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Abstract

Recently, many different pulsar timing array (PTA) collaborations have reported strong evidence for a common
stochastic process in their data sets. The reported amplitudes are in tension with previously computed upper limits.
In this paper, we investigate how using a subset of a set of pulsars biases Bayesian upper limit recovery. We
generate 500 simulated PTA data sets, based on the NANOGrav 11 yr data set with an injected stochastic
gravitational-wave background (GWB). We then compute the upper limits by sampling the individual pulsar
likelihoods, and combine them through a factorized version of the PTA likelihood to obtain upper limits on the
GWB amplitude, using different numbers of pulsars. We find that it is possible to recover an upper limit (95%
credible interval) below the injected value, and that it is significantly more likely for this to occur when using a
subset of pulsars to compute the upper limit. When picking pulsars to induce the maximum possible bias, we find
that the 95% Bayesian upper limit recovered is below the injected value in 10.6% of the realizations (53 of 500).
Further, we find that if we choose a subset of pulsars in order to obtain a lower upper limit than when using the full
set of pulsars, the distribution of the upper limits obtained from these 500 realizations is shifted to lower-amplitude
values.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858)

1. Introduction

Pulsar timing arrays (PTAs) aim to detect gravitational
waves in the nanohertz frequency regime by looking for
correlations between times of arrival of radio signals from
millisecond pulsars (MSPs; Taylor 2021). Pulsar timing models
predict the pulse times of arrival from a pulsar based on that
pulsar’s astrophysical properties. The differences between the
predicted and measured times of arrival are the timing residuals
(Verbiest et al. 2021). By modeling these residuals, we attempt
to reveal gravitational-wave signals hidden in our data.

The first such gravitational-wave signal detected by PTAs is
expected to come from a stochastic gravitational-wave back-
ground (GWB) made up of gravitational waves emitted by a
cosmological population of supermassive binary black holes
(SMBBHs; Rosado et al. 2015). Assuming that these SMBBHs
are circular and only evolve due to gravitational-wave
emission, the characteristic strain spectrum is given by Phinney
(2001):
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where the amplitude AGWB depends on the SMBBH population
and galaxy merger rate, and fyr is the reference frequency
corresponding to 1 yr−1. Based on models of the SMBBH
population, we expect to detect the GWB with PTAs within the
next 5 yr (Taylor et al. 2016; Pol et al. 2021).

Recently, multiple PTAs have found evidence of a common
spectrum stochastic process. The NANOGrav collaboration
reported a common spectrum process with a median strain
amplitude of 1.92× 10−15 in an analysis of their 12.5 yr data
set (Arzoumanian et al. 2020); the PPTA reported a median
amplitude of 2.2× 10−15 (Goncharov et al. 2021); the EPTA
reported a median amplitude of 2.95× 10−15 (Chen et al.
2021); and the IPTA, which used combined data from its
constituent collaborations’ older data sets, reported a median
amplitude of 2.8× 10−15 (Antoniadis et al. 2022). The
amplitude of this process is in tension with some previously
published upper limits on the amplitude of the GWB.
The NANOGrav collaboration placed an upper limit of

A< 1.45× 10−15, based on an analysis of 34 pulsars timed for
up to 11 yr (Arzoumanian et al. 2018). These pulsars consist of
the ones from the 11 yr data set that have been timed for more
than 3 yr. The PPTA placed an upper limit of A< 10−15, based
on an analysis of the four pulsars that had the highest timing
precision, which were timed for up to 11 yr (Shannon et al.
2015). The EPTA placed an upper limit of A< 3× 10−15,
based on an analysis of six pulsars timed for up to 18 yr
(Lentati et al. 2015). These six pulsars were chosen to minimize
the dimensionality required to search over. Additionally, the
least sensitive pulsar of the six affected the result at the 2%
level.
There are several possible explanations for this apparent

