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Quantum simulation has emerged as a valuable arena for dem-
onstrating and understanding the capabilities of near-term 
quantum computers1–3. Quantum annealing4,5 has been suc-
cessfully used in simulating a range of open quantum systems, 
both at equilibrium6–8 and out of equilibrium9–11. However, in all 
previous experiments, annealing has been too slow to coher-
ently simulate a closed quantum system, due to the onset of 
thermal effects from the environment. Here we demonstrate 
coherent evolution through a quantum phase transition in the 
paradigmatic setting of a one-dimensional transverse-field 
Ising chain, using up to 2,000 superconducting flux qubits 
in a programmable quantum annealer. In large systems, we 
observe the quantum Kibble–Zurek mechanism with theo-
retically predicted kink statistics, as well as characteristic 
positive kink–kink correlations, independent of temperature. 
In small chains, excitation statistics validate the picture of a 
Landau–Zener transition at a minimum gap. In both cases, the 
results are in quantitative agreement with analytical solutions 
to the closed-system quantum model. For slower anneals,  
we observe anti-Kibble–Zurek scaling in a crossover to the 
open quantum regime. The coherent dynamics of large-scale 
quantum annealers demonstrated here can be exploited to 
perform approximate quantum optimization, machine learn-
ing and simulation tasks.

Quantum phase transitions (QPTs) describe the sudden macro-
scopic change in a system’s ground state driven by quantum fluctua-
tions12. An important aspect of phase transitions is the divergence 
of correlation length ξ at the critical point, resulting in a univer-
sal behaviour: macroscopic properties become independent of the 
Hamiltonian details. The growth of correlation length happens 
within response time τ, which also diverges at the critical point due 
to critical slowing down. For a finite system, the correlation length 
is limited by system size. Therefore, a slow quench through a QPT, 
that is, within a time longer than τ, can adiabatically transition the 
system into its new ground state13. Outside the adiabatic regime, the 
correlation length remains shorter than the system size, leading to 
defects, that is, boundaries between domains with different orders. 
The average distance between the defects is set by the correlation 

length, which itself is a function of quench velocity. The defect 
density scales polynomially with the speed at which the critical 
point is traversed. This phenomenon, known as the Kibble–Zurek 
mechanism (KZM)14, has its origins in the cosmology of the early 
Universe, but has since been observed in various experimental plat-
forms such as Bose–Einstein condensates15,16, Rydberg atoms3,17 and 
trapped ions18.

The quantum Ising chain is a popular testbed for studying the 
KZM3,19–24 in part because it can be exactly solved using fermion-
ization via the Jordan–Wigner transformation20. We implement this 
model using a programmable superconducting quantum annealer 
(QA)5. The Hamiltonian of this system is given by

H(s) = −Γ (s)
L∑

i=1
σ
x
i + J (s)

L∑

i=1
Jσz

i σ
z
i+1, (1)

where σz
i  and σx

i  are Pauli operators on the ith qubit and J is a dimen-
sionless programmable coupling. For annealing time ta, the anneal-
ing parameter s = t/ta ranges from 0 to 1, controlling the transverse 
field Γ(s) and Ising energy scale J (s) according to the schedule 
depicted in Fig. 1a (Supplementary Information shows the detailed 
modelling in which we determine the schedule terms Γ(s) and J (s) 
for each programmed value of J based on a radio-frequency super-
conducting quantum interference device flux qubit model). We use 
periodic boundary conditions (σα

L+1 = σα
1) and program all the 

couplers with the same value J, which can be either positive (anti-
ferromagnetic) or negative (ferromagnetic).

In the paramagnetic phase, when s ≈ 0, the system is dominated 
by quantum fluctuations and the ground state is an approximately 
uniform superposition of computational basis states (eigenstates of 
σz
i ). At the end of annealing, when s = 1, the system is diagonal in 

the computational basis, with frozen dynamics. This ordered phase 
has a ferromagnetic ground state; these two phases are separated by  
a quantum critical point at s = sc such that Γ (sc) = J (sc)|J| (Fig. 1b).

To probe kink density scaling in the thermodynamic limit, we 
anneal chains of L = 512 and 2,000 qubits for varying ta, at qubit 
temperatures between 10 and 30 mK and for several values of J  
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ranging in magnitude from 0.12 to 1.40. Figure 1c shows examples of 
experimental data from the QA for ta = 4.8 and 49.0 ns with J = −1.4. 
As expected from the KZM, longer annealing exhibits fewer kinks.

