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Non-Markovian noise presents a particularly relevant challenge in understanding and combating deco-
herence in quantum computers, yet is challenging to capture in terms of simple models. Here we show
that a simple phenomenological dynamical model known as the post-Markovian master equation (PMME)
accurately captures and predicts non-Markovian noise in a superconducting qubit system. The PMME is
constructed using experimentally measured state dynamics of an IBM Quantum Experience cloud-based
quantum processor, and the model thus constructed successfully predicts the non-Markovian dynamics
observed in later experiments. The model also allows the extraction of information about crosstalk and
measures of non-Markovianity. We demonstrate definitively that the PMME model predicts subsequent
dynamics of the processor better than the standard Markovian master equation.
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L INTRODUCTION

A central challenge in controlling and programming
quantum processors is o overcome noise. Open quan-
tum system  dynamies are often modeled using the
Gorinti-Kossakowski-Sudarshan-Lindblad (GKSL) master
equation [1.2], alse commonly known as the Lindblad
master equation (LME). The LME is completely posi-
tive and is formally easily solvable. However, the LME
is derived under the assumption of Markovianity. Loosely,
this assumption amounts lo an environment that is “mem-
oryless” and is only valid when the system is weakly
coupled to a bath whose characteristic timescale is much
shorter than that of the syslem dynamics [3,4]. Although
the Markovian assumption allows for significant simpli-
fications, it is only an approximation and in reality it
15 often desirable to account for non-Markovian effects
[5]. This is true in particular in the case of the dynam-
ics of superconducting qubit systems [6.7]. For example,
it has been observed on the IBM Quantum Experience
(IBMOQE) processors [8] that the fidelity of a gate opera-
tion is conditional on the gate operation that preceded it in
a gate sequence [9]. This is an example of non-Markovian
noise, which introduces temporally correlated errors. Non-
Markovian effects may arise from, for example, spatially
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correlated noise that arises lrom nonlocal external pulse
controls, coherent errors caused by residual Hamiltonian
terms, or stochastic errors due to slow environmental fluc-
tuations. Such correlations, as well as correlated errors on
multiple qubits, have been shown to be a leading source
of failure in achieving quantum error correction [10—12],
and also in other near-term quantum applications [13]. In
other words, dealing with non-Markovianity will be vilal
to achieving fault-tolerant quantum computation [14-17].

Unfortunately, most device characterization and valida-
tion methods do not fully capture non-Markovian effects,
as these methods either implicitly or explicitly make the
Markovian approximation. For instance, the standard T
and T measurements that quantify qubit lifetime assume
exponential decay of the excited-state population or the
qubit coherence. Similarly, randomized benchmarking and
gate-set tomography [18] consider circuits of varying
length and assume that the fidelity of corresponding oper-
ations decay as circuits become longer. However, on real
quantum processors, recent studies [19-21] have ohserved
deviations of the qubit dynamics from the prediction of a
purely Markovian treatment.

In this work we focus on noise processes that gov-
ern the free (undriven) evolution of a superconducting
quantum system. Here, the non-Markovian effects can be
both eoherent, e.g., due to unintentional crosstalk with
neighboring qubits, or incoherent, e.g. due to coupling
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tir magnetic impurities [22]. However, a complete first-
principles model for the system-bath interaction [for exam-
ple, the formally exact Nakajima-Zwanzig (NZ) master
equation [23]] may be infeasible to construct or too hard
to solve numerically [3]. There has been extensive work on
developing a set of master equations that are both easily
solvable and account for non-Markovian effects, e.g., the
Gaussian collapse model [24], quantum collisional mod-
els [25], and the time-convolutionless master equations
[3]. Here, we choose to focus on the post-Markovian mas-
ter equation (PMME) [26], which includes bath memory
effects via a phenomenological memory kernel k(f) (see
also Ref. [27] for an updated derivation), We choose the
PMME for its conceptual and computational simplicity and
because it has a closed form analytical solution in terms
of a Laplace transform. It naturally interpolates between
the exact dynamics (a completely positive map [28]) and
the Markovian Lindblad equation, and at the same time,

retains complete positivity with an appropriate choice of

the form and parameters for £() [26,29.30], and remains
analvtically solvable.
The PMME we consider takes the following form;

=) = Lap(®)

i
+;:.f drk () exp [(Co+ L0y 7] p (7).
a
1)

Here pff) is the reduced system state and Ly and £,
are Markovian (superjgenerators in Lindblad form that
describe the dissipative dynamics, where Lg can have
additional Hermitian (i.e., unitary evolution generating)
components. Non-Markovian effects in the evolution under
the Lindblad superoperator £ are introduced via a phe-
nomenological memory kernel £(f) to assign weights to the
previous “history™ of the system state. We note that Eq. (1)
differs from the original PMME [26], in that the latter did
not contain £y inside the integral. The reason behind this
choice will become apparent below; in essence, it allows
us more flexibility in partitioning the various terms in the
Lindbladian.

In our protocol, the PMME model is constructed by fit-
ting to an ensemble of time-domain tomography measure-
ments. Hence, we call our protocol PMME tomography.
We demonstrate PMME tomography on an IBMOQE device
and then use the PMME model thus constructed to quantify
the degree of non-Markovianity, Our procedure predicts
the non-Markovian effects we observe in future measure-
ments and can model the information backflow from the
environment o the system on the device we test. Our pro-
tocol provides a robust estimation method for a continuous
dynamical model beyond the commonly assumed Marko-
vian approximation, paving the way to more accurate

modeling of noisy intermediate-scale quantum (NISQ)
devices.

The structure of this paper is as follows, In Sec. I,
we starl by constructing the closed system model For the
qubit evolution, introduce the non-Markovian open system
maodel by proposing a Lindbladian and different memory
kernel terms for Eq. (1), describe the data-collection pro-
cedure of the stale-tomeography experiments, and finally
use the estimated qubit states sampled during the eve-
lution to find the besi-fit PMME model parameters, In
Sec. 1T we apply the PMME model construction protocol
to an IBMOE processor, discuss the descriptive power of
the PMME models on the fitting dataset, and discuss the
models” predictive power by using them to predict qubit
dynamics in a previously unseen testing dataset. We also
quantify the degree of non-Markovianity based on the con-
structed PMME model. In Sec. IV we contrast our method
with previous work, and provide a discussion of the results
and conclusions. The Appendix contains various additional
technical details.

II. METHODS

A. Closed system model

We consider a single qubit described by the effective
Hamiltonian

H= —%m:{:rz, (2)

which is written in the rotating frame of the qubit drive,
where . accounts for the detuning between the qubit
frequency and the drive frequency. In practice, the drive
frequency is typically set to be the qubit frequency. The
latter is determined via a calibration procedure, typically
carried out on a single qubit with the rest of the neighbor-
ing “spectator” qubits all in their ground states. A shift in
qubit frequency can lead to a nonzero detuning between
the qubit frequency and the drive, thus a nonzero w. in
the effective Hamiltonian. In addition, the sign and the
magnitude of @ can change depending on the initial state
of the spectator qubits due to the presence of an always-
on ZZ interaction, which arises from unintended coupling
between the qubit and its neighbors [21], For these reasons,
we include a Hamiltonian term in our model.

B. Open system models and their physical motivation

Owr task is to find a model that best describes a time
series of state-lomography observations and find the best-
fit parameters of that model. In this case the model itself is
represented by the functional form of the memory kernel
k(). while the model parameters are the parameters of the
kernel function. We consider a sequence of models in order
of increasing model complexity: the Lindblad model My
and the PMML models M and M. In general, we denote
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the models by M (#) where # is a list of p; free model
parameters, with p increasing monotonically with 7.

We take as our simplest model (Ag) the Lindblad
masler equation

d
?‘:’ = £(p) = Lolp) + L1(p) (3a)

1
= —ilH, p] + Zn (thVI -3 [VIP’k.p])-
k

(3b)

Asis clear from Eq. (1), this is equivalent to a PMME with
a d-function kermel, ky(f) = 8(6). In the notation of Eq. (1),
we choose the first generator as

Ly=H+ Lgan. (4)

which has a Hermitian component Hipg) = —i [H, p] and
a generalized amplitude-damping Lindbladian L,y with
the Lindblad operators Fg € [o,,o_}. We choose the sec-
ond generator as a pure dephasing Lindbladian:

Lilp) = y: (ozpo: — p). (5)

With this choice, which is motivated by our experiments
with the IBMQE devices, the population decay (Th) is
essentially Markovian, as it is dominated by the Cyp(t)
term outside the integral in Eq. (1).