discrepancy between the earlier results and the most recent
ones. Early work did not model the uncertainty in the position
of the solar system barycenter, and, as shown in Vallisneri et al.
(2020), the choice of solar system ephemeris can significantly
affect detection statistics. The choice of the prior on the
pulsar’s intrinsic red noise also has a significant effect on the
upper limit on a common stochastic process, as shown in
Hazboun et al. (2020), due to the covariance between the two.
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Here, we investigate how Bayesian GWB upper limits are
affected by the use of a finite number of pulsars. We generate
simulated PTA data with an injected GWB, and compare the
Bayesian upper limits computed by analyzing the entire PTA
versus using only a subset of the pulsars. We show that a wide
range of possible upper limits can be computed when only a
small number of pulsars are used to compute the upper limit.
Furthermore, it is possible to find an upper limit that is lower
than the injected value of the GWB, and this occurs more often
when using a subset of pulsars.

This paper is organized as follows. In Section 2, we discuss
the procedure by which we simulate the pulsars and compute
the upper limits. Section 3 details how the upper limits change
with different combinations of pulsars. Finally, in Section 4, we
discuss our results and make concluding remarks about what
this means for the number of pulsars that are used in PTA
data sets.

2. Methods

We use methods that are, to a large extent, the same as those
in previous papers that set Bayesian upper limits (Lentati et al.
2015; Shannon et al. 2015; Arzoumanian et al. 2016, 2018).
The significant differences include using a factorized PTA
likelihood and grid-approximating the posterior for each
individual pulsar, instead of sampling using a Metropolis–
Hastings Markov Chain Monte Carlo algorithm. All models
here, as in previous papers setting Bayesian upper limits, use a
30-frequency power-law pulsar intrinsic red noise and GWB
given by
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where ρ( f )= S( f )Δf, where S( f ) is the power spectral density
and Δf= 1/T.

All of the results in this paper use Bayesian methods. The
frequentist methods that have been used previously to set upper
limits via the optimal statistic (Anholm et al. 2009; Demorest
et al. 2012; Chamberlin et al. 2015) are not considered here.
Importantly, the Bayesian and frequentist upper limits have
different interpretations and do not coincide in general (Röver
et al. 2011). Furthermore, the optimal statistic, which was used
to set upper limits in Arzoumanian et al. (2016), only looks at
the cross-correlations between different pulsars, while the
Bayesian methods used to set upper limits in previous papers
look only at autocorrelations, so the two are fundamentally
different and it is difficult to compare them.

2.1. Factorized Likelihood

When interpulsar correlations are not included, the PTA
likelihood can be factored into a product of individual pulsars
(Arzoumanian et al. 2020; Taylor et al. 2022):
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where dj are the data, θj are the intrinsic noise parameters, and
AGWB is the common red process amplitude for the jth pulsar.
Using the factorized likelihood allows for the rapid computa-
tion of upper limits with more than one pulsar. We use a grid
approximation on the individual pulsar models, as described in
Section 2.3, then multiply the marginalized common red

process amplitude posteriors for each pulsar that we want in the
combined upper limit. These new posteriors are then
reweighted from a log-uniform to a uniform prior on AGWB,
by multiplying by

f x
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where x Alog10 GWB= , and xmax, xmin are the maximum and
minimum values of the uniform prior for the log amplitude,
respectively. From this reweighted marginalized posterior, we
can take the 95% Bayesian upper limit easily, by interpolating
the posterior and using a cumulative sum until we reach 0.95,

p A d 0.95, 5
x

x

GWB
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and then finding the Alog10 GWB value corresponding to x95%
where the sum was truncated. All the following discussions use
the 95% upper limit as computed here.

