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ABSTRACT

The search for gravitational waves using Pulsar Timing Arrays (PTAs) is a computationally expensive complex analysis that
involves source-specific noise studies. As more pulsars are added to the arrays, this stage of PTA analysis will become increasingly
challenging. Therefore, optimizing the number of included pulsars is crucial to reduce the computational burden of data analysis.
Here, we present a suite of methods to rank pulsars for use within the scope of PTA analysis. First, we use the maximization
of the signal-to-noise ratio as a proxy to select pulsars. With this method, we target the detection of stochastic and continuous
gravitational wave signals. Next, we present a ranking that minimizes the coupling between spatial correlation signatures, namely
monopolar, dipolar, and Hellings & Downs correlations. Finally, we also explore how to combine these two methods. We test
these approaches against mock data using frequentist and Bayesian hypothesis testing. For equal-noise pulsars, we find that
an optimal selection leads to an increase in the log-Bayes factor two times steeper than a random selection for the hypothesis
test of a gravitational wave background versus a common uncorrelated red noise process. For the same test but for a realistic
European PTA (EPTA) data set, a subset of 25 pulsars selected out of 40 can provide a log-likelihood ratio that is 89 % of the
total, implying that an optimally selected subset of pulsars can yield results comparable to those obtained from the whole array.

We expect these selection methods to play a crucial role in future PTA data combinations.

Key words: gravitational waves —methods: data analysis — pulsars: general.

1 INTRODUCTION

Pulsar Timing Array (PTA) experiments search for nanohertz-
frequency gravitational waves (GWs) through induced shifts in radio-
pulse arrival times from Galactic millisecond pulsars (Sazhin 1978;
Detweiler 1979). The timing precision and regularity of the pulse
times of arrival (TOAs) from these pulsars make them exquisite
laboratories for studying a variety of astrophysical and fundamental
physics phenomena (e.g. Verbiest et al. 2009). This includes GWs,
which impart changes to the proseparation of Earth and the pulsar,
causing pulses to arrive earlier or later than expected. These timing
deviations are a function of the GW source characteristics, as well
as the geometry of the GW source relative to the Earth-pulsar line-
of-sight. Upon fitting a deterministic timing ephemeris (describing
leading order behaviour such as the rotational period, spindown
rate, etc.) to a pulsar’s TOAs, the remaining timing residuals can
be analysed to search for the presence of GW signals amidst noise
contributions. In a single pulsar’s timing residuals, GW signals can
easily be conflated with intrinsic pulsar noise effects (e.g. Shannon &
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Cordes 2010, and references therein) or even poorly understood
artefacts of the ionized interstellar medium that radio pulses must
traverse (e.g. Cordes & Shannon 2010, and references therein). But
by constructing an array of pulsars, the fact that the GW-induced
timing deviations are correlated between pulsars can be leveraged to
distinguish it from uncorrelated astrophysical and instrumental noise
processes (Foster & Backer 1990).

Several large collaborations have been monitoring ensembles of
millisecond pulsars over long timing baselines in a bid to detect both
a stochastic GW background (GWB) and individually resolvable GW
sources. These include the European Pulsar Timing Array (EPTA;
Kramer & Champion 2013), the North American Nanohertz Ob-
servatory for Gravitational waves (NANOGrav; McLaughlin 2013),
and the Parkes Pulsar Timing Array (PPTA; Manchester et al. 2013).
Together with the more recently established Indian PTA (InPTA;
Joshi et al. 2018), these collaborations constitute the International
Pulsar Timing Array (IPTA; Verbiest et al. 2016; Perera et al. 2019),
which aims to synthesize the aforementioned regional efforts to
achieve more significant and rapid discoveries. Other recent timing
efforts include the Chinese PTA (CPTA; Lee 2016), the MeerTIME
programme (Bailes et al. 2018) conducted at the MeerKAT telescope
(Camilo et al. 2018), CHIME/Pulsar (Ng 2018), GMRT (Swarup
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1990), and FAST (Jiang et al. 2019). Recent results from NANOGrav
(Arzoumanian et al. 2020), the PPTA (Goncharov et al. 2021),
the EPTA (Chen et al. 2021), and the IPTA (Antoniadis et al.
2022) all show strong evidence in favour of a common-spectrum
process versus independent red-noise processes with Bayes factors
of order ~103 — 10*. These stochastic processes have similar spectral
characteristics with estimated amplitudes around A ~2 — 3 x 10713,
and are all in broad agreement with expectations for a GWB
generated by an astrophysical population of supermassive black-hole
binaries (SMBHBs, e.g. Middleton et al. 2021). However, there is
not yet significant evidence for the distinctive pattern of interpulsar
correlations, known as the Hellings & Downs (HD) curve. In fact
such evidence needs more time to emerge than the presence of a
common process (Pol et al. 2021; Romano et al. 2021).

Building evidence for GW-induced interpulsar correlations re-
quires many well-timed pulsars in order to forge effective pairings
across different angular separations in order to trace out the HD
pattern (Hellings & Downs 1983). This pattern is mostly quadrupolar
in angular separation, with two zero crossings between 0° and 180°.
Yet there are several issues associated with building an effective
pulsar array for GW detection. (i) First, we are constrained by the
Galactic distribution of millisecond pulsars, so there is little reason
to consider array geometries that contradict this. (ii) Furthermore, if
one were to only try to discover new pulsars that would maximize
the significance of HD correlations, then the best strategy would
be to survey close to the most sensitive pulsars. However, this
would not trace the full pattern of this correlation curve, thereby
severely inhibiting our ability to discriminate it from systematic
noise processes that can also induce interpulsar correlations (Tiburzi
et al. 2016). The latter include solar-system ephemeris errors that
create dipolar correlations (Champion et al. 2010; Caballero et al.
2018; Guo et al. 2019; Roebber 2019; Vallisneri et al. 2020), and
long time-scale systematics in time standards that create monopolar
correlations (Hobbs et al. 2012, 2020). (iii) Finally, the next-
generation of radio facilities such as DSA-2000 (Hallinan, Ravi &
team 2021), the Square Kilometre Array (SKA; Dewdney et al.
2009; Janssen et al. 2015), and the next-generation Very Large Array
(ngVLA; Murphy et al. 2018) will lead to a torrent of new pulsars
and observations. Future PTA data analysts will need metrics to
judge which pulsars will most effectively characterize the GWB
and resolve multiple individual SMBHBs out of this confusion
background.

Therefore, exploring how to optimize the observing and analysis
strategies of PTA experiments is crucial. In previous works, compu-
tational techniques to optimize the observational schedule (Lee et al.
2012; Lam 2018), and arrival-time precision as a function of radio
frequency and bandwidth (Lam et al. 2018) have been investigated.
In Roebber (2019), the author proposed a technique to optimize the
disentangling between different spatial correlations and, therefore,
to separate the signal due to GWs from that produced by clock
or ephemeris errors. This paper also argued that such a method
could be used to decide which pulsars should be included in PTAs.
Beyond standard quality checks related to a pulsar’s long-term timing
stability, PTA searches aim to include as many pulsars as possible.
However, a standard timing baseline cut of ~3 yr is usually made
in order to reduce the data volume while at the same time ensuring
that all pulsars inform GW frequencies < 10 nHz where a GW
background signal should be strongest.

In this work, we introduce for the first time a robust methodology
for pulsar selection optimization in order to detect and characterize
both the stochastic background and single continuous gravitational
wave (CGW) sources. We develop ranking (or selection) methods to
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understand which pulsars contribute most to GW searches, where we
target three key analyses: (i) detection of a GWB versus a Common
Uncorrelated Red Noise (CURN) process, (ii) detection of a GWB
versus Monopolar and Dipolar correlated signals, (iii) detection of
CGW sources. These methods use statistical tools introduced in
previous studies, making our methods easily implemented within
established pipelines. Each method takes as input the intrinsic timing
and noise properties of the whole pulsar array — which could be
potentially provided by previous data releases — and outputs a ranked
list of pulsars for a specified GW search.

This paper is organized as follows. We review the standard PTA
statistical tools such as likelihood and frequentist and Bayesian
hypothesis testing in Sections 2.1 and 2.2. These tools are used to test
the performance of the ranking methods introduced in Sections 2.3
and 2.4. In particular, the ranking method based on signal-to-noise
ratio (SNR) maximization is presented in 2.3.1, and the one aimed
at disentangling different spatial correlations in 2.3.2. In Section 2.4,
we develop a selection method that targets the search for continuous
gravitational wave signals. The results are presented in Section 3
where the selection methods are tested using simulated data sets
with increasing level of noise complexity. We conclude with our
expectations for future investigations in Section 4.