The parameters of interest to us are the following: e,
the amplitude of the static z field due to the always-on
ZZ coupling with the neighboring qubit(s); 3=, the pure
dephasing rate: I'y =y, +y_ and I', = . /y_, respec-
tively, the sum and ratio of the excitation rate and the
relaxation rate. The Kubo-Martin-Schwinger (KMS) con-
dition [3], which states that the rale of excitation in a
system is exponentially suppressed relative to the rate of
relaxation at the same frequency [y(—w) = e #y(w),
where § is the inverse temperature and o = 0], implies
that I'y = 1. This Lindblad model has a total of pgp =4
paramelers.

To go beyond the Lindblad model Ay, we consider two
PMME maodels M, and M3 with extra parameters for the
memory kernel. We consider a family of kernels whose
Laplace transform can be written as rational functions, i.e.,

ki (s) = Lap[k(£)] = P(s)/O(s). (6)

with polynomials P(s) = aus™ 4+ -+ @5+ ap  and
Q(s) = bys" + -« + bys + by of degree m and n, respec-
tively. This include a large class of kernels, which can
be expressed as linear combinations of functions of the
form " for complex ¢ and inleger d. For the PMME
model M we choose the simplest kernel in this family:

an exponentially decaying kernel
ki(f) = agexp(—bo) <= ki(s) = ao/(s +bo), (7)

where henceforth we impose the constraint k(1) = 1 (since
the normalization can always be absorbed into £,), which
leads to @y = 1. This model thus has a total of py = 5 free
parameters: the Lindblad model parameters and hy,

The more complex PMME model Ad; has two addi-
tional free parameters ag and by:

b/ [H;;—f’t sinh(£1) + cush{%r}] ifB=>0

k(1) = a
e [2tsing +eosgn] B <0
= ky(5) = (5 + ap)/ (s + bys + by), (8)

where B = b} — 4bg and it = /TB]. This model has a total
of pz = 7 free parameters (the Lindblad parameters and ap,
by, and by ). The sign of B specifies whether the kernel 1s
overdamped or underdamped.

As illustrated in Fig. 1, the models My, M, and M3
are a sequence of nested models of increasing complexity;
for example, Ma reduces to M with the identifications
ap = 0,bp =10, and with a renaming of the parameter
by — by [since now the kernel function k(s) has a lower
degree].

The models {M;] predict a functional form of the
dynamics depending on the model variables 8, so the
predicted evolution of a state can be written as

AP = £ (1]9), (9)

FIG. 1. The nested candidate models we use to describe the
qubit free evolution: the Lindblad model My, parameterized by
a Hamiltonian term and the Lindbladian, and the PMME models
M, Ma with their additional kernel parameters.
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where § = {w;,yz,y_.y_l_._ﬁfﬁ] 15 the list of model param-
eters. The kernel parameters are d = {ag.....dw_1}, and
b = {by,....b,_1}, some of which may be constrained, in
addition to the positivity constraint {3, 3.3} = 0 and
the KMS constraint . /y_ < 1.

The goal of this procedure is to specify the master
equation that governs the dynamics of the system. We
formulate this in terms of the inverse problem: given a
diserete time series of measurement records of the state,
we seek the dynamical model M (#) that most closely
matches the observations.

C. Quantum state tomography

To get complete qubit-state information, we perform
state tomography on a single qubit of the ibmg_athens pro-
cessor (see Appendix A). The data is collected with the
main qubit state gy initialized in one of the five states in the
preparation set P = {]y(0)) }f:ﬁ: and the rest of the proces-
s0r's spectator qubils initialized in the ground state [0}, The
states in P are illustrated in Fig. 2 and specified in Table L
Afier the qubit initialization, the main qubit undergoes free
evolution for a variable time ¢, and then state tomography
is performed to construct the density matrix, augmented by
measurement eror mitigation (see Appendix B). Specil-
ically, the circuits of the tomography experiment contain
the following steps:

I, State preparation: the qubit is initialized in the

ground state, and a state-preparation gate is applied to
initialize the qubit in one of the five fiducial states [y (0)).

o L

h'jii; @j‘

e
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B

s W

~_[¥=2(0))

1 o0&
i v
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FIG. 2. The initial states used for the fitting dataset {yellow)
and the testing dataset (blue). The initial states are chosen such
that the states [y:(0)), i =0,1,2,3 form a tetrahedron on the
Bloch sphere, where |4 (00) = |1} is the excited state. The state
[rg()) 15 a fixed, randomly chosen state on the Bloch sphere.
The same set of five states are used in all our experiments.

TABLE 1. The set of initial states P used in our experiments,
corresponding to the states shown in Fig. 2.

s (D)) (—vZ/9.42]3,-1/3)
[ ()} (=279, —273,-1/3)
g (00} (0.50, —0.75, —0.41)

2. Evolution: the qubit undergoes free evolution, with
a variable evolution time. This corresponds to applying a
sequence of identity gates [ and sweeping the number of
gates.

3. Measurement: one of the three single-qubit gates
(I, Mx. or My) is applied before the measurement, corre-
sponding to measurement in the Pauli z, x, and ¥ bases,
respectively. Here My = H is a Hadamard gate and My =
HS" where S is a phase gate. We record the measurement
outcomes 0 or 1.

The steps above are repeated for all combinations of ini-
tial states, free evolution duration, and measurement basis,
and each combination is repealed for N, = 8192 shots. Let-
ting Ny denote the number of times out of ¥, shots that
outcome 1 occurred at time £ in measurement basis &,
the state-tomography raw data are the recorded outcome
counts,

(Nali = 1,....mk € [x, .2}, (10)

where m, is the total number of time points. We per-
form Bayesian measurement error miligation on the raw
data (see the Appendix for details) and the measurement
mitigaled data is then fed into a maximum-likelihood esti-
mation (MLE) routine. This routine determines the qubit
state 6(f;) at time ¢, represented by the experimentally
measured Bloch vector T%2(f) as g(4;) = +[1 4+ T%P(Y) -
&]. The uncertainties associated with the tomographically
constructed states, i.e., the standard deviations of the cor-
responding Bloch vector components, denoted as oy, k €
{x. v, z}, are estimated by Bayesian bootstrapping. The col-
lected datasets are divided into the model fitting set {5}
and the model testing set {§)es. The former contains a time
series of qubit dynamics with a single initial state |y},
the latter contains the other four time series with four
different initial states {|(0))}'=}. Finally, we use the con-
structed qubit states {ﬁ({,}ﬂ:;'_l from the fitting dataset
to construct the PMME deseription of the [ree-evolution
channel.

D. Model fitting
Given the observations from the state-tomography
experiment, our task is to find the best-fit model parame-
ters ¢/, as parametrized in Sec. 11 B, of the dynamical model
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M(#). To tackle the problem, we perform a maximum-
likelihood estimation, a well-studied method of defermin-
ing unknown parameters of a model from a set of data,
The input data of this MLE procedure is a time series of
the qubit evolution l.!;-.ﬁ“"(f;-}]";::’_l. initialized in one
of the states in the set P. The qubit state §%F at time &
is constructed from tomography experiment outcomes via
a Qiskit state-tomography MLE routine [31]. In the fit-
ting procedure, we seek to minimize the distance between
the observed state *¥(f;) and the model predicted state
o™ (#;) for all the sampled time instances ;. We define the
following standard objective function in the least-squares
form [32]:

il [0 () Lﬁ (. 0)1

o=y Z S

J=b k=xy= .f*

where ﬁ;rp and iJ’J,':ﬂ denote the kth Bloch vector component
of the qubit state at time § constructed from the experimen-
tal observations and predicted by the model, respectively.
The latter is obtained by solving the model A (#) for
A1), Since the PMME admits a closed-form analytical
solution, the evaluation of the objective function Eq. (11)
is efficient to compute under the assumption that the noise
associated with each data point follows a normal distribu-
tion. Minimizing the least-squares function x*(#) for the
muodel parameters @ is equivalent to maximizing the like-
lihood of observing the dataset given that the underlying
model is true,

We would like the dynamical model to gener-
ate a completely positive and trace-preserving (CPTP)
map (though this is not strctly necessary, as non-
CP maps are also wvalid physical models: see, e.g.,
Ref. [33]). For this reason, we resirict the Lind-
blad rates {j:,)..)-} to be positive. For the PMME
models with difteremt choices of kernel functions, we
derive the condifion that guarantees CPTP dynamics in
Appendix E. We find that the conditions |£] < 1 and
52| = 1&] < V(I + 81 + T80/ 1 + T, < | are nec-
essary and suflicient for complete positivity, where (1) =
Lap= [1/s — &% — A}k(s — &;)] (the inverse Laplace trans-
form). and }.f', JL,'. and A; are the eigenvalues of the matrix
representation of £g, £y, and L. respectively, in the Pauli
basis (see Appendix C).

