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In a typical quantum annealing protocol, the system starts with a transverse field Hamiltonian that
is gradually turmed off and replaced by a longitudinal Ising Hamiltonian. The ground state of the Ising
Hamiltonian encodes the solution to the computational problem of interest, and the state overlap with this
ground state gives the success probability of the annealing protocol. The form of the annealing schedule
can have a significant impact on the ground-state overlap at the end of the anneal, so precise control
over these annealing schedules can be a powerful tool for increasing success probabilities of annealing
protocols. Here we show how superconducting circuits, in particular capacitively shunted flux qubits,
can be used to construct quantum annealing systems by providing tools for mapping circuit flux biases
to Pauli coefficients. We use this mapping to find customized annealing schedules: appropriate circuit
control biases that yield a desired annealing schedule, while accounting for the physical limitations of
the circuitry. We then provide examples and proposals that utilize this capability to improve quantum

annealing performance.

DOTL: 1001103/ PhysRevApplied. 1 7.044005

L INTRODUCTION

Quantum annealing (QA) [1—4] and adiabatic quantum
computing [5,6] provide a framework for finding the solu-
tion of a variety of combinatorial optimization tasks, where
the solution to the problem is encoded in the ground state
of an Ising spin system [7,8], via continuous evolution
of a quantum system from a trivial initial state to the
ground state of an Ising Hamiltonian. Such analog models
of quantum computing can be used for universal quan-
tum computation [9—11], and in general do not have to be
strictly adiabatic to yield favorable results [12—16].

In a typical annealing run the system starts with a
transverse field of the form %, o', where 0" denotes the
Pauli-or operator acting on qubit / (tensored identity on the
other qubits), and the ground state of the system is easily
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prepared. As the anneal progresses, the transverse field

Hy(f) =) Ko} (1)
I

is gradually turned off [the transverse field strengths A (f)
are decreased to zero] and is replaced by the Ising problem
of interest, of the form

Hi(t) =) Ko7 + ) Jy(ofof, (2)
i =

where &7 (f) are the longitudinal field strengths and J (f)
are the longitudinal coupling strengths, all increasing in
magnitude from zero. The objective of the anneal is to
prepare a state with high overlap with the ground state
of the Ising Hamiltonian at the end of the anneal. This
is guaranteed by the adiabatic theorem for a sufficiently
slow change between the transverse field and the longi-
tudinal Ising problem [17,18], but can also happen under
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diabatic evolution [12—15]. The precise manner in which
these fields are tuned is called an annealing schedule,
and the success probability of annealing protocols can
depend on the specifics of the schedule [19-21]. Specially
designed schedules can also be used to implement non-
traditional annealing schemes such as Sombrero QA [22],
pausing [23,24], reverse QA [25], inhomogeneously driven
QA [26,27], diabatic QA [28], and even optimal versions
[29] interpolating between (QA and the quantum approx-
imate optimization algorithm [30]. For a recent review,
see Ref. [16]. In this work we are interested in the set-
ting where every coefficient in the set {A](f), bi (£), J; ()}
is independently controllable, which is more general
than what is currently possible using commercial QA
devices [31].

The most common quantum annealing devices are built
using superconducting flux qubits [32], where the quan-
tum states are characterized by persistent currents that flow
in opposite directions, which are then mapped to binary
spin variables [33]. The interactions between the qubits
are mediated by tunable coupler circuits [34-36], which
in essence are similar to the flux qubits but are operated
in a different regime. These superconducting circuits are
multilevel quantum systems and are controlled via mag-
netic fluxes that thread their loops. This high-dimensional
physical circuit model representation is then mapped to
a low-dimensional, low-energy subspace to implement an
effective representation of a transverse field Ising problem
of interacting qubits, i.e., the gubif model. Therefore, it
is essential to have methods and tools to map the circuit
model onto the qubit model (and specific Ising instance)
that is desired. Such tools provide the translation between
the control of magnetic fluxes at the circuit level to that of
control of the coefficients of the qubit model Hamiltonian,
i.e., the coefficients of the various Pauli operators (hence-
forth called “Pauli schedules™), which can then be used to
design circuit fluxes that implement a given customized
annealing schedule.

Here, in Sec. II we use the Schrieffer-Wolff (SW) trans-
formation [37] to map circuits onto effective qubit models,
and find the Pauli schedules (see also Ref. [38]). A draw-
back of this method is that its computational cost scales
exponentially with the system size. Therefore, we intro-
duce and develop a pairwise-SW approximation that is
practical for implementation, specially considering exper-
imental control and parameter imperfections, but scales
linearly with the system size. Based on this approach, we
then provide numerical and approximate recipes for find-
ing circuit fluxes that implement a given custom Pauli
schedule in Sec. IIl. Finally, in Sec. IV we demon-
strate these capabilities by finding annealing schedules
for a set of problems of interest, where the use of cus-
tomized schedules is beneficial. We provide all these tools
and methods in an open-source codebase for use by the
community [39].

II. MAPPING FROM CIRCUIT MODEL TO QUBIT
MODEL

In this section we describe how a superconducting cir-
cuit formed by flux qubits and couplers is mapped onto
an effective qubit (Pauli) model. In Sec. I A we follow
Ref. [40] to define the computational basis for a single
flux qubit and find its effective qubit model. We then fol-
low the procedure of Ref [38] in Sec. IIB to consider
interacting flux qubits, where we employ the SW trans-
formation to find an effective low-energy Hamiltonian for
such systems, and use this to find the Pauli coefficients of
the joint system. Our original contributions start in Sec.
11 C, where we propose an approximate scheme for finding
the Pauli coefficients of larger systems that are computa-
tionally inaccessible to the SW method of Sec. IIB. We
finish this section by noting how to dynamically cancel
the asymmetry-induced crosstalk in multiqubit systems.
Note that although we use capacitively shunted flux qubits
(C5F()s) [36,41,42] in this work, the overall procedures
will be similar for other types of flux qubits.

A. Single-qubit Pauli coefficients

Here we would like to find a mapping from the multi-
level circuit of a flux qubit to a two-level Pauli description.
Flux qubits have a tiltable double-well potential, where the
states in each well are associated with persistent currents
that flow in opposite directions. Generally, the magnitude
of the persistent current (PC) is associated with the strength
of the o* term in the Hamiltonian, and the tunneling ampli-
tude between the two wells is associated with the strength
of the o* term in the Hamiltonian. In a typical anneal, flux
qubits are initialized with a low barrier that yields large
tunneling between the well (iransverse field), and towards
the end of the anneal the barrier is raised and the double
well is tilted, which suppresses the tunneling and gives the
qubit a net persistent current (longitudinal field).

In this section we follow the procedure outlined in Ref.
[40] and review it here for completeness. The flux qubit
circuit is controlled via two flux biases denoted ¢, and
ip-. For a given set of biases, we first find the two lowest
eigenstates of the multilevel circuit Hamiltonian of the flux
qubit, which we use to build the (two-level) qubit model. In
the case of gate-based quantum computation using trans-
mons [43], the low-energy eigenstates themselves are used
as the computational basis, since the dispersive readout
is an eigenstate measurement in the energy eigenbasis
[#4]. However, in QA we typically perform a PC mea-
surement at the end of each anneal [45,46]. Therefore we
need the computational basis to be the eigenstates of the
PC measurement operator. We write the PC mafrix in the
low-energy subspace as
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where {|g}, |e)} are the ground and excited eigenstates of
the circuit Hamiltonian of the flux qubit with eigenener-
gies {Ep. E.}, respectively, and Fp is the persistent-current
operator for the flux qubit (see Appendix A).

MNote that, for flux qubits where we associate the qubit
states to circulating currents lowing in opposite directions,
we require the eigenvalues of f;f’w to have opposite signs.
If we tilt the qubit potential beyond a certain point then the
first two eigenstates of the circuit will both be localized
in the same well and the eigenvalues of I;,”'“ will have the
same sign. This puts an upper bound on the ftilt bias |g:|,
beyond which the flux circuit cannot implement a qubit.

Let ¥, be the unitary matrix (in the {|g}, |e}} basis)
that diagonalizes ;" and has the eigenstates of I°¥ as its
columns. The computational basis {|0}, |1}} is then defined
by the eigenstates of the I;,”’“ operator, and in a slight abuse
of notation we express them as

0y lg)
(19)-7(2)- @

The effective Hamiltonian matrix in the computational

basis is then given by
{0]1Hgl1) E, 0
{IIHedl}) =7 (J Ee) V-

(5)

(0|H.gi0)
Her = ({1 |Her O}

We extract the Pauli coefficients by rewriting the effective
Hamiltonian as

He = 00" +oy0Y + 00" + oo’ (6)

where the Pauli operators are given by of = |0}{0] +
)1, o* = 10) (1] + [1}{0], 0¥ = —i|0}(1] + £]1)(0], and
o® = |0H0] — [1)(1].

