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Quantum simulation has emerged as a valuable arena for dem-
onstrating and understanding the capabilities of near-term
quantum computers', Quantum annealing*® has been suc-
cessfully used in simulating a range of open quantum systems,
both at equilibrium®-¢ and out of equilibrium®'. However, in all
previous experiments, annealing has been too slow to coher-
ently simulate a closed quantum system, due to the onset of
thermal effects from the environment. Here we demonstrate
coherent evolution through a quantum phase transition in the
paradigmatic setting of a one-dimensional transverse-field
Ising chain, using up to 2,000 superconducting flux qubits
in a programmable quantum annealer. In large systems, we
observe the quantum Kibble-Zurek mechanism with theo-
retically predicted kink statistics, as well as characteristic
positive kink-kink correlations, independent of temperature.
In small chains, excitation statistics validate the picture of a
Landau-Zener transition at a minimum gap. In both cases, the
results are in quantitative agreement with analytical solutions
to the closed-system quantum model. For slower anneals,
we observe anti-Kibble-Zurek scaling in a crossover to the
open quantum regime. The coherent dynamics of large-scale
quantum annealers demonstrated here can be exploited to
perform approximate quantum optimization, machine learn-
ing and simulation tasks.

Quantum phase transitions (QPTs) describe the sudden macro-
scopic change in a system’s ground state driven by quantum fluctua-
tions'>. An important aspect of phase transitions is the divergence
of correlation length £ at the critical point, resulting in a univer-
sal behaviour: macroscopic properties become independent of the
Hamiltonian details. The growth of correlation length happens
within response time 7, which also diverges at the critical point due
to critical slowing down. For a finite system, the correlation length
is limited by system size. Therefore, a slow quench through a QPT,
that is, within a time longer than 7, can adiabatically transition the
system into its new ground state’’. OQutside the adiabatic regime, the
correlation length remains shorter than the system size, leading to
defects, that is, boundaries between domains with different orders.
The average distance between the defects is set by the correlation
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length, which itself is a function of quench velocity. The defect
density scales polynomially with the speed at which the critical
point is traversed. This phenomenon, known as the Kibble-Zurek
mechanism (KZM)", has its origins in the cosmology of the early
Universe, but has since been observed in various experimental plat-
forms such as Bose-Einstein condensates'*'?, Rydberg atoms®'” and
trapped ions'®.

The quantum Ising chain is a popular testbed for studying the
KZM?*"-** in part because it can be exactly solved using fermion-
ization via the Jordan-Wigner transformation”’. We implement this
model using a programmable superconducting quantum annealer
(QA)°. The Hamiltonian of this system is given by

L

L
H(s) = =I'(s) Z oi +J(s) Z]Ufﬁfﬂ’ (1)
i—1

i=1

where 67 and o7 are Pauli operators on the ith qubit and J is a dimen-
sionless programmable coupling. For annealing time f,, the anneal-
ing parameter s=1¢/t, ranges from 0 to 1, controlling the transverse
field I'(s) and Ising energy scale 7 (s) according to the schedule
depicted in Fig. 1a (Supplementary Information shows the detailed
modelling in which we determine the schedule terms I'(s) and 7 (s)
for each programmed value of ] based on a radio-frequency super-
conducting quantum interference device flux qubit model). We use
periodic boundary conditions (67,; = ¢f) and program all the
couplers with the same value J, which can be either positive (anti-
ferromagnetic) or negative (ferromagnetic).

In the paramagnetic phase, when s~ 0, the system is dominated
by quantum fluctuations and the ground state is an approximately
uniform superposition of computational basis states (eigenstates of
o7). At the end of annealing, when s=1, the system is diagonal in
the computational basis, with frozen dynamics. This ordered phase
has a ferromagnetic ground state; these two phases are separated by
a quantum critical pointat s=s_such that I"(sc) = J (s¢)|J] (Fig. 1b).