We define the kink operator as

Ki =
[
1+ sign(J)σz

i σ
z
i+1

]
/2. (2)

At the end of annealing, when all the qubits are measured in the 
computational basis, Ki = 1 if there is a kink between qubits i and 
i + 1, and Ki = 0 otherwise. We define the kink density operator as

n =
1
L

L∑

i=1
Ki. (3)

The average kink density n̄ = ⟨n⟩ is obtained by running the experi-
ment many times and averaging over the outcomes. Measurements 
of n̄ are summarized in Fig. 2a. To test the ability of L = 512 to 
represent the thermodynamic limit, we confirmed consistency 

with L = 2,000 at 10 mK. For ta ≥ 1 μs, n̄ decreases monotonically 
as a function of ta, consistent with previous experiments in the 
same regime10. For the previously unexplored region ta < 1 μs, n̄ is 
non-monotonic, particularly for high temperature and weak cou-
pling. This ‘anti-Kibble–Zurek’ behaviour is a result of coupling 
to a thermal environment, which generates additional excitations 
and thus increases n̄; such a behaviour has been seen in the clas-
sical simulations of open-system quantum Ising chains10,23 and 
two-dimensional systems in a QA outside the coherent regime11.

For the shortest anneals, kink densities at all the temperatures 
collapse on a common curve. This temperature independence is 
the evidence of coherent evolution, where the system traverses the 
quantum critical point faster than the environment’s response time. 
In this case, the system is unable to exchange energy with the envi-
ronment. The exactly solvable coherent (closed-system) quantum 
model predicts20,25 (Supplementary Information)

n̄ =
t−1/2
a

2π
√
2b

, b =
Γ (sc)/h̄

J ′(sc)/J (sc)− Γ ′(sc)/Γ (sc)
, (4)

where ℏ is the reduced Planck constant. This theoretical kink  
density (Fig. 2a, dashed lines) is in quantitative agreement with the 
experimental measurements in the fast-annealing regime, with no 
fitting parameters.

Kink distributions in the quantum Ising chain have been theo-
retically characterized beyond just the average densities. The num-
ber of kinks follows a binomial distribution24; when the number of 
kinks is large, this distribution is well approximated by a Gaussian 
distribution. This clearly differentiates the data from a Boltzmann 
distribution describing thermal equilibrium (Fig. 2b). Unlike a 
Gaussian distribution, the binomial kink distribution is expected 
to skew slightly away from zero and therefore have a positive third 
cumulant. Moreover, the first three cumulants of the kink distri-
bution, namely, κ1 = n̄, κ2 = ⟨(n− n̄)2⟩ and κ3 = ⟨(n− n̄)3⟩, are 
expected to be proportional to t−1/2

a , at fixed ratios24

κ2/κ1 = 2−
√
2 ≈ 0.586, (5)

κ3/κ1 = 4(1− 3/
√
2+ 2/

√
3) ≈ 0.134. (6)

Measurements of these cumulants are shown in Fig. 2c. The lines in 
the figure are derived from theory, showing good agreement with 
the experimental data.

Although single-point QA statistics agree with the closed-system 
quantum model, some aspects of the kink distribution can be 
reproduced by classical models26. For example, the scaling exponent  
of −1/2 (equation (4)) is identical to that of a purely classical  
diffusion/annihilation model27. Therefore, we investigate two-point 
statistics28,29. We define the normalized kink–kink correlator as

CKK
r =

1
L

L∑

i=1

⟨KiKi+r⟩ − n̄2
n̄2 . (7)

In Fig. 3a, we plot CKK
r  against the normalized lattice distance 

r/ξ = n̄r. For multiple annealing times, the data collapse on a curve 
with a positive peak at around r/ξ ≈ 0.6, as predicted elsewhere29. 
The QA data are compared with the solution of the fermionized 
model (Fig. 3b), which exhibits a similar but higher peak.

Peak suppression in QA is expected from coarsening dynamics28 
or other mechanisms such as dephasing29 or kink diffusion out-
side the regime of validity of the adiabatic/impulse description of 
KZM. Indeed, CKK