For simplicity, the following two constraints are
imposed on the effective Hamiltonian by applying
additional unitary transformations to the computational
basis:

l. o is set to zero;
2. o is always positive.

After imposing the above constraints, we can write the
single-qubit Hamiltonian as a standard transverse field
Ising Hamiltonian of the form

Ha = Fo® + Fo?, (7)

where &" and &* are Pauli coefficients for given qubit cir-
cuit biases of @, and .. For each given pair of qubit
circuit biases, we repeat the same procedure to find the
corresponding Pauli coefficients.

B. Multiqubit Pauli coefficients via SW

In this subsection our goal is to find the Pauli coefficients
for a system of interacting qubits, and we follow the pro-
cedure developed in Ref. [38]. Consider the case of N flux
qubits that are coupled to each other via M tunable cou-
pler elements, and each circuit element has a given set of
external biases. In Appendix A we show how the Hamil-
tonian for such a system consisting of CSF()s and tunable
couplers can be derived, but the following analysis works
for other types of flux qubits as well. First, let us separate
the qubit, coupler, and interaction terms as

H™ = Hy + Him, (8a)
N M .
Ho=) H/+) HT, (8b)
i=1 i=l1

where HY is the loaded Hamiltonian of the ith qubit, H™ is
the loaded Hamiltonian of the ith coupler, Hy is the nonin-
teracting part of the Hamiltonian, and Hj includes all the
interaction terms between these elements (see Appendix
A). In analogy to the single-qubit case, we would like our
qubit subspace to be spanned by the two lowest eigenstates
of each noninteracting (but loaded) qubit circuit, and since
the couplers are designed to adiabatically follow the qubits
and remain in their ground state, the qubit subspace will
also be spanned by the ground state of each noninteracting
(but loaded) coupler circuit.

However, the interaction term Hi,; mixes the states
inside the qubit subspaces with the higher excited states
outside of it. Therefore, we employ the SW transformation
[37] to find an effective Hamiltonian that acts on the qubit
subspace. This essentially block diagonalizes the total cir-
cuit Hamiltonian with respect to the (noninteracting but
loaded) qubit subspace, taking into account the effect of the
interaction on the low-energy subspace while preserving
the low-energy spectrum of the circuit.

Formally, let us define the projector onto the low-
energy qubit subspace of the interacting and noninteracting
circuits as

wN_

Py= )" IENEM], (9a)
=0
wN_

P=)" |E)E (9b)
=0

where IE}[G}} is the ith eigenstate of the noninteracting
Hamiltonian Hy, and |E,) is the ith eigenstate of the total
Hamiltonian H'™. The SW transformation is then

U = /2P, —D(2P — D), (10)
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and the effective qubit-subspace Hamiltonian is

Hy = PyUs H™' UL Py, (11)
where H; acts on the qubit subspace and has the same
2% _dimensional low-energy spectrum as the total circuit
Hamiltonian. We can now calculate the Pauli coefficients
of our system using

1
by = —Tr(H,S),

o (12)

where 5: = o™ @ o™ @ ... @ o™ ® P, consists of single-
qubit Pauli operators of the ith qubit o, which is
calculated for (loaded) noninteracting qubit circuits as
discussed in Sec. Il A. The operator P, = |gc1){g-1] @
|2cat (g2l @ -+ - @ |gear){gcar| consists of the projectors
onto the ground state of the ith (loaded) noninteracting
coupler circuit |g. gl

C. Multiqubit Pauli coefficients via pairwise SW

As discussed in the previous subsection, the Pauli coef-
ficients of a system of interacting qubits can be extracted
using the SW method if one can calculate the low-energy
eigenstates of the total interacting circuit. In Appendix B
we provide a method to numerically construct the Hamil-
tonian of interacting qubits, which uses the truncated low-
energy subspace of circuit subsystems to reduce the size of
the Hilbert space and make the computations tractable. Let
us assume that we have a circuit of N qubits and M cou-
plers, each with a truncation (i.e., Hilbert space dimension)
of g and ¢, respectively. The joint system then has a Hilbert
space dimension of gV c*, which grows exponentially with
the number of qubits and couplers. Therefore, the compu-
tational cost of calculating the full-SW Pauli coefficients,
which requires diagonalizing a matrix of dimension " ¢",
scales exponentially with the number of circuit elements,
and can only be calculated for a handful of qubits and
couplers.

In order to target larger system sizes, we now propose
an approximation scheme where the system is divided into
pairs of flux qubits that interact via a tunable coupler cir-
cuit. For each pair, the single-qubit Pauli coefficients are
calculated for noninteracting but loaded qubit circuits via
the method of Sec. II A, and then the coefficients relating to
their interaction (two-qubit Pauli terms) are calculated via
SW between those pairs only, neglecting other parts of the
circuit. Let us again consider a circuit of N qubits and M
couplers, each with a truncation of g and ¢, respectively.
Using this approximate method, the cost of finding Pauli
coefficients of single qubits is Ng (each qubit Hamiltonian
is diagonalized separately) which is linear in the number
of qubits, and the cost of performing the full SW between
pairs of qubits is M (g°¢c) (assuming that each coupler inter-
acts with two qubits) that is also linear in the number of

TABLE 1. Circuit parameters for the CSF() and coupler used
in the numerical simulations of this work. Values correspond to
the design parameters for the Indus generation of the DARPA
Quantum Annealing Feasibility Study (QAFS) devices designed
by Northrop Grumman and fabricated at MIT Lincoln Labs. The
junction asymmetry 4 is assumed to be zero unless otherwise
stated.

CSFQ) Coupler
[.=230nA Iy =565 nA
Can =50 fF Cg=111{F
L =480 pH L=580pH
M=65pH M =65pH
C.=441F

a =104

couplers. We call this method pairwise SW. It gives accept-
able accuracy for the schedules while scaling linearly with
the number of qubits and couplers in contrast to the expo-
nential scaling of the full SW. Note that instead of using
the pairwise-SW method to calculate the coupling strength
in this section, one can use the Bom-Oppenheimer method
of Ref. [47] that uses a different approximation that scales
linearly with the number of qubits and couplers as well but
is slower by a prefactor.

To illustrate the quality of the approximation achieved
via the pairwise-SW method, Fig. | shows the Pauli sched-
ules of a chain of three coupled CSF()s for a given set of
circuit biases (see Fig. 2), calculated using the full-SW
(solid lines) and pairwise-SW (dash-dot lines) methods.
The result shows that the pairwise-SW method gives a
good approximation to the full-SW method except at rel-
atively large coupling strength (/| = 0.7 GHz), where it
overestimates the magnitude of the Ising coefficients. This
is the trade-off for scaling only linearly with the number
of qubits and couplers compared to the exponential scal-
ing of the full-SW method. Dashed and dotted lines show
the schedules reproduced when we try to extract the circuit
biases via the numerical SW and pairwise-5W methods,
respectively (see Fig. 2 and its discussion).

Mote that the pairwise-SW method assumes that inter-
actions are local such that, by construction, the effect of
next-nearest neighbor is neglected. Therefore, it cannot be
applied to systems with long-range or multibody interac-
tions. A quantitative analysis of pairwise-5W approxima-
tion errors and their trend with system size, connectivity,
type of schedule, and interaction size is left for future
studies.

III. FINDING CIRCUIT FLUXES FOR CUSTOM
PAULI SCHEDULES

In Sec. Il we discussed how to find Pauli coefficients for
a circuit of qubits and couplers that has a given set of con-
trol fluxes. In this section we address the inverse problem:

044005-4
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FIG. 1. Pauli schedules as a function of the normalized anneal-
ing time 5 = /f,, with {, the total anneal time. Solid lines use the
full-SW method and dash-dot lines use the pairwise-SW method,
both calculated for the original fluxes of Fig. 2. Dashed lines
and dotted lines use the full-SW method on the fluxes that are
extracted for these schedules via numerical optimization and via
the pairwise-SW method, respectively. The top three panels show
single-qubit Pauli coefficients, and the bottom two panels show
the two-gubit Pauli coefficients. The system consists of a chain
of three CSF()s, where qubits 0 and | are coupled ferromag-
netically via a tunable coupler and qubits 1 and 2 are coupled
antiferromagnetically. The circuit flux biases change linearly and
are chosen to yield different Pauli coefficient magnitudes for gen-
erality (see Fig. 2). Here and in all subsequent figures all circuit
parameters are from Table [ in Appendix B.

how to find appropriate circuit biases that yield a desired
Ising schedule. We do this by providing two methods for
solving this problem, one exact and one approximate.