To probe kink density scaling in the thermodynamic limit, we
anneal chains of L=512 and 2,000 qubits for varying t,, at qubit
temperatures between 10 and 30mK and for several values of |
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Fig. 1| QPT in an annealed Ising chain. a, Quantum annealing of the
transverse-field Ising chain. Using a dimensionless annealing parameter s
to control the Hamiltonian in equation (1) with J=1, the system is tuned
through its QPT at I'(sc) = J(sc) for s.x 0.36. The critical point separates
a quantum paramagnet (s <s.) from an ordered ground state (s>s,).

b, Response time diverges at the quantum critical point, as a function

T |s—s |7 for critical exponents z and v. Consequently, a finite-time
traversal of the QPT results in kinks separating ordered domains after
annealing. ¢, Example QA output states for a chain of L =2,000 qubits with
J=-1.4, whose alternating domains of up (red) and down (blue) spins
have correlation length & = 1/n, where n is the average kink density.

ranging in magnitude from 0.12 to 1.40. Figure 1c shows examples of

experimental data from the QA for t,=4.8 and 49.0 ns with J=—1.4.

As expected from the KZM, longer annealing exhibits fewer kinks.
We define the kink operator as

K = [1 + sign(])afo',ﬁl] /2. (2)

At the end of annealing, when all the qubits are measured in the
computational basis, K;=1 if there is a kink between qubits i and

i

i+1, and K;=0 otherwise. We define the kink density operator as

h\»—‘

L
Z 3)

The average kink density 7 = (n) is obtained by running the experi-
ment many times and averaging over the outcomes. Measurements
of 7 are summarized in Fig. 2a. To test the ability of L=512 to
represent the thermodynamic limit, we confirmed consistency
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with L=2,000 at 10mK. For t,>1ps, 7 decreases monotonically
as a function of t,, consistent with previous experiments in the
same regime'’. For the previously unexplored region t,<1ps, # is
non-monotonic, particularly for high temperature and weak cou-
pling. This ‘anti-Kibble-Zurek’ behaviour is a result of coupling
to a thermal environment, which generates additional excitations
and thus increases 7; such a behaviour has been seen in the clas-
sical simulations of open-system quantum Ising chains'®* and
two-dimensional systems in a QA outside the coherent regime'".

For the shortest anneals, kink densities at all the temperatures
collapse on a common curve. This temperature independence is
the evidence of coherent evolution, where the system traverses the
quantum critical point faster than the environment’s response time.
In this case, the system is unable to exchange energy with the envi-
ronment. The exactly solvable coherent (closed-system) quantum
model predicts*** (Supplementary Information)

2 I(sc)/h
= . b= ,
" nvab TET6) - ey P

where h is the reduced Planck constant. This theoretical kink
density (Fig. 2a, dashed lines) is in quantitative agreement with the
experimental measurements in the fast-annealing regime, with no
fitting parameters.

Kink distributions in the quantum Ising chain have been theo-
retically characterized beyond just the average densities. The num-
ber of kinks follows a binomial distribution*’; when the number of
kinks is large, this distribution is well approximated by a Gaussian
distribution. This clearly differentiates the data from a Boltzmann
distribution describing thermal equilibrium (Fig. 2b). Unlike a
Gaussian distribution, the binomial kink distribution is expected
to skew slightly away from zero and therefore have a positive third
cumulant. Moreover, the first three cumulants of the kink distri-
bution, namely, k1 = 7, k2 = ((n — 1)*) and x5 = ((n — 71)’), are
expected to be proportional to ; /%, at fixed ratios**

Ka/k1 = 2 — V2 & 0.586, (5)

Kk3/k1 = 4(1 — 3/V/2 + 2/V/3) ~ 0.134. (6)

Measurements of these cumulants are shown in Fig. 2c. The lines in
the figure are derived from theory, showing good agreement with
the experimental data.

