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Abstract

Although fractional powers of non-negative operators have received much attention in recent years,
there is still little known about their behavior if real-valued exponents are greater than one. In
this article, we define and study the discrete fractional Laplace operator of arbitrary real-valued
positive order. A series representation of the discrete fractional Laplace operator for positive non-
integer powers is developed. Its convergence to a series representation of a known case of positive
integer powers is proven as the power tends to the integer value. Furthermore, we show that the
new representation for arbitrary real-valued positive powers of the discrete Laplace operator is
consistent with existing theoretical results.

1. Introduction

Due to its wide array of applications in multi-physical sciences, the construction and approxi-
mation of fractional powers of the Laplace operator have been of great interest for nearly a century
(cf., e.g., [8, 39, 43, 53, 61] and references therein). Classically, only fractional powers of the order
s ∈ (0, 1) are considered, and in this case, one can define the fractional Laplace operator applied
to a smooth enough function in a natural way. Specifically, for d ∈ N = {1, 2, 3, . . .}, s ∈ (0, 1) let
u : Rd → R be a smooth function, and for every ε ∈ (0,∞), x ∈ Rd let Bε(x) be the d-dimensional
ball of radius ε centered at x (with respect to the typical topology of Rd). Then for every x ∈ Rd
we may define the s-order fractional Laplace operator applied to u at x as

(
(−∆)su

)
(x) = cd,s lim

ε→0+

[∫
Rd\Bε(x)

u(x)− u(y)

|x− y|d+2s
dy

]
, (1.1)

where cd,s ∈ [0,∞) is a known normalization constant.
It is worth noting that the recent rapid increase in interest in the fractional Laplace operator

is also due to the seminal work of Caffarelli and Silvestre [9]. In their work, it was shown that one
may study the non-local operator given by (1.1) via the Dirichlet-to-Neumann operator associated
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with a particular extension problem posed in Rd × [0,∞) (albeit, one trades the non-locality for
a problem which is either singular or degenerate depending upon the value of s ∈ (0, 1)). The
employed Dirichlet-to-Neumann operator is a particular example of the Poincaré-Stecklov operator
(cf., e.g., [37]). For a fixed domain, the Poincaré-Stecklov operator is known to map the boundary
values of a harmonic function to the normal derivative values of the same harmonic function on the
same boundary. We can summarize the results of Caffarelli and Silvestre (cf., e.g., [9, Eq. (3.1)])
as follows. Let d ∈ N, s ∈ (0, 1), let u : Rd → R be a smooth function, and let v : [0,∞)× Rd → R
satisfy for all x ∈ Rd that v(0, x) = u(x) and for all t ∈ (0,∞), x ∈ Rd that(

∂2

∂t2 v
)

(t, x) + 1−2s
t

(
∂
∂tv
)
(t, x) + (∆xv)(t, x) = 0. (1.2)

Then there exists c ∈ [0,∞) such that for all x ∈ Rd it holds that

(
(−∆)su

)
(x) = c

[
lim
t→0+

t1−2s
(
∂
∂tv
)
(t, x)

]
. (1.3)

Interestingly, the constant c ∈ [0,∞) in (1.3) depends only upon the parameter s ∈ (0, 1) and not
upon d ∈ N. More importantly, this demonstrates that one may trade out the highly non-local
problem given by (1.1) for the local problem given by (1.2) and (1.3). This technique has also been
recently further generalized to cases of arbitrary non-negative operators defined on Banach spaces
[5, 21, 44, 45, 50].

While the above formulations (i.e., (1.1), (1.2), and (1.3)) may be used to provide insights
into the continuous fractional Laplace operator with order s ∈ (0, 1), they cannot be directly used
to provide any insight into the discrete case or the case where s ∈ (0,∞). The discrete case is
a natural consideration as it arises in the study of numerous physically relevant phenomena (cf.,
e.g., [31, 32, 51] and references therein) and also in an attempt to numerically approximate (1.1).
The consideration of a truly discrete case—that is, the case which is the fractional power of the
discrete Laplace operator rather than a direct approximation of (1.1)—was originally studied by
Ciaurri et al. [13]. By employing the basic language of semigroups (e.g., a special case of Ciaurri
et al. [12, Eq. (1)] combined with, e.g., Padgett [50, Theorem 2.1]) Ciaurri et al. were able to
develop the first series representation for the discrete fractional Laplace operator of order s ∈ (0, 1)
(cf. Definition 4.10, for clarity). Moreover, it was shown that this formulation did converge to
the continuous case via adaptive mesh refinements (cf. Ciaurri et al. [12, Theorems 1.7 and 1.8]).
However, it important to note that while this aforementioned convergence was observed, it is the
case that the series representation developed by Ciaurri et al. is an exact representation and not a
numerical approximation.

The consideration of higher-order fractional Laplace operators has recently received an increase
in attention in continuous cases (cf., e.g., [11, 19, 22, 54, 62]), but to the authors’ knowledge the only
study in the discrete case has been carried out by Padgett et al. [51]. Rectifying this aforementioned
gap in theory is the primary goal of this article (although the applicability of such derivations in
the study of localization will be outlined in Section 2 below). In particular, we develop a series
representation of the discrete fractional Laplace operator of order s ∈ (0,∞). This development is
illustrated in Theorem 1.1, which is a partial description of the main result of this article focused
on the case of positive non-integer powers of the discrete Laplace operator.

Theorem 1.1. Let m ∈ N, s ∈ (m−1,m), let Z = {. . . ,−2,−1, 0, 1, 2, . . .}, let R be the real number
field, let `2(Z) be the set of all w : Z → R which satisfy that

∑
k∈Z|w(k)|2 < ∞, let −∆: `2(Z) →
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`2(Z) satisfy for all w ∈ `2(Z), n ∈ Z that (−∆w)(n) = 2w(n)−w(n− 1)−w(n+ 1), let u ∈ `2(Z),
and let1 v : [0,∞)×Z→ R satisfy for all n ∈ Z that v(0, n) = ((−∆)m−1u)(n) and for all t ∈ (0,∞),
n ∈ Z that (

∂2

∂t2 v
)

(t, x) + 1−2(s−m+1)
t

(
∂
∂tv
)
(t, x) + (∆v)(t, x) = 0. (1.4)

Then

(i) there exists c ∈ [0,∞) such that for all n ∈ Z it holds that

(
(−∆)s−m+1(−∆)m−1u

)
(n) =

(
(−∆)su

)
(n) = c

[
lim
t→0+

t1−2(s−m+1)
(
∂
∂tv
)
(t, n)

]
(1.5)

and

(ii) there exists K : Z → R, C ∈ [0,∞) such that for all n ∈ Z\{0} it holds that |K(n)| ≤
C|n|−(1+2s) and for all n ∈ Z it holds that K(−n) = K(n) and(

(−∆)su
)
(n) =

∑
k∈Z

K(k)
(
u(n)− u(n− k)

)
. (1.6)

We now provide some clarifying remarks regarding the objects in Theorem 1.1. In Theorem 1.1
we intend to construct an exact series representation of the so-called co-normal derivative of the
function v(0, ·) : Z → R. The positive real number s ∈ (0,∞) describes the fractional power of
the discrete Laplace operator, the positive integer m describes the smallest positive integer that
is greater than or equal to s ∈ (0,∞), and the set `2(Z) is the standard Hilbert space of square-
summable sequences defined on the integers. The operator −∆: `2(Z) → `2(Z) is the standard
one-dimensional discrete Laplace operator and is the primary object used in the construction of
the desired series representation. The function v : [0,∞) × Z → R is the solution to the extension
problem in (1.4) and the trace of this function will coincide with the function obtained by applying
the discrete fractional Laplace operator of order s ∈ (0,∞) to some given square-summable function
u : Z→ R.

We now provide some clarifying remarks regarding the results in Theorem 1.1. Item (i) of
Theorem 1.1 above is a direct consequence of combining Definition 4.11 and Padgett [50, Theorem
2.1] (applied for every n ∈ Z with s x s −m + 1, A x ∆, u0 x ((−∆)m−1u)(n), (u(t))t∈[0,∞) x
(v(t, n))t∈[0,∞) in the notation of Padgett [50, Theorem 2.1]). See the beginning of Section 3 for an
explanation of this “applied with” notation (i.e., the symbol “x”). The right-hand side of (1.5) is
not considered in detail, herein, as it is an elementary consequence of Padgett [50, Theorem 2.1].
Item (ii) of Theorem 1.1 follows directly from Lemma 5.4 and Lemma 6.1.

The main result of this article is Theorem 6.4 in Section 6 below. This result provides a
complete description of the series representation of the discrete fractional Laplace operator. The
most surprising implication of Theorem 6.4 is that the formula for the function K : Z → R in
Theorem 1.1 depends only on the parameter s ∈ (0,∞) (cf. Definition 5.1 below). In fact, this
function is continuous with respect to the parameter s for all s ∈ (0,∞)\N with the points s ∈ N

1Note that we define integer powers of −∆: `2(Z)→ `2(Z) inductively. That is, we have for all k ∈ N0 = N∪{0},
w ∈ `2(Z), n ∈ Z that if k = 0 it holds that ((−∆)kw)(n) = −w(n) and if k ∈ N it holds that ((−∆)kw)(n) =
(−∆(−∆)k−1w)(n).
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all being removable singularities of the function K : Z → R. Hence, we may extend the definition
of K : Z→ R to that of an analytic function (cf. (6.20) of Theorem 6.4).

The remainder of this article is organized as follows. In Section 2 we briefly motivate our
interest in the development of a series representation for the discrete fractional Laplace operator of
arbitrary order. In particular, we focus on its application to the study of the Anderson localization
in materials science and its application to transport problems in plasma physics. Next, in Section 3
we recall several basic definitions and properties of sequence spaces and introduce the so-called
logarithmic norm. Afterwards, in Section 4 we define the discrete Laplace operator of arbitrary
real-valued positive order. We do so by introducing the heat semigroup generated by the discrete
Laplace operator and then defining higher-order powers via induction. In Section 5 we define a
discrete fractional kernel function and provide a detailed investigation of its various quantitative
and qualitative properties. Thereafter, in Section 6 we construct a series representation for real-
valued positive powers of the discrete fractional Laplace operator by employing the results from
Sections 4 and 5. Finally, in Section 7, a number of useful concluding remarks are provided.
Continuing avenues of research based on the results developed in this article are also outlined.

2. Motivation of study

In 1958, P. W. Anderson suggested that the existence of sufficiently large disorder in a semi-
conductor could lead to spatial localization of electrons [4]. This localization of electrons in space
has since been referred to as Anderson localization. In an effort to better understand the conditions
under which Anderson localization may occur, there have been numerous theoretical and experi-
mental studies of the phenomenon. As such, three definitions of how one can mathematically define
Anderson localization have emerged: dynamical localization, statistical localization, and spectral
localization. Localization in the dynamical sense is characterized by an exponential decay with
respect to time of the wave function which represents the particle of interest. Localization in the
statistical sense occurs if the eigenvalues of of the system’s associated Hamiltonian are discrete and
infinitely close to one another when projected onto a finite-dimensional subspace. These two defi-
nitions of localization have often been related to the classical techniques used to study localization;
e.g., scaling and perturbation theory (cf., e.g., [2, 7, 20, 33, 36, 52] and the references therein). The
third definition—the spectral definition—uses the spectrum of the system’s infinite-dimensional
Hamiltonian operator to study Anderson localization (cf., e.g., [3, 26, 27]). In particular, this def-
inition states that if the Hamiltonian driving the physical system exhibits absolutely continuous
spectrum then the system dynamics will not be localized. This spectral definition will be the one
of interest in the ensuing motivation.