The best-fit PMME parameters are found by solving the
following minimization problem:

minimize x° (m;, Voo Vi Voo, f;)

subjectto 3, 1.y = 0. D=y /- <= L k(D) = L.
(12)

After we it the models by solving Eq. (12), we compule
the trace-norm distance

L .
D(t;) = 15°7(t;) — o), (13)

where [|4]|; = Tr{+/4%4] is the trace norm. T'#) quan-
tifies the probability with which one can optimally dis-
criminate the experimentally observed 5(t; ) from the pre-
dicted state p(¢;) [34], and thus a small D(z;) indicates an
accurate prediction.

1. RESULTS

We test our approach for tomographic PMME construc-
tion in three increasingly challenging settings, summarized
in Fig. 3. We start with time-series state-tomography data
for a single initial state on a transmon qubit [the fitting
dataset on |ip(0)}] and show thal we can consiruct a
sequence of nested PMME models to represent this evolu-
tion. We then compare the PMME models with the Marko-
vian Lindblad counterpart and show that the PMME mod-
els provide a measurably better fit. Secondly, we test the
PMME’s predicted evolution for quantum states that are
not used (o construct the PMME model. Again, we show
that the PMME maodel Taithfully predicts the evolution
even for these new states withoul requiring full process
tomography. while the Lindblad model does not. Lastly,
we compute the degree of non-Markovianity in the evolu-
tion using the tomographically constructed PMME model
and show that it correctly approximates the observed non-
Markovianity in the qubit free-evolution dynamics, which
the Lindblad madel fails to do.

A. Fitting set

First, we construct the dynamical models My, M., and
M using the time-series tomography data of a single ini-
tial state. Our results are displayed in the first column of
Fig. 4, which shows the observed evolution ©1°*F (gray cir-
cles with error bars) and the predicted evolution 7" (solid

Eunlungo noo-Murkovinnity

: Niel= mm j{b&-ﬂwiﬁn;m

Testing st

FIG. 3. Analysis protocol for PMME tomography. The tomog-
raphy datasets for qubit free evolution with different initial states
are divided into a fitting set [in our case with a single initial
state |yp(00)] and & testing set [in our case with initial states
[y 23,4000} ]. The ftting set is used to fit the dynamical models
|.M;) using a classical optimizer based on the MLE method.
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}  Tomography data —— M; —— M; —— M,
Fitting data Testing data)
[10(0)) [ (0)) It (0)) [3(0)) [4(0))
2 ) (a1) (a2) (a3) (ad)
I ™ - E
0.0 %j\‘% e Sieizes ;\1_; &ﬁ@ I A = v‘\n{’w
| 1 = : .
(b0) (b1) {b2) {b3) (bd)
'llﬁ i rx i 1 f
£ 00f 7 A ] | % JV{\@. )
 / bﬁ.f”" AR ’ f\ENV
—.5 ] r
(c0) (c1) f (c2) (c3) (c4) e —
= 0.0 i
F(d1) (d2) (d3) T(d4)
=
_ {e0) (e1) (e2) (e3) (ed)
-] ' 1\ {
G 0.2 a f ] L
8 |a \ : ™ ' N
0.0 m M W

30 60 90 © 40 60 0 0O 30 60 90 O 30 60 “O O J0 60 90
Time (us)

FIG. 4. PMME tomography protocol applied to single-qubit free evolution, with the spectator qubits all in their ground state,
{ally+{c0) The free-evolution tomography data #*%(f) of the fitting dataset with the qubil initialized in [(0)) and the best-fit models
for the Lindhladian model A4y (orange lines), the PMME model with kernel type 1, A4 (blue lines), and the PMME model with kemel
type 2, My (red lines). The shaded regions denote the 95% confidence region of the model predictions. {al)Hcd) The free-evolution
tomography data in the testing dataset with the qubit initialized in [|(0)}}% |, and the prediction from the best-fit models from the
fitting dataset in (a0)(c0). (d0)-{d4) The empirical purity Tr{p’] of the qubit and that predicted by the best-fit models. (e0)}{e4) The
distance between the tomographically constructed state and the state predicted by the best-fit models. All models perform equally well
at predicting the dynamics of the excited state |y ) = |1) (.M}, is obscured by A1} and A1), while the PMME maodels A1) and M3
predict the dynamics of {| Hu-(ﬂll}}‘-’.:g hetter than the Lindbladian model,

lines) from the constructed dynamical models. The best-fit ~ in row d, and the trace-norm distance between the mea-
parameters of the constructed models M, are reported  sured and the predicted state T(4;) [Eq. (13)] in row e
in Table V in the Appendix. We plot the Bloch vector  The PMME models My and Az both faithfully capture
components in rows a, b, and ¢, the state purity Tr[p?]  the evolution of the system. To compare our models, we
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-

o o
—— - - 225
ToMy My My My M M,
Fitting data | Testing data
FIG. 5. The predictive ability of different models for the fit-

ting datasel {lefi) and the testing datasel (right) for ibmg_athens
data. For both datasets, we show the trace-norm distance between
the tomographically constructed state {7%F} and the model pre-
dicted state {g"™]. The box plot shows the Sth, 50th (median),
and 95th percentiles for this distance over #; and respective ini-
tial states. The open circles denote extremal outliers. The PMME
models A and Ad; describe both the fitting dataset and the
testing dataset better than the Lindblad model Ay (see Table TT).
We also report the ALC of the models on the fitting data (pur-
ple squares, right axis), again with better performance by the
non-Markovian models; note that all AIC values are negative.

use the Akaike information criterion (AIC) [35], which is
a model selection metric {see Appendix I for more details).
AlC accounts for the goodness of fit of a model and penal-
1zes models with more parameters. As shown by the purple
squares in Fig. 5, M and M; have much lower AIC than
My and going from M, to M, decreases the AIC slightly.
Owerall, M and Mo are better models even after being
penalized for utilizing more parameters.

Both the Lindblad model My and the PMME models
can account for a spurious longitudinal field component
in the qubit Hamiltonian due to the always-on Z7 interac-
tion between neighboring qubits [36]. This spurious field
effectively shifts the qubit frequency [Lq. (2)] and mani-
fests as the oscillations in the off-diagonal elements v (£}
and u,(f) of the density matrices of the gubit stale (the
first and second rows of Fig. 4). However, a Hamilto-
nian term does not modify the purity p = Tr[p?] since
p = —ilr[p[H, p]] = 0, so purity oscillations must have
a different origin. The fact that My is unable to capture
the purity oscillations seen in the fourth row of Fig. 4,
while in contrast both A and Az do display purity oscil-
lations, is evidence of non-Markovianity, as we explore
below in greater depth. The nonmonotonic envelope of
the purity oscillations is consistent with the nonunitality of
the Lindbladian model [37]. Overall, in comparison to the
Lindbladian model Ag. the PMME-predicted evolution is
significantly closer to the empirical data, as quantified by
D5, p™) (last row of Fig, 4).

B. Testing set

MNext, we test how well the fitted maodels prediet the
evolution of states that are not used to fit these models.

The last four columns of Fig. 4 represent four time series
of quantum-state evolutions in the testing dataset with each
of the different initial states ||yr {D]}}‘i’;l. The goal of this
“testing set™ is (o validate whether the dynamical model is
capable of describing the evolution for an arbitrary single-
qubit state. Rather than doing this by selecting random
states, we choose a set of four states that is maximally
separated on the Bloch sphere, i.e., four pure states on the
vertices of a tetrahedron (see Fig 2). We emphasize that
na fitting is done on this testing data; instead, we use the
fits from the fitting datasct to predict the state evolution in
the testing dataset.

Omee again, we find that the Lindbladian model’s pre-
diction provides a crude approximation to the evolution. In
particular, for [y ()}, where the initial qubit state is the
excited state, the amplitude damping process dominates,
and the Markovian Lindblad model is sufficient to deseribe
the dynamics. However, [y (f)) is an exception. For all
other states, the PMME models are far more accurate, as
is clear from Fig. 4(a2j}{d4). This suggesis that the non-
Markovian effects mainly manifest in the evolution of the
qubit phase coherence but not in the state populations, so
the need for the more complex PMME models arises when
dealing with states with coherence in the computational
basis (this pointer basis—the ground and excited states—is
einselected [38] due to thermal relaxation). Another obser-
vation visible from Fig. 4 (row d) is that the Markovian
model’s predictions become more accurate at relatively
lomg evolution times, i.e., Markovian effects become more
dominant on a timescale of approximately 100 us.

Owerall, as shown in Fig. 5 and Table 11, the median and
worst-case prediction distances of the PMME models M
and M are very close, and substantially better than those
of the Lindbladian model M. In particular, consider the
box plot in Fig. 5 reporting the statistics for the trace-norm
distance across all sampling points ; and initial states of
the fitting and testing datasets, respectively. For the testing
data, while the Lindblad model Ay has a median trace-
norm distance of 0.12 and worst-case fidelity of (.18, both
the PMME models M, and M5 have a median distance
of 0.06 and the worst-case fidelity of (L.0S.