r  does become purely negative for longer anneals 
(Supplementary Fig. 15). However, thermal effects do not appear to 
play a role (Supplementary Fig. 14). To probe the potential effects of 
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Fig. 1 | QPT in an annealed Ising chain. a, Quantum annealing of the 
transverse-field Ising chain. Using a dimensionless annealing parameter s 
to control the Hamiltonian in equation (1) with J = 1, the system is tuned 
through its QPT at Γ (sc) = J (sc) for sc ≈ 0.36. The critical point separates 
a quantum paramagnet (s < sc) from an ordered ground state (s > sc). 
b, Response time diverges at the quantum critical point, as a function 
τ ∝ ∣s − sc∣−zν for critical exponents z and ν. Consequently, a finite-time 
traversal of the QPT results in kinks separating ordered domains after 
annealing. c, Example QA output states for a chain of L = 2,000 qubits with 
J = −1.4, whose alternating domains of up (red) and down (blue) spins  
have correlation length ξ = 1/n̄, where n̄ is the average kink density.
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entanglement and disorder, we employ a tensor-network dynamics  
method known as time-evolution block decimation (TEBD)30. 
Reducing the TEBD bond dimension D (Supplementary Section E) 
to 20 provides a heuristic model of limited entanglement entropy S,  
given that S ≤ 2log(D) (ref. 31); this slightly lowers the peak  
(Fig. 3c), but makes it dependent on ta, inconsistent with the experi-
mental data. Further lowering D worsens the agreement with QA 
(Supplementary Fig. 9), but combining D = 20 with disorder in 
the QA Hamiltonian improves it (Supplementary Information). 
Combining these effects gives a close match to the QA results  
for J = −1.4 (Fig. 3d) and other coupling strengths (Supplementary 
Fig. 10). Moreover, we find that D = 20 is a lower bound on the bond 
dimension, in the sense that our QA data display an opposite trend 
with ta to that of TEBD for D < 20, but our QA and TEBD data agree 
for D ≥ 20 (Supplementary Fig. 16).

Previous studies have shown logarithmic, rather than power-law, 
scaling of n̄ in the presence of large disorder, with Ji uniformly 
sampled in [0, Jmax] (refs. 32,33). Although the much smaller disorder 
probed in Fig. 3d (σ = 0.05) substantially suppresses the peak in 
CKK
r , the effect on kink density is small, especially for fast anneals 

where n̄ is large (Supplementary Fig. 11). Furthermore, the disorder  
in this case arises from technical challenges in QA, which are the 
most severe for fast anneals. Therefore, a significant region of 
power-law scaling, as seen in our experimental results (Fig. 2a), is 
consistent with our understanding of disorder.

Next, we investigate finite-size effects. When ta is sufficiently large 
as a function of L, the dynamics are dominated by a single Landau–
Zener (LZ) transition34, and the ground-state probability PGS follows 
the adiabatic theorem35. This crossover occurs when Ln̄ ≈ 1 (ref. 33). 
The LZ transition probability is expected to exponentially decay in 
the annealing time, in contrast to the power-law dependence in the 
Kibble–Zurek regime. For one-dimensional spin chains, it is possi-
ble to obtain an analytical solution20 (Supplementary Information):

1− PGS = e−ata , a = 2π
3bL−2, (8)

where b is defined in equation (4).
Figure 4a shows the QA measurements for ferromagnetic and 

antiferromagnetic chains of equal coupling magnitude (J = ±0.95). 
Since L is even, the two Ising Hamiltonians are gauge equivalent 

and we expect similar experimental outcomes. We plot the data  
in the range 5 ≤ ta ≤ 40 ns and 0.1 ≤ PGS ≤ 0.9 for values of L rang-
ing from 8 to 32. Figure 4a also shows the results of the exact  
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simulation of coherent Schrödinger dynamics for the fermionized 
system (squares; Supplementary Information) together with the 
analytical result of equation (8) (dashed lines), in remarkable agree-
ment with the experimental data. To test the agreement with the 
closed-system theory for different J values, Fig. 4b shows that a as 
extracted from the empirical PGS data as per equation (8) remains 
consistent with the theoretical prediction of a ∝ L−2 (solid lines).

Although all the above experimental results agree well with 
coherent quantum dynamics, an important question is whether they 
can also be explained by classical models. It is clearly impractical 
and even impossible to rule out every classical explanation; instead, 
we consider the most plausible Monte Carlo methods that have 
been suggested as emulators for QA36,37. In Supplementary Section 
B, we consider simulated annealing, simulated quantum annealing 
based on path-integral Monte Carlo and spin-vector Monte Carlo 
simulations. We find that some of these models can reproduce some 
aspects of the experimental data, but none of them can explain all 
the experimental features. Therefore, we conclude that only the 
coherent quantum model successfully explains all the experimental 
results, and this view is considerably strengthened by the fact that 
we have not used any fitting parameters.

In conclusion, by tuning the parameters of a programmable QA, 
namely, annealing time, coupling strength and temperature, we have 
simulated quantum critical phenomena in one-dimensional chains 
of up to 2,000 spins. For fast anneals, we observe quantum Kibble–
Zurek scaling in long chains and LZ scaling in short chains. In both 
regimes, kink densities are in quantitative agreement with coherent 
Schrödinger dynamics—remarkably, with no free parameters. In 
contrast, leading classical models can only reproduce some aspects 
of the experimental data—no single classical theory reproduces all 
of them. These results represent strong evidence for coherent evolu-
tion, with a significantly larger system and longer correlation length 
(L = 2,000, ξ ≈ 30) than previous quantum Kibble–Zurek demon-
strations in a one-dimensional system using Rydberg arrays (L = 51, 
ξ ≈ 4)3. In addition, at longer annealing times, we observe a cross-
over to the thermal regime with anti-Kibble–Zurek behaviour, as 
theoretically predicted10.