The circuit for each qubit and tunable coupler has two
flux biases, ¢, ; and @. ;. that thread their small (x) and
large (z) loops, respectively (see Appendix A). Note that
the x and =z notation here is unrelated to the Pauli opera-
tor indices, and to distinguish the two we use a subscript
for the loop index and a superscript for the Pauli operator
index. The subscript & indexes circuit elements, both the
qubits and the couplers. Given a desired Pauli schedule,
we wish to find appropriate circuit fluxes that yield that
schedule, and we state the problem as

{hg, s T} — (@ p @) (13)
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FIG. 2. Circuit biases that yield the Pauli schedules of Fig. 1.
Solid lines are the original biases used to generate the schedules,
dashed lines are the biases extracted using the numerical opti-
mization method of Sec. IIl A, and dotted lines are calculated
using the pairwise-SW method of Sec. I11 B. The left panels show
the circuit x biases, while right panels show the circuit z biases,
with coupler z biases always kept fixed at degeneracy (see the
main text). The system consists of a chain of three CSF(s as in
Fig. 1. The x-loop junctions are assumed to be symmetric.

Here we only consider o” & o couplings, since the typical
design of quantum annealing circuits based on flux qubits
can only yield strong interactions of this form and other
types such as o @ o* will be mostly negligible [47.48].
Mevertheless, the methods we describe here are applicable,
with minor adjustments, to more recent flux qubit variants
[49] and coupling circuits [50] that can implement other
types of interactions such as 0" & o”.

A. Finding circuit fluxes via numerical optimization

For a given set of circuit biases, we can use the method
of Sec. 11 B to find the corresponding Pauli coefficients for
those biases. Therefore we can easily compare the resulting
Pauli coefficients with those of our target custom schedule,
and if differences are detected, we can tune the biases iter-
atively until we achieve our desired schedule. This is the
essence of the method of this section, where the biases are
tuned by an optimization algorithm.

Formally, for any given set of circuit biases, we con-
struct a convex cost function that calculates the difference
between our desired Pauli coefficients and the ones that are
calculated for those circuit biases as

Cllges euh) = D (5 — 5, (14)
i

where {gy s, @- ¢} indicates the set of all circuit biases, the
summation is over all the qubits and all the different coef-
ficients S; € {k, f;,.Ju}, and §; is a similar notation for our
desired Pauli coefficients, for which we wish to find appro-
priate circuit biases. This cost function is then minimized
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in an optimization routine to find the desired circuit biases.
Mote that although we construct a convex cost function, the
optimization problem is not convex in general.

The optimization algorithm is constrained by the physics
of the circuit, which allows us to narrow the search region.
There are three main physical constraints that we can
impose in order to simplify the optimization task. The
first is to note that the potential of the flux qubits and
couplers is periodic with respect to circuit biases, and
one needs to choose an annealing cell that fixes the bias
ranges such that they belong to a chosen periodicity (see
the supplementary materials of Ref. [40]). The second is
that the z bias of gubif circuits cannot be tuned beyond
a certain value; doing so will break the qubit definition
for these circuits (see Sec. 11 A). Therefore, one needs to
place hard constraints on the qubit z biases, which sig-
nificantly narrows the search region. The third is that the
coupler z biases should all remain fixed at the coupler
degeneracy point and do not need to be optimized. Tun-
ing the coupler z bias away from its degeneracy throws
magnetic flux onto its neighboring qubits, which compli-
cates the experimental control of the circuit. It amounts
to introducing a correlation between the qubits® and the
couplers’ z biases (this also makes numerical optimiza-
tion more challenging). Additionally, keeping the couplers
at their degeneracy improves their coherence (by making
them first-order insensitive to frequency fluctuations) and
therefore improves the performance of the multiqubit sys-
tem, and will not adversely affect the achievable interaction
strength between the qubits.

There is a large variety of optimization algorithms and
numerical packages that can be ufilized for this prob-
lem depending on preference and performance. However,
the computational cost of the optimization problem scales
exponentially with the number of flux qubits and couplers
due to the use of the SW method of Sec. 11 B for cost func-
tion calculations. Additionally, the cost function must be
calculated multiple times for the optimization algorithm to
converge to a minimum, which further increases the com-
putational cost, making this method viable only for small
circuits.

B. Finding circuit fluxes via pairwise SW

Considering the unfavorable computational scaling of
the method of Sec. 11l A, and motivated by the pairwise-
SW method of Sec. 11 C, here we provide an approximate
method for finding circuit fluxes that yields desired Pauli
schedules. First, we use a numerical approach similar to
that of Sec. Il A to find the circuit biases for isolated but
loaded qubits. With the qubit biases in hand, we then turn
on the couplers and calculate the coupling strengths using
the pairwise-SW method until we reach our desired cou-
pling strength, for which we save the coupler bias that
yielded the desired strength.

Formally, for each isolated but loaded qubit circuit, we
construct a convex cost function that calculates the dif-
ference between the desired single-qubit Pauli coefficients
and those that are calculated using the method of Sec. I1 A
as

Col@ep, @op) = Uy — B + (. — )%, (15)
where . and .4 are circuit biases for the kth qubit
only, ki and h{ are the corresponding single-qubit Pauli
coefficients, and &% and A% are the desired single-qubit
Pauli coefficients. Similar to Sec. III A, we use numerical
optimization methods to find the circuit biases for all the
qubits.

Mext, we consider each coupler circuit and the two
qubits that it couples as a joint system similar to the
pairwise-SW method, and we fix the qubit biases to those
that we found earlier using the numerical optimization
method. Keeping the coupler’s z bias at its degeneracy (see
Sec. II1 A), we then turn on the coupler’s x bias (e.g., in
steps of 100 md,) and, for each value of the coupler's
x bias, we calculate the o® @ o interaction between the
qubits (essentially creating a lookup table) and continue
until we reach our desired interaction strength for that pair
of qubits, for which we save the corresponding coupler ¢,.
Repeating this procedure for all the couplers, we can find
all the coupler circuit x biases that yield our desired two-
qubit Pauli coefficients, while all the coupler z biases are
kept at degeneracy.

Compared to the numerical method of Sec. III A that
is accurate but scales exponentially with the system size,
the pairwise method of this subsection gives approximate
yet sufficiently accurate results, while scaling only linearly
with the number of qubits and couplers, and can also be
parallelized. Note that once again, instead of using the
pairwise-SW method one can use the Bom-Oppenheimer
method of Ref. [47].

To demonstrate the flux extraction methods, we use the
full-SW Pauli schedules of Fig. | as input to find the appro-
priate circuit biases that generate this schedule. The result
is presented in Fig. 2, where solid lines are the original
biases used to generate the schedule of Fig. 1, dashed lines
are biases calculated using the numerical optimization
method of Sec. 111 A, and dotted lines are calculated using
the pairwise-SW method of Sec. IIIB. The dashed lines
fully overlap with the solid lines, which shows that the
numerical optimization method finds all the circuit biases
originally used to generate the schedule. The pairwise-SW
method finds circuit biases that are very close to the orig-
inal ones, while only scaling linearly with the system size
in comparison to the exponential scaling of the full-SW
method.

To confirm these results, we use the extracted circuit

biases of Fig. 2 and calculate their corresponding schedules
via the full-SW method. The result is presented in Fig. 1,

044005-6
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where the dashed lines use the numerically extracted
fluxes, and the dotted lines use the fluxes extracted via the
pairwise-5W method. As expected, the numerical method
yields the exact same schedule as we specified, but the
pairwise-5W method yields schedules that have a smaller
coupling strength compared to the desired ones. The reason
is that this method generally overestimates the coupling
strength (see the dash-dot line of Fig. 1) and therefore
when finding the biases it does not tum on the couplers all
the way to the desired value (see the dotted line for coupler
x bias in Fig. 2).