Although single-point QA statistics agree with the closed-system
quantum model, some aspects of the kink distribution can be
reproduced by classical models*. For example, the scaling exponent
of —1/2 (equation (4)) is identical to that of a purely classical
diffusion/annihilation model”. Therefore, we investigate two-point
statistics”*’. We define the normalized kink-kink correlator as

L 2
1 K1K1 r

In Fig. 3a, we plot CK against the normalized lattice distance
r/€ = nr. For multiple annealing times, the data collapse on a curve
with a positive peak at around r/£~ 0.6, as predicted elsewhere®.
The QA data are compared with the solution of the fermionized
model (Fig. 3b), which exhibits a similar but higher peak.

Peak suppression in QA is expected from coarsening dynamics®
or other mechanisms such as dephasing” or kink diffusion out-
side the regime of validity of the adiabatic/impulse description of
KZM. Indeed, CX* does become purely negative for longer anneals
(Supplementary Fig. 15). However, thermal effects do not appear to
play a role (Supplementary Fig. 14). To probe the potential effects of
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Fig. 2 | Kink density scaling and distribution. a, QA data for weak coupling (J=0.12) and strong coupling (J=-1.4, used for b and ¢) for a range of
temperatures and annealing times. The weak coupling regime exhibits anti-Kibble-Zurek behaviour, with a local minimum in . For strong coupling and
fast anneals, 11 is unaffected by temperature and quantitatively agrees with the closed-system coherent quantum theory (dotted green lines; equation (4)).
b, Best-fit thermal (Boltzmann) model is significantly broader than the measurement results, which are better described by a Gaussian model, as expected
given the predicted binomial form. ¢, First three cumulants of the kink distribution. The lines indicate coherent theory. The markers and error bars indicate
the bootstrap mean and 95% statistical confidence intervals, respectively (Methods).

entanglement and disorder, we employ a tensor-network dynamics
method known as time-evolution block decimation (TEBD)Y.
Reducing the TEBD bond dimension D (Supplementary Section E)
to 20 provides a heuristic model of limited entanglement entropy S,
given that S<2log(D) (ref. *'); this slightly lowers the peak
(Fig. 3¢), but makes it dependent on ¢,, inconsistent with the experi-
mental data. Further lowering D worsens the agreement with QA
(Supplementary Fig. 9), but combining D=20 with disorder in
the QA Hamiltonian improves it (Supplementary Information).
Combining these effects gives a close match to the QA results
for J=—1.4 (Fig. 3d) and other coupling strengths (Supplementary
Fig. 10). Moreover, we find that D =20 is a lower bound on the bond
dimension, in the sense that our QA data display an opposite trend
with £, to that of TEBD for D < 20, but our QA and TEBD data agree
for D>20 (Supplementary Fig. 16).

Previous studies have shown logarithmic, rather than power-law,
scaling of # in the presence of large disorder, with J; uniformly
sampled in [0, ],.,] (refs. °>**). Although the much smaller disorder
probed in Fig. 3d (0=0.05) substantially suppresses the peak in
CXX, the effect on kink density is small, especially for fast anneals
where 7 is large (Supplementary Fig. 11). Furthermore, the disorder
in this case arises from technical challenges in QA, which are the
most severe for fast anneals. Therefore, a significant region of
power-law scaling, as seen in our experimental results (Fig. 2a), is
consistent with our understanding of disorder.

Next, we investigate finite-size effects. When ¢, is sufficiently large
as a function of L, the dynamics are dominated by a single Landau-
Zener (LZ) transition™, and the ground-state probability P, follows
the adiabatic theorem®. This crossover occurs when L7 &~ 1 (ref. **).
The LZ transition probability is expected to exponentially decay in
the annealing time, in contrast to the power-law dependence in the
Kibble-Zurek regime. For one-dimensional spin chains, it is possi-
ble to obtain an analytical solution” (Supplementary Information):

—at,
1 —Pgs=¢e "8,

a=2m’bL? 8)
where b is defined in equation (4).