We now provide a brief motivation for our interest in the development of a series representation
of the discrete fractional Laplace operator of arbitrary order. Let C, s, c, T ∈ (0,∞), let (Ω,F ,P)
be a probability space, let `2(Z) be the set of all v : Z → R which satisfy that

∑
k∈Z|v(k)|2 < ∞,

let 〈·, ·〉 : `2(Z)× `2(Z)→ R satisfy for all v, w ∈ `2(Z) that 〈v, w〉 =
∑
n∈Z v(n)w(n), let K : Z→ R

satisfy for all n ∈ Z that K(−n) = K(n) and |K(n)| ≤ C|n|−(1+2s), let εn : Ω → [−c/2, c/2], n ∈ Z,
be i.i.d. random variables2, let δn ∈ `2(Z), n ∈ Z, satisfy for all k, n ∈ Z with k 6= n that δn(n) = 1
and δn(k) = 0, and let u : [0, T ] × Z × Ω → R satisfy for all t ∈ [0, T ], n ∈ Z that u(0, n) = δ0(n)

2Note that the expression i.i.d is an abbreviation for the expression independently and identically distributed
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and (
d
dtu
)
(t, n) =

∑
k∈Z

K(k)
(
u(t, n)− u(t, n− k)

)
+
∑
k∈Z

εk〈u(t, k), δk〉δk. (2.1)

The situation above is the mathematical formulation of the physical scenario in which electrons
are moving through a disordered lattice via (possibly) long-range interactions. The positive real
number c ∈ (0,∞) represents the maximum magnitude of disorder which can occur at a given point
in the lattice Z. The i.i.d. random variables εn : Ω→ [−c/2, c/2], n ∈ Z, represent the actual disorder
at each point in the lattice Z. Note that the probabilistic nature of this formulation allows for the
existence of, e.g., measurement errors. The function K : Z → R describes which long-range jumps
are observed to occur as electrons traverse through the lattice Z. Observe that this implies that the
real number s ∈ (0,∞) imposes a decay condition on the probability of long-range jumps. Finally,
for every t ∈ [0, T ], n ∈ Z it holds that u(t, n) represents the (possibly scaled) probability that the
electron will be located at lattice point n ∈ Z at time t ∈ [0, T ].

Based on the formulation above, there are two immediate questions of interest.

(I) What are appropriate (or physically-relevant) choices of the kernel function K?

(II) Will Anderson localization occur for a system with the long-range interactions described in
(2.1) for all choices of s, c ∈ (0,∞)?

First, note that there is no unique answer to the question posed in item (I) due to the fact that the
construction of mathematical models often depends upon the employed assumptions and individual
goals of the scientist constructing them. It has been recently demonstrated that the discrete frac-
tional Laplace operator is well suited to describe long-range interactions observed in various physical
systems, including semi-crystalline polymers and dusty plasma (cf., e.g., [30, 32, 51] and the refer-
ences therein). In fact, it is the case that when s ∈ (0, 1) one observes so-called superdiffusion and
when s ∈ (1,∞) one observes so-called subdiffusion. Thus, as a starting point we consider the case
where the functions K coincide with the definition of the discrete fractional Laplace operator.

Next, under the assumption that the functions K coincide with the definition of the discrete
fractional Laplace operator, we consider the question posed in item (II). It is well-known that if
s = 1, then the solution u of (2.1) will exhibit Anderson localization for all c ∈ (0,∞). What is not
known—and an interest which motivates the current study—is whether or not for all s ∈ (0,∞) it
holds that the solution u of (2.1) will exhibit Anderson localization for all c ∈ (0,∞). This question
can be studied via the following result which follows immediately from Liaw [38, Corollary 3.2].

Corollary 2.1. Let C, s, c, T ∈ (0,∞), let (Ω,F ,P) be a probability space, let `2(Z) be the set of
all v : Z → R which satisfy that

∑
k∈Z|v(k)|2 < ∞, let 〈·, ·〉 : `2(Z) × `2(Z) → R satisfy for all

v, w ∈ `2(Z) that 〈v, w〉 =
∑
n∈Z v(n)w(n), let K : Z→ R satisfy for all n ∈ Z that K(−n) = K(n)

and |K(n)| ≤ C|n|−(1+2s), let εn : Ω→ [−c/2, c/2], n ∈ Z, be i.i.d. random variables, let δn ∈ `2(Z),
n ∈ Z, satisfy for all k, n ∈ Z with k 6= n that δn(n) = 1 and δn(k) = 0, and let H : `2(Z)→ `2(Z)
satisfy for all u : Z× Ω→ R, n ∈ Z with P(u ∈ `2(Z)) = 1 that

(Hu)(n) =
∑
k∈Z

K(k)
(
u(n)− u(n− k)

)
+
∑
k∈Z

εk〈u(k), δk〉δk. (2.2)

Then if H has purely singular spectrum P-a.s. it holds for all v ∈ `2(Z) with 〈v, v〉 = 1 that

P
(

lim
m→∞

dist
(
v, span

{
Hkδ0 : k ∈ {0, 1, . . . ,m}

})
= 0

)
= 1. (2.3)
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Observe, that Corollary 2.1 shows that in order to study the Anderson localization problem for
the operator in (2.2) above via the spectral definition, we must be able to compute the forward
orbit of the operator H with respect to the vector δ0. From a numerical perspective, Corollary 2.1
implies that if one can find some v ∈ `2(Z) with 〈v, v〉 = 1 such that

P
(

lim
m→∞

dist
(
v, span

{
Hkδ0 : k ∈ {0, 1, . . . ,m}

})
> 0

)
∈ (0, 1] (2.4)

then it holds that H exhibits absolutely continuous spectrum P-a.s.; i.e., Anderson localization does
not occur. Thus, in the case of predicting localization behavior for a system numerically, one would
need to be able to compute the action of the operator H exactly (or else additional approximations
must be introduced). This need is precisely what motivates our current interest in the development
of a series representation of the discrete fractional Laplace operator of arbitrary order.

For improved clarity, we close this section with a few important points. The formulation above
demonstrates the need to construct an exact representation of the action of the discrete fractional
Laplace operator. We accomplish this goal, herein, via the construction of a series representation
of the operator (cf. Theorem 6.4 below). The goal of such constructions is predicated on the
assumption that the discrete fractional Laplace operator is a good choice for models corresponding
to (2.1). So-called anomalous diffusion has been experimentally observed in various strongly coupled
fluids such as ultracold neutral plasma (cf., e.g., Strickler et al. [58]), two-dimensional and quasi-
two-dimensional Yukawa liquids (cf., e.g., [25, 40, 41, 49]), and dusty plasmas (cf., e.g., [46, 48, 60]).
As both subdiffusion and superdiffusion have been observed, it is the case that the discrete fractional
Laplace operator of arbitrary order is an ideal candidate to model such physical systems, as s ∈
(0, 1) may be used to model superdiffusion and s ∈ (1,∞) may be used to model subdiffusion.
Whether or not there exist better models for such physical systems remains an open question in
both mathematics and physics. However, we do not consider such issues further in this article.

3. Background

In this section we review several basic concepts regarding sequence spaces and the logarithmic
norm. More specifically, in Subsection 3.1 we introduce the standard `2(Z) sequence space and an
associated function which we denote the semi-inner product. In particular, Lemma 3.5 demonstrates
that the standard `2(Z) inner product coincides with our particular semi-inner product. Afterwards,
in Subsection 3.2 we define the logarithmic norm and the so-called upper-right Dini derivative. We
then demonstrate a very useful property in Lemma 3.8 regarding the upper-right Dini derivative of
`2(Z) norms.

It is worth noting that the contents of this section have been studied in various parts of the sci-
entific literature (although rarely together and in this particular setting). The concept of semi-inner
products has been studied extensively in the literature; cf., e.g., [16, 24, 42]. They were originally
introduced in an effort to extend standard Hilbert space-type arguments to the more general setting
of normed vector spaces. Herein, we employ a slight abuse of notation as Definition 3.4 does not
define a semi-inner product in the sense of Lumer (cf., e.g., [42]). However, the object defined in
Definition 3.4 does possess many of the desired properties of a semi-inner product and Lemma 3.5
demonstrates that no generality is lost by employing this definition. It is also worth noting that we
are not the only authors to employ such notation; cf. e.g., Söderlind [57, Definition 5.1]. Moreover,
it is worth mentioning that Lemma 3.8 appears in Jones et al. [28, Lemma 2.4] in a more general
setting but we include it below for clarity and completeness.

6



Throughout this article, R and C stand for the usual real and complex number fields, respectively.
Further, let i =

√
−1 ∈ C, let Z denote the set of integers, let N = {1, 2, 3, . . .}, let N0 = N∪{0}, and

for every z ∈ C let R(z) ∈ R denote the real part of the complex number z. In addition, we briefly
mention a particular notation used throughout this article which emphasizes how various outside
results are applied. If, for example, a result is referenced which names a particular mathematical
object X , then in order to state results about a family of objects, herein, e.g., Yt, t ∈ R, we will
write “applied for every t ∈ R with X x Yt in the notation of . . . ” in order to clarify its use.
We generalize this approach in the natural way in the case if multiple mathematical objects are
involved (cf., e.g., the proof of Lemma 4.7). Moreover, when carrying out mathematical induction
on a variable, say n ∈ N0, we will use the notation “N0 3 (n − 1) 99K n ∈ N” to emphasize and
clarify both the inductive set and the inductive variable (cf., e.g., the proof of Lemma 4.8 below).

3.1. Sequence spaces

Definition 3.1 (Set of all sequences). We denote by S the set of all functions with domain Z and
codomain R.

Definition 3.2 (The `2(Z) Hilbert space). We denote by `2(Z) the set of all u ∈ S satisfying that∑
k∈Z|u(k)|2 < ∞ (cf. Definition 3.1). Furthermore, we denote by ‖·‖2 : S → [0,∞] the function

which satisfies for all u ∈ S that ‖u‖22 =
∑
k∈Z|u(k)|2.

Definition 3.3 (The `2(Z) inner product). We denote by 〈·, ·〉 : `2(Z) × `2(Z) → R the function
which satisfies for all u, v ∈ `2(Z) that 〈u, v〉 =

∑
k∈Z u(k)v(k) (cf. Definition 3.2).

Definition 3.4 (Semi-inner product). We denote by [·, ·] : `2(Z) × `2(Z) → R the function which
satisfies for all u, v ∈ `2(Z) that

[u, v] =

[
lim
ε→0+

‖v + εu‖2 − ‖v‖2
ε

]
‖v‖2 (3.1)

(cf. Definition 3.2).

Lemma 3.5. Let u, v ∈ `2(Z) (cf. Definition 3.2). Then

(i) it holds that 〈u, u〉 = ‖u‖22 and

(ii) it holds that 〈u, v〉 = [u, v]

(cf. Definitions 3.3 and 3.4).

Proof of Lemma 3.5. First, observe that item (i) follows immediately from Definitions 3.2 and 3.3.
Next, note that item (i), Definition 3.4, and the fact that 〈·, ·〉 : `2(Z)× `2(Z) → R is a symmetric
bilinear form3 assure that

[u, v] =

[
lim
ε→0+

‖v + εu‖2 − ‖v‖2
ε

]
‖v‖2 =

[
lim
ε→0+

‖v + εu‖2 − ‖v‖2
ε

· ‖v + εu‖2 + ‖v‖2
‖v + εu‖2 + ‖v‖2

]
‖v‖2

3It is well known that 〈·, ·〉 : `2(Z) × `2(Z) → R is a symmetric bilinear form as this follows immediately from
Definition 3.3.
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=

[
lim
ε→0+

‖v + εu‖22 − ‖v‖22
ε
(
‖v + εu‖2 + ‖v‖2

)]‖v‖2 =

[
lim
ε→0+

〈v + εu, v + εu〉 − 〈v, v〉
ε
(
‖v + εu‖2 + ‖v‖2

) ]
‖v‖2 (3.2)

=

[
lim
ε→0+

〈v, v〉+ 2ε〈u, v〉+ ε2〈u, u〉 − 〈v, v〉
ε
(
‖v + εu‖2 + ‖v‖2

) ]
‖v‖2 =

[
lim
ε→0+

2ε〈u, v〉+ ε2〈u, u〉
ε
(
‖v + εu‖2 + ‖v‖2

)]‖v‖2
=

[
lim
ε→0+

2〈u, v〉+ ε〈u, u〉
‖v + εu‖2 + ‖v‖2

]
‖v‖2 =

[
2〈u, v〉
2‖v‖2

]
‖v‖2 = 〈u, v〉.