C. Junction asymmeitry correction for circuit fluxes

For circuit elements that exhibit an asymmetry between
the x-loop Josephson junctions, there will be a rescaling of
the currents and a nonlinear crosstalk between the x and z
biases [40], which needs to be taken into account when we
extract circuit fluxes for a given Pauli schedule. The flux
extraction procedures outlined above can be performed on
circuits with asymmetric junctions, but it is more challeng-
ing for two reasons. First, the junction asymmetry can shift
the degeneracy point of the z bias by a large amount, which
prevents us from limiting the search region over the z-
bias values. Second, the asymmetry-induced rescaling of
currents and the induced nonlinear crosstalk between the
control fluxes manifests as a correlation between the x and
z biases that ought to be minimized, which complicates
the numerical optimization routines. To simplify matters
and avoid these problems, we can extract the fluxes for
symmetric junctions instead, and then modify the fluxes to
account for the junction asymmetry afterwards [40].

In order to do so, we must account for the two distinct
effects of the junction asymmetry: rescaling of the total
current that goes through the x loop, and the shift of the
z bias due to the nonlinear crosstalk (see Appendix A).
Let us assume that we have our desired circuit biases @y
and @™ for a circuit element of a symmetric junction,
which can be either a flux qubit or a coupler. Our goal is to
find the circuit biases ;- and @™ that belong to a cir-
cuit element of an asymmetric junction with an asymmetry
parameter d = (Iy; — Ip2) /(I + I2), where [; is the crit-
ical current of the fth junction of the x loop. First, we find
pe T via

sym asym asym
cos (%T) = Ccos (%T)J] + d? tan (‘PIT)' (16)

which can be numerically solved for ;. This takes care
of the asymmetry-induced rescaling of the current that goes
through the x-loop junctions. Next, we find the z bias for
the asymmetric junction’s circuit elements as

asym
@™ — 9™ _ arctan [dmn (%T)] an
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FIG. 3. Circuit biases corrected for junction asymmetry. Solid
lines are the circuit biases for symmetric junctions, and dashed
lines are biases corrected for junction asymmetry. The solid blue
lines for the z bias are invisible (hidden under the green and
orange lines in the top and bottom right panels, respectively).
All circuit elements have an asymmetry parameter of d = (0. 1.

which essentially cancels the effect of the asymmetry-
induced shift of the z bias. This procedure is then repeated
for all the individual circuit elements to convert the sym-
meiric junction’s fluxes to those of the asymmetric junc-
tion. The fluxes calculated in this manner for asymmetric
junctions will then yield the same Pauli schedules as in the
case of their symmeiric junction counterparts.

In Fig. 3 we use the circuit biases of Fig. 2 that were used
for symmetric-junction circuit elements, and correct them
for asymmeiry using the procedure that we outlined here.
Solid lines are the circuit biases for symmetric-junction
elements, and dashed lines show the biases after apply-
ing the asymmetry correction with & = (.1. Note that the
correction to the x bias is second order in d <« | and is typ-
ically small, while the correction to the = bias can become

large.

IV. EXAMPLES OF CUSTOMIZED ANNEALING
SCHEDULES

In the previous section we discussed how to extract
circuit fluxes that yield a desired Pauli schedule, and pro-
vided an exact method that numerically optimizes fluxes
using the full-SW method but scales exponentially with
the system size, as well as an approximate method using
pairwise SW that scales linearly with the system size and
can be utilized for larger circuits. In this section we uti-
lize these methods and tools to find circuit biases that yield
customized annealing schedules for three illustrative and
informative examples.

Note that while the pairwise-SW method can be used
to extract schedules and fluxes for large systems of many
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qubits and couplers, our goal here is to verify and vali-
date its result. Therefore we limit our examples to system
sizes that are sufficiently small so as to be simulated using
the full-SW method as well (see Secs. I[IC and IIIB for
a discussion of computational cost). Our results are calcu-
lated for CSF() circuits (see Appendix A), but our tools
and methods can be used for other variants of flux qubits
as well.

A. Coherent oscillations

A single flux qubit that evolves under a custom designed
annealing schedule can be used to exhibit Landau-Zener-
Stueckelberg oscillations [51] or emulate an (open system)
double-slit experiment [52]. In this case, Pauli schedules
are designed to induce two consecutive diabatic transi-
tions, where in the first one some of the ground-state
population is transferred to the excited state, and in the
next diabatic transition this population recombines with the
ground state, with a different phase. The result is a wave-
like interference pattemn in the population of the ground
state as the total anneal time varies, and when implemented
using flux qubits, this pattem can be used as a signa-
ture of coherence in the energy eigenbasis and to study
open-system characteristics [52].

In this subsection we find circuit fluxes of a single CSF(}
flux qubit that yields the Gaussian progression sched-
ule that was proposed in Ref. [52] for this double-slit
experiment. We write the effective qubit Hamiltonian as

Hy(s) = k' (s)o™ + K (s)o”, (18)

with the Pauli schedules parametrized as
I (s) = Q(5) cos[6(s)]. {19a)
K (5) = £2(5) sin[ (5)]. (19b)

Here s = t/t; is the normalized annealing parameter with
i, the total anneal time as above. The qubit gap is 2£2(5)
that we fix for simplicity (no s dependence). To generate
the Gaussian progression schedule, we use

f(s) = %{2 terfla(s + 1 — 1/2)]

+erfla(s — p — 1/2)]}, (20)
where v 3> | and p < £,/2 set the steepness of the sched-
ule ramps and their positions at the diabatic transitions,
respectively. This yields coherent oscillations in the prob-
ability of the ground state as a function of f;, with an
oscillation period of f,;; = 7 /2821 and an adiabatic time
scale of fig = o/ 2 [52]. Figure 4 shows the extracted
circuit fluxes that yield this desired schedule (top left
panel), along with a comparison between the desired and
generated Pauli schedules, showing excellent agreement
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FIG. 4. Extracted fluxes and Pauli schedules for coherent
oscillations. The left and right columns belong to the Gaussian
progression and polynomial reverse-forward schedules, respec-
tively. The top row shows extracted fluxes for the Gaussian pro-
gression schedule (left) and polynomial reverse-forward sched-
ule (right). For the top panels, the left axis (blue line and label)
shows the x bias while the right axis (red line and label) shows
the z bias. The middle row shows extracted Pauli schedules for
the Gaussian progression schedule (left) and polynomial reverse-
forward schedule (right). For the middle panels, solid lines show
the desired schedules and dashed lines show the schedules repro-
duced using the extracted fluxes of the top row. The bottom
row shows the population of the ground state at the end of the
anneal as a function of the total anneal time calculated from
the gubit model Schrodinger equation, for the Gaussian pro-
gression schedule (left) and for the polynomial reverse-forward
schedule (right). For the Gaussian progression schedule, we use
/2w = 250 MHz, @ = 30, and & = 1/3. For the polynomial
reverse-forward schedule, we use h/2x = 167 MHz (such that
the oscillation period for both schedules becomes 3 ns) and
F =48

{middle left panel), and also showing the oscillation in the
ground-state population as a function of the total anneal
time (bottom left panel), calculated by solving the corre-
sponding Schridinger equation. Here we used numerical
minimization to find optimized circuit biases for a single
qubit.

The Gaussian schedules lead to a rather sharp feature
in the extracted fluxes (top left panel). To alleviate this,
we can consider another schedule, namely a polynomial
reverse-forward schedule of the form

K (s) = h[1 — (25 — 1)°],
F(s) = h(l — 2s)*,

(21a)
(21b)
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where k is the strength of the fields that yields a maxi-
mum qubit gap of 2k, and p is the polynomial power of the
schedule. Using numerical simulations of this Pauli sched-
ule, we find that the oscillations have a period of f . = 7 /h
with an adiabatic time scale of f,; = mp/2h. Figure 4
shows the extracted circuit fluxes for these schedules (top
right panel), which change more smoothly than the Gaus-
sian progression schedules, along with the extracted sched-
ules that exactly reproduce our desired form (middle right
panel), and also showing the oscillation in the ground-
state population as a function of total anneal time (bottom
right panel). The smoother flux change makes this schedule
more suitable for experimental implementation, consider-
ing the limited sampling rates of waveform generators.
Furthermore, the coherent oscillations of the ground-state
probability for this schedule start with an initial amplitude
of 1, in comparison to the Gaussian progression schedule
that has an initial amplitude of 0.5; hence, the polynomial
schedule is expected to yield a higher contrast, which can
be resolved more easily in experiments (see the bottom
panels of Fig. 4).

Mote that the idea of coherent oscillations can be
straightforwardly extended to a two-qubit system, when
we choose a two-qubit schedule of the form

/s
T ot + ) + K 0)oias, @2)

where #*(s) and #*(s) are the same as in the single-qubit
case [e.g., Eqg. (19)]. This two-qubit schedule induces
a coherent oscillation between the Bell states (]00) +
11))/+/2 and (|01) +|10))/+/2. The dynamics in this
subspace is exactly the same as the dynamics of the
single-qubit case between |0} and |1).