Motably, the distance does increase slightly when going
from the fitting data to the testing dala, which can be
attributed to the qubit’s environment changing during the

TABLE 1. Trace-norm distances corresponding to the results
shown in Fig. 5.
Fitting data Testing data
Median  95th percentile  Median  95th percentile
Mo 0.14 0.24 012 019
My .01 0.03 0.06 0.08
Ma 0.01 003 .06 (.08
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time hetween measurements; for example, the qubit relax-
ation time T} fluctuates [39]. Still, the PMME models
provide a significantly closer correspondence to the fit-
ting datasel and more accurate predictions of the testing
datasets than the Lindblad model does in both the average
and worst cases. [n this case the best-fit model for A is
approximately equal to M, (see Appendix F), indicating
that the simpler model is sufficient to capture the behavior
of the fitting dataset. However, this does not hold true for
all data, as shown in Appendix F.

Figure 4 clearly shows that these differences in distance
between M and M, > come from Mys inability to cap-
fure oscillations about a nonzero mean in the Bloch vecior
components v,(f) and v, (r), which M; and M; do cap-
ture. Our results validate that while Ay is a good first
Markovian approximation, the PMME models account for
non-Markovian nuances.

C. Quantifying non-Markovianity

Lastly, we test whether the PMME maodel can cap-
ture non-Markovianity during the qubit free evolution. To
quantify this, we adopt the measure in Ref. [40], which
uses the rate of change of the trace-norm distance between
two quantum states under some noise channel &,

d
Tt p1,m) = EDM’; [ (0)], by [p2 ()]} . (14)

Under Markovian dynamics [Eq. (3a)], the trace-norm
distance between two gquantum states is monotonically
decreasing as a function of time, whereas non-Markovian
dynamics violates this contractive property, i.e.. there can
be an increase in the trace-norm distance. In other words,
non-Markovianity leads to revival of distinguishability
between two states at some point during the evolution, and
a process is non-Markovian il'there exists any pair ofinitial
states o100, p200) and a time ¢ for which o (f, g, p2) = 0
[40].

The measure for the degree of non-Markovianity of a
quantum process is thus defined as:

Nid)= (15)

max dia (1, pr,p2).

m2eS(H) Jaan

Here, the time-integration is over time intervals where o
15 positive, and the maximum is over all pairs of initial
states. Thus, this quantity measures the total increase of
distinguishability over the whole evolution time. We note
that it is not normalized, and hence its actual numerical
values are difficult to interpret. lts main significance is in
the the fact that a non-zero non-Markovian measure means
non-Markovian dynamics, and, as shown in Table 111, the
experimentally obtained values are in fair agreement with
the values predicted by our model. The non-Markovianity
of the PMME is discussed in [30] using this measure.

TABLE L Degree of non-Markovianity for three different ini-
tial states of the spectator qubits (column 1) as computed from
the experimental data (column 2) and the two non-Markovian
madels (columns 3 and 4).

Spectator qubit

initial state New N N,

|0y = 106 +0.02  LI1+002 1104002
[y 0.18+003 0284002 0254001
|4 0.13+002 0494003 0474003

We performed state tomography on free evolution
with the qubit initialized in the following two pairs
of states: {£1(0) = [4)(+}, p2(0) = |—}—}, and {1 (0) =
[+iK il pa(0) = |=iX—i|}. From the time-series slate
tomography data, we see how the trace-norm distance
D[ (1], &[0z (0)]}, starting from T = | (maximally
distinguishable), evolves as a function of time, as plotted in
the top row of Fig. 6. Using forward differences to approxi-
miate the time derivative of our experimental data, we then
approximate the quantity in Eq. (14), plotted in the bot-
tom row of Fig. 6. By performing a linear interpolation
on the discrete samples shown there, we further estimate
the observed degree of non-Markovianity as defined in
Eq. (15} (but excluding the maximization il requires).
The results we find for the degree of non-Markovianity are
summarized in Table 111

Of course, .-"v.-':f_;dﬂ =10 for the Markovian Lindblad
model, The experimental measure is estimated from the

—M,
pa=[1}41]%

\ (c)

._.M,]

| Tomegraphy data -My
pa=[0} (0]

pa=|+}{+|®

s @
2 g ,J"“'*"“"‘ _
& N =) D) N =, L N =, 154002
E 010 A = 110 AL = 0,28H04K A = 049003
' AT = i A = 0,2604H A = 04THL
30 60 00 0 30 60 90 O 30 B0 00

Time (=) Time (=) Time (s}
FIG. 6. Non-Markovianity of qubit free-evolution dynamics
for spectator qubits in the ground state (a).(b), the excited
state (c),(d) and the |+} state (e),(f). {a)(c)le) The race-norm
distance T py(f), p2(1)| predicted by the best-fit models (solid
lines) and experimentally measured by performing free-evolution
tomography with a pair of initial states py(0) = |+}{+] and
o200y = |[—){—| (gray circles). {(b)(d)}(f) The derivative (1),
defined in Eq. (14), predicted by the best-fit models (zolid lines),
and approximated experimentally using forward differencing
based on the tomography data in (a),(c).(e) (gray circles).
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state-tomography data. while the predicted non-Markovian
measure is caleulated exactly from our dynamical mod-
els, since they provide a continuous description of the
qubit-state evolution. We train these models on a new fit-
ting dataset with the same initial state |yry(0)} as the prior
fitting data (Fig. 2); the new fitting data is taken in the
same batch of jobs as the trace-norm distance data in order
to minimize the time delay between them, thus reducing
the effect of systematic errors due to differences between
batches. As seen in Table 111, the two PMME models con-
verge o almost the same quantity in their predictions,
despite the different forms of their kernels. The tomogra-
phy experiments confirm that there is indeed an increase
of distinguishability between quantum states during evo-
lution. The predictions of the PMME models adequately
match the observed quantity o (#; ), with some deviations,
which are due to numerical errors arising from using the
finite difference formula to approximate Eq. (14), and
due to the run-to-run system fluctuations of the quantum
processor [41].

IV, DISCUSSION

We develop and implement a procedure to fit a family
of phenomenclogical quantum master equations to time-
series state-tomography data. We demonstrate this method
by characterizing the free evolution of a single qubit on an
IBMOE processor. From the constructed models, we con-
clude that the qubit Hamiltonian accounts for a residual
longitudinal field due to the crosstalk with the neighbor-
ing qubits, and find the Lindblad rates that correspond to
dephasing, spontaneous emission, and thermal excitation.
However, a purely Markovian model provides a relatively
poor fit to the data. We thus construct post-Markovian mas-
ter equation models that contain a phenomenological bath
memory kemel, which aceount for the non-Markovianity
of the dvnamics—something a Markovian Lindblad model
cannot do. These PMME models provide a closer fit to the
tomography data, and also much more accurately predict
the future dynamics for new initial states that the models
are not already fitted to.

Our PMME construction procedure 1s an alternative (o
other methods characterizing qubit noise processes such
as process tomography [42-46], machine learning (ML)
[47-51], and shadow tomography [32-54]. Compared to
the first of these methods, our approach is less demand-
ing in terms of both data collection and analysis, since
it relies on state tomography, which generally (but not
always [45]) requires a number of measurements, which is
quadratically smaller in the Hilbert-space dimension [55].
The ML methods usually require a large training dataset
for the solution to converge since the ML madel is usually
overparametrized. In contrast, at least in the single-qubit
setting, we demonstrate that our method requires doing
state tomography with only one initial state at multiple

time points. Another advantage of our method is that the
evaluation of the cost function in our problem is straight-
forward because the PMME is analytically solvable (see
Appendix D). In contrast, the noise models that have
been considered in ML so far are numerically challenging
because they involve solving the Nakajima-Zwanzig mas-
ter equation, whose complexity is proportional to the ker-
nel’s length [48], or solving a stochastic master equation
[49]. In regards to shadow tomography methods, the com-
parison is less direct since the goal of these methods is not
to reconstruct the dynamics at every time point, but rather
to use a small set of measurements to predict a much larger
set of specific observables.

A similar approach to ours for constructing a dynamical
maodel of the noise channel using the Markovian Lindblad
master equation was considered in Ref. [56]. Here, in order
to go beyond the Markovian approximation, a model based
on a class of time-convolution-less master equations is
considered, and a damping-rate function describes the non-
Markovian dynamics of the system at the sampling time
point [57]. This method provides a discrete description of
the noise dynamics but does not directly provide physical
insight into quantifying the timescale of the memory ettect.
Likewise, a more sophisticated and systematic approach,
the process-tensor (PT) framework has been proposed [38]
and experimentally demonstrated [59.60] to characterize
non-Markovian dynamics on actual quantum processors.
The PT model, once fully characterized, can be used to
interpolate the dynamics between discrete times due o the
containment property of the PT map. However, its con-
struction and the interpretation of the memory effect are
fairly involved.