This establishes item (ii). The proof of Lemma 3.5 is thus complete.

3.2. The logarithmic norm

Definition 3.6 (Logarithmic norm). We denote by µ(A) ∈ R, A : `2(Z) → `2(Z), the function
which satisfies for all A : `2(Z)→ `2(Z) that

µ(A) = sup
v∈`2(Z)
‖v‖2 6=0

〈Av, v〉
‖v‖22

(3.3)

(cf. Definitions 3.2 and 3.3).

Definition 3.7 (Upper-right Dini derivative). For every v : [0,∞) → R we denote by D+
t v(t) ∈

[−∞,∞], t ∈ [0,∞), the function which satisfies for all t ∈ [0,∞) that

D+
t v(t) = lim sup

ε→0+

v(t+ ε)− v(t)

ε
. (3.4)

Lemma 3.8. It holds for all differentiable v : [0,∞)→ `2(Z), t ∈ [0,∞) that

D+
t ‖v(t)‖2 =

[ 〈 ddtv(t), v(t)〉
‖v(t)‖22

]
‖v(t)‖2 (3.5)

(cf. Definitions 3.2, 3.3, and 3.7).

Proof of Lemma 3.8. Throughout this proof let v : [0,∞) → `2(Z), let t ∈ [0,∞), and assume
without loss of generality that ‖v(t)‖2 6= 0 (cf. Definition 3.2). Note that the hypothesis that v
is differentiable and Taylor’s theorem (cf., e.g., Cartan et al. [10, Theorem 5.6.3]) yield that there
exists δt(ε) ∈ `2(Z), ε ∈ R, such that for all ε ∈ R with |ε| sufficiently small

(A) it holds that v(t+ ε) = v(t) + ε ddtv(t) + |ε|δt(ε) and

(B) it holds that limε→0 δt(ε) = 0.

Combining items (A) and (B) with Definition 3.7 and item (ii) of Lemma 3.5 hence shows that

D+
t ‖v(t)‖2 = lim sup

ε→0+

‖v(t) + ε ddtv(t) + |ε|δt(ε)‖2 − ‖v(t)‖2
ε

= lim sup
ε→0+

‖v(t) + ε ddtv(t)‖2 − ‖v(t)‖2
ε

= lim
ε→0+

‖v(t) + ε ddtv(t)‖2 − ‖v(t)‖2
ε

(3.6)
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=

[
lim
ε→0+

‖v(t) + ε ddtv(t)‖2 − ‖v(t)‖2
ε

]
‖v(t)‖22
‖v(t)‖22

=

〈
d
dtv(t), v(t)

〉
‖v(t)‖22

‖v(t)‖2

(cf. Definition 3.3). The proof of Lemma 3.8 is thus complete.

We close Subsection 3.2 with a brief discussion of Definition 3.6. For every A : `2(Z) → `2(Z)
let ‖A‖op = inf{c ∈ [0,∞] : ∀ v ∈ `2(Z) it holds that ‖Av‖2 ≤ c‖v‖2} (cf. Definition 3.2). Then
Definitions 3.4 and 3.6 and the Rayleigh quotient theorem (cf., e.g., [17, Theorem A.26]) imply that
for every A : `2(Z) → `2(Z) with ‖A‖op ∈ [0,∞), A = A∗, and nonempty pure point spectrum it
holds that

µ(A) = sup
v∈`2(Z)
‖v‖2 6=0

〈Av, v〉
‖v‖22

= max{λ ∈ R : ∃ v ∈ `2(Z) with ‖v‖2 6= 0 and Av = λv} (3.7)

(e.g., µ(A) is the maximal eigenvalue of A). This fact will prove quite useful in the proof of
Lemma 4.7 in Subsection 4.1.

4. The discrete Laplace operator of arbitrary order

In this section we introduce the discrete fractional Laplace operator and define the notion of
real-valued positive powers of this operator. First, in Subsection 4.1 we define the discrete Laplace
operator as well as introduce and study its associated discrete heat semigroup. Proposition 4.2 is
presented in order to clarify the fact that positive integer powers of the discrete Laplace operator
map elements of `2(Z) into `2(Z) (cf. Definition 3.2). The associated discrete heat semigroup is
shown to be a strongly continuous contraction semigroup via the tools developed in Subsection 3.2.
Note that Definition 4.1 is provided for clarity, as the evaluation of the Gamma function with
arguments whose real parts are negative occurs frequently throughout the remainder of this article.

Afterwards, in Subsection 4.2 we provide a series representation of positive integer powers of the
discrete Laplace operator. The result in Lemma 4.8 is well-known in the literature, but its proof is
included for completeness (cf., e.g., Kelley and Peterson [29, Eq. (2.1)]). The series representation
presented in Lemma 4.8 will be a crucial component in proving the main result of this article (cf.
Theorem 6.4).

In Subsection 4.3 we define arbitrary real-valued positive powers of the discrete Laplace operator
(cf. Definition 4.11). This is accomplished by first defining the case when the positive real-valued
power is bounded above by one (cf. Definition 4.10). We then define higher-order positive real-
valued powers via an inductive procedure. This definition is shown to be well-defined in `2(Z) in
Lemma 4.9; i.e., it is shown that the discrete fractional Laplace operator maps `2(Z) into `2(Z). At
this point, we wish to again emphasize that Definition 4.11 is not a direct “discretization” of the
pointwise formula for the continuous case (cf., e.g., (1.1) for the case where s ∈ (0, 1)), but rather
the fractional power of the discrete Laplace operator.

4.1. The discrete Laplace operator and its associated semigroup

Definition 4.1 (Gamma function). Let X = {z ∈ C : R(z) ∈ (0,∞)} and let Γ̃ : X → C be
the function which satisfies for all z ∈ X that Γ̃(z) =

∫∞
0
xz−1 exp(−x) dx. Then we denote4

4Note that b·c : Z→ R satisfies for all x ∈ R that bxc = max{n ∈ Z : n ≤ x}.
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by Γ: C → C the function which satisfies for all z ∈ X that Γ(z) = Γ̃(z), for all z ∈ C with
R(z) ∈ (−∞, 0]\{. . . ,−2,−1, 0} that

Γ(z) =
Γ̃(z + |bR(z)c|)

(z + |bR(z)c| − 1)(z + |bR(z)c| − 2) · . . . · z
, (4.1)

and for all z ∈ C with R(z) ∈ {. . . ,−2,−1, 0} that 1/Γ(z) = 0.

Proposition 4.2. It holds5 for all s ∈ N, u ∈ `2(Z) that

∑
n∈Z

∣∣∣∣∣
2s∑
k=0

(−1)k−s
(

2s

k

)
u(n− s+ k)

∣∣∣∣∣
2

<∞ (4.2)

(cf. Definitions 3.2 and 4.1).

Proof of Proposition 4.2. Throughout this proof let s ∈ N, u ∈ `2(Z). Observe that the fact that
u ∈ `2(Z) and Definition 3.2 ensure that

∑
k∈Z|u(k)|2 < ∞. This, the triangle inequality, the fact

that s ∈ N, and the fact Jensen’s inequality implies that for all r,m ∈ N, v1, v2, . . . , vm ∈ [0,∞) it
holds that [

∑m
k=1 vk]r ≤ mmax{r−1,0}∑m

k=1 v
r
k assure that

∑
n∈Z

∣∣∣∣∣
2s∑
k=0

(−1)k−s
(

2s

k

)
u(n− s+ k)

∣∣∣∣∣
2

≤
∑
n∈Z

[
2s∑
k=0

∣∣∣∣(2s

k

)
u(n− s+ k)

∣∣∣∣
]2

(4.3)

≤
∑
n∈Z

[
2s

2s∑
k=0

(
2s

k

)
|u(n− s+ k)|2

]
= 2s

2s∑
k=0

(
2s

k

)[∑
n∈Z
|u(n− s+ k)|2

]
<∞.

The proof of Proposition 4.2 is thus complete.

Definition 4.3 (Discrete Laplace operator). We denote by ∆: `2(Z) → `2(Z) the function which
satisfies for all u ∈ `2(Z), n ∈ Z that

(∆u)(n) = u(n− 1)− 2u(n) + u(n+ 1) (4.4)

(cf. Definition 3.2).

Definition 4.4 (Identity operator). We denote by I : S → S the operator which satisfies for all
u ∈ S, n ∈ Z that (Iu)(n) = u(n) (cf. Definition 3.1).

Proposition 4.5. Let u ∈ `2(Z) (cf. Definition 3.2). Then it holds for all z ∈ [0,∞) that

∑
n∈Z

∣∣∣∣∣∣
∑
k∈Z

exp(−2z)

[∑
j∈N0

z2j+n−k

Γ(1 + j)Γ(j + n− k + 1)

]
u(k)

∣∣∣∣∣∣
2

<∞ (4.5)

(cf. Definition 4.1).

5Note that for all n ∈ N, k ∈ {0, 1, . . . , n} it holds that
(n
k

)
= Γ(1+n)/(Γ(1+k)Γ(1+n−k)) (cf. Definition 4.1).
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Proof of Proposition 4.5. Throughout this proof let Ik : [0,∞)→ R, k ∈ Z, satisfy for all z ∈ [0,∞),
k ∈ Z that

Ik(z) =
∑
j∈N0

(
z/2
)2j+k

Γ(1 + j)Γ(j + k + 1)
(4.6)

(cf. Definition 4.1). Observe that (4.6) and Olver et al. [47, Eq. 10.27.1] (applied for every k ∈ Z
with Ik x Ik, z x 2z in the notation of Olver et al. [47, Eq. 10.27.1]) assure that for all z ∈ [0,∞)
it holds that

∑
k∈Z

[∑
j∈N0

z2j+k

Γ(1 + j)Γ(j + k + 1)

]
=
∑
k∈Z

Ik(2z) (4.7)

= I0(2z) +
∑
k∈N

(
Ik(2z) + I−k(2z)

)
= I0(2z) + 2

∑
k∈N

Ik(2z).

Combining this, (4.6), the triangle inequality, Minkowski’s inequality, and Olver et al. [47, Eq.
10.35.5] (applied with Ik x Ik, z x 2z in the notation of Olver et al. [47, Eq. 10.35.5]) ensures that
for all z ∈ [0,∞) it holds that

∑
n∈Z

∣∣∣∣∣∣
∑
k∈Z

exp(−2z)

[∑
j∈N0

z2j+n−k

Γ(1 + j)Γ(j + n− k + 1)

]
u(k)

∣∣∣∣∣∣
2

=
∑
n∈Z

∣∣∣∣∣∑
k∈Z

exp(−2z)Ik(2z)u(n− k)

∣∣∣∣∣
2

≤ exp(−4z)

∑
k∈Z
|Ik(2z)|

(∑
n∈Z
|u(n− k)|2

)1/2
2

= exp(−4z)

[∑
k∈Z

Ik(2z)‖u‖2

]2
(4.8)

= exp(−4z)

[
I0(2z) + 2

∑
k∈N

Ik(2z)

]2
‖u‖22 = exp(−4z)

[
exp(2z)

]2‖u‖22 = ‖u‖22 <∞.

The proof of Proposition 4.5 is thus complete.

Definition 4.6 (Discrete heat semigroup). We denote by Sz(∆): `2(Z) → `2(Z), z ∈ [0,∞), the
function which satisfies for all z ∈ [0,∞), u ∈ `2(Z), n ∈ Z that

(
Sz(∆)u

)
(n) =

∑
k∈Z

exp(−2z)

[∑
j∈N0

z2j+n−k

Γ(1 + j)Γ(j + n− k + 1)

]
u(k) (4.9)

(cf. Definitions 3.2, 4.1, 4.3, and 4.6).

Lemma 4.7. Let u ∈ `2(Z) (cf. Definition 3.2). Then

(i) it holds that Sz(∆): `2(Z)→ `2(Z), z ∈ [0,∞), is a strongly continuous semigroup,

(ii) it holds for all z ∈ [0,∞), n ∈ Z that d
dz (Sz(∆)u)(n) = (∆Sz(∆)u)(n),

(iii) it holds that µ(∆) ∈ (−∞, 0), and

(iv) it holds for all z ∈ [0,∞) that ‖Sz(∆)u‖2 ≤ exp(zµ(∆))‖u‖2 ≤ ‖u‖2
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(cf. Definitions 3.6, 4.3, and 4.6).