B. From two-qubit Landau-Zener to Grover
Consider the two-qubit interpolating Hamiltonian

H(y) = Koy + 03) + F(y of —ofed), (23)

where the interpolation parameter ) (s5) increases mono-
tonically from —1 to 1, and A and #* are fixed. We
assume that &* < A, At the beginning of the anneal when
¥ = —1, the ground state of the Hamiltonian is approxi-
mately |00); in the middle of anneal when 3 = 0 and an
avoided crossing is formed, the ground state is approxi-
mately (|00} + |1 ]}]{ﬁ; at the end of the anneal when
¥ = 1, the ground state is approximately |11}). The eigen-
values of Hamiltonian (23) at » = 0 are easily found to
be

[/ a2, 2, (@4)
and the minimum gap, which also occurs at » =0, is

Apin = v ()2 + 4(F)2 — IF = 20°27%,  (25)

where we have used A = " /IF < L.

Let us now consider two cases for sweeping the anneal-
ing parameter y. In the first case, we perform a linear
sweep according to

nz(s) =25 — 1, (26)

where 5 = t/f; [0, 1] is the normalized annealing time.
MNumerical diagonalization of H(y) for A =k/FF < 1
shows that the gpround-state gap varies approximately lin-
early with ) [decreasing for 3 = [—1,0), increasing for
¥ € (0, 1]; see Fig. 5]. In this sense, a linear sweep of the
annealing parameter  from —1 to 1 yields a two-qubit
generalization of the Landau-Zener (LZ) problem [53,54].

In the second case we use a “Grover-like” [19] or
brachistochrone [55] schedule that slows down near the
avoided crossing:

Yo(s) = ﬁ tan [(23 — ) tan™! (v"'}.—‘* 1 |].

27

While this schedule is not the precise local-adiabatic
schedule nor the brachistochrone schedule for our anneal-
ing protocol, its analytical form is convenient and it serves
the purpose of demonstrating a quadratic improvement in
quantum annealing performance. Numerical solution of the
time-dependent Schridinger equation for these two differ-
ent schedules shows that in the linear schedule case, one
needs an anneal time f, oc A~* to keep the system in its
ground state, while the Grover-like schedule reaches the
adiabatic limit with a quadratically shorter anneal time of
t; o 72 (see Appendix. C). This example directly illus-
trates that a customized annealing schedule can result in
improved quantum annealing performance.

Using the methods and tool discussed in Sec. 111, we
can extract appropriate circuit fluxes that yield either the
schedule with the linear sweep or the one with the Grover
sweep, which are shown in Fig. 5. The top four panels
show the customized schedule and its spectrum for a lin-
ear sweep, and the bottom four panels show the same for
the Grover sweep. Solid lines show the desired schedules,
dashed lines show the schedules that are reconstructed
from circuit biases found using the numerical optimization
method of Sec. III A, while dotted lines show the sched-
ules found using the pairwise-SW method of Sec. Il B.
Figure 5 demonstrates that our methods can construct the
desired schedules to good accuracy, and the circuit spec-
trum clearly shows that the Grover sweep slows down near
the minimum gap point in the middle of the anneal. Note
that, for an experimental implementation of this problem,
one can easily tune the size of the minimum gap by tun-
ing A via our customized schedules, which allows for an
exploration of the adiabatic timescale of this problem for
different gap sizes (see Appendix C).
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FIG. 5. Pauli schedules for the two-qubit LZ problem. Solid
lines show the desired schedules, dashed lines show the sched-
ule reconstructed from circuit biases found using the numerical
optimization method, and dotted lines show the schedules for
circuit biases found using the pairwise-SW method. Note the
different scales of the different panels; the error of the pairwise-
SW method is a few percent in all cases. The top four panels
use a linear sweep, while the bottom four panels use the Grover
sweep. The circuit spectrum for the first six eigenenergies is
plotted for each schedule, showing that the Grover sweep slows
down near the minimum gap. The system consists of two CSF(Qs
coupled ferromagnetically via a tunable coupler. Here we use
FFj2r = 0.8 GHz, and A = 0.2.

It is worth noting that this problem can be extended to a
chain of n qubits as

n n—1
Hy)=K) of +Fyoi —F ) ofoj,,. (28)
=1

=1

In this case the gap scales with the number of qubits
as Amip oc A", providing a convenient way to investipate
annealing dynamics in a small gap setting. Similar to the
two-qubit case, the annealing parameter can be swept lin-
early for an adiabatic anneal time that scales as A", or the
anneal can slow down near the minimum gap according to

the Grover schedule for an adiabatic anneal time that scales
as A",

C. Diabatic quantum annealing

(Quantum annealing aims to prepare a state that has a
large overlap with the ground state of the Ising Hamil-
tonian of interest at the end of the anneal. This can be
achieved by adiabatically following the ground state of the
system throughout the anneal, but can become too slow for
problems with a small gap. An alternative is to allow for
diabatic transitions to higher excited states (and back to
the ground state of the final Hamiltonian), which can be a
more promising route to quantum enhancement [ 16].

Consider the two-qubit interpolating Hamiltonian

H(s) = ya ($)kjoy + v (s)i303

+ ¥ O o] + ol +Jojoil,  (29)

where h'* and J are fixed Pauli coefficients, and y, (s),
¥a1(5), and }»(5) are sweep parameters in the range [0, 1]
for the problem and driver Hamiltonians, respectively. Our
goal is to construct a customized schedule that has two sep-
arated small gaps between the gpround and the first excited
states. This diabatic quantum annealing (D)A) scheme
enables the ground-state amplitude to be transferred to the
excited state via a diabatic transition at the first small gap,
after which it diabatically transfers back to the ground
state. Similar to the case in Sec. IV A, this scheme leads
to multiqubit coherent oscillations (see Appendix C).

To implement the small gaps, the annealing schedule of
this problem is divided into two parts. First, for 5 € [0, 5],
we keep the problem Hamiltonian turned off by setting
¥p(5) = 0, and set the initial transverse fields so that 0 <
I < k. We then decrease the field on the first qubit to
some final small value, while keeping the transverse field
of the second qubit fixed. Formally we use

(1}
Y (s) = (ﬁ“’j“ - l)i+ I,

2h7 5
D=s=s: 1 ! 30
=TT e =1, 0
Ye(5) =0,
where ﬁf,:j]'u is the first small gap in this problem occurring

at 5 = 5| since, for this initial part of the anneal, the gap is
always 2y (s)h.

Second, for 5 € (5, 1], we gradually tum on the prob-
lem Hamiltonian to its final value, and at the same time we
gradually turn off the transverse fields completely. For the
problem Hamiltonian, we assume that & <.J < &, and
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FIG. 6. Pauli schedules for the DQA problem. Solid lines
show the desired schedules, dashed lines show the schedule
reconstructed from circuit biases found using the numerical opti-
mization method, and dotted lines show the schedules for circuit
biases found using the pairwise-SW method. The circuit spec-
trum for the first four eigenenergies are drawn in the bottom
right panel, and the locations of the two minimum gaps are
marked with arrows. The system consists of two CSF()s cou-
pled antiferromagnetically via a tunable coupler. Here we use
5 =0.1, ﬂ.m“,-’lnr =50 MHz, &j/2x = 0.5 GHz, k5 /2mr =1
GHz, hj/2m = 0.5 GHz, b5 /27 = 0.8 GHz, J [2r = 0.7 GHz.
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Since the transverse field of the first qubit is small during
this part of the anneal, we can approximate the gap of the
system as

AP = JIAOF +RyaOKE,  (2)

where

AG) = 2O B+ + raOBP

— [P ©0E 12+ ra©KP
— 2)p () (33)

is the gap of the system in the absence of Iy, If &] <= J, 1§
{as we assumed earlier) then there exists s* (5, 1] for
which A(s*) = 0, and therefore the system reaches its sec-
ond small gap of ﬂ"'f:j}u = AP s*) = 2yn (s*)h} for this
part of the anneal.

We have extracted the appropriate circuit fluxes that
yield this customized DA schedule, and the result is pre-
sented in Fig. 6. Solid lines show the desired schedules,
dashed lines show the schedules reconstructed from cir-
cuit biases found using the numerical optimization method
of Sec. II1 A, and dotted lines show the schedules found
using the pairwise-SW method of Sec. IIIB. Figure 6
demonstrates that the desired schedules can be accurately
implemented, and the spectrum of the circuit during this
anneal clearly shows the two small gaps that we intended
to implement (marked with arrows).