2 METHODS

2.1 Pulsar timing array likelihood

In this section, we introduce the marginalized PTA likelihood which
is ultimately the fundamental tool for the statistical analysis of
PTA data (van Haasteren et al. 2009). We predominantly follow the
‘Gaussian process’ treatment described in details in van Haasteren &
Vallisneri (2014), Arzoumanian et al. (2016). The TOAs for each
pulsar can be represented by a vector ¢ of length Ntoa. ¢ can be
written as a sum of a deterministic and a stochastic component:
t = tge + Lyto-

The deterministic part comprises the so-called timing model which
depends on a set of timing parameters 8. The timing model describes
the intrinsic spin evolution of a source, propagation effects as well as
time delays associated with the relative motion of a source and the
Earth and kinematic and light propagation effects in the binary system
(see e.g. Lorimer & Kramer 2012). The initial estimate of the m
timing model parameters f3 is obtained using the minimization of the
sum of the squares of the residuals §¢ = ¢ — #4.((B). This least-square
linear fit to the timing model, which is performed using the TEMPO2
software (Edwards, Hobbs & Manchester 2006; Hobbs, Edwards &
Manchester 2006), is equivalent to likelihood maximization when
assuming Gaussian white noise errors. In reality the stochastic noise
component is dominated by coloured noises. Assuming that the initial
estimate of the timing parameters 8, obtained from TEMPO2 does
not differ significantly from the final estimate 8 ; obtained from a full
analysis that includes more sophisticated stochastic noise modelling,
the timing model can be approximated to impact the timing residuals
linearly via the term Me, where € = 8 — B¢ and M is an Npoa X
m design matrix (van Haasteren et al. 2009).

The correlated components of the stochastic piece £, are modelled
in terms of a Fourier decomposition (Lentati et al. 2013). In practice,
the analysis focuses on the noise with dominant power at lower
frequencies, so that only a finite number of Fourier components Ny
are used. In this case the signal can be written in a matrix form of
the type Fa, where the vector @ of length 2Nj.qs contains the Fourier
coefficients, whereas the Ntoa X 2Njreqs matrix F is constructed with
alternating columns of sines and cosines evaluated at the TOAs of
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each pulsar. The base sampling frequency is given by the inverse of
the observation time-span of the entire pulsar timing array, 1/7.

The influence of white-noise on the timing residuals is described
by the Ntoa X Npoa white noise covariance matrix N. Finally, the
noise-mitigated timing residuals r, which is our best approximation
to the white noise n for each pulsar can be written in a compact form
as a function of the input residuals ¢:

r=38t—-Th T=[MF| b= eal, (1)
and the likelihood is given by:
1, TN
expy—5r N7'r
p@t|b) = exp{—sr'N_r} @)

/27 det{N}

The prior covariance and corresponding Gaussian prior on the
coefficients b are written as:

exp{—%bT B! b}
/27 det{B}

so that the timing model piece of b is a uniform unconstrained prior on
the timing model parameters €, and the spectrum of all low-frequency
processes enters in the variance ¢ as:

Dwir, by = LanSidij + Paidapdij 4)

where the intrinsic low-frequency (‘spin-noise’) spectrum of pulsar
a at the i-th sampling frequency is represented by P,;, and the GWB
spectrum, which is common to all pulsars, is given by S;. Both of
these processes can be modelled with a power-law functional form:

A (R
P, = 50T <yr*1> yro. 5

The reduction in correlated power due to the spatial separation of
the pulsars is described by the overlap reduction function (ORF) I" ;,
between pulsars a and b. For an isotropic and stochastic GWB, the
OREF is described by the HD curve (Hellings & Downs 1983), which
depends only on the angular pulsar separation. If we group all the
red noise and GWB spectral hyperparameters into the vector n we
can obtain the likelihood of the full PTA array (van Haasteren &
Vallisneri 2014), marginalized over b:

B=[0000¢] pbl¢)= 3)

N
£on = ptsntin = [ [T pGotalbn) < piis)inas,

a=1

1
Inl = _E[StT c! 5t+Trln27tC], (6)

where C = N+ TBTT, and N is the total number of pulsars. A
deterministic signal s(@) can be incorporated in the modelling by
performing the following replacement §¢ — §¢ — s(8). More details
on likelihood construction and handling correlated noise processes
in pulsar timing analysis can be found in e.g. van Haasteren & Levin
(2013), Arzoumanian et al. (2015, 2016), Taylor (2021).

Having constructed the PTA marginalized likelihood, we can
estimate the parameters 5. In frequentist inference, the true model
parameters are considered to be fixed 9w, and are estimated
by maximizing the likelihood to obtain the maximum-likelihood
estimator (MLE), numig. In Bayesian inference, model parameters
are no longer regarded as fixed, but are themselves random variables.
The probability distribution of the parameter values before the data
acquisition (the prior distribution p(7)) is updated to a probability
distribution after the data incorporation (the posterior distribution
p(n|8t)) through the likelihood of the observed data £(8¢|5). With
several intrinsic noise parameters per pulsar, in addition to several
global parameters describing the GW signal, the posterior distri-
bution can be as high as O(100)-dimensional. Thus, it is typically
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explored and sampled numerically using Markov chain Monte Carlo
(MCMC) techniques.

2.2 Hypothesis testing

The essential step of the PTA analysis is testing whether the observed
data are consistent with our expectations, e.g. the presence of a
GW signal or its absence. Therefore, we use hypothesis testing to
investigate if the data provides sufficient evidence for one hypothesis
H, with respect to another one H,. The tools developed in this
section will be used in Section 3 as a proxy to test our selection
methods.

If we adopt a frequentist approach, we can maximize the likelihood
under each hypothesis to find the MLE for the parameters, i.e.
NMmLE 1 = max, In £(y|H1) and analogously for H,. Then, the log-
likelihood ratio defined as:

InA =1InL(pmee 11H1) — In Lpmee 2| H2) @)

can be used to test whether our data supports hypothesis H; with
respect to H,. Roughly speaking, a large value of In A indicates a
stronger support for #; with respect to H,. Therefore, we can use
In A to assess if an optimally selected subset of pulsars supports our
expectations as much as the full data set.

To statistically quantify the significance of a measured log-
likelihood value, it is necessary to create multiple realizations of
the data under the reference hypothesis #,. For each realization, we
must then evaluate the log-likelihood ratio to obtain a distribution of
In A under the reference hypothesis. This distribution can be used to
calculate the p-value of the measured log-likelihood. This approach
is only viable if our ranking methods are tested on mock data set
realizations.

In reality, we cannot generate multiple realizations of the data
because we do not have access to the true parameters and data
generation process. We have access only to the most likely values
of such parameters from previous data releases. Therefore, we
can use those for the data generation of the reference hypothesis.
By evaluating the p-value for the real data set, we estimate the
significance of such an experiment and check the consistency of
our assumptions on the data generation process. Similar tests are
extensively used in PTA analysis (see sky scrambles, phase shifts,
and optimal statistic analysis, e.g. Chamberlin et al. 2015; Cornish &
Sampson 2016; Taylor et al. 2017). We evaluate this procedure as a
consistency check for hypothesis testing of a realistic PTA analysis
in Section 3.2.

In Bayesian statistics, the Bayes Factor (BF)

_ JdnLet g, Hop(. Ho)
[ dnL(t (9. Ha)p(n. Ho)

is used to assess which model is favoured by the observations,
assuming that the two models are equally probable a priori. A ‘rule of
thumb’ for interpreting Bayes’ factors is presented in Kass & Raftery
(1995), where BF > 20 is considered strong evidence for H;.!

If the posterior volumes of the two hypotheses are approximately
the same, then the log-likelihood ratio at the MLE is approximately
equal to the log-Bayes factor, i.e. In BF ~ In A (Romano & Cornish
2017; Pol et al. 2021).

®)

! Alternatively, the distribution of the Bayes factor can be computed under the
null hypothesis and used, in a frequentist way, to produce a mapping between
p-values and Bayes factors. However, this approach is computationally
expensive.
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In practice, BFs are widely used to perform robust statistical
analysis, including hypothesis testing, when processing real PTA
data sets. In this work, full Bayesian inference is only used for
computationally feasible analysis of simplified data sets. For the
realistic mock data sets which require more sophisticated noise
modelling, we utilize the log-likelihood ratio test as it requires fewer
computational resources.

2.3 Ranking pulsars for stochastic signal searches

One of the primary goals of the current PTA experiments is to
detect the stochastic GWB from a population of SMBHBs. An
isotropic GWB manifests itself as a long time-scale, low-frequency
(or red) common signal across the pulsars in a PTA. This common
signal is characterized by the common spectrum and the interpulsar
spatial correlations. The distinctive signature of the gravitational
nature lies in this correlation which depends only on the pulsar’s
angular separation and has an expectation value given by the HD
curve (Hellings & Downs 1983). Current experiments found strong
evidence for the presence of a common red noise signal. While
such a signal could potentially represent the expected GWB from
SMBHBS, there is not yet strong evidence for either HD or other
alternative angular correlations.