Proof of Lemma 4.7. First, note that Sz(∆): `2(Z) → `2(Z), z ∈ [0,∞), is a strongly continuous
semigroup6 if

(A) it holds that S0(∆) = I,

(B) it holds for all t, z ∈ [0,∞) that St+z(∆) = St(∆)Sz(∆), and

(C) it holds for all v ∈ `2(Z) that limz→0+‖Sz(∆)v − v‖2 = 0

(cf. Definitions 4.3, 4.4, and 4.6). Observe that Definition 4.6, the fact that for all v ∈ `2(Z)
it holds that supn∈Z|v(n)| < ∞, and, e.g., Ciaurri et al. [12, Proposition 1] (applied for every
v ∈ `2(Z) with f x v, Wt x Sz(∆) in the notation of Ciaurri et al. [12, Proposition 1]) show that
Sz(∆): `2(Z)→ `2(Z), z ∈ [0,∞) satisfies items (A), (B), and (C). This establishes item (i). Next,
note that Definition 4.6 and, e.g., Ciaurri et al. [12, Proposition 2] (applied for every n ∈ Z with
f x u, (u(n, t))t∈[0,∞) x ((Sz(∆)u)(n))z∈[0,∞) in the notation of Ciaurri et al. [12, Proposition 2])
establish item (ii). In addition, observe that Definition 3.4 implies that if for all v ∈ `2(Z) with
‖v‖2 6= 0 it holds that 〈∆v, v〉 ∈ (−∞, 0) then it holds that µ(∆) ∈ (−∞, 0). To that end, note
that for all v ∈ `2(Z) it holds that

〈∆v, v〉 =
∑
k∈Z

[
(∆v)(k)

]
v(k) =

∑
k∈Z

(
v(k − 1)− 2v(k) + v(k + 1)

)
v(k)

=
∑
k∈Z

v(k − 1)v(k)− 2
∑
k∈Z

v(k)2 +
∑
k∈Z

v(k + 1)v(k)

=
∑
k∈Z

v(k − 1)v(k)−
∑
k∈Z

v(k)2 −
∑
k∈Z

v(k − 1)2 +
∑
k∈Z

v(k)v(k − 1) (4.10)

= −
∑
k∈Z

[
v(k − 1)2 − 2v(k − 1)v(k) + v(k)2

]
= −

∑
k∈Z

[
v(k − 1)− v(k)

]2
(cf. Definition 3.3). This demonstrates that for all v ∈ `2(Z) with ‖v‖2 6= 0 it holds that 〈∆v, v〉 ∈
(−∞, 0). This and Definition 3.6 establish item (iii). Moreover, observe that item (i), item (iii),
and Jones et al. [28, Lemma 2.8] (applied with x x u, A x ∆, (Tt(A))t∈[0,∞) x (Sz(∆))z∈[0,∞)

in the notation of Jones et al. [28, Lemma 2.8]) hence prove item (iv). The proof of Lemma 4.7 is
thus complete.

4.2. Positive integer powers of the discrete Laplace operator

Lemma 4.8. It holds for all s ∈ N, u ∈ `2(Z), n ∈ Z that

(
(−∆)su

)
(n) =

2s∑
k=0

(−1)k−s
(

2s

k

)
u(n− s+ k) (4.11)

(cf. Definitions 3.2 and 4.11).

6Cf., e.g., Jones et al. [28, Definition 2.6]
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Proof of Lemma 4.8. We prove (4.11) by induction on s ∈ N. For the base case s = 1 observe
that Definition 4.3 establishes (4.11). This proves (4.11) in the case s = 1. For the induction step
N 3 (s− 1) 99K s ∈ N∩ [2,∞), let s ∈ N∩ [2,∞) and assume for all s ∈ {1, 2, . . . , s− 1}, u ∈ `2(Z),
n ∈ Z that (4.11) holds. Note that the fact that s ∈ N∩ [2,∞) implies that for all u ∈ `2(Z), n ∈ Z
it holds that (

(−∆)su
)
(n) =

(
−∆((−∆)s−1u)

)
(n). (4.12)

This and the induction hypothesis ensure that for all u ∈ `2(Z), n ∈ Z it holds that

(
(−∆)su

)
(n) =

(
−∆

(
2(s−1)∑
k=0

(−1)k−(s−1)
(

2(s−1)
k

)
u(· − (s− 1) + k)

))
(n)

= 2
2s−2∑
k=0

(−1)k−s+1
(

2s−2
k

)
u(n− s+ 1 + k)

−
2s−2∑
k=0

(−1)k−s+1
(

2s−2
k

)
u((n− 1)− s+ 1 + k)

−
2s−2∑
k=0

(−1)k−s+1
(

2s−2
k

)
u((n+ 1)− s+ 1 + k)

= 2
2s−2∑
k=0

(−1)k−s+1
(

2s−2
k

)
u(n− s+ 1 + k)−

2s−2∑
k=0

(−1)k−s+1
(

2s−2
k

)
u(n− s+ k)

−
2s−2∑
k=0

(−1)k−s+1
(

2s−2
k

)
u(n+ 2− s+ k) (4.13)

= 2
2s−1∑
k=1

(−1)k−s
(

2s−2
k−1

)
u(n− s+ k) +

2s−2∑
k=0

(−1)k−s
(

2s−2
k

)
u(n− s+ k)

+
2s∑
k=2

(−1)k−s
(

2s−2
k−2

)
u(n− s+ k)

=

[
2s−1∑
k=1

(−1)k−s
(

2s−2
k−1

)
u(n− s+ k) +

2s−2∑
k=0

(−1)k−s
(

2s−2
k

)
u(n− s+ k)

]
+

[
2s−1∑
k=1

(−1)k−s
(

2s−2
k−1

)
u(n− s+ k) +

2s∑
k=2

(−1)k−s
(

2s−2
k−2

)
u(n− s+ k)

]
(cf. Definition 4.3). Combining this and the fact that for all n ∈ N, k ∈ {1, 2, . . . , n − 1} it holds
that

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
assures that for all u ∈ `2(Z), n ∈ Z it holds that

(
(−∆)su

)
(n) = (−1)s−1u(n+ s− 1) + (−1)−su(n− s) +

2s−2∑
k=1

(−1)k−s
(

2s−1
k

)
u(n− s+ k)

+ (−1)1−su(n+ 1− s) + (−1)su(n+ s)

+
2s−1∑
k=2

(−1)k−s
(

2s−1
k−1

)
u(n− s+ k)

= (−1)s−1u(n+ s− 1) + (−1)−su(n− s) + (−1)1−su(n+ 1− s)
+ (−1)su(n+ s) + (−1)1−s(2s−1

1

)
u(n− s+ 1)

+ (−1)s−1
(

2s−1
2s−2

)
u(n− s+ (2s− 1)) (4.14)
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+
2s−2∑
k=2

(−1)k−s
[(

2s−1
k

)
+
(

2s−1
k−1

)]
u(n− s+ k)

= (−1)s−1u(n+ s− 1) + (−1)−su(n− s) + (−1)1−su(n+ 1− s)
+ (−1)su(n+ s) + (−1)1−s(2s−1

1

)
u(n− s+ 1)

+ (−1)s−1
(

2s−1
2s−2

)
u(n+ s− 1) +

2s−2∑
k=2

(−1)k−s
(

2s
k

)
u(n− s+ k).

Next, observe that the fact that for all n ∈ N, k ∈ {1, 2, . . . , n−1} it holds that
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
and the fact that for all n ∈ N, k ∈ {0, 1, . . . , n} it holds that

(
n
k

)
=
(
n

n−k
)

show that

1 +
(

2s−1
2s−2

)
=
(

2s−1
2s−1

)
+
(

2s−1
2s−2

)
=
(

2s
2s−1

)
(4.15)

and
1 +

(
2s−1

1

)
=
(

2s−1
0

)
+
(

2s−1
1

)
=
(

2s
1

)
. (4.16)

Combining (4.14), (4.15), and (4.16) hence implies that for all u ∈ `2(Z), n ∈ Z it holds that(
(−∆)su

)
(n) = (−1)−s

(
2s
0

)
u(n− s) + (−1)s

(
2s
2s

)
u(n+ s) + (−1)1−s(2s

1

)
u(n− s+ 1)

+ (−1)s−1
(

2s
2s−1

)
u(n+ s− 1) +

2s−2∑
k=2

(−1)k−s
(

2s
k

)
u(n− s+ k) (4.17)

=
2s∑
k=0

(−1)k−s
(

2s
k

)
u(n− s+ k).

Induction therefore establishes (4.11). The proof of Lemma 4.8 is thus complete.

4.3. The discrete fractional Laplace operator of arbitrary order

Lemma 4.9. Let m ∈ N, s ∈ (m− 1,m). Then it holds for all u ∈ `2(Z) that∥∥∥∥ 1

Γ(−(s−m+ 1))

∫ ∞
0

z−s+m−2
[
Sz(∆)− I

](
(−∆)m−1u

)
dz

∥∥∥∥
2

<∞ (4.18)

(cf. Definitions 3.2, 4.1, 4.3, 4.4, and 4.6).

Proof of Lemma 4.9. Throughout this proof let m ∈ N, s ∈ (m − 1,m). We claim that for all
z ∈ (0,∞), u ∈ `2(Z) it holds that

∥∥(Sz(∆)− I)u
∥∥

2
≤
∫ z

0

exp
(
(z − w)µ(∆)

)
‖∆u‖2 dw (4.19)

(cf. Definitions 3.2, 3.6, 4.3, 4.4, and 4.6). Note that the fact that 〈·, ·〉 : `2(Z) × `2(Z) → R is a
symmetric bilinear form and Definition 4.6 ensure that for all u ∈ `2(Z), z ∈ (0,∞) it holds that

d

dz

∥∥(Sz(∆)− I)u
∥∥

2
=
〈 ddz (Sz(∆)− I)u, (Sz(∆)− I)u〉

‖(Sz(∆)− I)u‖2
(4.20)

=
〈∆Sz(∆)u, (Sz(∆)− I)u〉
‖(Sz(∆)− I)u‖2

=
〈∆(Sz(∆)− I)u, (Sz(∆)− I)u〉

‖(Sz(∆)− I)u‖2
+
〈∆u, (Sz(∆)− I)u〉
‖(Sz(∆)− I)u‖2
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≤

[
sup

v∈`2(Z)

〈∆v, v〉
‖v‖2

]
+
〈∆u, (Sz(∆)− I)u〉
‖(Sz(∆)− I)u‖2

= µ(∆) +
〈∆u, (Sz(∆)− I)u〉
‖(Sz(∆)− I)u‖2

(cf. Definition 3.3). This, the Cauchy-Swartz inequality, and the fact that item (i) of Lemma 4.7
implies that for all u ∈ `2(Z) it holds that limz→0+‖(Sz(∆)−I)u‖2 = 0 assure that for all z ∈ (0,∞),
u ∈ `2(Z) it holds that∥∥(Sz(∆)− I)u

∥∥
2
≤
∫ z

0

exp
(
(z − w)µ(∆)

) ∣∣〈∆u, (Sw(∆)− I)u〉
∣∣

‖(Sw(∆)− I)u‖2
dw (4.21)

≤
∫ z

0

exp
(
(z − w)µ(∆)

)‖∆u‖2‖(Sw(∆)− I)u‖2
‖(Sw(∆)− I)u‖2

dw =

∫ z

0

exp
(
(z − w)µ(∆)

)
‖∆u‖2 dw.