V. CONCLUSION

Progress in quantum annealing relies on the develop-
ment of scalable methods and tools to translate between
the effective Pauli Hamiltonian of qubits and the circuit
model of the underlying device. Such methods enable the
utilization of advanced control capabilities that are being
developed for the next generation of flux qubits, such
as CSF(Q)s, which go well beyond traditional transverse
field Ising model interpolation with more limited and less
customizable annealing schedule control.

In this work we present methods for systematically find-
ing the effective qubit model of coupled superconducting
flux qubits via the SW transformation. Among these is a
pairwise approximation that scales linearly with the system
size compared to the exponential scaling of the exact, full-
SW method. Using this pairwise-SW approximation, we
provide scalable methods for finding circuit control biases
that can implement arbitrary annealing schedules, account-
ing for the physical limitations of the device. Lastly,
we demonstrate our methodology by finding customized
annealing schedules for example cases of interest that are
sufficiently small to be verified using the full-SW method.
These examples showcase how the ability to custom-
design annealing schedules can be used to investigate and
improve quantum annealing performance.

Our results provide the necessary two-way link between
abstract quantum annealing protocols, formulated at the
level of effective Pauli Hamiltonians, and the circuit con-
trol biases that need to be tuned on an actual quantum
annealing device. Our methods are scalable and can be
used for systems with a large number of qubit and coupler
circuits mediating local interaction, while being reason-
ably accurate and practical for most implementations, at
least on the scale of few-qubit circuits we were able to
validate and verify. We have made the codes and tools
that we developed for this work publicly available [39] so
they can be used by other researchers for designing their
own customized annealing schedules. We hope that future
work using the methods and tools we have developed here
will extend to much larger system sizes, beyond the fea-
sibility of the full-SW method, yet where we expect the
pairwise-5W method to yield reasonably accurate results.
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APPENDIX A: DERIVATION OF CIRCUIT
HAMILTONIANS

In this appendix we provide a derivation of the circuit
Hamiltonian for the CSFQ [41], the tunable coupler ele-
ment, and of a coupled system of such qubits. Figure 7
shows the schematic for a typical unit cell that includes two
CSFQ)s coupled to a tunable coupler via their mutual induc-
tance. Our methodology follows standard superconducting
circuit network theory [56—39].

1. Hamiltonian of a CSFQ

In this section we derive the Hamiltonian for the CSF(}
circuit of Fig. 7. We identify three nodes for this circuit,
which are marked with filled red circles in Fig. 7. Let us

|

define the column vectors of circuit nodes as

é1
G20, &
¢é3

(A1)

b=
I

iy
fiz .
i3

where ¢ and #i; are the superconducting phase and num-
ber of Cooper pair operators for node i, satisfying the
commutation relation

[@s. fif] = i (A2)
The phase operator ¢ relates to the flux operator via ¢ =
27 (®/®,); the number of Cooper pair operators /i relates

to the charge operator via fi = Q;’Ee. Here &y is the flux

quantum and e is the electron charge.
We start by writing the capacitance matrix of the cir-

cuit. Each diagonal element of this matrix is the sum of all
the capacitances that are connected to each node, and the
off-diagonal elements are minus the sum of all the capaci-
tances between pairs of nodes. The capacitance matrix can
then be written as

C:I + Cxl —xl — Cxl 0
C=|-Ch—Cy Cu+Cu+C+C —C
0 —C, C.+C
20, —2aC, 0
= —2aC; Cqu+(l+4+2u)C. —-C:}, (A3)
0 —; 2C;

where C,, is the junction capacitance for the ith junction
of the x loop, C: is the junction capacitance of each of
the z-loop junctions, and Cy, is the shunt capacitance. In
the second equality we have used the relation between the
large z-loop and small x-loop junctions of the CSF() as

Ca+Ca

> aC,. (A4)

The inverse capacitance matrix is then

2f(zf":“sh + Cz} + IK(EIICZ} EK(E‘CEIJ + Cz] lf{zcsh + Cz}
C'= 2/(2Ca + C2) 2/(2Can + C2) 1/(2Ca + C2) ; (AS)
1/(2Ca + C2) 1/(2Ch + C;)  (Can + C2)/[C2(2Can + C2)]
|
which we use to write the capacitive part of the Hamilto-  which, after some algebra, becomes
nian as
HY {29]2[ it A3
€772 [2C ' CQ2Ca+C)/Ca
(fin +f2)*  (Ay + fip + 7i3)° (A7)
H! = L2e?a". Cc .5, (A6) 200 +C: ' 2a+C
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Circuit schematic for a pair of qubits coupled via a tunable coupler. The four-junction CSF(}) and the coupler are controlled

via bias lines that thread x and z fluxes into their corresponding loops. Fluxes are applied onto their comresponding junctions and
marked with green arrows. Circuit elements such as capacitance and critical currents of junctions are shown with blue letters, and
circuit nodes used for raw derivation of Hamiltonians are marked with red circles and numbered. The qubits interact with the coupler

via their mutual inductance.

Next, we write the inverse inductance matrix of the
CSFQ) circuit, whose diagonal elements are the sum of the
inverse inductances connected to each node, and whose
off-diagonal elements are minus the total inverse induc-
tance between pairs of nodes. The inverse inductance
matrix of the CSF() can be written as

1/L

L'=| o (AB)
0

[
oo o

which we use to write the inductive part of the circuit
Hamiltonian as

L (@ 2+r -1 =
Hf=§ I ¢ L7 -9, (A9)

yielding

1 @0\ @2
HI — i(ﬁ) %. (A10)

Finally, we write the Josephson part of the Hamiltonian,
where we have chosen a gauge that splits (symmetrizes)
the control fluxes over both of its junctions to get

by - » ~
HY = —5 Uz cos(—¢3 — ¢:/2) + L cos(¢; — ¢ — ¢./2)

+ I cos(@r — @1 — @ /2)

+ Iz cos(@2 — 1 + x/2)] (A1)

We can further simplify these terms by using the relation
between the critical currents of large and small junctions

I +1n

7 = ﬂ'-'rz'|

(A12)

and defining the asymmetry parameter 4 and the asymme-
try phase @  as

Lo —1
=x_ 2 (Al3a)
Iy +1n
tan(gq) = d'tan (%) (A13b)

to get

dy . .
Hj = —Efz[cns{fm + ©2/2) + cos(@s — 2 — ¢:/2)
P - ~
+ 2w cos (E) cos(@z — ¢1)

+ 2wd sin (%) sin(@ — ¢ }]-.. (Al4)
or more compactly as

i . n n
Hi = —ﬁfz[cns{fp; + ¢:/2) + cos(@z — @2 — @:/2)

P -
+ 2@ cos (?)ﬁ' 1 + tan®(g,) cos(@,

— @ — ﬁﬂd}]- (Al5)

This form shows that the junction asymmetry has two dis-
tinct effects on the qubit: it rescales the total current that
goes through the x junctions by /1 4+ tan®(g;), and also
shifts the qubit z bias by ;. The total Hamiltonian of the
CSF() is the sum of the capacitive, inductive, and junction
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parts:

H? = H.+ H] + Hj. (A16)
Finally, let us also define the persistent-current operator for
the qubit, which is used in defining the qubit’s Pauli coef-
ficients and PC measurement. The PC operator is defined
as I, = —9U/d®,, where U= H; + H' is the potential
energy of the CSF(Q) and &, = (d/2m)g, is the magnetic
flux of the tilt bias. Therefore we have

Iz S S "‘
I = —Slsin(@s + ¢:/2) — sin(@s — ¢ — ¢/}
(A1T)

2. Hamiltonian of a coupler

For the coupler circuit of Fig. 7, there is only one
node, and for the capacitive and inductive part of the
Hamiltonian, we have

2 =2
HY = {2‘;] = (Al8a)
H™ — l(':h”)zgalI Al8b
L _i E T'.- { }

where Cy = Cy + Gy is the sum of the junction capaci-
tances.