Our method provides a continuous dynamical descrip-
tion of the channel beyond the Markov approximation, and
does not require full process tomography to construct the
PMME model. However, a disadvantage of our method is
that 1t requires one to construct a parametric model: thus,
it does not account for the most general noise process.
Moreover, because of the specific parametrization that the
PMME demands, the resulting optimization problem is
no longer convex, i.e. a unique global minimum of the
optimization problem is not guaranteed, Additionally, our
method requires the consideration of a hierarchy of ker-
nels to find a model that is complex enough to describe
the data accurately. But since the PMME is straightfor-
ward to solve, model estimation under different kernels 1s
straightforward so long as there is a model selection met-
ric under which the best model among those candidates
can be selected. A promising future approach for retaining
the physical interpretability and analytical solvability that
come with using the PMME is the use of machine leaming,
especially in light of the recent development of neural
ordinary differential equation solvers [61], in order to
avoid overfiting and structural errors of the PMME
medel.
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Our work is a proof-ofprinciple demonstration of the
PMME tomography protocol on a fixed-frequency qubit.
For future work, we are interested in applying our protocol
to characterize the dynamics of a frequency-tunable qubit
where dephasing noise is more pronounced, and the qubit’s
sensitivity o dephasing noise can be varied as a func-
tion of the qubit frequency. An extension to the multiqubit
case is also a natural next step. This will require a con-
vergence analysis to decide how the fitting dataset scales
as the number of qubits increases. In this work, we focus
on the free-evolution channel of a single IBMOE gubit,
which we show to be highly susceptible to non-Markovian
noise. I would be interesting to extend the protocol to
characterize non-Markovian effects during computation,
in order to understand whether such effects are signif-
icant beyond qubit idle times. By explicitly including
non-Markovianity in the dynamical characterization and
modeling, we expect that it will become possible 1o use
these realistic noise models to improve and tailor error sup-
pression and correction techniques, and ultimately realize
high-fidelity quantum control and computation.
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APPENDIX A: SYSTEM INFORMATION

The IBMQE device used in this work is Athens. which
is a five-qubit processor consisting of superconducting
transmon qubits. The main qubit we perform PMME
tomography on is qubit 0 (Q0). The relevant device cali-
bration details on the date of data collection are provided
in Table IV.

TABLE TV. Qubit calibration information of the ibmg_athens
processor on the date of data collection.

Dataset Fig. 4 Fig. 7, Fig. 8 Fig. 9
Date collected 6252021 6302021 2021
Ty (us) 72.6 70.8 752
Ts (fus) 93.4 826 62.9
Readout error [10~2] 1.9 0.99 1.00

APPENDIX B: MEASUREMENT ERROR
MITIGATION

Measurement error mitigation is performed by using
information from calibration experiments 0 remove
any systemafic bias in the measurement results [62].
The calibration experiments involve preparing of com-
putational basis states |f), which are then used to
learn the response matrix M. The entries my =
probability{prepare |j ) jmeasure bitstring &) represent con-
ditional probabilities. Any subsequent experiment gives
us the measured probability vector p(E), which is used
to infer the true probability of vector HE) = f [B(E), M].
The most commonly used MEM method—called response
matrix-inversion method —defines 7 = M—'p. Crucially,
M~! is not stochastic, so 7{£) can have negative entries.
Recently, a Bayesian solution to the nonstochasticity prob-
lem was proposed [63]. In this method, inspired from
similar unfolding methods in high-energy physics, we start
with a prior truth spectrum # and update it using Bayes’

rule to get
“Eo i
YeMug

The prior ¢ is updated using the response matrix M and
gives the posterior £*!, and the process proceeds for 100
iterations {in practice this was found to always be sufficient
for convergence). Afler each tomography experiment, the
probabilities of each measurement oulcome are updated
using measurement error mitigation.

APPENDIX C: DAMPING-BASIS CONSTRUCTION

We present a systematic construction of the damping
basis, sketched originally in Ref. [64]. For our purposes,
the damping basis is simply the basis of left and right
elgenoperators (or eigenmatrices) [L;] and [R;], respec-
tively, of the superoperator (e.g., Lindbladian) L.

Let 'H denote a d-dimensional Hilbert space, B(H)
the space of linear operators acting on H, and consider
a superoperator £ : B{H) — B(H). We are interested in
particular in superoperators in Lindblad form. i.e., Eq. (3a):

L(A) = —i[H. A1+ Y % (VmVI B % [ VIV:;?A]),
k

(C1)
where 4, ¥y € B(H), H = HY, and y; = 0 Vk.
Let IF}}fi{,' denote an orthonormal, Hermitian operator
basis for B{H):

Fy =14,

For example, when H = C? (a qubit), we can choose the
normalized Pauli matrices as the operator basis, i.e., {Fj} =

(.o, 0% 07 /+/2.

THFF) =8y, Fi=F], (€2)
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For any 4 € B(H) we can then expand 4 = ), a/F,,
and in particular £(F;) =}, £F; (note the transposed
index order). where £ is the matrix representation of £
in the given basis, with the matrix elements given by
£y = Te[FiL(F})]. The basis {F;} “coordinatizes™ both £
and the operators in B({H).

Assume that the superoperator L satisfies the
Hermiticity-preservation condition

[t =L (4. (€3

This is true, in particular, for the Lindbladian (Cl), as
is ecasily checked. Let us show that then the matrix £
representing £ in the chosen hasis is real:

o =Te([CE)N'F]) =Te[LEV ] =ty (CH)

Thus, after coordinatization the superoperator £ can be
seen as a d* x d*-dimensional matrix £ € R,

Mow assume that A is a right eigenoperator of £ with
eigenvalue 4, i.e., £({4) = 14. Then,

LAy = Za,fj,.n} =id=1 EHIF}. (C5)
i i

Taking the trace of both sides after multiplying from the
right by F yields » , afy = Ray, ic.,

fa = ia, (Ca)

where @ = (ag, . . .. ag_ 1) is a column vector (the super-
script 1 denotes the transpose). Thus, if Ry is a right
eigenoperator of £ then its coordinates-vector 7; in the
expansion

R =) (FF;. (CT)
g

is a right eigenvector of £. Conversely, by solving the linear
algebra problem of finding the set of right eigenvectors {7}
of £, we can construct the right eigenoperators of £ using
Eq. (CT).

Mow consider the set of lefl eigenvectors f,-'! of £ .’_,rf =
JHEF_ These are also the right eigenvectors of £': Pl = X
Mote that the left and right eigenvalues of £ are identical
since the determinant of a matrix equals the determinant of
its transpose.

We define £ as usual via the inner product relation

(LY (), B) = (4, L(B)), (C8)
where we use the Hilberl-Schmidt inner product
(4,B) =Tr(A'B). (C9)

Specifically, for the Lindbladian in Eq. (C1), this implies
that

YAy = i[H, A] + Zk:” (V;AV; - % Il’fl‘i,.‘fl)__
(C10)

as can easily be verified by direct substitution of this form
of £1(4) into Eq. (C8).

Let us show that £ is the matrix representation of £F. To
do so, consider the expansion L' (F)) = 2 EuFy: we show

that in fact £ = £ Indeed. on the one hand we have from
Eq. (C1):

(&) = &; = TH{FL(F})] = —iTe(F[H, F;])
+ 0 (Trfﬂnﬂ- V1= sTHEAV Vi F, }1) |
‘ (C11)
and on the other hand we have from Eq. (C10):
£ = TrF; LYF)] = iTH(F, [H, Fi])
+3 m (Tr[F, ViFiVid — %Tr[F;{VIVhF:}]) :
k (C12)
which is easily checked to be equal to the expression for

(£ in Eq. (C11) by cycling operators under the trace.
Thus,

CHF) = Efﬁ,ﬂﬁ (C13)
4

and the same reasoning that we used above for the right
eigenvectors and eigenoperators now leads to the conclu-
sion that if L, is a right eigenoperator of £°, Le., a left
eigenoperator of £, then its coordinates-vector [; in the
expansion

Le=) (L) F;. (Cl4)
i

is aright eigenvector of £. Conversely, by solving the linear
algebra problem of finding the set of right eigenvectors (/;}
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of £, we can construct the right eigenoperators of £ using
Eg. (C14).