Figure 4a shows the QA measurements for ferromagnetic and
antiferromagnetic chains of equal coupling magnitude (J=0.95).

Since L is even, the two Ising Hamiltonians are gauge equivalent
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Fig. 3 | Normalized kink-kink correlations. a, QA data with J=—1.4 (left)
have a positive peak in C,KK, which are compared with closed-system
quantum models. b, Exact time evolution of the fermionized model. ¢, TEBD
with limited bond dimension D=20. d, TEBD with D=20 and 6=0.05
Gaussian disorder added to the longitudinal fields and couplings. All the
models have C,KK — —lasr/&— 0. The markers and error bars in a and

d indicate the bootstrap mean and 95% statistical confidence intervals,
respectively, across experiments and disorder realizations.

and we expect similar experimental outcomes. We plot the data
in the range 5<t,<40ns and 0.1 <P;;<0.9 for values of L rang-
ing from 8 to 32. Figure 4a also shows the results of the exact
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the LZ model of diabatic transition occurring at the minimum gap (dashed lines; equation (8)). b, Exponent a extracted from the QA data in a for different
Jand L values. The solid lines are analytical values from the closed-system model. The markers and error bars indicate the bootstrap mean and 95%

confidence intervals, respectively (Methods).

simulation of coherent Schrédinger dynamics for the fermionized
system (squares; Supplementary Information) together with the
analytical result of equation (8) (dashed lines), in remarkable agree-
ment with the experimental data. To test the agreement with the
closed-system theory for different J values, Fig. 4b shows that a as
extracted from the empirical Py data as per equation (8) remains
consistent with the theoretical prediction of a s L~ (solid lines).

Although all the above experimental results agree well with
coherent quantum dynamics, an important question is whether they
can also be explained by classical models. It is clearly impractical
and even impossible to rule out every classical explanation; instead,
we consider the most plausible Monte Carlo methods that have
been suggested as emulators for QA**”". In Supplementary Section
B, we consider simulated annealing, simulated quantum annealing
based on path-integral Monte Carlo and spin-vector Monte Carlo
simulations. We find that some of these models can reproduce some
aspects of the experimental data, but none of them can explain all
the experimental features. Therefore, we conclude that only the
coherent quantum model successfully explains all the experimental
results, and this view is considerably strengthened by the fact that
we have not used any fitting parameters.

In conclusion, by tuning the parameters of a programmable QA,
namely, annealing time, coupling strength and temperature, we have
simulated quantum critical phenomena in one-dimensional chains
of up to 2,000 spins. For fast anneals, we observe quantum Kibble—
Zurek scaling in long chains and LZ scaling in short chains. In both
regimes, kink densities are in quantitative agreement with coherent
Schrodinger dynamics—remarkably, with no free parameters. In
contrast, leading classical models can only reproduce some aspects
of the experimental data—no single classical theory reproduces all
of them. These results represent strong evidence for coherent evolu-
tion, with a significantly larger system and longer correlation length
(L=2,000, £~ 30) than previous quantum Kibble-Zurek demon-
strations in a one-dimensional system using Rydberg arrays (L =51,
£~4)°. In addition, at longer annealing times, we observe a cross-
over to the thermal regime with anti-Kibble-Zurek behaviour, as
theoretically predicted'’.