2.2. Simulations

We simulate 500 sets of pulsars using TEMPO2 (Edwards
et al. 2006; Hobbs et al. 2006) and libstempo (Vallis-
neri 2020), with the observation baselines, observing cadences,
and noise properties based on the 11 yr NANOGrav data set
(Arzoumanian et al. 2018). The full 11 yr NANOGrav data set
contains 45 pulsars. Due to the large number of upper limits
that need to be computed for the following sections, we only
simulate 22 of the 45 pulsars that have been timed for more
than 6 yr. Pulsars with shorter timing baselines contribute less
to the upper limit than ones that have been observed for many
years. Because of this, we do not expect that removing these
pulsars will significantly affect the results here.
Each pulsar contains white noise related to the uncertainty in

the pulsar times of arrival, intrinsic red noise similar to that in
the 11 yr data set, and an injected GWB with an amplitude
AGWB= 10−15 and a spectral index γGWB= 13/3. The GWB
injection includes Hellings and Downs cross-correlations
(Hellings & Downs 1983), but we only use the autocorrelations
to set the upper limits, as was done in many previous PTA
papers (Shannon et al. 2015; Lentati et al. 2016; Arzoumanian
et al. 2016, 2018). Lentati et al. (2015) did use cross-
correlations, but found that the upper limits were consistent
with their autocorrelation-only analysis. Similarly, we also find
that including cross-correlations does not change the upper
limit in the cases where the upper limit falls below the injected
amplitude. The autocorrelations dominate the recovery of a
GWB when the number of pulsars Np is relatively small, since
all of the cross-correlation coefficients are less than 1; however,
for large numbers of pulsars, the cross-correlations become
more significant, since the number of cross-correlation terms
increases as  Np

2( ). In this particular set of simulated pulsars,
the cross-correlations are too weak compared to the auto-
correlations to affect the upper limits.

2.3. Software and Implementation

We use enterprise (Ellis et al. 2020) to set up a model
for our simulated pulsar sets, with priors as in Table 1. Here,
we use a grid approximation to obtain each pulsar’s posterior,
which is rendered effective by the low dimensionality of the
parameter space. We use a power-law model for both the red
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noise intrinsic to each pulsar and the red noise common among
all the pulsars. Therefore, we set up our grid for each individual
pulsar over (1) the intrinsic red noise amplitude, (2) the
intrinsic red noise spectral index, and (3) the common red
process amplitude. Care must be taken, since models from
enterprise return a log-likelihood. To facilitate the use of
the grid approximation, we subtract the maximum log-
likelihood evaluated on the grid from all points before
exponentiation to return the posterior that could then be
marginalized. We use a Nelder–Mead algorithm (Gao &
Han 2012; Virtanen et al. 2020) to find this maximum, starting
from several random locations in the parameter space. Once the
maximum is found, we evaluate 300 points of the Alog10 GWB
marginalized posterior. To evaluate each point, we marginalize
over the intrinsic red noise parameters simultaneously using
scipy.integrate.dblquad (Virtanen et al. 2020). This
reduces the number of evaluations by allowing the adaptive
integration routine to decide how many points are required,
instead of using a uniform grid. We model each pulsar
individually and then postprocess using the factorized like-
lihood, as discussed in Section 2.1.

3. Results

Using the above methods and software, we investigate how
bias may appear when using a subset of pulsars. We start this
section with three specific combinations and discuss how their
cumulative upper limits change as we add more pulsars. Next,
we generalize to all possible combinations and average over all
realizations to discover trends in how adding more pulsars
affects the distribution of the upper limits that are possible. We
then investigate a single combination for every realization to
see how the upper limits change as we add more pulsars. Some
of these pulsars hold more influence over the upper limits than
others. By using the Kullback–Leibler divergence (KL; Kull-
back & Leibler 1951), we enumerate and examine these
pulsars. Finally, we investigate bias by comparing the
distributions of the upper limits obtained when computing the
minimum cumulative upper limit given by a sequence of 22
pulsars for all 500 realizations.

3.1. Combinations and Upper Limits

One of the goals of this work is to investigate how the choice
of which pulsars to use affects the computation of the upper
limits. Initially, we consider three different combinations: time
span, single-pulsar upper limit, and a combination that uses a
greedy algorithm to get a low upper limit.

1. The time span combination is, as its name suggests, a
combination that sorts pulsars by their observation time
spans.

2. After taking each pulsar and individually computing an
upper limit, we can order these upper limits from lowest
to highest. We call this the single-pulsar upper limit
combination. This was the combination used in the
NANOGrav 9 yr stochastic GWB search (Arzoumanian
et al. 2016). When using this method, the upper limit
dropped to a minimum, then increased with each added
pulsar, until it eventually saturated.