Combining this and the fact that Proposition 4.2 (applied with s x 1 in the notation of Proposi-
tion 4.2) ensures that for all u ∈ `2(Z) it holds that ‖∆u‖2 <∞ proves (4.19). Next, observe that
(4.19), Lemma 4.8, and Jensen’s inequality guarantee that for all u ∈ `2(Z) it holds that∥∥∥∥ 1

Γ(−(s−m+ 1))

∫ ∞
0

z−s+m−2
[
Sz(∆)− I

](
(−∆)m−1u

)
dz

∥∥∥∥
2

≤ 1

|Γ(−(s−m+ 1))|

∫ ∞
0

z−s+m−2
∥∥[Sz(∆)− I

](
(−∆)m−1u

)∥∥
2
dz (4.22)

≤ ‖(−∆)mu‖2
|Γ(−(s−m+ 1))|

∫ ∞
0

z−s+m−2

[∫ z

0

exp
(
(z − w)µ(∆)

)
dw

]
dz

(cf. Definition 4.1). In addition, note that item (iii) of Lemma 4.7 and integration by parts show
that

0 ≤
∫ ∞

0

z−s+m−2

[
1− exp

(
zµ(∆)

)
−µ(∆)

]
dz

=

∫ 1

0

z−s+m−2

[
1− exp

(
zµ(∆)

)
−µ(∆)

]
dz +

∫ ∞
1

z−s+m−2

[
1− exp

(
zµ(∆)

)
−µ(∆)

]
dz

≤
∫ 1

0

z−s+m−2

[
1− exp

(
zµ(∆)

)
−µ(∆)

]
dz +

∫ ∞
1

z−s+m−2 dz

= lim
w→0+

[
z−s+m−1

−s+m− 1

][
1− exp

(
zµ(∆)

)
−µ(∆)

]∣∣∣∣1
z=w

−
∫ 1

0

[
z−s+m−1

−s+m− 1

]
exp(zµ(∆)) dz

+ lim
w→∞

z−s+m−1

−s+m− 1

∣∣∣∣w
z=1

(4.23)

=

[
1

−s+m− 1

][
1 + µ(∆)− exp

(
µ(∆)

)
−µ(∆)

]
−
∫ 1

0

[
z−s+m−1

−s+m− 1

]
exp(zµ(∆)) dz

≤
[

1

−s+m− 1

][
1 + µ(∆)− exp

(
µ(∆)

)
−µ(∆)

]
+

∫ 1

0

[
z−s+m−1

s−m+ 1

]
dz

=

[
1

−s+m− 1

][
1 + µ(∆)− exp

(
µ(∆)

)
−µ(∆)

]
+

1

(−s+m)(s−m+ 1)
<∞.

Combining (4.22), (4.23), and the fact that Proposition 4.2 assures that for all u ∈ `2(Z) it holds
that ‖(−∆)mu‖2 <∞ hence proves (4.18). The proof of Lemma 4.9 is thus complete.
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Definition 4.10 (Discrete fractional Laplace operator for s ∈ (0, 1)). Let s ∈ (0, 1). Then we
denote by (−∆)s : `2(Z)→ `2(Z) the function which satisfies for all u ∈ `2(Z), n ∈ Z that(

(−∆)su
)
(n) =

1

Γ(−s)

∫ ∞
0

z−s−1
[
Sz(∆)− I

]
u(n) dz (4.24)

(cf. Definitions 3.2, 4.1, 4.3, 4.4, and 4.6).

Definition 4.11 (Discrete fractional Laplace operator for s ∈ (0,∞)). Let s ∈ (0,∞). Then we
denote by (−∆)s : `2(Z)→ `2(Z) the function which satisfies for all u ∈ `2(Z), n ∈ Z that(

(−∆)su
)
(n) =

(
(−∆)s−bsc(−∆)bscu

)
(n) (4.25)

=

{(
(−∆)su

)
(n) : s ∈ N

1
Γ(−(s−bsc))

∫∞
0
z−(s−bsc)−1

[
Sz(∆)− I

](
(−∆)bscu

)
(n) dz : s ∈ (0,∞)\N

(cf. Definitions 3.2, 4.1, 4.3, 4.4, 4.6, and 4.10).

5. The discrete fractional kernel

In this section we introduce a kernel function which will allow us to conveniently provide a
series representation of (4.25) in Definition 4.11. Proposition 5.2 and Lemma 5.3 are preliminary
results which allow us to prove Lemma 5.4—a result which outlines useful properties exhibited by
the kernel defined in Definition 5.1. It is worth noting that Proposition 5.2 is a well-known result
and that Lemma 5.3 is a generalization of Ciaurri et al. [13, Lemma 9.2 (a)], which was only proven
in the case where s ∈ (0, 1). Proposition 5.5 and Lemma 5.7 are the main results of this section
and allow us to prove Lemma 6.1 in Subsection 6.1.

Definition 5.1 (Fractional kernel). We denote7 by Ks : Z→ R, s ∈ R, the function which satisfies
for all k ∈ Z, m ∈ N, s ∈ (m− 1,m) that

Ks(k) =
−1Z\{0}(k) 4sΓ(1/2 + s)Γ(|k| − s)

√
πΓ(−s)Γ(|k|+ 1 + s)

(5.1)

(cf. Definition 4.1).

Proposition 5.2. It holds for all a, b ∈ R, λ ∈ (0,∞) with 0 ≤ a < b <∞ that

min{λ, 1} ≤ bλ − aλ

bλ−1(b− a)
≤ max{λ, 1}. (5.2)

Proof of Proposition 5.2. First, note that for all a, b ∈ R with 0 ≤ a < b <∞ it holds that

0 ≤ a/b < 1 (5.3)

Observe that (5.3) ensures that for all λ ∈ (0, 1), a, b ∈ R with 0 ≤ a < b < ∞ it holds that

0 ≤ a/b ≤
(
a/b
)λ
< 1. This assures that for all λ ∈ (0, 1), a, b ∈ R with 0 ≤ a < b <∞ it holds that

bλ − aλ

bλ−1(b− a)
=

1− (a/b)λ

1− a/b
≤ 1. (5.4)

7Let A ⊆ R. Then it holds for all x ∈ A that 1A(x) = 1 and for all x ∈ R\A that 1A(x) = 0.
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Combining the mean value theorem and (5.4) hence guarantee that for all λ ∈ (0, 1), a, b ∈ R with
0 ≤ a < b <∞ it holds that there exists c ∈ (a/b, 1) such that

bλ − aλ

bλ−1(b− a)
=

1− (a/b)λ

1− a/b
= λcλ−1 ≥ λ. (5.5)

Next, note that (5.3) demonstrates that for all λ ∈ [1,∞), a, b ∈ R with 0 ≤ a < b < ∞ it holds

that 0 ≤
(
a/b
)λ ≤ a/b < 1. This shows that for all λ ∈ [1,∞), a, b ∈ R with 0 ≤ a < b <∞ it holds

that
bλ − aλ

bλ−1(b− a)
=

1− (a/b)λ

1− a/b
≥ 1. (5.6)

Combining (5.6) with the mean value theorem therefore proves that for all λ ∈ [1,∞), a, b ∈ R with
0 ≤ a < b <∞ it holds that there exists d ∈ (a/b, 1) such that

bλ − aλ

bλ−1(b− a)
=

1− (a/b)λ

1− a/b
= λdλ−1 ≤ λ. (5.7)

Combining (5.4), (5.5), (5.6), and (5.7) thus establishes (5.2). The proof of Proposition 5.2 is thus
complete.

Lemma 5.3. It holds for all m ∈ N, s ∈ (m− 1,m) that there exists C ∈ R such that for all k ∈ Z
with |k| ∈ [m,∞) it holds that ∣∣∣∣∣ Γ(|k| − s)

Γ(|k|+ 1 + s)
− 1

|k|1+2s

∣∣∣∣∣ ≤ C

|k|2+2s
(5.8)

(cf. Definition 4.1).

Proof of Lemma 5.3. Throughout this proof let m ∈ N, s ∈ (m−1,m) and without loss of generality
let k ∈ Z with k ∈ [m,∞). Note that the triangle inequality assures that∣∣∣∣∣ Γ(|k| − s)

Γ(|k|+ 1 + s)
− 1

|k|1+2s

∣∣∣∣∣ ≤
∣∣∣∣∣ Γ(|k| − s)
Γ(|k|+ 1 + s)

− 1

|k − s|1+2s

∣∣∣∣∣+

∣∣∣∣∣ 1

|k − s|1+2s
− 1

|k|1+2s

∣∣∣∣∣ (5.9)

=

∣∣∣∣∣ Γ(k − s)
Γ(k + 1 + s)

− 1

(k − s)1+2s

∣∣∣∣∣+

∣∣∣∣∣ 1

(k − s)1+2s
− 1

k1+2s

∣∣∣∣∣.
Next, observe that Proposition 5.2 (applied with λx 1 + 2s, ax 1/k, bx 1/(m−s) in the notation
of Proposition 5.2) ensures that∣∣∣∣∣ 1

(k − s)1+2s
− 1

k1+2s

∣∣∣∣∣ =

[ ∣∣(k − s)−(1+2s) − k−(1+2s)
∣∣

(k − s)−2s
[
(k − s)−1 − k−1

]](k − s)−2s
[
(k − s)−1 − k−1

]
≤ max{1 + 2s, 1}

(k − s)2s

[
1

k − s
− 1

k

]
=

1 + 2s

(k − s)2s

[
k − (k − s)

(k − s)k

]
=

(1 + 2s)s

k(k − s)1+2s
. (5.10)
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This and the fact that k ∈ [m,∞) show that∣∣∣∣∣ 1

(k − s)1+2s
− 1

k1+2s

∣∣∣∣∣ ≤ (1 + 2s)s

(k − s)2+2s
≤

[
sup

k∈[m,∞)

k2+2s

(k − s)2+2s

]
(1 + 2s)s

k2+2s
. (5.11)

In addition, note that, e.g., Tricomi and Erdélyi [59, Eq. (15), page 140] (applied with z x k,
αx −s, β x 1 + s in the notation of Tricomi and Erdélyi [59, Eq. (15), page 140]) guarantees that

Γ(k − s)
Γ(k + 1 + s)

=
1

Γ(1 + 2s)

∫ ∞
0

exp(−(k − s)v)
(
1− exp(−v)

)2s
dv. (5.12)

This, the fact that for all r ∈ [0,∞) it holds that
∫∞

0
exp(−rv)v2s dv = Γ(1 + 2s)r−(1+2s), and

Jensen’s inequality prove that∣∣∣∣∣ Γ(k − s)
Γ(k + 1 + s)

− 1

(k − s)1+2s

∣∣∣∣∣
=

∣∣∣∣∣ 1

Γ(1 + 2s)

∫ ∞
0

exp(−(k − s)v)
(
1− exp(−v)

)2s
dv − 1

(k − s)1+2s

∣∣∣∣∣ (5.13)

=

∣∣∣∣∣ 1

Γ(1 + 2s)

∫ ∞
0

exp(−(k − s)v)
[(

1− exp(−v)
)2s − v2s

]
dv

∣∣∣∣∣
≤ 1

Γ(1 + 2s)

∫ ∞
0

exp(−(k − s)v)v2s

∣∣∣∣(1− exp(−v)

v

)2s
− 1

∣∣∣∣ dv.
Moreover, observe that Proposition 5.2 (applied with λ x 2s, a x (1−exp(−v))/v, b x 1 in the
notation of Proposition 5.2) ensures that for all v ∈ (0,∞) it holds that

1−
(1− exp(−v)

v

)2s
≤ max{2s, 1}

[
1− 1− exp(−v)

v

]
. (5.14)

Combining this, (5.13), the fact that for all v ∈ (0,∞) it holds that v − (1 − exp(−v)) < v2/2, the
fact that for all r ∈ [0,∞) it holds that

∫∞
0

exp(−rv)v1+2s dv = Γ(2 + 2s)r−(2+2s), and the fact
that Definition 4.1 implies that for all z ∈ (0,∞) it holds that Γ(1 + z) = zΓ(z) assures that∣∣∣∣∣ Γ(k − s)

Γ(k + 1 + s)
− 1

(k − s)1+2s

∣∣∣∣∣
≤ max{2s, 1}

Γ(1 + 2s)

∫ ∞
0

exp(−(k − s)v)v2s

∣∣∣∣1− (1− exp(−v)

v

)∣∣∣∣ dv (5.15)

≤ max{s, 1/2}
Γ(1 + 2s)

∫ ∞
0

exp(−(k − s)v)v1+2s dv =
max{s, 1/2}Γ(2 + 2s)

Γ(1 + 2s)

1

(k − s)2+2s

= max{s, 1/2}(1 + 2s)
1

(k − s)2+2s
≤

[
sup

k∈[m,∞)

k2+2s

(k − s)2+2s

]
max{s, 1/2}(1 + 2s)

k2+2s
.