We have used QA as a quantum simulator, producing results
that are challenging to simulate classically, even in this widely
studied and simple model. Path-integral Monte Carlo simulations
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can simulate systems near thermal equilibrium®, but cannot be
used to describe or simulate quantum dynamics®*. Likewise,
open-system quantum simulations such as master equations®
become computationally intractable beyond system sizes of around
40 qubits. Thus, our results pave the way to coherent quantum
simulation on a previously unattainable scale. Moreover, the abil-
ity to program both signs and magnitudes of Hamiltonian terms
in a coherently evolved system is a key ingredient in the simulation
of frustrated models such as quantum spin glasses and ultimately
in quantum optimization. The results reported here represent an
important step towards this goal.
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Methods

Quantum annealing experiments. Quantum annealing is performed on a D-Wave
2000Q lower-noise processor using multiple randomly generated embeddings (one
for L=2,000, three for L=>512 and up to 100 for L=38) in parallel. Each data point
represents data taken over 300 iterations for L=2,000 and L=>512, and 50 iterations
for smaller values of L. In each iteration, the qubits are annealed 100 times,
providing 100 spin states. Each spin state consists of values {s;}~_, where s,=+1 is
the qubit readout state in the computational basis.

For each data point in the plots, we refine the general-purpose calibration by
fine-tuning individual Hamiltonian terms based on trivial symmetries of the chain:
we tune the per-qubit linear flux biases to bring qubits to degeneracy ((s;) ~0), and
tune two-qubit couplers to homogenize average correlations across chain bonds
({s:5) = X (8i5.)/L), as shown in previous studies of degenerate systems™*. To
mitigate the desynchronization of annealing schedules between different qubits for
the fastest anneals, we additionally refine the annealing offsets based on annealing
lines, although in this case, there is little effect. We describe these methods in the
Supplementary Information.

To generate error bars, a statistical bootstrap is performed. For individual
data points, the method treats each QPU call as an individual trial and resamples
with replacement. In particular, estimates of CX are computed for each QPU call
and then bootstrapped; therefore, each estimate of 7 represents a QPU call, not
an overall average. The error bars in Figs. 2, 3 and 4a indicate 95% confidence
intervals over QPU programming (or in Fig. 3d for over 300 disorder realizations).

To compute QA exponents a (Fig. 4b), we treat every f, as a trial, and generate
a distribution of fit slopes based on bootstrapped sets of annealing times. The data
markers and error bars represent the median and 95% confidence interval of the
resampling median.

Annealing schedule. The annealing schedule (Fig. 1) is based on qubit parameters
extracted through averaged single-qubit measurements. Since qubits are actually
multilevel objects rather than perfect two-level Ising spins, we convert the qubit
Hamiltonian to an effective Ising Hamiltonian following the method laid out in
recent studies of geometrically frustrated lattices”. We perform the approximate
diagonalization of the s-dependent eigenspectrum of a 12 qubit periodic-chain
Hamiltonian. We simplify the computation by dividing the qubits into four
chains of three qubits each, and retaining only the 12lowest energy levels of each
three-qubit chain. Once this eigenspectrum is computed for a given coupling
strength ], we perform a two-parameter fit on I'(s) and 7 (s)|/] in equation (1),
minimizing a weighted average of the differences in the first eight eigengaps
between the qubit Hamiltonian and the transverse-field Ising Hamiltonian.

The effective qubit temperatures were measured using standard single-qubit
susceptibility measurements.

Fermionized models and TEBD. Calculations using the fermionized system were
performed on the same number of spins as in QA, that is, L=512 (Fig. 3) and a
range of L (Fig. 4). The TEBD data in Fig. 3 were produced using L =256 to reduce
the computation time. This has a negligible effect on the results since this is much
larger than the correlation length at the values of ¢, investigated, as we confirmed
by solving the fermionized model at both L =256 and L =512. The average and
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error bars representing 95% statistical confidence in the TEBD data were obtained
for 300 realizations of disorder.

Data availability
Data supporting the findings of this paper are available from the corresponding
author upon request. Source data are provided with this paper.

Code availability

The TEBD code used in this paper is available from the corresponding author
upon reasonable request. An open-source version of the PIMC code used in
the Supplementary Information is available via GitHub at https://github.com/
dwavesystems/dwave-pimc. The version for this work is archived in Zenodo at
https://doi.org/10.5281/zenodo.6842260.
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