3. The last combination is a greedy algorithm in which we
build up the upper limit pulsar by pulsar. The lowest
individual pulsar upper limit takes the first slot in the
combination. Next, the upper limit is computed for the
first slot and each of the remaining 21 pulsars. The pulsar
from the remaining 21 that gives the lowest two-pulsar
upper limit is put into the second slot. By continuing in
this fashion until all the pulsars have been used, we find
that the combination attains a minimum that is much
lower than the time span combination.

Because there is only one combination when using all 22
pulsars, the combinations’ upper limits converge as we use
more pulsars. However, these three combinations clearly show
that there can be a large variance in the upper limits when we
use fewer pulsars. One (particularly bad) realization using the
three combinations discussed here is shown in Figure 1.
Stopping with too few pulsars in either the single-pulsar upper
limit or the greedy upper limit combination returns a value that
is below the injected amplitude. In the greedy upper limit
combination, this is especially pronounced: the upper limits
calculated with between 2 and 19 pulsars yield a value below
the injected amplitude.

3.2. All Combinations

Other than the combinations listed here, there are many other
upper limit combinations that are possible. The factorized PTA
likelihood allowed us to compute the upper limits for all
possible combinations of 22 pulsars—a feat that would not
otherwise be possible with current computers. In Figure 2, we
show the distributions of these upper limits for all

k
22( )

Table 1
Priors for the Model Used to Analyze Each Individual Simulated Pulsar

Parameter Description Interval

ARN log-uniform [−20, −11]
γRN uniform [0, 7]
AGWB log-uniform [−20, −11]
γGWB constant 13/3
EFAC constant 1

Note. The intrinsic red noise parameters have been labeled with “RN,” and the
common red process amplitude and spectral index have been labeled with
“GWB.” The spectral index for the common red process has been fixed in each
model to 13/3. EFAC is a multiplicative factor on the time of arrival
uncertainties.

Figure 1. Cumulative upper limits computed using three different upper limit
combinations. While the different combinations vary significantly, they agree
once the last pulsar has been added. The dashed lines are the minimum values
that are achieved by each combination. Both the single-pulsar upper limit and
the greedy upper limit combinations drop below the injected value when a
subset of the pulsars is used.
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combinations with a given k on each violin. This realization is
worrisome, because an entire mode of the multimodal structure
ends up below the injected amplitude. The median upper limit
decreases monotonically as we increase the number of pulsars,
and it reaches its minimum value when using the full pulsar set.
As we increase the number of pulsars used, the spread of the
distribution of possible upper limits decreases, until we are left
with only a single point when using the entire set of pulsars.
The number above each violin in Figure 2 shows the number of
combinations below the injected amplitude (the blue solid line)
divided by the number of combinations below the 22-pulsar
upper limit (the green dashed line) when using k pulsars. When
choosing pulsar combinations that give a lower upper limit than
when using the full set, this gives the probability of randomly
selecting a combination that results in an upper limit below the
injected amplitude. If we try to find an upper limit lower than
when using the full data set in this realization, we risk ending
up with an upper limit below the injected amplitude.

After investigating the combinations that end up below the
injected amplitude, we find that there are some commonalities
among these combinations. Pulsars J1640+2224 and
J1909–3744 are used in nearly every combination, while
J1713+0747 is left out until all the pulsars have been added.
However, we also find that the pulsars that are included and left
out is realization-dependent: another realization’s combinations
that fall below the injected amplitude do not necessarily include
or exclude these particular pulsars.

Apart from being particularly influential on the upper limits
(see Section 3.5), these pulsars behave the same as all the other
pulsars in our data set. The recovered values of their intrinsic
red noise amplitude and spectral indices are consistent with the
injected values in every realization. Further, we used simula-
tions that do not include any extra astrophysical effects that
may be mismodeled. While removing J1640+2224 and

J1909–3744 “fixes” this particular realization, in the sense that
the amplitude upper limit is no longer below the injected value,
seven other realizations remain with upper limits below the
injected amplitude. Additionally, we cannot know beforehand
that these pulsars cause problems without knowing the true
value of the GWB amplitude. Including the rest of the pulsars
in the data set similarly pulls the upper limit back up to
reasonable values in all but two realizations (0.4%).