We have used QA as a quantum simulator, producing results 
that are challenging to simulate classically, even in this widely  
studied and simple model. Path-integral Monte Carlo simulations  

can simulate systems near thermal equilibrium38, but cannot be 
used to describe or simulate quantum dynamics39–41. Likewise, 
open-system quantum simulations such as master equations42 
become computationally intractable beyond system sizes of around 
40 qubits. Thus, our results pave the way to coherent quantum 
simulation on a previously unattainable scale. Moreover, the abil-
ity to program both signs and magnitudes of Hamiltonian terms 
in a coherently evolved system is a key ingredient in the simulation 
of frustrated models such as quantum spin glasses and ultimately 
in quantum optimization. The results reported here represent an 
important step towards this goal.
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Methods
Quantum annealing experiments. Quantum annealing is performed on a D-Wave 
2000Q lower-noise processor using multiple randomly generated embeddings (one 
for L = 2,000, three for L = 512 and up to 100 for L = 8) in parallel. Each data point 
represents data taken over 300 iterations for L = 2,000 and L = 512, and 50 iterations 
for smaller values of L. In each iteration, the qubits are annealed 100 times, 
providing 100 spin states. Each spin state consists of values {si}Li=1, where si = ±1 is 
the qubit readout state in the computational basis.

For each data point in the plots, we refine the general-purpose calibration by 
fine-tuning individual Hamiltonian terms based on trivial symmetries of the chain: 
we tune the per-qubit linear flux biases to bring qubits to degeneracy (〈si〉 ≈ 0), and 
tune two-qubit couplers to homogenize average correlations across chain bonds 
(〈sisj〉 ≈ ∑〈k,ℓ〉〈sksℓ〉/L), as shown in previous studies of degenerate systems7,8. To 
mitigate the desynchronization of annealing schedules between different qubits for 
the fastest anneals, we additionally refine the annealing offsets based on annealing 
lines, although in this case, there is little effect. We describe these methods in the 
Supplementary Information.

To generate error bars, a statistical bootstrap is performed. For individual 
data points, the method treats each QPU call as an individual trial and resamples 
with replacement. In particular, estimates of CKK

r  are computed for each QPU call 
and then bootstrapped; therefore, each estimate of n̄ represents a QPU call, not 
an overall average. The error bars in Figs. 2, 3 and 4a indicate 95% confidence 
intervals over QPU programming (or in Fig. 3d for over 300 disorder realizations).

To compute QA exponents a (Fig. 4b), we treat every ta as a trial, and generate 
a distribution of fit slopes based on bootstrapped sets of annealing times. The data 
markers and error bars represent the median and 95% confidence interval of the 
resampling median.

Annealing schedule. The annealing schedule (Fig. 1) is based on qubit parameters 
extracted through averaged single-qubit measurements. Since qubits are actually 
multilevel objects rather than perfect two-level Ising spins, we convert the qubit 
Hamiltonian to an effective Ising Hamiltonian following the method laid out in 
recent studies of geometrically frustrated lattices40. We perform the approximate 
diagonalization of the s-dependent eigenspectrum of a 12 qubit periodic-chain 
Hamiltonian. We simplify the computation by dividing the qubits into four 
chains of three qubits each, and retaining only the 12 lowest energy levels of each 
three-qubit chain. Once this eigenspectrum is computed for a given coupling 
strength J, we perform a two-parameter fit on Γ(s) and J (s)|J| in equation (1), 
minimizing a weighted average of the differences in the first eight eigengaps 
between the qubit Hamiltonian and the transverse-field Ising Hamiltonian. 
The effective qubit temperatures were measured using standard single-qubit 
susceptibility measurements.

Fermionized models and TEBD. Calculations using the fermionized system were 
performed on the same number of spins as in QA, that is, L = 512 (Fig. 3) and a 
range of L (Fig. 4). The TEBD data in Fig. 3 were produced using L = 256 to reduce 
the computation time. This has a negligible effect on the results since this is much 
larger than the correlation length at the values of ta investigated, as we confirmed 
by solving the fermionized model at both L = 256 and L = 512. The average and 

error bars representing 95% statistical confidence in the TEBD data were obtained 
for 300 realizations of disorder.

Data availability
Data supporting the findings of this paper are available from the corresponding 
author upon request. Source data are provided with this paper.

Code availability
The TEBD code used in this paper is available from the corresponding author 
upon reasonable request. An open-source version of the PIMC code used in 
the Supplementary Information is available via GitHub at https://github.com/
dwavesystems/dwave-pimc. The version for this work is archived in Zenodo at 
https://doi.org/10.5281/zenodo.6842260.
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