Motivated by these latest results, in Section 2.3.1 we design a
method to identify the optimal subset of pulsars for increasing
the confidence in the detection of an HD correlation, whereas in
Section 2.3.2 we use the decoupling formalism to find the best
subset of pulsars for distinguishing this correlation from alternative
hypotheses. Recent work has cautioned that GWB upper limits can
be biased and even lie below the true value when small (S 20)
combinations of pulsars are analysed (Johnson et al. 2022). Our work
here is likely immune from such unwanted effects for several reasons:
(1) the field of PTAs has moved beyond the regime of setting upper
limits, to now estimating the statistical parameters of a common
process and performing model selection on spatial correlations; and
(ii) our metrics here are based on the detectability and discrimination
of stochastic processes, rather than upper limits.

2.3.1 Spatially correlated signal-to-noise ratio maximization

As previously mentioned, the target signal is described by a correlated
red noise process S(f) with spatial correlations I',,. An optimal
subset of pulsars can be constructed based on an optimal statistic that
maximizes the detection probability at a fixed false alarm probability
for this specific case. As a proxy for this, it is convenient to consider
statistics that maximize the signal-to-noise ratio (SNR), which is the
ratio of the expected value of a statistic in the presence of a signal,
W1, to its standard deviation. The standard deviation can either be
computed in the absence of a signal, oy, or in the presence of a
signal, 0. In Rosado, Sesana & Gair (2015), the authors introduce
two statistics: the A-statistic constructed by maximizing u /o and
the B-statistic constructed by maximizing /0. This procedure
leads to the respective SNR definitions:

2 12 S%(f) Tap

SNRy =23 0op | Hipmen 97 - ©®
2 2, $2(f) Tap

SNRp =230 [ [Pa<f>+s<f>1[Ph<f)+s<f>1+s2(f>r2,,df ’ (10)

We use these quantities as a proxy to identify the best subset of
pulsars from the full array. SNR, and SNRy are obtained under the
expectation value of the true hypothesis and do not depend on the
timing residuals but only on the general properties of the pulsars’ red
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and white noises. In equations (9)—(10), the sum is over the pulsar
pair a, b, with a > b and T, is the overlapping time of observation
of the a, b arrays. The term P,(f) represents the sum of the intrinsic
noise processes of pulsar a such as red noise, white noise, etc.:

P,,(f)= m + Pon + ...

A2 —Va
=22 (ny—l) yr + 202 A1 + ... (11)

where o is the root-mean-square (RMS) error and At is the cadence
of the TOAs. We also assume that the correlated noise process S(f)
can be described by a power-law functional form.

As pointed out in Rosado et al. (2015), the SNRp is more robust in
the strong-signal regime. In fact, as we can see from equations (9)—
(10), one of the useful differences with respect to the other statistic is
that SNRp does not diverge for S > P,. The SNRj is very similar to
the so-called optimal statistic SNR presented in Siemens et al. (2013),
Chamberlin et al. (2015), however the last term in the denominator
of SNRp is missing in those studies.

One downside of using the SNRp of equation (10) is that it assumes
the amplitude and slope of S(f) to be known. Since we have constraints
on such parameters from the current PTA experiments, we can
assume these to be known and use them to calculate the SNR. We will
later show that the selection procedure using this SNR is not strongly
affected by the variations of these quantities when estimated over
noise realizations. The SNR, definition has the advantage that the
amplitude factors out and therefore its maximization is not affected
by the choice of Agws.-

In theory, we would need to compare the SNRs with all possible
combinations of subsets of pulsars from the whole array. Since this is
computationally intractable in practice, we start from a few fiducial
pulsars and add pulsars one by one until we reach the desired
level of SNR. We will see in Section 3.2 that this ‘one-by-one’
implementation of SNR-maximization performs very well, reaching
a high proportion of the full data set BF with only a small selection
of pulsars. The small improvement that might be achieved from an
exhaustive search of all possible pulsar subsets is unlikely to be worth
the considerable increase in computational cost.

If we set the spatial correlation I'y, to be the HD correlation,
we can use these SNRs to rank pulsars and increase the detection
probability of a GWB. Therefore, the SNR-maximization selection
method introduced here aims at providing the best pulsars for the
hypothesis test of an HD correlation (hypothesis ) versus a CURN
(hypothesis H,).

2.3.2 Maximization of the decoupling between spatial correlations

An unambiguous detection of a GWB relies on the characterization
of the angular correlation between pulsars. In order to claim a
detection, PTA experiments must provide strong evidence that
an HD correlation is clearly identified in the data. However, the
detection of a GWB is complicated by the presence of other types of
correlated signals. Specifically, errors in clocks used to calibrate
timing residuals, and poorly determined solar system ephemeris
induce large-scale correlations between pulsars and can mimic the
effects of a GWB. The irregularities in terrestrial time standards
produce signals with monopolar spatial correlation (Hobbs et al.
2012, 2020), while emphemeris errors can result in dipolar signals
(Champion et al. 2010; Tiburzi et al. 2016). In order to provide
an optimal separation of the quadrupole GWB signal from those
produced by clock or ephemeris errors, Roebber (2019) proposed a
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method to minimize the leakage between spatially correlated noises.
We briefly review this formalism here.

The degree to which power from one spatial harmonic can leak
into another one can be quantified by the coupling matrix (Peebles
1973; Gorski et al. 1994; Wandelt, Hivon & Gorski 2001; Hivon et al.
2002; Mortlock, Challinor & Hobson 2002; Efstathiou 2004):

K(Im),(lm)’ :/Ylm(sz)W(Sl)Y(lm)’(Sl)dszy (12)

where Y}, is the spherical harmonic of degree / and order m, W(2)
is the window function, and the integral is performed over all sky
directions, 2. The Coupling Matrix formalism can be directly applied
to the pulsar selection problem. Within the PTA framework, a GWB
has maximum power at / = 2, while clock noise and ephemeris noise
appear at [ = 0 and [ = 1, respectively. Therefore, the coupling
matrix elements with / from 0 to 2 are of interest for the problem
of mode disentangling. While forming an orthonormal basis in the
case of continuous coverage (W(2) = 1 everywhere on the sky),
the coupling matrix loses its orthogonality when the sampling of the
sky becomes discrete, resulting in non-zero off-diagonal elements in
Km),amy -

In the context of PTA analysis, the window function is given by the
Kronecker-delta modulated by the individual weights w of pulsars
placed at sky positions p,:

W®) = w's(®—pa). (13)

In the case of all-equal pulsars, the choice of the weighting function
is straightforward: w* = 1 for all pulsars. However, the problem
becomes less trivial when each pulsar has different properties (in
terms of RMS residuals, observation time, intrinsic red noise, etc.).
Roebber (2019) suggests to use the inverse of the RMS of a source,
/02, as weights, to account for the relative sensitivity of different
pulsars in an array. In order to additionally account for the coloured
noise in an array, we will use SNRy ~ 1 /aa2 as weights in the
coupling matrix formula, where SNR, is defined using the self-
term (a = b) of equation (9). Although this is a natural choice, it is
worth noting that the optimal choice of the weighting function for
the coupling matrix construction does not have a unique solution and
in some cases requires a heuristic approach (Efstathiou 2004). As
shown in Appendix A, for the two realistic mock data sets described
in Section 3, an SNR4A weighting on average performs better than
the other types of weighting function considered. However, in order
to provide a definitive solution to the problem of weight selection,
extensive testing on more diversified samples of mock data sets is
required, which we leave for future work.

The level at which one mode leaks to another is estimated via the
ratio of minimum and maximum eigenvalues Amin/Amax Of Kqm),amy
which is 1 when the coupling matrix is diagonal and drops to 0 when
the coupling matrix is ill-defined. Since we are mainly interested in
decoupling the spherical harmonics with different /, we can average
equation (12) over m. Thus, the final expression for the coupling
matrix is Efstathiou (2004):

1
= T AT s K m)(l",m’) -
(2l+l)(21’+1)z (Lmtdtm'

m,m’

M (14)

We construct the pulsar ranking list by selecting those that lead
to the largest eigenvalue ratio 6, = Amin/Amax Of the M;, matrix.
The Coupling Matrix selection method introduced here aims at
providing the best pulsars for the hypothesis test of an HD correlation
(hypothesis #,;) versus the presence of all three signals in the
data, namely common uncorrelated, monopolar and dipolar spatially
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correlated red noise processes (hypothesis #,). As pointed out
in Roebber (2019), the minimum number of pulsars required to
disentangle up to /. i Z;‘;“S(ZZ + 1) = (I;max + 1), which is 9
for [ = 2. After averaging over m, the coupling matrix M, is well-
defined when the number of pulsars is >3, meaning that at least three
pulsars are required to resolve the spatial modes up to the quadrupole.
Therefore, when the Coupling Matrix formalism is applied to realistic
data sets, in order to avoid ambiguity, the first three pulsars in the
ranking are fixed to those with the highest self-SNR.