For the Josephson term, we note that, since there is
a permutation symmetry between the two superconduct-
ing quantum interference device (SQUID) junctions, the =z
flux should be applied to both, and it should be applied
in the same direction. Put differently, we can replace the
two SQUID junctions with an equivalent junction that has
a persistent current of (I;; + Iz) cos(: /2)+/ 1 + tan’(gy),
and then apply the z bias to this single junction, and
account for an asymmefry-induced phase shift of ¢y.
Therefore, the Josephson terms are

HY' = 20l cos(by — 0. + 6./
+Iocos@— g —eu/DL, (A19)

which can be rewritten as
HP = —i;fz [cos (%) cos(¢ — @)
+dsin(L)sin@r 0], a20)
or further simplified as

v g
x 4/ 1 4 tan? (pq) cos(@1 — @ — @),

(A21)

where Iy = I} + I is the sum of the junction critical cur-
rents, and where similarly to the CSF() we have defined
the asymmetry parameter and the phase shift as

I:I - ‘rﬂ
= \ A22a
In+ 12 ( )
Py
tan(gy) = dtan (?) {A22b)

Note that the junction asymmeitry has two distinct effects
on the coupler: it rescales the total current that goes
through the x junctions by /1 + tan®(gy), and also shifts
the coupler z bias by ;. The total Hamiltonian of the
coupler is the sum of these terms:

H? =HP + B + H. (A23)

3. Hamiltonian of two coupled CSF(}s

We now write the Hamiltonian of the joint system of two
CSFQ)s and the coupler in Fig. 7. We use the same nota-
tion as before, but add superscripts of g0, g1, and cpl to
distinguish between the subsystems. The total capacitance
matrix of the circuit is the outer product of the capacitance
matrix of each subsystem, and because there is no capaci-
tive coupling between the circuits, the inverse capacitance
matrix remains the same as before for each subsystem.
Therefore, from Egs. (A7) and (A 18a) for the capacitive
part of the Hamiltonian we have

HE' = HY + HY + HY. (A24)
The Josephson part of the joint system is also simply the
sum of the Josephson terms of each subsystem:

HP' =H]" + H" + H]'. (A25)
In order to take into account the mutual inductive inter-
action, we need to build an inductance matrix with the
inductances of all branches participating in the interac-
tion (in our case the three branches containing L’s). The
diagonal elements of the branch inductance matrix are
inductances of each branch, and the off-diagonal elements

are minus the mutual between those branches, which in our
case is

I M, 0
—M, L M,
0 M I

Ly — (A26)

Note again that this matrix is written for the branch fluxes
or phases (in contrast with the node fluxes or phases). We
can use this inductance matrix to write the inductive part
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of the Hamiltonian as

1y
H™ — [ — L‘ i A2T
L 2(21:) @5 - - @b (A2T)
where
. S0
| Eﬂl 0
gp= | @2 | = {.ﬂ -0, (A28)
gl
Wh3 Eﬂf —0

is the column vector of branch fluxes, and in the second
equality we have rewritten it in terms of the node fluxes
(the other node is grounded: hence, the zero terms).

The inverse inductance matrix can be calculated as

-1 1
]

o[
LOL™ MY LMy MyM,
x L9' My Laopat L9\, )
MpM, LM, L[ — Jl*f&
(A29)
where L = [ _ M7 /L% — M} /L9 is the loaded cou-

pler inductance (see below). We can then write the induc-
tive part of the Hamiltonian of the joint system using Eq.
{A27), and we also separate the resulting terms into two
parts as H;™ = H“’t + Hiy. The first part H]f"‘t is the loaded
inductive energy uf the system (indicated by a tilde on L)

1 [ @\ [LILP — M?
HO — - —_—L (!
L 2 2].1- LqﬂLg]chl

L[ —MZ s
—{ .
[0l [l

HO L —(w P2
(A30)

which is simply the sum of inductive energies of each
subsystem, except each inductance is renormalized due to
the interaction between the circuits. These renormalized
inductances are called loaded inductance. The second part,
Hini, includes the interaction terms:

LD\’ [ 2MoMy 0.1 2Mo g0 e
Hpyy = —| — T H = 70 5
int 2(2}1’) [Lqqule]@I L +L‘?DL¢‘] 1
My g1 em
+m¢’f Wfp]- (A31)

Let us note that the interaction and the loaded inductive
terms here match those found in Eq. (5) of Ref. [47], albeit
derived using a different approach. The total Hamiltonian
of the joint system is then

H® — HS 4 H™ + H™ 4 Hy, (A32)

4. Hamiltonian of larger systems of qubits and
couplers

So far we have shown how to write the Hamiltonian for
a joint system of two CSFQ)s coupled via a tunable cou-
pler. Writing the Hamiltonian for a larger system of qubits
and couplers, arranged on an arbitrary grid and interact-
ing via mutual couplers, is very similar. The capacitive and
Josephson parts of the Hamiltonian are simply the sums of
the respective parts of all the subsystems

HE =Y,
K

HP' =" Hj.
K

For the inductive part, we have to write the branch induc-
tance matrix of the whole circuit, where the diagonal
elements are inductances of each subsystem, and the off-
diagonal elements are, as usual, minus the mutual between
these subsystems. After calculating the inverse of the
branch inductance matrix L; ', we can write the interaction
part of the Hamiltonian as

Hy == ( )Zz (L !,

(A33)

(A34)

(A35)

where {L;'}ﬂ are matrix elements of the inverse branch
inductance matrix and qﬁ{‘ is the phase operator at node 1 for
the kth subsystem. Finally, we write the loaded inductive
energy of the whole system as

1 n
H™ = 2( ) Z(L_I}uf@t}z

where 1/( L;] Vi 18 the loaded inductance of the kth sub-
system. The total Hamiltonian of the joint system is simply
the sum of these terms

(A36)

— HS 4 H™ 4 H™ 4 Hyn. (A37)
APPENDIX B: NUMERICAL SIMULATION OF
CIRCUIT HAMILTONIANS

In this appendix we discuss how the Hamiltonians of
the circuits are constructed for numerical simulations. We
start by discussing the simulation methods for a CSF()
and a coupler, and then we discuss how the Hamilto-
nian for larger systems of multiple qubits and couplers are
constructed.

For all the figures of this paper, we use the circuit param-
eters of Table I for numerical simulations. The CSF()s
and couplers are truncated to have at least six and three
low-energy levels, respectively (see Appendix B 2). The

044005-15



MOSTAFA KHEZRI ef al.

PHYS. REV. APPLIED 17, 044005 (2022)

qubit and coupler junction asymmetry is assumed to be
zero (unless stated otherwise) because its effect on the
Pauli schedules can be considered separately, as discussed
in Sec. 11 C of the main text. Note that, for ferromagnetic
interactions (/; < 0), mutuals between qubits and coupler
are both positive, while for antiferromagnetic interactions
(/y = 0), the mutuals have opposite signs.

1. Hamiltonian of CSF() and coupler circuits

To construct the Hamiltonian of the circuits, each oper-
ator such as the node phase ¢ and the node charge
n; has to be numerically represented in a chosen basis.
Formally, these operators act on an infinite-dimensional
Hilbert space, but for our purposes, they need to be rep-
resented in a truncated Hilbert space with a cutoff, so as
to be able to fit them in computer memory. The choice of
basis for representing the operators is particularly impor-
tant since it has a stark effect on the size of the cutoff for
the Hilbert space, and can also simplify the task of writ-
ing down various Hamiltonian terms. For example, the
simplest, and yet the least efficient choice, would be to
discretize the phase variable ¢ with a step size of Sy,
which leads to a Hilbert space of dimension 2w /5 and
matrices of size (2w /8ge) = (2w /8p). Accuracy is then
inversely proportional to step size, which typically leads
to unmanageably large Hilbert spaces. Additionally, with
this choice one has to enforce periodicity by hand, which
requires extra work. Instead of this choice we utilize the
specific form of the Hamiltonian terms and use basis rep-
resentations that require smaller cutoffs and simplify the
representations, similar to the approach of Ref. [59]. We
note that such truncation approximations are formally pro-
jections into lower-dimensional subspaces; this introduces
errors that can be formally bounded using techniques such
as those presented in Ref. [18]. Our approach in this work
is practical, and instead of using formal bounds we ensure
that our truncations yield numerical convergence for a
given number of low-energy eigenstates of interest.

For node variables of Hamiltonian that show up as a
quantum harmonic oscillator with the generic form E-#% 4
E;¢?, we simply use the harmonic oscillator basis for
representation. This will be our choice of basis for node
variable 1 of the CSF(), and for the node variable 1 (the
only node) of the coupler circuit. Specifically, we repre-
sent the lowering (annihilation) operator in the basis of
eigenstates of a quantum harmonic oscillator as

0 41 0 ... 0
0 0 72 ... 0
a=1o0 o 0 - : . (B1)
S : R
0o 0 0 ... 0

which is a matrix of size Mm% Mmax. WheTe gy, is the
Hilbert space cutoff dimension. We can then represent that
part of our circuit Hamiltonian in this basis as

Eci? + Ep¢* = 2 JEcE (@'a+ 1/2). (B2)
In other parts of the circuit Hamiltonian where these
node variables appear but cannot be grouped into har-
monic oscillator terms as in Eq. (B2), we simply use the
well-known quantum harmonic oscillator relations

E 14~ g

¢=(—C) e (B3a)
E;r V2

. (Ec\a-a

A==€ B3b
(Ef.) J2i (B3b)

to represent those node variables.