Finally, it is well known that each left eigenvector is
orthogonal to all right éigenvectors except its correspond-
ing one (the one it shares an eigenvalue with), and vice
versa [65]. By choice of normalization. the inner products
of corresponding left and right eigenvectors can always be
made unity for any matrix with nondegenerate eigenval-
ues. Assume nondegeneracy and that we have normalized
£'s inmer products of corresponding left and right eigen-
vectors, L., J'., - # = 8. Let us show in which sense this
property is inherited by the left and right eigenoperators
of L£:

Tr(LiRy) = 3 (Il NTe(FF) =Y (e(Fi e
L) k

1

=5 7 = 8. (C15)

g

Mote that Tr(L;R; ) # (L;, R;} since we do not take the Her-
mitian conjugate of L; under the trace [this only becomes
possible if £ is symmetric, since we would need its eigen-
values to be real in order for Tr(LR;) = Tr{L:er] io
hold].

APPENDIX D: ANALYTICAL SOLUTION OF THE
PMME

Here we present the analytical solution of the PMME,
Eq. (1), for our model. We take the Laplace transform, and
the PMME becomes

sp(s) — p(0) = Lopls)

+ LiLap [k(t)exp (Lo + L) 1] pls).
{D1)

To deal with e ;= l“+E10 it is convenient to work in
the damping basis of £, as defined in Appendix C. Recall
that the sets of right and left eigenoperators of £, [R;} and
{L:}. are complete and mutually orthonormal in the sense
of Eq. (C15). We therefore expand p in the basis of right
eigenoperators of £:

pt) =) wlNR, (D2)
i
where the expansion coefficients are
w() =Y uTr(LR) =Te[Lp®]. (D3

Substituting Eq. (D2) into the PMME Eq. (1), we obtain

E@Rf =Y plt)CoRy

£
+Zf df' kit Yexp () pslt — VL R (D)
I i

Motice that if we assume that [Lo, £,] = 0 (as is the case
for us), then £y and £ both commute with £ = £y + £
and hence share the same set of lefi and right eigenopera-
tors with it, i.e., Lo(R) = AR, LH(L) = 20L,, £1(R) =
i.,'R.r. ﬂT{L,} = Ju.,'L,. Multiplving both sides of Eq. (D4)
by L; from left and taking the trace, we obtain, under this
assumpftion:

i (1)
it

I
- l?#z(f} + J..,l f drk(ryexp [Ad'| pilt — 1).
()
(D5)

Take the Laplace transform of both sides and use the
shifting property of the Laplace transform, we have

sit(s) — pa(0) = A fii(s) + &) Lap [k()e"'] fii(s) (D6a)

= h{ii(s) + A k(s — A)ls).  (D6b)
Therefore,
i(s) = ; (D7)
O = T ks —h)
Taking the inverse Laplace transform:
Hi(t) = &N (0), (D8)
where
() = Lap™! : (D9a
=5 (o kG - | .
pe(0) = Tr[Lip(0)]. (D9h)

1. Solution with the specific Lindbladian and kernels

Choosing the operator basis as [F;} = [[,o*, 0¥, 0%)/
V2, we follow the methodology of Appendix C and find
the matrix representation of £ = Ly + £ of the specific
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PMME model we seek to construct in Sec. 11 B to be

0 0 0 0
r
0 ke —=f 0
Y=V 0 0 -Iy

(D10)

The eigenvalues of £ are

| 1
”"f] Ex {“- '"Er.-.' - 2}’2 +l.ﬂ)zq _Er.-r s 2}’: = l.ﬂJz. '"rs} .
{D11)

It is straightforward to compute and normalize the cor-
responding right and left eigenvectors {r;, E-l:-'=| such that
they are mutually orthonormal, Le., Erj = dy. This
allows us to find the right and left eigenoperators of £
using Eqgs. (C7) and (C14), which yields

1
_— 0 0 1 0 0
— [ Tl = =
( m)( Now=( 9).
(D12a)

(D12b)

{[312d)

It is simple to verify that this set satisfies Eq. (C15) as
required.

Applving Cg and £ to [R;). we find the corresponding
sets of eigenvalues;

r
W= IEL—T’ + r'a:-h—T’ — dw, — Iy (D13a)
{A}} = {0. —2y.,—2y., 0} (D13h)

Mext, we need to evaluate Eq. (D%a) with the specific
forms of the kernels we have chosen. Regardless of the
kernel,

élf.w}=1<=>e1m= 1,

(D14a)
5

Eq(s) = PO El) = e T, (D14b)

while fori = 2. 3:
[ = &0 =8, (D15a)

1

= Lap™! - : D15b
® L — A0 —Alk(s — .1.;]:| T

For the exponentially decaying kernel in Eg. (7), we
make the parameter substitution x = 2 4 by/y: and y =
¥l 2. — iw. /)5 and transform the variables in the Laplace
transform correspondingly as s = oz and T = 2t o get

fir) =Lap™ [f(:j:r]~ (D16a)

z4+x+4+y

: (D16b
z+y P +xz+y)+2 }

f{z:l =

The analytical solution can be found by using the residue
theorem [66];

(1) = sum of residues of €f (z) at poles of f(z). (D17)

The rational function f(z) has two poles z; and z;
|
ny=73 (—x—zy:t-.!ﬁ), D=x'—8  (DI§)

and using Eg. (D17)

n+4y+x
Iy — i

mrZ2+y+X

JE)y=¢e"* +é& (D19)

n—

For the other kernel in Eq. (8), we make the parameter
substitution ap = p2x, ¥ = %/ 2y — ilen/y:) + 2, a1 ==
vew.by = }xfu, 1 = y-v, and transform the variables in the
Laplace transform correspondingly as s = p.zand © = 324,
to get

r@ =Lap™ [f@), (D20a)

miz)
(z+y=2pE) + 2wz +y) + 2x°

flz)= (D20b)

where pi(z) =z +_v_}2 +v(z+y)+u. The analytical
solution can therefore be found in terms of the roots of the
cubic polynomial

z+y—-2)p@E@ +2wiz+y)+2x {D21a)
=t taz+a=0, (D21b)

where the coefficients are
ca=3y+uv-—-2, (D22a)
c1 =3 4+ 2uy — 4y + 3w —2v, (D22b)

£y = _v3 + vyl — Eyz + 2wy — 2y + 2x — 2w, (D22c)

The corresponding depressed cubic is found by the substi-
tutionz = z' — ¢2/3,

FiE = 2 pr —g=0, (D23)
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where the coefficients are

which yields the cubic discriminant

= (BN (Y 5
D_(3) +(2) ' (D26)
o O Ci* (D24)  Further denote
3
s q"'cz"icﬂ"lé, (D25) §= %+Jﬁ T= "%—-Jﬁ, (D27)
{  Tomography data —— M, —_— M, —_— M
Fitting data Testing data
[t(0)) ¥.(0)) R O) [14(0)) 1, (0))
1.0f (a0) al) (a2) (a3) (ad)
2
-1.0
LO[ (o) (b1)
=0 0.0 "f'\_ \‘-f-‘"-"
-1.0 . .
(cO) (c1) (c2) (c3) (cd)
0.5
e
0.0
ez (d0) (d1) (d2) (d3) (d4)
202 a X N .
0D 30 60 90 0 30 60 90 0O 30 60 9 0O 30 60 9 0 30 60 90
Time (us)
FIG. 7. The tomography dataset and the corresponding model predictions used to calculate the degree of non-Markovianity in

Fig. 6{a)ib) when the spectator qubits are initialized in the ground state. (all}{c0) The fitting dataset with the qubit initialized in
[y (0)) that is used to find the best-fit Lindblad model A4} (orange lines), the PMME model with the type | kemnel A4y, and the
PMME model with the type 2 kemnel Az, (al i Hc2) The tomography dataset with qubit initialized in [y, [W_;) and the prediction
from the best-fit models from the fitting dataset in (a0)-{c0). The datasets are used to evaluate the degree of non-Markovianity in
Fig. 6 {a),(b). (a3 cd) The tomography dataset with the qubit initialized in [, ), [W_,}, and the prediction from the best-fit models
from the fitting dataset in {all}{c0). The datasets are used to evaluate the degree of non-Markovianity in Fig. 10 {a),(b). (d0}+{d4) The
distance between the tomographically constructed state and the state predicted by the best-fit models.
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¥ Tomography data My — M, — M,y
Fitting data Testing data
|¥0(0)) [.2(0)) [¥_.(0)) [t04,(0)) [,(0))
1-”‘5 (a0) ﬂ (al) (a2) (a3) ad)
| |

-1.04

& n.n-lfu".g,ﬁ-—_-- 1 If.%--e-

Phg&-nw-fub&nﬁa—f ﬂfﬁPm

L0 (b0) (b1)

f f

F 001 LN £ | o e

-1.0

\ (b3) (b4)

(c0) (c1)

1“23'____-““"' (c3) (c4)

¥

(d0) (d1)

0.04

(d3), (d4)

0 30 60 % 0 30 60 90

0 30 60 %0 0 30 60 B0 0 30 60 90
Time (ps)

FIG. 8. The tomography dataset and the corresponding model predictions used to calculate the degree of non-Markovianity in
Fig. 6(c)id) when the spectator qubits are initialized in the excited state. (al}-{c0) The fitting dataset with the qubit initialized in
[trp (0} that is used to find the best-fit Lindblad model Mg (orange lines), the PMME model with the type | kemel My, and the
PMME model with the type 2 kemel M. (al}-c2) The tomography dataset with qubit initialized o |¢r, ), [¥_,} and the prediction
from the best-fit models from the fitting dataset in (a0)}+{c()). The datasets are used to evaluate the degree of non-Markovianity in
Fig. 6(c),(d). (a3)}-{c4) The tomography dataset with the qubit initialized in |, ), [_,}, and the prediction from the best-fit models
from the fitting dataset in (al}—{c0). The datasets are used to evaluate the degree of non-Markovianity in Fig. 10{c),{d). (d0)}+d4) The
distance between the tomographically constructed state and the state predicted by the best-fit models.