2.3.3 Chimera method: combining SNR- and
decoupling-maximization algorithms

The Coupling Matrix selection method is aimed at disentangling
different types of correlations, while the total SNR-maximization is
disregarded. Therefore, the Coupling Matrix can only be used as
a complementary scheme for array optimization, especially, for an
array of pulsars in mixed SNR regime.? Here we propose a new
selection method that combines the merits of both the Coupling
Matrix and SNR-maximization: hereafter the ‘Chimera’® method.
The basic idea is to add a new pulsar to a subset, so that the HD-SNR
is maximized along with the decoupling power. One of the possible
norms that satisfies the latter requirement is the multiplication of the
relevant scores of both methods, i.e. SNR and eigenvalue ratio:

SCChimera = SNR2B5)L (]5)

Note that the ranking of pulsars within the Chimera approach is
purely heuristic and the score that we offer in equation (15) is one
of many possible choices. As in the case of the Coupling Matrix,
the first three pulsars are selected according to the highest self-SNR,
while the following ones are picked so that the score in equation (15)
is maximized.

For reference, in Fig. 1 we show how the three different selection
methods for GWB searches pick equal-noise pulsars on the sky. The
full array is composed of 200 pulsars uniformly distributed over the
sky and the number of selected pulsars is 25. The first pulsar was
randomly selected and the following ones were picked according to
the different selection methods. The SNR depends on I'?, and so
the SNR-maximization method tends to add pulsars where the HD
correlation is largest, i.e. with 6, = 0° and 180°. The region between
—0.6 and 0.6 will be eventually filled as the number of selected
pulsars increases.* The Coupling Matrix and Chimera methods also
picked pulsars at 6,, = 0° and 180°, but the distribution of angular
separations is broader and covers more values of 0,,,. We find that of
the first 25 pulsars selected by the Chimera method, none of them
are placed around cos 6., ~ —0.7 and cos 0, =~ 0.7. This might be
due to some interaction between SNR-maximization and Coupling

2This means that the vast majority of pulsars in an array are in the weak
signal regime (Siemens et al. 2013) and only a few sources actually contain
the detectable signal. In this case, the latter are expected to contribute a
significant fraction of the whole array sensitivity, while the addition of the
former sources is largely irrelevant.

3The name was inspired by the mythological creature composed of different
animal parts. Homer describes it as follows in the Iliad: ‘she was of divine
stock, not of men, in the fore part a lion, in the hinder a serpent, and in
the midst a goat, breathing forth in terrible wise the might of blazing fire.’
Homer & Lattimore (2005).

4We included in the supplementary materials two animated figures that show
how the SNR-maximization method sequentially adds pulsars, see animate_h
ist_HDvsNoise_loc_3d.gif and animate_hist_ HDvsNoise.gif.
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Figure 1. Distribution of angular separations of 25 pulsars selected with
three selection methods, namely SNRg-maximization, Coupling Matrix, and
Chimera. These methods have been applied to a data set consisting of
200 pulsars with uniform sky distribution and equal noise properties. For
reference, we also show a random selection of 25 pulsars.

Matrix selection. Note that the pattern in Fig. 1 could change if we
were starting with two or more pulsars with different sky locations.

2.4 Continuous gravitational wave SNR-maximization

Continuous gravitational waves are deterministic signals and their
analysis has been treated separately from the stochastic GWB. CGWs
are included in the model as a periodic delay applied to the timing
residuals ¢ while the effect of the GWB is included in the covariance
matrix C of the likelihood. This fundamental difference between the
two signals and their mathematical description calls for a different
ranking method.

Here, we want to rank pulsars according to their response to a
CGW signal. One way to proceed is to inject a large number of fake
CGW signals with randomized parameters except for fixed frequency
and amplitude (Babak et al. 2015). Then, for each pulsar, the CGW
signal-to-noise ratio is computed for each injection and averaged
numerically. In this way, we have the average response of each
individual pulsar in the array at a given frequency of the CGW
signal. This averaging can also be done analytically, as shown in the
following paragraph. Note that we refer to the signal-to-noise ratio
of CGWs using the acronym SNR. However, we use the symbol p to
distinguish the SNR of CGWs from the previously defined SNRs.

In the likelihood of equation (6), the inclusion of a deterministic
signal is performed by changing the timing residuals as §¢ — 8¢ —
s(60), where s(0) is the signal template we aim to measure. In that
case, the likelihood can be rewritten as:

Ing = —%[(Btlét)—l—(sls)—2(5tls)+Tr1n27TC]’ (16)

where we have introduced the noise weighted inner product (x|y) =
xTCly.

We can now calculate this expression for the hypothesis of the
presence of a CGW (#,) versus its absence (H,). The expectation
value of the log-likelihood ratio becomes:

p(8t|s) 3 1
<ln <p(6t|0))>7-tl = ((8tls) 2(s|s)>Hl

1
= 5(sls), a7

where popc = +/(s]s) is the optimal SNR for the CGW source.
Since the source parameters are not known a priori, we average pépl
over gravitational wave polarization 1, initial phase ¢y, inclination

(InA)y, =

Quality over quantity 1807

t, and sky location (0, ¢). To do so, we analytically compute the
integral over the defined bounds of the CGW parameters:

2 dy 27 d -1 5. =1 s6 (27 d
S s o e el ' CD (18)

Using the formula for a CGW signal from a circular SMBHB,
s(t, ), as presented in Babak & Sesana (2012), the Earth-term SNR?
averaged over CGW parameters takes this simple form:

) 4 ( h\’
p(h, )= 5 <m)
X [(cos 2 ft|cos2m ft)+ (sin 2w ft|sin 2w f1)], (19)
with
DM (e )23
h= 7@

where f and 4 are the gravitational wave frequency and amplitude,
M is the chirp mass, and d;, is the luminosity distance. For pulsar
a, we evaluate p§ at the TOAs ¢,. We consider an Earth-term only
SNR for simplicity as the inclusion of the pulsar term is unlikely to
make a significant difference to the ranking. In the absence of a chirp,
the contribution of the pulsar term to the SNR? is equal to that of
the Earth term, therefore leaving the relative contribution of different
pulsars unchanged. When the system is chirping this is no longer true
as different pulsar terms contribute at different frequencies. However,
it is slightly misleading to include these in the ranking on an equal
footing with the Earth terms, since matching the pulsar terms in
the data is much harder and requires good knowledge of the pulsar
distance. In addition, the resulting ranking would be dependent on
the nature of the source in the data, as this determines the frequencies
of each of the pulsar terms, which would not be known until after the
analysis using the reduced set of pulsars had been completed. The
correlated noises (e.g. intrinsic and dispersion measure noises) are
taken into account in the covariance matrix C of the noise-weighted
inner product of the cosine and sine terms.

Common (correlated) processes were not included in our noise
model, so the covariance matrix is block diagonal. In this way,
the likelihood can be factorized and SNR?s can be computed
independently for each pulsar. Common uncorrelated processes can
be included without affecting the block diagonal form of the matrix,
and this could be used as a proxy for the presence of a GWB
background or other processes. In practice, we should incorporate
these common processes in the noise model, but this adds another
level of complexity that is irrelevant for the goal of the selection
procedure.’ The ultimate goal is identification of the best pulsars for
CGW detection, and therefore, only the intrinsic properties of the
pulsars were considered.

We estimate the relative contribution of one pulsar to the total SNR
of the array using the normalized SNR:

pa(h, f)
S oph, )

Note that the amplitude % cancels out in this expression and the CGW
frequency f remains the only parameter. Therefore we can fix & to
any value without affecting the ranking.

We construct the cumulative sum of the normalized SNR?s of
the pulsars ranked from best to worst. We fix a threshold value for
the SNR? cumulative sum above which pulsar contributions to the

. (20)

) = @1

SFurthermore, detectable CGW signals must be louder than the GWB. Since
the GWB is stronger at lower frequencies, CGW signals are more likely to
be found at high frequencies.
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Figure 2. Cumulative 52 plot for the pulsars in the IPTA DR2 at CGW
frequency of 5nHz. The pulsars above the red dashed line contribute less
than 5% of the total SNR?. This means only 12 pulsars out of 65 contribute
on average to 95 % of the total SNR 2 of the array at 5 nHz. Note that, while
only the best 22 pulsars are shown in the figure, the normalized total SNR
has been evaluated using all 65 pulsars in the array.

total SNR? are not considered significant. This value was chosen
to be 0.95. The process is illustrated in Fig. 2 and in the animated
Figure (cgw_ranking.gif included in the supplementary materials) for
pulsars from the IPTA second data release (DR2; Perera et al. 2019).

Due to the strong dependence of 52(f) on f, the resultant CGW
pulsar ranking is also frequency dependent. This can be clearly seen
from Fig. 3. In our analysis, we use 100 log-spaced frequency bins
between 10~ and 1077 Hz. Ranking lists were obtained separately
for each frequency bin. In order to construct the final ranking
catalogue of best pulsars at a given frequency range, the lists at
each frequency are merged together. This procedure ensures that we
will gain at least, no matter the CGW frequency, 95 % of the total
SNR 2 of the array.

3 RESULTS

We create mock PTA data sets with increasing complexity in the
noise models and test the performance of the selection methods. The
PTA data sets are simulated using LIBSTEMPOQ® and analysed using
ENTERPRISE (Ellis et al. 2020) giving the marginalized likelihood.
Bayes factors are computed using DYNESTY (Speagle 2020).

