can be executed on a quantum computer. Since the

Hamiltonian present in quantum computation is sparse, the resulting circuit is shallow with many

fewer gates than for the circuit necessary to represent the original Hamiltonian. We have shown

that the number of necessary gates in order to express the sparse Hamiltonian is at least one order

of magnitude smaller, even for small systems, when compared to the gates necessary to express
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the original Hamiltonian.

There are various other quantum algorithms that leverage the sparsity of the Hamiltonian for

a reduced gate count in a quantum circuit. In Ref.,73 Babbush et al. reduced the number of

Hamiltonian terms to O(N2), where N is the number of basis functions in a plane-wave basis-set .

They diagonalize di↵erent components of the Hamiltonian operator, namely kinetic operator and

potential operator using plane wave and dual plane wave basis respectively. Our method di↵ers

from this approach as we perform all our calculations in a Gaussian orbital basis, which requires

fewer basis functions to obtain the same level of convergence with respect to the basis set. For

regular chemical systems the number of necessary plane waves are thousands times larger than

the number of Gaussian orbitals, N >> n. However, at the same time, we make approximations

to the self-energy in order to reduce the number of terms in the Hamiltonian which when not

done carefully can lead to a loss of accuracy. Further work to improve these approximations is in

progress in our lab. The results of Babbush et al. were further extended to Gaussian basis set by M.

Motta et al.74 using two-step decomposition of 2-electron integrals introduced by B. Peng et al.75

While this work leads to reduction of N, this is done at the cost of introducing multiple Givens

rotations which ultimately again result in complicated circuits. Such complication does not arise

in the DSEM scheme where the number of 2-body integrals is drastically reduced.

We believe that our work opens several new venues of molecular quantum computing research

that were not explored before. First, we propose that the quantum machine performs an eval-

uation for the fictitious Hamiltonian that is used to recover the molecular frequency dependent

self-energy. From a mathematical view point, this has several interesting implications. For the

“true”, analytical, and exact self-energy there is only one Hamiltonian capable of yielding this

self-energy. However, for a self-energy that is numerical and only agrees to a very good numerical

accuracy with the “true” exact self-energy, there can be several Hamiltonians reproducing it. These

Hamiltonians can be much more suitable for quantum computing than the original Hamiltonian.

Additionally, the analytical properties of Green’s functions and self-energies such as the high fre-

quency expansion are well known, thus providing an additional tool in the assessment of the errors
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arising in computation on NISQ devices. Moreover, these errors can be partially corrected since

the analytic limits are known when algorithms such as DSEM are employed. Finally, we would

like to mention that DSEM can be naturally extended to work in conjunction with an embedding

framework such as dynamical mean field theory (DMFT)1,3,57,76 or self-energy embedding theory

(SEET).77–80
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