The zeros of the cubic are

2x
n=—"+(E+7),

2% | [
n=—" =5+ D+ =V - ),
32 2
2z | i
= —— — =[5 — =/ 3& =T
n=-5-56+N 2I:; T)

This completes the exact solution of the PMME.

(D28)

(D29

(D30)

APPENDIX E: COMPLETE POSITIVITY OF THE
PMME

The complete positivity of the PMME is not
guaranteed because of the freedom in choosing the kernel
k(). A complete positivity test for the PMME was pro-
vided in Ref. [26]. Below we apply this test to the kernels
specified in the model M,.

The solution of the PMME can be viewed as a
map & acting on the operators represented by d x d
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1 Tomography data - My — M, — M,
Fitting data Testing data
|%0(0)) l14.(0)) _.(0)) [144(0)) [y (0))
1.0 (a0) f.an) (a2) [(@3) |(a4)
-1.0
LOT (b0) [ 1) (b2) 1(63) |(ba)

[

Sy n.ﬂfﬂu‘f—-— ‘%—7‘“"“"

1.0 !

(c0) (c1) (c2) (c3) (c4)
0.5 4 { g i 1 //’"
0.0

0.2{(do) 1 d1) 1(d2) 1(d3) 1(d4)

Uy

0.17!

0 30 60 90 0O 30 60 9% 0 30 60 9% 0 30 60 9% 0 30 60 90
Time (us)

D[ﬁMp1 ppm:i:I

FIG. 9. The tomography dataset and the corresponding model predictions used to calculate the degree of non-Markovianity in
Fig. 6(e)(f) when the spectator qubits are imtialized in the |4} state. (a0){c0) The fitting dataset with the qubit initialized in [y (0))
that i used to find the best-fit Lindblad model Ay (orange lines), the PMME model with the type | kemel Ay, and the PMME model
with the type 2 kernel M. (al }{c2) The tomography dataset with qubit mitialized in |, ), |¥_,) and the prediction from the best-fit
maodels from the fitting dataset in (all}—{c0). The datasets are used to evaluate the degree of non-Markovianity in Fig. 6(e).(f). (a3 )}{cd)
The temography dataset with the qubit initialized in |y, }, [¥_,), and the prediction from the best-fit models from the fitting dataset
in {al)—{c0). The datasets are used to evaluate the degree of non-Markovianity in Fig. 1(e).(f). (d0}4{d4) The distance between the
tomographically constructed state and the state predicted by the best-fit models.

matrices, where d is the dimension of the Hilbert space  where
H = span|}i}}?_,. Using Eq. (D2), o
’ OLX]1= ) &(OTr[LX]R. (E2)

:

Let |gp) = 3, |f) @ |i) be a maximally entangled state in

i - : H @ H. According to Choi’s theorem [67]. & is CP if and
plf) = Z'”"'m'&." == Zr: §D i (O)R; (Ela) only if the Choi matrix C > (), where
=Y EOTr[Lip(O)]R = ®[p(M)],  (Elb) C=(Ie®)p)dl=) 10Ul @ e[l  (E3)

i
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We construct the Choi matrix for the PMME. Let us pick
the basis state |7} to be a column vector of zeros, except for
a | in position i: we have,

C= Z i@ Zmr}Tr [Leli) (1 Ry, (Eda)
—ZamD: (/1 ® {7 ILel i} R (Edb)
=Y "&n ) NGI(L]), ® Re. (Edc)

k if
Hence,
C=) &OL[ @R >0 (E5)
;

is the complete positivity condition for the kernel, under
a pgiven Lindbladian £ and its set of lefi and right
eigenvectors.

For the Lindbladian £ in Eq. (3a) and its set of left and
right eigenvectors in Eq. (D12}, the Choi matrix is

1+
e 0 0 £

0 Lel-gg) 0
C= 14T g {rﬁj
0 ] s r{-:a
5 0 0 T3,
Its eigenvalues are found to be
| —
Ap = —E" (E7a)
14+
(1 — &) .
A= ——— ETh
27 14T, (=75)
: 1
A3a = t& (ETc)

i‘/(&:—l)l_rr+c§4+

Therefore, the PMME in this case corresponds to a CP map
ifand only if

T2Ey + T.E2 — |62
Ty + 12 '
(E7d)

&4l < 1, (E8a)

T e 05T,
il = Jgg) < +Eﬂ{r,+ ),

(E8h)

which is a condition on the problem parameters y., ¥y, y_
and the kernel parameters @ and b.

APPENDIX F: PMME MODEL CONSTRUCTION
RESULT FOR DIFFERENT SPECTATOR QUBIT
STATES

In this section we present data supplementing the results
of the PMME model construction reported in Fig. 4, for the
following three initial states of the spectator qubits: ground
state |0}, the excited state |1}, and the |4+) state. This data
is also used to calculate the degree of non-Markovianity
reported in Fig. 6, which uses different initial states of
the main qubit. Figures 7, &, and 9 show the fitting data
used to construct the model and the testing data 1o vali-
date it. The initial states in the testing datasets are {|ifr, ) =
). [¥-x) = =} [¥r4y) = |+ 0, [¥ry) = | — )} and they
are used to evaluate the degree of non-Markovianity as in
Eq. (14), plotted in Figs. 6 and 10. The initial state pairs
p1(0) = [4+K+| and p2(0) = [}~ (or p1(0) = |[+i}+i|
and g2(0) = |—i){—i]} are optimal pairs such that they fea-
ture a maximal flow of information from the environment
back to the system [68].

The yellow. blue. and red solid lines in Figs. 7, 8,
and Y represent the constructed models My, M, and M,
respectively, with their best-fit model parameters summa-
rized in Table V. On the fitting dataset, we find that the
Lindblad model Ay does not adequately describe the data,
while the PMME models M and A: describe the data
accurately. The kemnels of the constructed PMME models
are plotted in Fig. 11. Although AM; has a more elaborate
kernel with more free parameters, it does not blue neces-
sarily provide a better fit to the data; M, and M; result in
similar fits, which suggests that we do not need a very com-
plicated kernel to significantly improve upon the standard
Lindblad model. On the testing dataset, the constructed
maodels provide a qualitatively adequate prediction for dif-
ferent initial states, but deviations do arise relative to the
experimentally constructed states (see Figs. 7-9 columns
1, 2. and 4}. Due to system fluctuations, which the PMME
models cannot capture, the model constructed from the
fitting dataset may lose some of its predictive power
for the testing dataset. Examples of such system fluctua-
tions include Auctuations of qubit 77 relaxation time and
l/f noise in the qubit frequency. As further evidence
of such fluctuations, the data shown in Fig. $al)(d0)
and Fig. 7(al+d0)} are taken under nominally identical
conditions but nonetheless show different behavior. These
data are taken days apart, during which time the system
parameters drifted.