3.1 Testing the selection methods for GWB searches

In this section, we investigate the performance of the three ranking
methods that target GWB searches (Section 2.3). We consider a
simplified framework, in which the pulsar noise is white noise only,
and there is an injected GWB with amplitude Agwg = 3 x 1071
and slope y = 13/3, consistent with findings from the EPTA analysis
(Chen et al. 2021). We pick pulsars one by one using the SNRp
maximization, the Coupling Matrix method (with weights w ~
SNR,), and the Chimera method, and we investigate the performance
of these procedures by calculating the log-Bayes factor (InBF natural
logarithm) of the following hypothesis tests:

®https://github.com/vallis/libstempo
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Figure3. Normalized [)3 of the five best pulsars of the IPTA DR2, at different
CGW frequencies. The glitches at the right of the plots are due to the one
year and half-year peaks.

(1) HD versus CURN: Hellings & Downs correlation versus a
common uncorrelated red noise process;

(i) HD versus CURN+MN+DN: Hellings & Downs correlation
versus a combination of common uncorrelate red process, monopolar
noise (MN), and dipolar noise (DN).

Since a detectable GWB signal is injected, we expect the log-
Bayes factor to always increase in the limit of a high number of
pulsars N. Of particular importance, however, are the dynamics of
growth of the log-Bayes factor with respect to a random selection. A
further comparison of these selection methods against a lowest RMS
selection procedure is presented in Appendix B.

Note that the white noise parameters are kept fixed, and only
the amplitudes and slopes of the common red noise processes
are varied. In the next sections, we present the evolution of the
log-Bayes factor obtained with the N pulsars selected with the
aforementioned methods. We anticipate that the performance of the
selection methods strongly depends on the specifics of the data set
considered. Therefore, we tested our ranking methods with three
different simulated data sets.

3.1.1 Galaxy-distributed data set

We created an array of 200 pulsars with equal RMS of 100 ns with
Galaxy distribution on the sky. The sky coordinates were drawn
randomly from the available values of known pulsars in the PSRCAT
catalogue (Hobbs et al. 2004). The total time-span of the data set is
10 yr with a sampling rate of 28 d. A data set consisting of all equal
pulsars with a dense sky coverage serves to demonstrate how each
selection method performs under idealized conditions. In Fig. 4 we
show the log-Bayes factor computed using the pulsars selected by
the different ranking methods when applied to the Galaxy-distributed
data set for the hypothesis tests: HD versus CURN, and HD versus
CURN+MN+DN. The very first pulsar in the array was selected at
random 20 times, so that the log-Bayes factor shown in Fig. 4 is an
average over these realizations. This procedure was done in order to
ensure that our results are independent of the initial pulsar choice.
For reference, we also show the log-Bayes factor obtained with a
random selection of pulsars.

The left-hand panel of Fig. 4 demonstrates that the Coupling
Matrix method (dashed yellow line) performs similarly to the random
selection (dotted blue line) for the HD versus CURN hypothesis
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Figure 4. Log-Bayes factor as a function of the number of chosen pulsars by each of the selection methods (shown in different colours) for the Galaxy-distributed
data set and for different hypothesis tests: HD versus CURN (left-hand panel), and HD versus CURN+MN+DN (right-hand panel). The 200 simulated pulsars
have the same noise properties and Galaxy-distributed sky locations. The first pulsar is selected at random 20 times and the shown log-Bayes factors are the
average over these 20 realizations. For 25 selected pulsars the mean and standard deviation values are: SNRg: 20 & 6, Coupling Matrix: 15 & 7, Chimera:
16 £ 5, Random: 10 = 4 (HD versus CURN hypothesis test (left-hand panel)); SNRp: 6 & 2, Coupling Matrix: 14 &= 7, Chimera: 16 &+ 5, Random: 11 £+ 4
(HD versus CURN+MN+DN hypothesis test (right-hand panel)). The log-Bayes factors of the whole array for one realization are 198 and 194 for HD versus
CURN (left-hand panel), and HD versus CURN+MN+DN (right-hand panel), respectively.

test, with slightly better performance after ~15 pulsars are included
in the array. Both the SNR-maximization (solid green line) and
Chimera method (purple dash-dotted line) outperform the other
two types of selection. For the SNR-maximization method the log-
Bayes factor increases with the number of pulsars in the array like
~0.8N, which results in almost double log-Bayes factor for N = 25
than the one obtained using random selection. These results are
expected, since the SNR-maximization is designed to maximize
the confidence of detecting the HD correlation versus a CURN
process.

The hypothesis test HD versus CURN+MN+DN is proposed
to demonstrate the benefits of the Coupling Matrix, as the method
is designed to disentangle the HD correlation from other types of
common correlated noises. The right-hand panel of Fig. 4 confirms
these expectations. We see that, in this context, the Coupling Matrix
and Chimera methods provide a log-Bayes factor for N = 25
pulsars which is 1.4 and 1.6 times larger than a random selection,
respectively. The scaling of the log-Bayes factor for the Chimera
selection is ~0.8N, while the SNR selection scales only as ~0.2N.
The SNR-maximization is severely suboptimal for this test, as it tends
to pick pulsars at locations where the HD overlap reduction function
is the largest, i.e. at 180° and 0°, making it harder to discern HD from
other types of correlation. A random selection of pulsars provides a
more distributed sky coverage which improves the situation in this
regard.

The slightly improved performance of the Chimera method in
comparison to the Coupling Matrix formalism is due to the fact that
it accounts for both the optimal sky coverage and total gain in SNR.
These results confirms that both of these components are essential
for PTA optimization and cannot be ignored. One can conclude that
the inclusion of the SNR-maximization in the Chimera method is of
special relevance in the case of non-equal pulsar arrays. The latter
point is even more evident in one of the following subsection, where
we consider a simplified EPTA data set.

3.1.2 Mock MeerTime data set

We now consider a PTA data set which resembles the properties
of the recently published 5-yr MeerTime Large Survey (Spiewak
et al. 2022). This survey is expected to significantly increase the
sensitivity of current PTAs in the very near future. Using this as
motivation, we created a mock MeerTime data set consisting of
189 pulsars with sky positions taken from the survey. Observations
were performed every 28 d on a baseline of 10 yr. The white noise
RMS is set to the median TOA uncertainties delivered by MeerTime,
in which each observation epoch of each source consisted of 256
s of integration time with the MeerKat radio telescope. The data
set provides an insight on how the pulsar selection performs with
a large data set composed of non-equal pulsars with realistic sky
positions.

We generate 20 noise realizations of this data set and show the
averaged log-Bayes factor in Fig. 5. The first pulsar in the ranking is
fixed to the one with the smallest RMS.

The left-hand panel of Fig. 5 shows the ranking for the HD versus
CURN test, and it confirms that the Chimera method and the SNR-
maximization are optimal in this case. Even though the pulsars
selected with the Coupling Matrix method provide a log-Bayes factor
smaller than the other methods, it still gives an evidence which is
approximately three times larger in comparison to random selection
for N = 25.

The evolution of the log-Bayes factor for the hypothesis test HD
versus CURN+MN+DN is shown in the right-hand panel of Fig. 5.
The Coupling Matrix and Chimera selections increase the log-Bayes
factor up to log;oBF &12. Differently from the ‘Galaxy-distributed’
data set, the SNR-maximization performs slightly better than the
random selection, although still worse than the Coupling Matrix and
Chimera methods. Up to the first 18 pulsars, the Chimera method
provides a stronger support for HD versus CURN+MN+DN than
the Coupling Matrix, reaching similar levels for larger number of
pulsars.
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Figure 5. Log-Bayes factor as a function of the number of chosen pulsars by each of the selection methods (shown in different colours) for the mock MeerTime
data set and for different hypothesis tests: HD versus CURN (left-hand panel), and HD versus CURN+MN+DN (right-hand panel). The shown log-Bayes
factors represent the average over 20 different noise realizations. For 25 selected pulsars the mean and standard deviation values are: SNRg: 15 £ 10, Coupling
Matrix: 13 £ 8, Chimera: 16 + 10, Random: 3 £ 2 (HD versus CURN hypothesis test (left-hand panel)); SNRp: 7 £ 3, Coupling Matrix: 12 £+ 6, Chimera:
11 + 6, Random: 4 + 2 (HD versus CURN+MN+DN hypothesis test (right-hand panel)). The log-Bayes factors of the whole array are 57 & 21 and 47 & 16
for HD versus CURN (left-hand panel), and HD versus CURN+MN-+DN (right-hand panel), respectively.

3.1.3 EPTA-simplified data set

We construct an EPTA-simplified data set, which consists of 40
pulsars with RMS and sky location of the latest EPTA data set
(Desvignes et al. 2016; Chen et al. 2021). The total time-span is
fixed to 10 yr with observations being performed every 28 d. In
order to reduce required computational resources, only white noise
was taken into account, ignoring the red intrinsic and interstellar
medium noise contributions. Despite the significant simplification,
this data set serves to imitate a realistic PTA setup with a modest
number of pulsars and representative pulsar sensitivities, which has
been principally used for GW searches to date. We have simulated
20 statistically equivalent noise realizations. The averaged log-Bayes
factor are shown in Fig. 6. As in the case of the mock MeerTime data
set, the first initial pulsar is chosen to be the one with the smallest
RMS.