3.3. All Combinations of All Realizations

Figure 3 shows the distributions of the upper limits averaged
across all 500 realizations of the GWB. The median upper limit
again decreases monotonically as the number of pulsars
increases and the range of the upper limits decreases. However,
there are realizations that have upper limits that drop below the
injected value, with as few as two pulsars and as many as 22
pulsars. When using the subset of pulsars that yields the lowest
upper limit in all the realizations, we find the Alog10 GWB upper
limit below the injected value in 53 (10.6%) of 500 realizations.
Two realizations (0.4%) remain below the injected value

even when using the entire pulsar set. In both cases, a single
pulsar that strongly disfavors the GWB at and above its
injected value dominates the upper limit, with a marginalized

Alog10 GWB posterior localized to values below the injected
value. Upon multiplying this pulsar’s Alog10 GWB posterior by
others, the other posteriors are forced to zero above the injected
amplitude, resulting in the overall upper limit falling below the
injected amplitude.

3.4. Single Combination of All Realizations

Following the previous sections, we consider a single
sequence of pulsars: from the shortest observation time span
to the longest. This allows us to look at the trends that exist

Figure 2. Violin plot showing the distribution of upper limits given by combinations of k pulsars for a single realization of the GWB. The number of pulsars k is given
on the horizontal axis. The minimum, 5%, median, 95%, and maximum values are given by the horizontal lines on each violin. The bold bar around the white dot
showing the median value gives the 25%–75% values. Violins have been removed for values of k that have fewer than 300 combinations. This realization has a clear
multimodal structure, in which one of the modes goes below the injected amplitude for subsets consisting of 15 or more pulsars. The number above each violin shows
the number of combinations below the injected amplitude (the solid blue line) divided by the number of combinations below the 22-pulsar upper limit (the green
dashed line) when using k pulsars. When choosing pulsar combinations that give a lower upper limit than when using the full set, this gives the probability of
randomly selecting a combination that results in an upper limit below the injected amplitude.
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across the realizations as a result of increasing the number of
pulsars used in computing the cumulative upper limits. In
Figure 4, we show the cumulative upper limits obtained when
adding pulsars in this order. Each pulsar added decreases the
upper limit, on average, until about 13 pulsars. At this point,
the upper limit saturates in this specific combination. However,
as shown in Figure 1, this saturation does not happen for some
pulsar combinations.

As can be seen in Figure 4, the pulsars affect the upper limits
differently between realizations. For example, assuming that
the pulsars are added in the same order, as they are here, J1713
+0747 may lower the upper limit in one realization, then
increase the upper limit in the next. However, some pulsars
influence the upper limits more than others.

3.5. Influential Pulsars

In order to work out which pulsars are most influential for
the cumulative upper limits, we use the KL divergence,

D P Q P x
P x
Q x

log , 6
x

KL ⎜ ⎟⎛⎝ ⎞⎠å=( ) ( ) ( )
( )

( )

as a measure of the difference between P and Q, where we take
P(x) as the Alog10 GWB posterior, computed with all 22 pulsars
in the data set, and we take Q(x) as the Alog10 GWB posterior,
computed while “dropping out” the pulsar whose influence we
would like to check. Importantly, P remains the same for every
pulsar that we are dropping out (although it will be slightly
different between realizations). Figure 5 shows three columns
for the pulsars that have DKL> 0.5 for any realization. In the
left column, it shows the KL divergence, as described above. In
the middle column, we plot the Alog10 GWB posterior averaged
over all the realizations for the full data set, the full data set
without one pulsar, and the pulsar that was dropped. The DKL