Nonetheless, compared with the Lindblad model, the
PMME models provide higher levels of agreement for the
fitting datasets and a more accurate prediction for the test-
ing datasets in all spectator qubit configurations. This can
be seen in the bottom row of Figs. 7-4, and is summarized
in Fig. 12, which compares the moedels using the Akaike
information criterion (AIC) and the trace-distance metric
discussed below.
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[ Tomography data ——Mp —_—M, —_—M, § % = = = = -
| &4 184 B4 g g g
pa=0){0] pa=[1{1] pa=|+1{+] 28 e
1 1 (e) §_ - i & = a
= =S o = o =
5 2fx X 0 x x X
iy = £ & o £ = ~
fe = z2 — e’ T —
! : n E a 5 n o - -
0.004 ' : 28 = = = =
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= =25 ot s 3 =
& D00 ' J\ﬂn'h"“' 5 & i = iy ci
::f At = [ v - gantim || A = s = § g
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= AR = 10502 AR = 0,2520.0 Mj‘_“i = (AT L; E .E = oo =5~ oo
3 60 90 0 30 60 90 0 30 60 90 S5 EE ¥ ® oK oA ®ox
Time (jiz) Time (jiz) Time (5] oo n " ) =i oo o
SSE ||€ w @ s T *
FIG. 10. Mon-Markovianity of qubit free-evolution dynam- :"_ 5 E = e o =S
ics for spectator qubits in the ground state (a)(b), the excited ubﬁ £ = x X XX E
state (c),(d), and the |+) state (e).(f). (a)(c)(e) The trace-norm & § 5 = - S5 a8
distance D[ p (), p2(f)] predicted by the best-fit models (solid - = =
lines) and experimentally measured by performing free-evolution 5 E g ~m s~ e, s e
tomography with a pair of initial states p(0) = |Hi{+i] and = E E L ?E :'r:, L B L ; L E LL v
pa(l) = |—if{—i| (gray circles). (b)(d)(f) The derivative e (1), E TS = e ook e TR
defined in Eq. (14}, predicted by the best-fit models (solid lines), © E = @ § = wwS E LT mme
and approximated experimentally using forward differencing 8 BE BlS] 297 292 7279% 799
based on the tomography data in (a).(c).(d) (gray circles). Soc@l 2| &22 =22 =252 zs:
EE23E XXM MMM KKK HEX
EEg 8 A=~ nmm TrET o—oC
To compare the goodness of the fit of the models and o 2 Ea T e AN e SME O
the simplest model that best describes the fitting dataset, ig £z & _ _ _eh_ @ _ _ _ &b _ _
138 . = g = o = + [ 7 [ - Ly '/ e
we use the ALC [35], which is defined as EEEE 'I’ETE.E TEETE "IE,IETE. IE'élg
'ﬂnwfﬁ o b oo WM W
5 - 5523 OO en N 00 G0 08 D e R e = e
EEsE(2] 797 999 1797 T4
= | oD ooo o =] oo o
gES | =8 cme sms lag
where L denotes the likelihood function and p is the num- NE E 'E ; :f : :f ; :_1‘ :; ; ; :1 :; :I
ber of free model parameters. The second term in the AIC = = Bt E ol Gl (ot e £ S o e S S
(2p) is called the bias term and il penalizes the models 'E R
with”higher Fomplexit}_f. The AIC can be imerlpre'fed as < ?':Ed § e e e AT
the “information loss™ (in the Kullback-Leibler divergence = E ek mas BEEE Bes 288
sense) of using some candidate model to approximate the SEGE| = XX ®W XM XXX HAK
s % ; iz a0 | B E ol T N S O S o T o T =
true” model. Akaike showed that the maximized log- T 8RE|Z| 755 To00 o aa o ae
likelihood in the first term of Eq. (F1) is a biased estimator, 3 ,§ ﬁ 2l 2] &85 L£=& &£L& =&=
and that under certain assumptions, the bias correction g ‘E = B XA K OHA OHAK M KX
approximately equals p. The caleulation of the first term ¢ © £ u St Bogey  epre g s
L : : "E_f:ﬁ A E ' — ] =0 oy — W00 =
in AlC depends strongly on the sample size used, and the SR8
bias-correction term becomes exact when the sample size 5 ol 1 e e o -~
diverges. For these reasons. the numerical value of AIC E .2‘ 2 ;u': ‘; '; L ‘IE = IE é .I"E‘. L =)
has no intrinsic significance as such. With these caveals =2 E i W N e % 3
S : : i E = de wow MK
in mind, we can use the AIC mefric to find a model that 5 = |l = e OO LCU a2
= o) ~rhes i Sl T S ey = i e :;"’: Mook o - = e
acwmh_..ly describes the data and at the same time _dvmds g LR E 2 e bty LLE i
overfitting, as lower (more negative) values indicate a % 2 E 5| & s e st =
- m*=sT s ow o HXH KKK ® oK
better model. R g 8@ XEX ermr mmm “ =
The likelihood function L is defined over the observed 2 3 2 § avivi 7T TT7 thin
dataset, and quantifies the likelihood of observing the - ‘%% =
dataset as a function of the model parameters #. It mea- QEE & s~ S -6 5 - o -
sures how well the data supports that particular choice of = & A2 =33 23 =223 = =
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FIG. 11. The kemels in the constructed models A and A3

using the fitting datasets in Fig. 4(a), Fig. T(h), Fig. &(c), and
Fig. 9(d). The shaded regions denote the 95% confidence region
of the kernel function due to the uncertainty in the best-fit kernel
parameters in Table V.

parameters, Since each tomography sample g is indepen-
dently drawn, the likelihood L is a product of conditional
probabilities:
L@|D) = [T] [ et 6. (F2)
3

where p; is the probability of observing the data point in
measurement basis b at time £,

We report the AIC values computed in this manner for
the fitting data using the three models in Fig. 12 (pur-
ple squares), for three different initial states of the ancilla
qubits. However, as mentioned above, the numerical value
of the AIC is not intrinsically meaningful. Tn practice, it
is convenient to scale AlCs with respect to the minimum
AlC value among all models:

A=A - ll!iin.»fl... (F3)
where min; A; 15 the AIC value of the best model in the
set. As seen in Fig. 12, we find that the minimum is
achieved for the A; model. The AIC difference A; esti-
mates the information loss when using model 7 rather than
the estimated best model. Hence, the larger A, the less
plausible is model i Some guidelines for the inlerpreta-
tion of AIC difference in the case of nested models are
given in Ref, [69], as summarized in Table V1. Given the
much larger Ay = Ay — A value, we find that the data in
Fig. 4 is considerably less in favor of the Lindblad model
M. despite the fact that it has the smallest number of free
paramsters.

Another metric we use here for comparison is the trace-
norm distance between the experimentally constructed

4(0) = [0}{0| ™

0.3 ] @)

0.24

:

0.0 ; :
. pal0)=1){1[*
1 (b} 1=
EH.Z ) : &
0.0 ﬁ - i = =+ 17
| pa(0) =+ )+ |
0.3 - 1373
(c)
n2{ ; s
o ° - % |
8 . Ty
0.0 S e - == -

Mg My M My My My
Fitting datn Testing data |
FIG. 12.  Summary of the results of mnning the PMME tomog-
raphy protocol on the IBMQE processor ibmg_athens, showing
how well the model candidates describe the fitting dataset and
the testing dataset in Fig. 7 for the spectator qubits in the ground
state (a), for those in Fig. § for the spectator qubits m the excited
state (b} and for those in Fig. 9 for the spectator qubits in the
[+) state (¢). The box plots show the trace-norm distance (see
text) and the median is reported as the middle value of {T7; }. The
lower line of the hox corresponds to the lower quartile of the

data (25th percentile, (1), and the upper line of the box corre-
sponds to the upper quartile of the data (75th percentile, Q3). Let
IQR denote the interguartile range: QR = Q3-01. The outliers,
plotted in circles, are the data outside the range ((}1-1.5 = IQR,
Q3 + L5 % IQR).

state and the model predicted state during its evolution.
Let Df denote the distance between the experimentally
constructed state ;" at time # with initial state pg(0) =
[ (0} (4l (0)] and that predicted by the model pfd{-'f-},
1.8, PL = T?[ﬁ:“. f"‘{r,-}]. the values reported in the box
plot in Fig. 12 are averaged over the test dataset with dif-
ferent initial states: D; = 1/43 ;234 Df. After doing
this averaging. we arrive at an array [1; ﬂj“. correspond-
ing to the trace distance, again, averaged over four different
initial states in the testing dataset. between the experimen-
tally constructed states and the model’s predicied states at
24 sampled time points during the evolution.
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TABLE V1. A heuristic interpretation of AIC differences A;
reported in Fig. 5. The larger A; is, the less plausible it is that
the model AA; is the best model.

Ay Level of empirical support  Models A;

for model i =4, —.A;
-2 Substantial M, 0
47 Considerably less Ma 0.20
=10 Essentially none My 911

Finally. using the tomography data with the qubit ini-
tialized in pp(0) = |+i}+i] and p2(0) = |—=i¥—i|, we re-
evaluate the degree of non-Markovianity for different
spectator qubil states in Fig. 10 according lo Eqgs. (14)
and (15). The nonmonotonic decay in the trace distance
T and the estimated non-Markovian measure A in Fig. 10
agrees well with those in Fig. 6, serves as a supplemen-
tary quantitative demonstration of non-Markovian effects
present in the device. The degree of non-Markovianity
.a"lu"i'.,dl and "v.-:"..f calculated from the constructed PMME
models agrees well with that from the experimental data
N*©P  showing that the PMME models have the abil-
ity to quantitatively describe and predict the degree of
non-Markovianity of the dyvnamics during the qubit free
evolution.
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