Combining this, (5.9), (5.11), and the fact that supk∈[m,∞) k
2+2s(k − s)−(2+2s) ∈ R hence proves

(5.8). The proof of Lemma 5.3 is thus complete.
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Lemma 5.4. Let m ∈ N, s ∈ (m− 1,m). Then

(i) it holds for all k ∈ Z that Ks(−k) = Ks(k) and

(ii) it holds that there exists C ∈ R such that for all k ∈ Z with |k| ∈ Z\{0} it holds that

|Ks(k)| ≤ C

|k|1+2s
(5.16)

(cf. Definition 5.1).

Proof of Lemma 5.4. First, note that Definition 5.1 ensures that for all k ∈ Z it holds that

Ks(−k) =
−1Z\{0}(−k) 4sΓ(1/2 + s)Γ(|−k| − s)

√
πΓ(−s)Γ(|−k|+ 1 + s)

(5.17)

=
−1Z\{0}(k) 4sΓ(1/2 + s)Γ(|k| − s)

√
πΓ(−s)Γ(|k|+ 1 + s)

= Ks(k)

(cf. Definitions 4.1 and 5.1). This establishes item (i). Next, observe that for all k ∈ Z ∩ (−m,m)
with k 6= 0 it holds that

|Ks(k)| ≤ 4sΓ(1/2 + s)|Γ(|k| − s)|√
π|Γ(−s)|Γ(|k|+ 1 + s)

=
4sΓ(1/2 + s)|Γ(|k| − s)|√
π|Γ(−s)|Γ(|k|+ 1 + s)

· |k|
1+2s

|k|1+2s

≤ 4sΓ(1/2 + s)m1+2s

√
π|Γ(−s)|

[
sup

j∈Z∩(−m,m)

|Γ(|j| − s)|
Γ(|j|+ 1 + s)

]
1

|k|1+2s
. (5.18)

This, the fact that s ∈ (0,∞)\N implies that supj∈Z∩(−m,m)
|Γ(|j|−s)|/Γ(|j|+1+s) ∈ R, and Lemma 5.3

establish item (ii). The proof of Lemma 5.4 is thus complete.

Proposition 5.5. It holds for all m ∈ N, s ∈ (m− 1,m), k ∈ Z that

Ks(k) =
1Z\{0}(k) (−1)k+1Γ(2s+ 1)

Γ(1 + s+ k)Γ(1 + s− k)
(5.19)

(cf. Definitions 4.1 and 5.1).

Proof of Proposition 5.5. Throughout this proof let m ∈ N, s ∈ (m − 1,m) and without loss of
generality let k ∈ N (cf. item (i) of Lemma 5.4). Observe that Definition 5.1 and the Legendre
duplication formula (cf., e.g., Abramowitz and Stegun [1, Eq. (6.1.18), Page 256]) ensure that

Ks(k) =
−4sΓ(1/2 + s)Γ(k − s)√
πΓ(−s)Γ(k + 1 + s)

=
−4sΓ(1/2 + s)Γ(k − s)√
πΓ(−s)Γ(k + 1 + s)

· Γ(s)

Γ(s)

=
−4s

[
21−2s

√
πΓ(2s)

]
Γ(k − s)

√
πΓ(−s)Γ(s)Γ(k + 1 + s)

=
−2Γ(2s)Γ(k − s)

Γ(−s)Γ(s)Γ(k + 1 + s)
. (5.20)

This and the fact that Definition 4.1 implies that for all z ∈ C with R(z) ∈ R\{. . . ,−2,−1, 0} it
holds that zΓ(z) = Γ(1 + z) assure that

Ks(k) =
−2Γ(2s)Γ(k − s)

Γ(−s)Γ(s)Γ(k + 1 + s)
· s
s

=
Γ(2s+ 1)Γ(k − s)

Γ(1− s)Γ(s)Γ(k + 1 + s)
. (5.21)
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Next, note that the Euler reflection formula (cf., e.g., Abramowitz and Stegun [1, Eq. (6.1.17), Page
256]) guarantees that

Γ(s)Γ(1− s) = (−1)k+1Γ(k − s)Γ(1 + s− k). (5.22)

Combining (5.21) and (5.22) hence yields (5.19). The proof of Proposition 5.5 is thus complete.

Proposition 5.6. Let s ∈ (0,∞)\N. Then it holds for all m ∈ N that

Γ(m− s)
2sΓ(m+ s)

+
m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

=
−Γ(−s)

2Γ(1 + s)
(5.23)

(cf. Definition 4.1).

Proof of Proposition 5.6. We prove (5.23) by induction on m ∈ N. For the base case m = 1 note
that the fact that Definition 4.1 ensures that for all z ∈ C with R(z) ∈ R\{. . . ,−2,−1, 0} it holds
that zΓ(z) = Γ(z + 1) guarantees that

Γ(1− s)
2sΓ(1 + s)

+
0∑
k=1

Γ(k − s)
Γ(k + 1 + s)

=
Γ(1− s)

2sΓ(1 + s)
=
−sΓ(−s)

2sΓ(1 + s)
=
−Γ(−s)

2Γ(1 + s)
. (5.24)

This establishes (5.23) in the case m = 1. For the induction step N 3 (m− 1) 99K m ∈ N ∩ [2,∞),
let m ∈ N ∩ [2,∞) and assume for all m ∈ {1, 2, . . . ,m − 1} that (5.23) holds. Observe that the
induction hypothesis shows that for all m ∈ N ∩ [2,∞) it holds that

Γ(m− s)
2sΓ(m+ s)

+

m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

=

[
Γ(m− s)

2sΓ(m+ s)
+

Γ((m− 1)− s)
Γ((m− 1) + 1 + s)

]
+

(m−1)−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

(5.25)

=
Γ(m− s)

2sΓ(m+ s)
+

Γ(m− 1− s)
Γ(m+ s)

+
−Γ(m− 1− s)
2sΓ(m− 1 + s)

+
−Γ(−s)

2Γ(1 + s)
.

Next, note that the fact that Definition 4.1 ensures that for all z ∈ C with R(z) ∈ R\{. . . ,−2,−1,
0} it holds that zΓ(z) = Γ(z + 1) demonstrates that for all m ∈ N ∩ [2,∞) it holds that

Γ(m− s)
2sΓ(m+ s)

+
−Γ(m− 1− s)
2sΓ(m− 1 + s)

=
Γ(m− s)

2sΓ(m+ s)
+
−(m− 1 + s)Γ(m− 1− s)
2s(m− 1 + s)Γ(m− 1 + s)

=
Γ(m− s)− (m− 1 + s)Γ(m− 1− s)

2sΓ(m+ s)
=

(m− 1− s)Γ(m− s)− (m− 1 + s)Γ(m− s)
2s(m− 1− s)Γ(m+ s)

=

[
(m− 1− s)− (m− 1 + s)

2s(m− 1− s)

]
Γ(m− s)
Γ(m+ s)

=
−Γ(m− s)

(m− 1− s)Γ(m+ s)
. (5.26)

Moreover, observe that Definition 4.1 assures that for all z ∈ C with R(z) ∈ R\{. . . ,−2,−1, 0} it
holds that zΓ(z) = Γ(z + 1) demonstrates that for all m ∈ N ∩ [2,∞) it holds that

−Γ(m− s)
(m− 1− s)Γ(m+ s)

+
Γ(m− 1− s)

Γ(m+ s)
=
−Γ(m− s) + (m− 1− s)Γ(m− 1− s)

(m− 1− s)Γ(m+ s)
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=
−Γ(m− s) + Γ(m− s)
(m− 1− s)Γ(m+ s)

= 0. (5.27)

Combining (5.25), (5.26), and (5.27) therefore proves (5.23). The proof of Proposition 5.6 is thus
complete.

Lemma 5.7. It holds for all m ∈ N, s ∈ (m− 1,m) that∑
k∈Z

Ks(k) =
4sΓ(1/2 + s)√
πΓ(1 + s)

(5.28)

(cf. Definitions 4.1 and 5.1).

Proof of Lemma 5.7. First, note that item (ii) of Lemma 5.4 ensures that for all m ∈ N, s ∈
(m − 1,m) it holds that

∑
k∈ZKs(k) ∈ R. Next, observe that Definition 5.1 and item (i) of

Lemma 5.4 assure that for all m ∈ N, s ∈ (m− 1,m) it holds that

∑
k∈Z

Ks(k) =
−4sΓ(1/2 + s)√

πΓ(−s)

[∑
k∈Z

1Z\{0}(k)Γ(|k| − s)
Γ(|k|+ 1 + s)

]
(5.29)

=
−2 · 4sΓ(1/2 + s)√

πΓ(−s)

[∑
k∈N

Γ(k − s)
Γ(k + 1 + s)

]
.

In addition, note that, e.g., Artin [6, Eq. (2.13)] (applied for every m ∈ N, s ∈ (m − 1,m),
k ∈ N∩ [m,∞) with xx k− s, y x 1 + 2s in the notation of Artin [6, Eq. (2.13)]) implies that for
all m ∈ N, s ∈ (m− 1,m), k ∈ N ∩ [m,∞) it holds that

Γ(k − s)
Γ(k + 1 + s)

=
1

Γ(1 + 2s)

[
Γ(k − s)Γ(1 + 2s)

Γ(k + 1 + s)

]
=

1

Γ(1 + 2s)

∫ 1

0

(1− z)(1+2s)−1z(k−s)−1 dz

=
1

Γ(1 + 2s)

∫ 1

0

(1− z)2szk−s−1 dz. (5.30)

This and Fubini’s theorem guarantee that for all m ∈ N, s ∈ (m− 1,m) it holds that

∑
k∈N

Γ(k − s)
Γ(k + 1 + s)

=

m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

+

∞∑
k=m

Γ(k − s)
Γ(k + 1 + s)

=
m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

+

∞∑
k=m

[
1

Γ(1 + 2s)

∫ 1

0

(1− z)2szk−s−1 dz

]

=
m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

+
1

Γ(1 + 2s)

∫ 1

0

(1− z)2sz−s−1

[ ∞∑
k=m

zk

]
dz (5.31)

=

m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

+
1

Γ(1 + 2s)

∫ 1

0

(1− z)2szm−s−1

[ ∞∑
k=0

zk

]
dz

=

m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

+
1

Γ(1 + 2s)

∫ 1

0

(1− z)2s−1zm−s−1 dz.
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Combining this, the fact that Definition 4.1 ensures that for all z ∈ C with R(z) ∈ R\{. . . ,−2,−1, 0}
it holds that zΓ(z) = Γ(z+1), and, e.g., Artin [6, Eq. (2.13)] (applied for every m ∈ N, s ∈ (m−1,m)
with x x m− s, y x 2s in the notation of Artin [6, Eq. (2.13)]) demonstrates that for all m ∈ N,
s ∈ (m− 1,m) it holds that

∑
k∈N

Γ(k − s)
Γ(k + 1 + s)

=
m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

+
1

Γ(1 + 2s)

[
Γ(m− s)Γ(2s)

Γ(m+ s)

]

=
m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

+
1

2sΓ(2s)

[
Γ(m− s)Γ(2s)

Γ(m+ s)

]
(5.32)

=
m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

+
Γ(m− s)

2sΓ(m+ s)
.

Combining this and Proposition 5.6 proves that for all m ∈ N, s ∈ (m− 1,m) it holds that

∑
k∈Z

Ks(k) =
−2 · 4sΓ(1/2 + s)√

πΓ(−s)

[
m−1∑
k=1

Γ(k − s)
Γ(k + 1 + s)

+
Γ(m− s)

2sΓ(m+ s)

]
(5.33)

=
−2 · 4sΓ(1/2 + s)√

πΓ(−s)

[
−Γ(−s)

2Γ(1 + s)

]
=

4sΓ(1/2 + s)√
πΓ(1 + s)

.