It can be seen from both panels of Fig. 6, that the restricted data set
of 25 pulsars chosen by the Chimera or SNR-maximization methods
on average reaches higher log-Bayes factors than those selected
randomly or using the Coupling Matrix formalism. Moreover, Fig. 6
shows that by using only 25 of pulsars picked by one of the two former
methods, we account for & 90% of the sensitivity of the whole array.
The Coupling Matrix approach, on the other hand, falls behind, even
for the HD versus CURN+MN+DN hypothesis test. These results
clearly demonstrate that pulsar quality is as important as optimal
sky location, when disentangling different types of correlations. The
Coupling Matrix is not aimed at maximizing the SNR, therefore it
cannot be used as a selection method on its own, as some of the highly
sensitive sources could be discarded. The best results are obtained
when the optimal sky location and gain in SNR are finely balanced.
Therefore, ‘good’ pulsars must be picked at proper sky locations,
which is the main idea behind the Chimera method. In other words,
neither low-sensitivity sources selected at proper angular distances,
nor high-SNR sources with poorly chosen coordinates, e.g. clustered
ata specific location on the sky, can provide an adequate improvement
in performance. The former case is the Coupling Matrix selection
for the EPTA-simplified data set (yellow dashed line in the left-hand
panel of Fig. 6), while the latter corresponds to SNR-maximization

MNRAS 518, 1802-1817 (2023)

for the MeerTime data set (solid green line in the right-hand panel
of Fig. 5).

We want to remark that the Chimera implementation we offer in
this paper is not the ultimate solution. Alternative ways to address
this issue are proposed in Appendix A. Furthermore, as demonstrated
in Appendix B, simpler ranking criteria might perform better than the
Chimera method for some data sets. More thorough investigations
are left for future works.

3.2 Optimizing the search for a GWB in a realistic EPTA data
set

To speed-up the assembly of the new data set and to improve
computational efficiency of the analysis, the EPTA collaboration
decided to select a subsample of pulsars timed by its radio facilities.
In this context, it is of paramount importance to wisely pick the
pulsars to be included. Therefore, we create another simulated array
to address this problem. We consider a data set similar to the one of
Section 3.1.3, i.e. 40 pulsars with RMS, time-span, and sky locations
of the EPTA data set, but more realistic in the sense that we include
the intrinsic red-noise properties of the preliminary EPTA data set’
(Lentati et al. 2015; Chen et al. 2021).

For simplicity, we focus on ranking the best pulsars to distinguish
an HD correlation (hypothesis ) from a CURN process (hypothesis
H,) and we study how this can be affected by possible noise
realizations. As shown in the previous sections, SNR-maximization
and the Chimera method should be a good selection proxy for this
hypothesis test. Since the SNR-maximization method is constructed
to target this hypothesis and it has been shown to perform as well as
the Chimera method, we will only use this method for this study. The
first six pulsars are fixed to those which constitute the preliminary
combination of Chen et al. (2021): J1909-3744, J17134+0747, J1744-
1134, J0613-0200, J1600-3053, J1012+4-5307.

"For simplicity we adopt the best-fitting estimates as representative values
from the EPTA constraints on the red noise parameters and set the time
interval between observations to be 14 d.
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Figure 6. Log-Bayes factor as a function of the number of chosen pulsars by each of the selection methods (shown in different colours) for the EPTA-simplified
data set and for different hypothesis tests: HD versus CURN (left-hand panel), and HD versus CURN+MN+DN (right-hand panel). The shown log-Bayes
factors represent the average over 20 different noise realizations. For 25 selected pulsars the mean and standard deviation values are: SNRp: 2.2 & 1.9, Coupling
Matrix: 0.5 & 1.1, Chimera: 2.1 = 1.9, Random: 1.0 £ 1.2 (HD versus CURN hypothesis test (left-hand panel)); SNRg: 2.9 £ 1.8, Coupling Matrix: 1.5 £ 1.0,
Chimera: 2.7 £ 1.9, Random: 1.6 £ 1.4 (HD versus CURN+MN+DN hypothesis test (right-hand panel)). The red-dashed line shows the log-Bayes factor of
the full data set (N = 40): 2.5 4+ 2.3 for HD versus CURN and 3.1 &+ 2.2 for HD versus CURN+MN+DN.
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Figure 7. Normalized SNR evolution as a function of the number of selected
pulsars N with the SNR maximization method of statistic B and A. The SNR
is normalized to the total SNR of the data set and the initial pulsar subset is
composed of the six initial pulsars of the EPTA analysis (Chen et al. 2021).

First, we estimate the number of sources that need to be added
to the preliminary combination in order to achieve a reasonable
detection confidence. For this, we apply the SNR-maximization
selection using the injected GWB parameters, and iteratively add
the pulsars which increase the SNR the most. Results are shown in
Fig. 7. SNR, tends to saturate more quickly than SNRg. This is
because the latter is suppressed by the term S(f) in the denominator
of equation (10). We find that with N = 25 pulsars we reach 94%
of the total SNRg. Therefore, adding 19 SNR-maximization selected
pulsars to the starting six sources increases the SNR from 30% to
94% of the total SNR of the array.

Next, we want investigate whether the selection procedure is
strongly affected by the choice of GWB parameters. To this end,
we simulate the EPTA mock data set 1000 times with the same
injection parameters, and find the Maximum Likelihood Estimator
using only the first six pulsars (preliminary data set) and assuming
an HD correlation only. The intrinsic red and white noise parameters
were fixed to the true values. The results are shown in Fig. 8. Different

e MLE
24 ——- Median of MLE X
True

Intrinsic RN

6 initial pulsars

10-16 10-15 10-14 10-13
A

Figure 8. Maximum-likelihood estimation of the amplitude A and slope y
of the stochastic gravitational-wave background using the first six pulsars of
the EPTA mock data set (the red triangles show the respective intrinsic red
noise properties). The blue dots show the estimated values of A and y per
noise realization, and the dashed lines indicate the median distribution value.
The orange dot shows the true injected value, whereas the red crosses show
the values of the intrinsic red noises injected in the remaining pulsars.

noise realizations lead the MLE values (blue dots) to be shifted from
the true parameters (orange dot). It can be clearly seen that the
distribution of MLEs lies along the line over which the six initial
pulsars are located (red triangles), and its median (dashed black
lines) is consistent with the injected true parameters. For reference,
we show the adopted intrinsic red noise parameters of the other
pulsars in the simulated data sets as red crosses.

We now use each of the MLEs of Fig. 8 as a new set of GWB
parameters and run the SNR ranking procedure. The histogram of
the best 25 selected pulsars is shown in Fig. 9. Since the GWB
parameters are different at every realization, the subset of selected
pulsars slightly changes. As expected, the histogram for the SNRp
selection has larger tails since different GWB parameters affect both
the denominator and numerator of the equation (10). Instead, the
SNR, is affected only by the variation in the GWB slope y. Both
SNR, and SNRp selections exclude 15 pulsars in each realization.
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Figure 9. Histogram of the 25 pulsars selected with the SNRg (blue) and
SNR, (orange) maximization over 1000 noise realizations.
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Figure 10. Distribution of log-likelihood ratios obtained with the full data set
N =40 (solid blue) and with 25 pulsars selected with SNRp (dashed orange)
and SNR,-maximization (dash-dotted purple) for 1000 noise realizations.
For each noise realization we also randomly select 25 pulsars and calculate
the log-likelihood ratio of this distribution. The distribution of these log-
likelihoods is also shown as a green dotted histogram. The medians of the
distributions are shown as vertical lines and are 5.88 for N = 40, 5.17 for
SNRg N = 25, 5.14 for SNRy N = 25, and 2.73 for Random N = 25. The
log-likelihood ratios have been all evaluated at the maximum likelihood value.

This selection reduces the total number of TOAs to analyse from
18584 to 12 191 (in median). Therefore, the SNR ranking procedure
excludes 6393/18584 =~ 35% of the TOAs of the full data set by
excluding 15 out of 40 pulsars. As shown in Fig. 9, both methods
pick the same 20 pulsars in majority of the cases. In practice, we
could find the best pulsars by performing the selection process with
the GWB and intrinsic red noise parameters taken from posterior
chains of the previous data release. However, such an analysis is
beyond the scope of this work.