For the node variables where the phase ¢y only shows up
in periodic trigonometric functions, as in node variables 2
and 3 of the CSF(} circuit, the natural choice of represen-
tation is the charge number (Cooper pair) basis. This is
because, for any phase operator ¢,

.. D(m)+ D' (m)
COS(M) = ——

5 (B4)

where

D(m) = D'(—m) = &™ (BS)
is the operator that displaces the charge by m. Note that,
since the displacement operator of Eq. (B5) changes the
number of Cooper pairs, the m parameter can only take
integer values. Equation (B4) has an intuitive interpreta-
tion for Josephson junctions whose potential in the phase
basis is cos(@): in the charge basis this corresponds to an
average of the tunneling of Cooper pairs between opposing
sides of the junction.

The charge number displacement operator can be repre-
sented in the charge number basis as

+max
D(m) =Y In+m)nl, (B6)

—max

which is represented by a square matrix with ones on the
mth lower off-diagonal and zeros everywhere else. Here
Jmax 15 the cutoff for the number of charges (Cooper pairs)
used for numerical calculations, which yields a Hilbert
space with dimension 2qg_,, + 1.
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The charge operator itself is a diagonal matrix in this
basis, which can be written as

+fmax

A= )" nn)nl.

—miax

(BT)

‘When an external flux bias of ¢y is present inside cosine
{or sine) terms, the corresponding Hamiltonian terms can
be represented in the charge basis as:

et P(m) 4+ e et P (m)

3 (B8)

cos(MP + @ext) =

Hamiltonian terms where the cosine term includes phases
of two node variables can be represented in the charge
basis as

cos(me@e + Midy + Paxt)

e Di(my) ® Dy(my) + e*=D] (my) @ D] (my)
= > .

(B9)

Finally, the circuit Hamiltonian for each element is con-
structed by choosing the appropriate basis representation
for each node variable and then constructing the joint basis
via a tensor product between the different bases. For exam-
ple, in this manner the CSF() circuit will have a Hilbert
space that consists of tensor products between one har-
monic oscillator basis (for node 1) and two charge number
bases (nodes 2 and 3).

2. Hamiltonian of multiqubit circuits

When constructing the joint Hamiltonian of interact-
ing circuits, we cannot simply use the joint Hilbert space
of the tensor product of each circuit element, since the
exponential growth in even the truncated Hilbert space
dimension outpaces computer memory. Instead, we diag-
onalize each subsystem (individual qubits or couplers)
Hamiltonian individually and represent it in its eigenba-
sis, then truncate the Hilbert space of the diagonalized
subsystem and only keep a few low-energy eigenstates of
each subsystem. We then represent the interaction terms
in this low-energy subspace by rotating the interaction
Hamiltonian onto the truncated low-energy subspace of the
subsystems. This allows us to represent the joint Hamil-
tonian of the system in a much smaller Hilbert space. In
choosing the truncation parameters we are guided by both
our truncation convergence criterion and the amount of
available computer memory.

Formally, consider a system of interacting qubits and
couplers where the loaded Hamiltonian of each subsystem
is Hy, which is represented in a Hilbert space of dimen-
sion d;. For a given set of circuit flux biases, let U/, be the

unitary transformation that diagonalizes each subsystem
Hamiltonian:
D, = UlH,Uj. (B10)
Here I is a dy x dy diagonal Hamiltonian with the eigen-
values of H; on its diaponal. We intend to truncate each
subsystem Hamiltonian and only keep its first Ty eigen-
states and eigenvalues. Note that finding the eigenstates
and eigenvalues of each subsystem is not computationally
hard, because each of these circuits are represented by a
relatively small matrix that can be diagonalized quickly,
and the procedure can be parallelized over different subsys-
tems. Therefore we replace each subsystem Hamiltonian
with D, a diagonal matrix of size T; x T} that has the first
T; eigenvalues of H; on its diagonal. Henceforth we use a
bar to indicate operators that act on the truncated space.
To write the interaction term, let us introduce the isome-
try Uy, which has the first T; orthonormal eigenstates of H;
as its columns. Note that these eigenstates are represented
in the fixed basis of the subsystem circuits that has dimen-
sion dy. This isometry matrix is therefore of size dy x Tk,
and has the property that
Uy Uk = I, (B11)
where Fﬁ is the T;-dimensional identity matrix. This isom-
etry can be used to write the truncated diagonal subsystem
Hamiltonian
Dy = UlHUs. (B12)
MNext, we use the isometries {D;} to rotate and truncate the
interaction terms between the subsystems onto their low-
Energy eigenspaces:

Hiy = Ul Hiny Uy (B13)

with

(B14)

E-lra" = ® Eft.
k

Mote that, for our system, due to the form of the interac-
tion terms in Eq. (A35), one only needs to rotate a pair
of phase operators using their isometries and then use the
tensor product with identity for the other subsystems. For
most interacting circuits, one does not have to calculate
Usn directly, and can instead only calculate the rotated and
truncated circuit operators that participate in the interaction
terms.

The total Hamiltonian of the joint interacting circuit
represented in the low-energy subspace of subsystems is
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then

ot

= |
all

A

Z H + Hw) Uan
k

Z Dy ®fn + Hi,
& £k

(B15)

which is represented in a Hilbert space of dimension
T T;--- Ty, which can be chosen to be much smaller
than dyds - - - dy, the dimension without truncation, though
it of course still scales exponentially in the number of
subsystems.

We stress apain that in order to accurately construct
the low-energy spectrum of the joint circuit Hamiltonian
of the interacting system via Eq. (B15), one needs to use
adequately large truncation dimensions {7;} for the subsys-
tems. This accuracy-dimension trade-off is similar to the
case of a single qubit or a coupler, where one needs to use
suitably large cutoff values for each circuit node operator
to be able to accurately reproduce the desired low-energy
spectrum. Of course, as the number of interacting subsys-
tems grows, even the use of truncated subspaces would
be insufficient to keep the size of the Hilbert space com-
putationally tractable. A limited remedy with potentially
better scaling than the method we have used here would
be to use a hierarchical truncation method [59], wherein a
large circuit can be divided into subsystems consisting of
a few circuit elements; those subsystems are again divided
into their own subsystems, and for each level of the hierar-
chy, one uses the same idea of representing the subsystems
in their truncated low-energy subspace, and rewrites the
interaction between them in that subspace.

APPENDIX C: TIME DYNAMICS OF TWO-QUBIT
GADGETS

In this appendix we show time evolution simulations for
the qubit (Pauli) model of gadgets in Secs. IV B and IV C.
Simulations are performed by solving the Schrodinger
equation using the Hamiltonian Open Quantum Systems
Toolkit (HOQST) [60].

The top panel of Fig. & shows the populations as a func-
tion of the total anneal time for the DQA gadget of Sec.
IV C. As expected, the two consecutive gaps of that gad-
get lead to coherent oscillations of populations between the
ground and excited states of the system. At large anneal-
ing times, the evolution reaches the adiabatic limit and the
oscillations become smaller. The bottom panel of Fig. 8
shows the adiabatic timescales for the linear sweep (filled
circles) and the Grover sweep (filled squares) of the LZ
gadget in Sec. IV B. The adiabatic timescale is defined
as the time it takes to reach a ground-state probability of
98%. Dashed lines are visual guides, showing that the lin-
ear sweep scales as A ~* while the Grover sweep scales as

1.04
0.8+
cC
3
£ 061
a
E 0.41
“ 0,21
U.u- T T T T T T T
i} 250 500 750 1000 1250 1500
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1034 e
- e
-.E-- 3 n“'-.‘
jlﬂ 3 . H“'--.‘
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FIG. 8 Dynamics of the two-qubit gadgets. Top panel: state
population as a function of the total anneal time for the DQA
gadget of Sec. IV C. Blue and orange lines show the population
for the ground and excited states, respectively. Bottom panel: adi-
abatic time scale as a function of A {gap scales as A2) for the LZ
gadget of Sec. IV B. Circles show the result for a linear sweep
of the annealing parameter; squares show the Grover-like sweep.
Color-matched dashed lines are visual guides for A~ (circles)
and A2 (squares) scaling. All parameters are the same as in the
main text.

372, demonstrating a quadratic improvement from using
customized Pauli schedules.
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