The proof of Lemma 5.7 is thus complete.

6. Series representation for the discrete fractional Laplace operator

In this section we prove the main result of this article. First, in Subsection 6.1 we provide
a series representation of the real-valued non-integer powers of the discrete Laplace operator (cf.
Lemma 6.1). This representation employs the fractional kernel introduced in Definition 5.1 and
its proof hinges upon the results developed in Section 5. It is particularly interesting to note that
the representation obtained in Lemma 6.1 coincides with the representation presented in Ciaurri et
al. [13, Theorem 1.1] (the case where m = 1) and Padgett et al. [51, Theorem 2] (the case where
m = 2).

In Subsection 6.2 we demonstrate that the representation presented in Lemma 6.1 holds for s ∈ N
if we consider the limiting values of the discrete kernel function. The main result of the article,
Theorem 6.4, follows immediately from the combination of Lemmas 6.1 and 6.3. In particular,
Theorem 6.4 demonstrates that all real-valued positive powers of the discrete Laplace operator may
be represented with the same series (or, at least, as the limit of this series). Therefore, it is the
case that the discrete fractional Laplace operator is, in some sense, a perturbation of the standard
positive integer power case.

While it is not the purpose of this article to discuss such issues, we wish to emphasize the
importance of the last sentence in the previous paragraph. The fact that the discrete fractional
Laplace operator’s series representation coincides with the series representation for positive integer
powers provides a framework to endow fractional calculus with potentially enlightening physical
interpretations. A particularly lacking feature of the fractional calculus is the lack of meaningful
physical interpretations in many situations, which has been one of the primary limiting factor
in its widespread application. However, Theorem 6.4 allows us to view the fractional powers as
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“transitional phases” between the positive integer cases, loosely speaking. Thus, we may use the
known physical intuition for positive integer powers to provide a deeper understanding of the positive
non-integer cases.

6.1. Series representation for positive non-integer order

Lemma 6.1. It holds for all m ∈ N, s ∈ (m− 1,m), u ∈ `2(Z), n ∈ Z that(
(−∆)su

)
(n) =

∑
k∈Z

Ks(n− k)
(
u(n)− u(k)

)
(6.1)

(cf. Definitions 3.2, 4.11, and 5.1).

Proof of Lemma 6.1. Throughout this proof let u ∈ `2(Z), let v : Z → `2(Z) satisfy for all n ∈ Z
that v(n) = (−∆u)(n), and let As ∈ R, s ∈ (0,∞), satisfy for all s ∈ (0,∞) that

As =
4sΓ(1/2 + s)√
πΓ(1 + s)

(6.2)

(cf. Definitions 4.1 and 4.3). Observe that Padgett et al. [51, Theorem 1] establishes (6.1) in the
case that m = 1, s ∈ (0, 1). Next, note that Definition 4.11 and the fact that for all m ∈ N∩ [2,∞),
n ∈ Z it holds that ((−∆)mu)(n) = ((−∆)m−1(−∆)u)(n) (i.e., we are invoking the fact that
standard function composition is associative on its domain) ensure that for all m ∈ N ∩ [2,∞),
s ∈ (m− 1,m), n ∈ Z it holds that(

(−∆)su
)
(n) =

(
(−∆)s−(m−1)((−∆)m−1u)

)
(n) =

(
(−∆)s−(m−1)((−∆)m−2(−∆u))

)
(n)

=
(
(−∆)s−(m−1)((−∆)m−2v)

)
(n) =

(
(−∆)s−1v

)
(n). (6.3)

We now claim that for all m ∈ N ∩ [2,∞), s ∈ (m− 1,m), n ∈ N it holds that(
(−∆)su

)
(n) =

∑
k∈Z

Ks(n− k)
(
u(n)− u(k)

)
. (6.4)

We prove (6.4) by induction on m ∈ N∩ [2,∞). For the base case m = 2 observe that Padgett et al.
[51, Theorem 2] establishes (6.4). For the induction step N ∩ [2,∞) 3 (m− 1) 99K m ∈ N ∩ [3,∞),
let m ∈ N ∩ [3,∞) and assume for all m ∈ {2, 3, . . . ,m− 1}, s ∈ (m− 1,m), n ∈ Z that (6.4) holds.
Observe that the induction hypothesis, (6.2), (6.3), (6.4), and Lemma 5.7 demonstrate that for all
s ∈ (m− 1,m), n ∈ Z it holds that(

(−∆)su
)
(n) =

(
(−∆)s−1v

)
(n) =

∑
k∈Z

Ks−1(n− k)
(
v(n)− v(k)

)
(6.5)

= v(n)
∑
k∈Z

Ks−1(n− k)−
∑
k∈Z

Ks−1(n− k)v(k) = As−1v(n)−
∑
k∈Z

Ks−1(n− k)v(k).

This, Definition 5.1, the fact that for all n ∈ Z it holds that v(n) = (−∆u)(n), and item (i) of
Lemma 5.4 show that for all s ∈ (m− 1,m), n ∈ Z it holds that(

(−∆)su
)
(n) = As−1v(n)−

∑
k∈Z

Ks−1(n− k)v(k)

= As−1

(
2u(n)− u(n− 1)− u(n+ 1)

)
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−
∑
k∈Z

Ks−1(n− k)
(
2u(k)− u(k − 1)− u(k + 1)

)
= As−1

(
2u(n)− u(n− 1)− u(n+ 1)

)
−
∑
k∈Z

[
2Ks−1(k)−Ks−1(k − 1)−Ks−1(k + 1)

]
u(n− k)

= As−1

(
2u(n)− u(n− 1)− u(n+ 1)

)
−
[
2Ks−1(0)−Ks−1(−1)−Ks−1(1)

]
u(n) (6.6)

−
[
2Ks−1(1)−Ks−1(0)−Ks−1(2)

]
u(n− 1)

−
[
2Ks−1(−1)−Ks−1(−2)−Ks−1(0)

]
u(n+ 1)

−
∑

k∈Z\{−1,0,1}

[
2Ks−1(k)−Ks−1(k − 1)−Ks−1(k + 1)

]
u(n− k)

=
[
2As−1 + 2Ks−1(1)

]
u(n)

−
[
As−1 + 2Ks−1(1)−Ks−1(2)

](
u(n− 1) + u(n+ 1)

)
−

∑
k∈Z\{−1,0,1}

[
2Ks−1(k)−Ks−1(k − 1)−Ks−1(k + 1)

]
u(n− k).

Next, note that (6.2), the fact that Definition 4.1 implies that for all z ∈ C with R(z) ∈ R\{. . . ,−2,
−1, 0} it holds that Γ(z + 1) = zΓ(z), and the fact that 1 − s ∈ (−∞, 0] guarantee that for all
s ∈ (m− 1,m) it holds that

Ks−1(1) =
−1Z\{0}(1) 4s−1Γ(1/2 + (s− 1))Γ(|1| − (s− 1))

√
πΓ(−(s− 1))Γ(|1|+ 1 + (s− 1))

=
−4s−1Γ(s− 1/2)Γ(2− s)√

πΓ(1− s)Γ(1 + s)

=
−4s−1Γ(s− 1/2)(1− s)Γ(1− s)√

πΓ(1− s)sΓ(s)
=

4s−1Γ(s− 1/2)(s− 1)√
πsΓ(s)

(6.7)

and

Ks−1(2) =
−1Z\{0}(2) 4s−1Γ(1/2 + (s− 1))Γ(|2| − (s− 1))

√
πΓ(−(s− 1))Γ(|2|+ 1 + (s− 1))

=
−4s−1Γ(s− 1/2)Γ(3− s)√

πΓ(1− s)Γ(2 + s)

=
−4s−1Γ(s− 1/2)(2− s)(1− s)Γ(1− s)√

πΓ(1− s)(1 + s)sΓ(s)
=

4s−1Γ(s− 1/2)(2− s)(s− 1)√
π(1 + s)sΓ(s)

. (6.8)

Observe that (6.2), (6.7), and the fact that Definition 4.1 implies that for all z ∈ C with R(z) ∈
R\{. . . ,−2,−1, 0} it holds that Γ(z + 1) = zΓ(z) hence ensure that for all s ∈ (m− 1,m) it holds
that

2As−1 + 2Ks−1(1) = 2

[
4s−1Γ(s− 1/2)√

πΓ(s)

]
+ 2

[
4s−1Γ(s− 1/2)(s− 1)√

πsΓ(s)

]
=

2 · 4s−1Γ(s− 1/2)√
πΓ(s)

[
1 +

s− 1

s

]
=

2 · 4s−1Γ(s− 1/2)√
πΓ(s)

[
2s− 1

s

]
(6.9)

=
4s(s− 1/2)Γ(s− 1/2)√

πsΓ(s)
=

4sΓ(1/2 + s)√
πΓ(1 + s)

= As.

In addition, observe that Proposition 5.5 and the fact that Definition 4.1 implies that for all z ∈
C with R(z) ∈ R\{. . . ,−2,−1, 0} it holds that Γ(z + 1) = zΓ(z) demonstrate that for all k ∈
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Z\{−1, 0, 1}, s ∈ (m− 1,m) it holds that

2Ks−1(k)−Ks−1(k − 1)−Ks−1(k + 1)

=
−2(−1)kΓ(2s− 1)

Γ(s+ k)Γ(s− k)
− (s+ k − 1)(−1)kΓ(2s− 1)

(s− k)Γ(s+ k)Γ(s− k)
− (s− k − 1)(−1)kΓ(2s− 1)

(s+ k)Γ(s+ k)Γ(s− k)
(6.10)

=
(−1)kΓ(2s− 1)

Γ(s+ k)Γ(s− k)

[
−2− s+ k − 1

s− k
− s− k − 1

s+ k

]
=

(−1)kΓ(2s− 1)

Γ(s+ k + 1)Γ(s+ k − 1)

[
2s− 4s2

]
=

(−1)k+1Γ(2s+ 1)

Γ(1 + s+ k)Γ(1 + s− k)
= Ks(k).

Moreover, note that Definition 5.1, (6.2), (6.7), (6.8), and the fact that Definition 4.1 implies that
for all z ∈ C with R(z) ∈ R\{. . . ,−2,−1, 0} it holds that Γ(z + 1) = zΓ(z) assure that for all
s ∈ (m− 1,m) it holds that

As−1 + 2Ks−1(1)−Ks−1(2)

=
4s−1Γ(s− 1/2)√

πΓ(s)
+ 2

[
4s−1Γ(s− 1/2)(s− 1)√

πsΓ(s)

]
− 4s−1Γ(s− 1/2)(2− s)(s− 1)√

π(1 + s)sΓ(s)

=
4s−1Γ(s− 1/2)√

πΓ(s)

[
1 + 2

(
s− 1

s

)
+

(s− 2)(s− 1)

s(1 + s)

]
=

4s−1Γ(s− 1/2)√
πΓ(s)

[
4(s− 1/2)

s+ 1

]
(6.11)

=
4sΓ(s+ 1/2)√
πΓ(s)(s+ 1)

=
4sΓ(s+ 1/2)√
πΓ(s)(s+ 1)

· sΓ(−s)
sΓ(−s)

=
−4sΓ(s+ 1/2)Γ(1− s)√

πΓ(−s)Γ(2 + s)
= Ks(1).

Combining (6.6), (6.9), (6.10), (6.11), and item (i) of Lemma 5.4 therefore yields that for all
s ∈ (m− 1,m), n ∈ Z it holds that(

(−∆)su
)
(n) =

[
2As−1 + 2Ks−1(1)

]
u(n)

−
[
As−1 + 2Ks−1(1)−Ks−1(2)

](
u(n− 1) + u(n+ 1)

)
−

∑
k∈Z\{−1,0,1}

[
2Ks−1(k)−Ks−1(k − 1)−Ks−1(k + 1)

]
u(n− k) (6.12)

= Asu(n)−Ks(1)
(
u(n− 1) + u(n+ 1)

)
−

∑
k∈Z\{−1,0,1}

Ks(k)u(n− k)

= Asu(n)−
∑

k∈Z\{0}
Ks(k)u(n− k) =

∑
k∈Z

Ks(n− k)
(
u(n)− u(k)

)
.