We now demonstrate that the SNR-maximization selection method
performs better than a random selection, and it provides evidence
comparable to the full data set. For each of the 1000 noise re-
alizations, we select 25 pulsars in three ways: using the SNR-
maximization methods (SNRg and SNR,) as done in Fig. 9, and
randomly. We compute the log-likelihood ratios obtained with the
three different pulsar subsets and with the full data set and we show
the results in Fig. 10. These distributions are evaluated at maximum-
likelihood estimates of the parameters (amplitudes and slopes of the
GWB). Based on the median values of the distributions, one finds that
the optimally selected data sets provide a factor of 1.84—1.90 stronger
evidence with respect to the random selection. Furthermore, we find
that the log-likelihood ratio for the 25 optimally selected data set
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Figure 11. Distribution of log-likelihood ratios In A for the hypothesis test
of the HD correlation versus Common uncorrelated Red Noise process over
many noise realizations and different injections. The dashed lines show the
distribution when the log-likelihood is computed using the 25 pulsars selected
with the SNRg maximization, whereas the solid lines when all 40 pulsars are
used. The median values of the distributions for the CURN injection are
—4.56 and —4.60 for N = 40 and SNRg N = 25, respectively, whereas for
the HD injection these are 5.87 and 5.17 for N = 40 and SNRg N = 25,
respectively. The log-likelihood ratios have all been evaluated at the true
injected parameters.

is in median ~0.89 times the one obtained from the full array. The
distributions of log-likelihood ratios evaluated at the true parameters
do not significantly differ from those shown in Fig. 10. Therefore,
the search over the GWB parameters with the MLE is not affecting
the distribution of log-likelihood ratios.

These results demonstrate that the SNR-maximization selection
method is a good proxy for choosing pulsars and it is robust against
noise realizations. Furthermore, we have demonstrated that the log-
likelihood ratio obtained with a subset of 25 pulsars is comparable
to the one from the full array.

Now, we establish the significance achieved by the optimally
selected pulsars. To this purpose, we simulate two sets of realistic
EPTA data sets: with an injected CURN process; and with an injected
HD correlated process. The two injected common processes are
characterized by the same amplitudes and slopes. We show in Fig. 11
the log-likelihood ratios obtained using the full data set (N = 40)
and the 25 SNRy selected pulsars for the HD and CURN injection
subsets. The median of the log-likelihood ratios of the best 25 pulsars
for the HD injection (orange dashed-line histogram) corresponds to
a p-value of &2 x 1073 with respect to the CURN log-likelihood
ratio distribution (black dashed-line histogram). The log-likelihood
ratio distributions for the full array (N = 40) are shown in Fig. 11 as
solid-line histograms for the CURN (grey) and HD injection (blue),
respectively. Since the median of the latter distribution (HD) is above
all the log-likelihood ratios obtained with the CURN injection with
N = 40 pulsars, we estimate the respective p-value as smaller than
one over the number of noise realizations/samples, i.e. < 1073,
We caution the reader that the aforementioned p-values are only
approximate. In fact, to resolve the tails of the CURN log-likelihood
distribution, we would need to run our analysis for a larger number
of noise realizations. Nevertheless, these results demonstrate that
the selection of pulsars does not significantly affect the statistical
significance of the hypothesis test.

We showed that the SNR-maximization selection method is a
good proxy for ranking pulsars and it allows us to reach detection
confidence comparable to the full array. However, it is important
to remark that these results are obviously dependent on the specific
pulsars’ sky localizations and noise properties and on the tested
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hypothesis (here HD versus CURN). We expect this ranking method
to be well suited also for other PTA data sets where the pulsars have
very different noise properties.

We remark that similar results can be obtained also with a lowest
RMS selection. However, such a method becomes suboptimal once
the observation cadence is not the same across all pulsars. For a more
detailed investigation see Appendix B2.

3.3 Optimizing IPTA and EPTA analysis of CGW signals

We now test the performance of the CGW ranking method using
noise-parameter values previously extracted from individual pulsar
noise analyses of the latest IPTA data release (Perera et al. 2019) and
the realistic EPTA data set created in the previous Section 3.2.

Because the ranking method is based on an exact noise-averaged
formula, it is unnecessary to simulate noise realizations to test its
performance. However, we still want to prove that the selected pulsars
recover most of the total SNR in the presence of a true (i.e. non-
averaged) signal. We test this by comparing the fraction of total
SNR? obtained using the CGW ranked pulsars to that obtained from
a random pulsar selection. For an array of N pulsars, the fraction of
total SNR?, given a list of M < N pulsars, is defined as:

M

o= 0
a=1

where /2 is the normalized SNR? defined in equation (21).

After extracting the list of best pulsars, we test the selection
procedure as follows:

with0 < p%, < 1, (22)

(i) We draw the CGW signal parameters 6 from a uniform
distribution with bounds defined as in the integral of equation (18),
and with frequency between 1 and 100nHz. As pointed out in
Section 2.4, the strain amplitude has no influence on the ranking
and therefore we fix it to h = 1074,

(ii) We compute the non-averaged optimal SNR pop = +/(s]s)
for each pulsar for a CGW signal s(z, #) and we use this quantity to
calculate the normalized ,63 defined in equation (21).

(iii) We compute p3, Gy for the list of best selected pulsars and
03 _rana fOr @ random subset of pulsars of random size M.

(iv) We repeat the previous steps one thousand times.

This gives us 1000 values of p2,_cqw and p3,_..4 that we plot
as histograms in Fig. 12. For the IPTA data set, the distribution
of fractional p3,_cgw for the selected pulsars is narrowly peaked
around a mean value 0.97. The random selection p3, ., gives an
almost uniform distribution with 0.50 mean value. The distribution
is not uniform because p2 is not uniform and a few p? values are
much bigger while many others are very small. Similar results are
obtained for the realistic EPTA data set. We find that the number
of pulsars which gives 95 % of the SNR 2 is 22 for both data sets,
and these pulsars represents, respectively, 61 % of the total number
of TOAs (=18 584) for the realistic EPTA data set, and 76 % of the
total number of TOAs (=210 148) for the IPTA data set.

Now we briefly discuss the comparison between the CGW and
GWB selection methods. Focusing on the realistic EPTA data set,
we find an overlap between the identified best pulsars with the CGW
method and GWB method as shown in Table 1. This time we run
the Chimera and SNRg-maximization ranking without fixing the six
initial pulsars of the EPTA. We find that 17 pulsars are common to
all three selection methods (highlighted in bold).

In summary, when true CGW signals are injected in the data, the
CGW ranking method selects the pulsars which provides most of
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Figure 12. Distribution of the normalized SNR? coverage for 1000 different
sets of CGW parameters. The distributions are obtained with the list of
pulsars chosen according to the CGW selection method, in this case 22 for
both the real IPTA data set and the realistic EPTA data set. For comparison,
we also show the distribution of the normalized SNR? obtained with a random
selection.

Table 1. List of the first 22 pulsars selected with the CGW ranking method
and the 25 pulsars selected with the Chimera method and SNRg-maximization
in the realistic EPTA data set. Bold font indicate the 17 pulsars that are selected
by all three methods.

CGW ranking Chimera method SNRp maximization
J0030+4-0451 J00304-0451 J00304-0451
J0613—0200 J0034—-0534 J0613—-0200
J0751+1807 J0613—-0200 J0621+1002
J10124-5307 J06214-1002 J07514+-1807
J1022+1001 J07514-1807 J1022+1001
J1024—-0719 J10124-5307 J1024-0719
J1600—-3053 J1024-0719 J1600—-3053
J1640+-2224 J1455-3330 J1640+4-2224
J17134-0747 J1600—-3053 J17134-0747
J1730-2304 J16404-2224 J1730-2304
J1744—-1134 J17134-0747 J1744—-1134
J1751-2857 J1730-2304 J1751-2857
J1804—-2717 J1744—-1134 J1801—1417
J1853+1303 J1751-2857 J1804—-2717
J18574+0943 J1801—-1417 J1843—1113
J1909-3744 J1804—-2717 J1853+1303
J19104+1256 J1843—1113 J185740943
J1911+1347 J185740943 J1909-3744
J1918—-0642 J1909-3744 J19104-1256
J2010-1323 J19104+1256 J19114-1347
J2124-3358 J1911-1114 JI911—-1114
J2145—-0750 J1918—-0642 J1918—-0642
J2010-1323 J2010-1323
J2124-3358 J2124-3358
1232242057 1232242057

the SNR of the array, whereas a random selection is inefficient. This
method extracts the few best pulsars to optimize the search for a
CGW signal.

4 CONCLUSIONS AND FUTURE OUTLOOK

PTA data analysis requires both significant human and computational
resources. As the computational burden of such analyses grows with
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the number of pulsars, the problem will be further exacerbated by the
discovery of many new pulsars by next-generation radio facilities. In
this work, we introduced the concept of pulsar selection optimization
for specific analyses. We emphasize that the ranking procedure is
not straightforward and depends on the properties of the sought
signal, and the optimization requirements. Therefore, we considered
optimal selection criteria for deterministic CGW and stochastic GWB
searches separately.

For the GWB, we presented three different ranking methods
that target different aspects of a GWB search: SNR-maximization,
Coupling Matrix, and Chimera method. The performance of our
methods was assessed using frequentist and Bayesian hypothesis
testing on simulated data sets.