value between the 22-pulsar mean posterior and the 21-pulsar

mean posterior (both shown in the middle column) appears as a
vertical line in the plots in the left column. In the right column,
we have histograms of the upper limits for these same
combinations for all 500 realizations.
As shown in Figure 5, J1640+2224 and J2317+1439 appear

to slightly lower the mean posteriors and the upper limits once
they are added to the set of pulsars used to compute the upper
limits. J1713+0747 tends to increase the mean posterior and
upper limits, while J1909–3744 does not affect the mean
posterior or the upper limits significantly in either direction. For
every pulsar on these plots, there are realizations where adding
the pulsars does not significantly change the posterior, and we
see this manifest as a DKL≈ 0. The pulsars not shown in these
plots have smaller KL divergences between the full pulsar set
and with one pulsar removed. This does not mean that we

Figure 3. Violin plot showing the distribution of upper limits given by combinations of k pulsars averaged across 500 realizations. The number of pulsars k is given on
the horizontal axis. The minimum, 5%, median, 95%, and maximum values are given by the horizontal lines on each violin. The bold vertical bars around the median
value give the 25%–75% values. The Alog10 GWB 95% upper limit falls below the injected amplitude value in two to 53 (0.4%–10.6%) of 500 realizations, depending
on the subset of pulsars used.

Figure 4. Cumulative upper limits for a sequence of pulsars sorted by
observation time from shortest to longest. Each line corresponds to an
individual realization (out of 500). The bold line represents one of these
realizations. Most realizations in this sequence do not drop below the injected

Alog10 GWB. The pulsars added in this combination have varied behavior
between realizations: in some realizations, the pulsars increase the upper limit,
while in others they decrease the upper limit.
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should drop these pulsars when computing the upper limits, but
that they show less influence on the overall upper limit once 21
pulsars have been included.

This analysis explains the results of the realization in
Section 3.2. The two pulsars that were included in most of the
combinations below the injected amplitude, J1640+2224 and
J1909–3744, appear in this list of our most influential pulsars in
these simulated data sets. Further, J1640+2224 tends to move
the upper limit in a downward direction. J1713+0747, in
contrast, tends to move the upper limit in an upward direction,
and therefore it is left out until the last few pulsars.

3.6. Bias

In computing all possible combinations of the upper limits,
we find that many realizations have combinations that result in
upper limits below the injected amplitude value of the GWB.
Out of 500 realizations, 53 (10.6%) realizations have at least
one combination that gives a 95% upper limit below the
injected value. This number drops to two (0.4%) realizations
when using the full data set for every realization.
Figure 6 shows the upper limits obtained for all 500

realizations, where the upper limits have been found using
three different possible methods. In one method, we computed
the upper limit using all 22 pulsars (the green histogram on the
right). In another method, we ranked the pulsars based on their

Figure 5. The plots in the left column contain the KL divergence computed using the Alog10 GWB posterior, using all pulsars as the first argument, and the Alog10 GWB
posterior, using all but one pulsar as the second argument. The title of each subplot shows the pulsar that is removed from the second argument of the KL divergence.
We cut out any pulsars that do not have DKL > 0.5. In the middle column, we plot the Alog10 GWB posterior averaged over all realizations for the full 22-pulsar set, the
21-pulsar set, and the single pulsar that has been dropped. A vertical dashed line shows the DKL between the mean posteriors of the 22 pulsars and 21 pulsars in the
plots in the left column. In the right column, we plot the upper limits associated with each of the 500 realizations, with colors that correspond to the legend in the
middle column. Each divergence computed shows that even though these pulsars are often influential on the upper limits, there are realizations where the posteriors
with and without the pulsars are close.
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single-pulsar upper limits on the GWB, and then combined
those pulsars one by one until adding another pulsar caused the
upper limit to increase. We took this minimum upper limit as
the true upper limit (the orange histogram in the middle). In the
final method, we looked at all possible combinations of pulsars
and chose the lowest possible upper limit that could be
obtained (the blue histogram on the left).