Induction hence establishes (6.4). The proof of Lemma 6.1 is thus complete.

6.2. Series representation for arbitrary positive order

Lemma 6.2. Let s ∈ N. Then it holds for all k ∈ Z that

lim
z→s

Kz(k) =
1{1,2,...,s}(k) (−1)k+1Γ(2s+ 1)

Γ(1 + s+ k)Γ(1 + s− k)
(6.13)

(cf. Definitions 4.1 and 5.1).
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Proof of Lemma 6.2. First, note that Definition 5.1 and Proposition 5.5 ensure that for all k ∈ Z
it holds that

lim
z→s

Kz(k) = lim
z→s

1Z\{0}(k) (−1)k+1Γ(2s+ 1)

Γ(1 + s+ k)Γ(1 + s− k)
(6.14)

(cf. Definitions 4.1 and 5.1). Combining this and the fact that Definition 4.1 ensures that for all
z ∈ {. . . ,−2,−1, 0} it holds that 1/Γ(z) = 0 establishes (6.13). The proof of Lemma 6.2 is thus
complete.

Lemma 6.3. It holds for all s ∈ N, u ∈ `2(Z), n ∈ Z that

(
(−∆)su

)
(n) =

2s∑
k=0

(−1)k−s
(

2s

k

)
u(n− s+ k) = lim

z→s

[∑
k∈Z

Kz(n− k)
(
u(n)− u(k)

)]
(6.15)

(cf. Definitions 3.2, 4.11, and 5.1).

Proof of Lemma 6.3. First, note that Definition 4.1 and the fact that for all a ∈ N, b ∈ {0, 1, . . . , a}
it holds that

(
a
b

)
=
(
a
a−b
)

assure that for all s ∈ N, u ∈ `2(Z), n ∈ Z it holds that

2s∑
k=0

(−1)k−s
(

2s

k

)
u(n− s+ k) =

s∑
k=−s

(−1)k
(

2s

s+ k

)
u(n− k)

=
s∑

k=−s

[
(−1)kΓ(2s+ 1)

Γ(1 + s+ k)Γ(1 + s− k)

]
u(n− k) (6.16)

=

[
Γ(2s+ 1)

Γ(1 + s)Γ(1 + s)

]
u(n)−

s∑
k=1

[
(−1)k+1Γ(2s+ 1)

Γ(1 + s+ k)Γ(1 + s− k)

](
u(n− k) + u(n+ k)

)
(cf. Definitions 3.2 and 4.1). Next, observe that Lemma 5.7 ensures that for all z ∈ (0,∞)\N,
u ∈ `2(Z), n ∈ Z it holds that∑

k∈Z
Kz(n− k)

(
u(n)− u(k)

)
= u(n)

∑
k∈Z

Kz(n− k)−
∑
k∈Z

Kz(n− k)u(k)

=

[
4zΓ(1/2 + z)√
πΓ(1 + z)

]
u(n)−

∑
k∈Z

Kz(n− k)u(k) (6.17)

(cf. Definition 5.1). This, Definition 4.1, Definition 5.1, items (i) and (ii) of Lemma 5.4, Lemma 6.2,
and, e.g., Rudin [55, Theorem 7.17] guarantee that for all s ∈ N, u ∈ `2(Z), n ∈ Z it holds that

lim
z→s

[∑
k∈Z

Ks(n− k)
(
u(n)− u(k)

)]
=

[
lim
z→s

4zΓ(1/2 + z)√
πΓ(1 + z)

]
u(n)− lim

z→s

[∑
k∈Z

Kz(n− k)u(k)

]

=

[
4sΓ(1/2 + s)√
πΓ(1 + s)

]
u(n)− lim

z→s

[∑
k∈N

Kz(k)
(
u(n− k) + u(n+ k)

)]

=

[
4sΓ(1/2 + s)√
πΓ(1 + s)

]
u(n)−

∑
k∈N

[
lim
z→s

Kz(k)
](
u(n− k) + u(n+ k)

)
(6.18)
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=

[
4sΓ(1/2 + s)√
πΓ(1 + s)

]
u(n)−

∑
k∈N

[
1{1,2,...,s}(k) (−1)k+1Γ(2s+ 1)

Γ(1 + s+ k)Γ(1 + s− k)

](
u(n− k) + u(n+ k)

)
=

[
4sΓ(1/2 + s)√
πΓ(1 + s)

]
u(n)−

s∑
k=1

[
(−1)k+1Γ(2s+ 1)

Γ(1 + s+ k)Γ(1 + s− k)

](
u(n− k) + u(n+ k)

)
.

In addition, note that the fact that Definition 4.1 implies that for all z ∈ C with R(z) ∈ R\{. . . ,−2,
−1, 0} it holds that zΓ(z) = Γ(1+z) and the Legendre duplication formula (cf., e.g., [1, Eq. (6.1.18),
Page 256]) demonstrate that for all s ∈ N it holds that

4sΓ(1/2 + s)√
πΓ(1 + s)

=
4sΓ(1/2 + s)√
πΓ(1 + s)

· sΓ(s)

sΓ(s)
=

4s
[
21−2s

√
πsΓ(2s)

]
√
πΓ(s)Γ(1 + s)

=
Γ(2s+ 1)

Γ(1 + s)Γ(1 + s)
. (6.19)

Combining this, (6.16), (6.18), Lemma 4.8, and Definition 4.11 proves (6.15). The proof of
Lemma 6.3 is thus complete.

Theorem 6.4. It holds for all s ∈ (0,∞), u ∈ `2(Z), n ∈ Z that

(
(−∆)su

)
(n) = lim

z→s

[∑
k∈Z

Kz(n− k)
(
u(n)− u(k)

)]
(6.20)

(cf. Definitions 3.2, 4.11, and 5.1).

Proof of Theorem 6.4. Note that combining Lemmas 6.1 and 6.3 establishes (6.20). The proof of
Theorem 6.4 is thus complete.

7. Conclusions and future endeavors

7.1. Concluding remarks

In this article we developed novel results regarding real-valued positive fractional powers of the
discrete Laplace operator. In particular, we defined a discrete fractional Laplace operator for arbi-
trary real-valued positive powers (cf. Definition 4.11) and then developed its series representation
(cf. Theorem 6.4). This latter task was primarily accomplished through the development of two
sets of results. First, we constructed the series representation for positive integer powers of the
discrete Laplace operator (cf. Lemmas 4.8 and 6.3). Next, we developed series representations for
positive non-integer powers of the discrete Laplace operator (cf. Lemma 6.1). The main result of
the article (cf. Theorem 6.4) is obtained by showing that the series representations obtained in each
of the previous steps in fact coincide.

The main results developed—i.e., the results of Section 6—required numerous preliminary results
from various areas of mathematics. The results in Section 3 are of a functional analysis flavor
and allow for a beautiful description of important properties of strongly continuous semigroups.
These results were combined with results from discrete harmonic analysis in Section 4 in order to
define and study the discrete fractional Laplace operator. Since the presented definition of this
operator (cf. Definition 4.11) employs a so-called semigroup language, it was imperative that all
novel mathematical objects are determined to be well defined in `2(Z) (cf. Definition 3.2). Finally,
Section 5 provides a detailed study of the proposed fractional kernel function (cf. Definition 5.1)
which is necessary for the development of the coefficients of the series representations presented
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in Section 6. Therein, it is shown that the proposed fractional kernel function is well-defined,
symmetric, and continuous for all s ∈ (0,∞)\N. It is later shown in Lemma 6.2 that the values
s ∈ N are in fact removable singularities.

As a final remark, we wish to emphasize the importance of the presented results (for a specific
physical motivation, see Section 2 above). Due to the rapidly growing interest in problems related
to fractional calculus, there is a need to determine the validity of including fractional operators
into existing models. The study of the discrete fractional Laplace operator, or its continuous
counterpart, for the case when s ∈ (0, 1) is well-understood and often used in physical sciences.
In this setting, the operator may be used to model super-diffusive phenomena [51]. Moreover,
there have been rigorous studies of the operator in this parameter regime which demonstrate that
such considerations are well-defined and well-behaved. As such, it is natural to attempt to extend
these studies to the case when s ∈ (1,∞), as well. The current article has demonstrated that
such extensions are indeed well-defined in the discrete case. In addition, Theorem 6.4 shows that
one may potentially use the existing understanding of the case of positive integer powers of the
discrete Laplace operator to provide some much needed physical intuition to the discrete fractional
Laplace operator. However, there are still numerous unanswered questions regarding important
properties of these operators and we will outline a few such open problems and research directions
in Subsection 7.2 below.

7.2. Related future endeavors

First and foremost, there is a need to continue the analytical work presented herein in order
to obtain a better understanding of the discrete fractional Laplace operator. In this article, we
have considered the setting where all objects are defined in `2(Z), however, this is not always the
appropriate setting for physically relevant problems. As such, we intend to extend our study to the
situation where the underlying function spaces have less regularity (e.g., Hölder spaces) and develop
standard regularity estimates. We also intend to develop similar series representations for the case
of real-valued negative exponents. Such representations are highly important for studying fractional
Poisson-like problems, as they provide representations of the solution to these problems. Finally,
we hope to develop an understanding of the spectral properties of the discrete fractional Laplace
operator. While it is well-known that the discrete Laplace operator (cf. Definition 4.3) has purely
absolutely continuous spectra (cf., e.g., Dutkay and Jorgensen [18]), to the authors’ knowledge this
has not been rigorously proven in the case of the discrete fractional Laplace operator. Demonstrating
this to be the case is of utmost importance and will have far-reaching implications in mathematics
and physics (for clarification, see the techniques outlined in Liaw [38]).

The proposed discrete fractional Laplace operator is also of interest due to its importance in the
physical sciences. An example of interest for future research is transport in turbulent plasmas. It
has been experimentally observed that heat and particle transport in turbulent plasmas is non-local
(i.e., anomalous) in nature (cf., e.g., [15, 23, 56]). Comparison between transport models using
the fractional Laplace operator and experimental results have demonstrated that electron trans-
port in turbulent fusion plasmas is characterized by fractional exponents in the range s ∈ (0.6, 1),
which indicates super-diffusive behavior [34, 35]. Moreover, a generalized approach to modeling
anomalous diffusive transport in turbulent plasmas employs diffusion-type equations where frac-
tional derivatives occur in both space and time (cf., e.g., del Castillo-Negrete et al. [14]). Using the
series representations presented herein, we intend to show that the fractional derivative in time can
be incorporated into the spatial derivative, which can greatly simplify such equations.
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[59] Tricomi, F. G., and Erdélyi, A. The asymptotic expansion of a ratio of gamma functions.
Pacific J. Math. 1 (1951), 133–142.

[60] Vaulina, O. S., and Vladimirov, S. V. Diffusion and dynamics of macro-particles in a
complex plasma. Physics of Plasmas 9, 3 (2002), 835–840.

[61] Vázquez, J. L. The mathematical theories of diffusion: nonlinear and fractional diffusion. In
Nonlocal and nonlinear diffusions and interactions: new methods and directions, vol. 2186 of
Lecture Notes in Math. Springer, Cham, 2017, pp. 205–278.

[62] Yang, R. On higher order extensions for the fractional Laplacian. arXiv preprint
arXiv:1302.4413 (2013).

32


	Introduction
	Motivation of study
	Background
	Sequence spaces
	The logarithmic norm

	The discrete Laplace operator of arbitrary order
	The discrete Laplace operator and its associated semigroup
	Positive integer powers of the discrete Laplace operator
	The discrete fractional Laplace operator of arbitrary order

	The discrete fractional kernel
	Series representation for the discrete fractional Laplace operator
	Series representation for positive non-integer order
	Series representation for arbitrary positive order

	Conclusions and future endeavors
	Concluding remarks
	Related future endeavors