Note that when using the second or third method, we
necessarily end up either using all 22 pulsars or using some
subset of them, and the computed upper limits must either be
equivalent to the upper limit obtained using all 22 or must be
smaller, which is why the blue (left) and orange (middle)
histograms are shifted to lower values relative to the green
(right) histogram. As shown in Figure 6, the upper limits
obtained using either the second or third method tend to be
lower than those obtained using all 22 pulsars; furthermore, we
find that 12 (2.4%) realizations of the orange (middle)
histogram and 53 (10.6%) realizations of the blue (left)
histogram out of 500 have an upper limit that falls below the
injected amplitude. These results demonstrate that choosing a
subset of pulsars in order to obtain the lowest possible upper
limit results in a biased measurement.

4. Discussion and Conclusion

In this paper, we use simulated PTA data to study how the
choice of which pulsars to include in GWB analyses can bias
the upper limits on the GWB. By factorizing the PTA
likelihood (Taylor et al. 2022), we are able to compute all
possible combinations of upper limits for each realization of the
GWB. This method limits us to an autocorrelation-only
analysis. However, we find that including cross-correlations
does not change the upper limits in the cases that the upper
limits fall below the injected value. In every realization of 500,

we find that the median and spread of the distribution of the
upper limits decrease monotonically as the number of pulsars
used increases. In some realizations, the probability of finding a
value below the injected amplitude is significant when picking
combinations that give upper limits below those returned by
using all 22 pulsars. When using all pulsars to set the upper
limit, we find that the upper limit is below the injected value in
just two of the 500 realizations.
By investigating the sequences of upper limits resulting from

different combinations of pulsars, we have shown that we can
bias our upper limit to lower Alog10 GWB values by using a
subset of pulsars. In 53 (10.6%) of 500 realizations, the upper
limit falls below the injected amplitude when choosing the
minimum value in the lowest upper limit combination
sequence. While this is the maximum bias to lower values of

Alog10 GWB that we can find, it is far from the only set of
combinations that is biased toward lower values. Picking the
lowest upper limit of any sequence of upper limits given by a
combination of pulsars will always result in either the full set of
pulsars being used or a distribution of upper limits from the 500
realizations shifted toward lower Alog10 GWB values.
Multiple PTA experiments have recently published results

reporting the detection of a common stochastic process whose
amplitude is in tension with previously published upper limits
on the amplitude of such a process. This work helps to explain
one possible reason for this discrepancy. The earlier published
work used significantly fewer pulsars compared to the number
being used in the most recent papers, and, as shown in this
paper, using a small number of pulsars to set the upper limits
can lead to bias and can even result in upper limits that are
lower than the true amplitude. The range of possible upper
limits decreases as we increase the number of pulsars, and
therefore using as many pulsars as we can reduces the
probability that the upper limit that we obtain is below the
actual value of the GWB. Furthermore, using more pulsars has
the added benefit of producing a finer grid of angular
separations of pulsar pairs, increasing our sensitivity to the
cross-correlations that are characteristic of the GWB. In order
to avoid bias and improve detection prospects, the best strategy
for PTAs is to include as many MSPs as possible.
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Figure 6. The upper limits obtained for all 500 realizations, where the upper
limits have been found using three different methods. In one method, we
computed the upper limit using all 22 pulsars (the green histogram on the
right). In another method, we ranked the pulsars based on their single-pulsar
upper limits on the GWB, and then combined those pulsars one by one until
adding another pulsar caused the upper limit to increase. We took this
minimum upper limit as the true upper limit (the orange histogram in the
middle). In the final method, we looked at all possible combinations of pulsars
and chose the lowest possible upper limit that could be obtained (the blue
histogram on the left). The upper limits obtained using either the second or
third method tend to be lower than those obtained using all 22 pulsars, resulting
in a systematic shift toward lower amplitudes for these histograms (the blue on
the left and the orange in the middle). The blue histogram on the left has 53
(10.6%) realizations below the injected amplitude (the vertical black line), the
orange histogram in the middle has 12 (2.4%) realizations below the injected
amplitude, and the green histogram on the right has two (0.4%) realizations
below the injected amplitude.
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