The SNR-maximization method aims to increase the detection
confidence in favour of the HD correlation with respect to a CURN
process. Pulsars selected with this method provide an evidence for the
HD versus CURN hypothesis larger than a random selection for all
the considered data sets. For instance, using the EPTA-simplified data
set we obtained a log-Bayes factor which is double the one obtained
with the random selection. Additionally, it was demonstrated that
with this data set we can reach 88 % of the total sensitivity after
including N = 25 pulsars out of 40. The SNR-maximization method
was further studied in Section 3.1.3 for the case of a realistic EPTA
data set with intrinsic red noise included. We found that the first ~20
pulsars are included regardless of the particular noise realization and
respective GWB parameter estimations. It was shown that the method
selects pulsars which provide 1.8-1.9 times larger log-likelihood
ratio than a random selection. Furthermore, 25 pulsars out of the 40
selected by the SNR-maximization method accounted for 89 % of
the log-likelihood ratio of the full data set.

Inherently, the SNR-maximization method tends to pick pulsars
that maximize the HD ORF, which results in clustering of the sources
at angular separations of 0° and 180°. This fact can be detrimental for
disentangling the HD from other spatially correlated noise processes.
The Coupling Matrix selection is aimed at resolving this issue by
maximizing the decoupling between different correlations, so that
the HD spatial mode disentangles from the monopolar and dipolar
correlations. This method has been shown to be efficient at increasing
the evidence in the hypothesis test HD versus CURN+MN+DN in
two out of the three data sets. The main pitfall of this method is that
it weakly depends on the relative sensitivity of selected sources. As
a consequence, some of the high-SNR sources are left behind, which
is the main reason for the loss of sensitivity to GWB.

The Chimera method combines the two approaches to optimize
both the sky coverage and the gain in total SNR. Even though its
formulation is heuristic, this selection method has been a good proxy
for selecting the pulsars that increase confidence in a GWB detection
comparable to Coupling Matrix and SNR maximization. Specifically,
for the simplified-EPTA data set the method is able to recover 90 %
of the sensitivity of the whole array with N = 25 pulsars. In future
work this formalism is going to be further examined. In particular, it
would be interesting to explore if the Information matrix formalism
introduced recently in Ali-Haimoud, Smith & Mingarelli (2021),
Ali-Haimoud, Smith & Mingarelli (2020) could be used to develop
a more rigorous Chimera method, or a selection method targeting
anisotropic searches.

The CGW SNR maximization is constructed to find the best pulsars
to detect a CGW from an SMBHB. In contrast to the GWB case,
CGW ranking deals with purely deterministic signals and this allows
us to treat every pulsar independently, within our formalism. The
method is based on an averaged SNR formula, and was applied to
continuous wave signal searches in the IPTA and realistic EPTA
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mock data sets. Because of the strong dependence of an individual
pulsar’s SNR response p,(f) on the CGW frequency f, ranking was
performed separately for different frequency bins. In order to find
the best pulsars on some frequency range, we had to take the union
of the best pulsars that were identified for several frequency bins.
Using the 22 best-ranked pulsars we recovered more than 95 % of
the total SNR 2 for both the IPTA and realistic EPTA data sets.
Furthermore, we found that 17 of these pulsars are also selected by
the SNR-maximization and Chimera methods.

The main takeaway points of our study can be summarized as
follows:

(i) Although the addition of new pulsars inevitably increases
the sensitivity of a PTA towards CGW and GWB detection (see
Siemens et al. 2013), there exists an optimal subset of pulsars
which is responsible for a larger portion of the sensitivity of a
PTA, especially if the pulsar have different noise properties. This
behaviour is confirmed in Fig. 2 for CGWs, and Figs 6 and 10 for
a GWB. If pulsars have all equal noise properties, it is possible to
include pulsars such that the increase in the evidence is steeper than
arandom selection. This can be seen in Fig. 4.

(ii) In contrast to intuitive expectations, covering the sky uni-
formly with pulsars is not the most optimal strategy of pulsar
selection for the purpose of disentangling different spatial modes,
even in the case that all pulsars are equally sensitive. Instead, as can
be seen from Fig. 1, the ultimate distribution of pulsars in cos 6, has
three distinctive peaks at angular separations of 0°, 90°, and 180°. We
expect that this distribution will converge to a uniform distribution,
if we aim to resolve all multipoles.

(iii) We stress that although a high SNR provides a steeper
increase in the log-Bayes factor when HD is compared to all other
considered types of common processes, it does not guarantee an
optimal decoupling of spatial modes. This is clearly illustrated with
the Galaxy-distributed and mock MeerTime data sets.

(iv) Good sky coverage alone does not guarantee the effective
decoupling of spatial modes. The optimal pulsar selection criterion
should balance between proper sky localization and high sensitivity.
The Chimera method is an attempt to create such a criterion
which accounts for both properties. However, as demonstrated in
Appendix B, simpler selection methods might perform better than the
Chimera method for some data sets. The optimal weighting between
the position and the sensitivity of a pulsar will be the subject of future
investigations.

The purpose of these ranking methods is not to discard the analysis
of some pulsars but only to evaluate their contribution to the full PTA
analysis. Even though these results depend on the noise properties of
the PTA data set considered, the selection of a subset of pulsars has
been shown to be a good proxy for having an informative data set and
at the same time reducing the computational burden of the analysis.
Therefore, if a collaboration decides to limit pulsar sources due to
resource restrictions, these tools will be essential for understanding
how to make such a selection. These methods will be crucial to
extend the array of existing experiments and target specific analyses
when the next generation of radio facilities discover a large number
of new pulsars.
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Figure Al. Log-Bayes factor of the hypothesis test HD versus
CURN+MN+DN as a function of the number of pulsars selected by various
modifications of the Coupling Matrix formalism (shown in different colours).
The corresponding result for the Chimera method (purple colour) are also
shown for comparison. The upper panel shows the result for the simplified
EPTA data set averaged over 45 noise realizations, and the log-Bayes factor
of the full array is indicated with a horizontal red dashed line. The bottom
panel demonstrates the results for the mock MeerTime data set.

APPENDIX A: IMPLEMENTATION OF
DIFFERENT WEIGHTS FOR COUPLING
MATRIX FORMALISM OPTIMIZATION

In this paragraph, we provide further clarifications on the choice of
the weighting function w, from equation (13). As mentioned in the
main text, the weights for the construction of the coupling matrix
should have a direct correspondence to the relative sensitivity of a
source in an array. Here, we tested the performance of the Coupling
Matrix formalism using as the weighting function SNRy raised to
the power of 2, 4, and 6. The results are demonstrated in Fig. Al.
The optimal performance is obtained using SNR4A weights. Coupling
matrix selection with weights of lower power of SNR4 tends to pick
pulsars with a triple-peak distribution on the sky (see Fig. 1), while
the individual sensitivity of a source is relegated to the background.
The degradation of the efficiency of SNRg weighting for the mock
MeerTime data set is due to a saturation of the coupling matrix by the
high SNR pulsars, so that it becomes essentially insensitive to adding
further sources of lower sensitivity, or in some cases even ill-defined.
In order to evade the problem of saturation, we have proposed to use
the eigenvalue-ratio §; (w® = 1) and the individual SNRs of the
pulsars combined in a Chimera-like manner: §, H:i’,' SNRY. The
performance of the latter method is comparable to the one of the
Coupling Matrix formalism with SNR“A weights. The efficacy of
the Coupling Matrix selection and its modifications is going to be
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Figure B1. Log-Bayes factor as a function of the number of chosen pulsars
for each of the selection methods (shown in different colours) for the Mock
MeerTime data set and for different hypothesis tests: HD versus CURN (top),
and HD versus CURN+MN+DN (Bottom). The shown log-Bayes factors
represent the average over 20 different noise realizations.

investigated more thoroughly in future work on a broader range of
data sets.

APPENDIX B: SIMPLE ALTERNATIVE
SELECTION METHODS

Throughout the paper, we compared our selection methods to a
random pulsar selection, because only a random selection can be
considered independent of the specifics of the data sets. However,
such a selection method would not be adopted in a realistic setting.
Therefore, we explore how the selection methods compare to more
realistic, still simple, ranking criteria: selecting pulsars based on their
lowest RMS noise and longest time-span.

For the case of the Galaxy-distributed data set (Section 3.1.1)
where all the pulsars have the same RMS and time-span, it is already
clear that our ranking methods outperform a lowest RMS selection
or a longest time-span selection, which are equivalent to the random
selection. For the EPTA-simplified data set (Section 3.1.3) and the
Mock MeerTime data set (Section 3.1.2) we perform only the RMS
selection because all the pulsars’ time-spans are equal.

For the Mock MeerTime data set (Fig. B1), the RMS selection
method provides Bayes factors comparable to those of the Coupling
Matrix and worse than the SNRg and Chimera method, for the
hypotheis test HD versus CURN. However, for the hypothesis test
HD versus CURN+MN+DN, the RMS selection method performs
better than all the others.

For the EPTA-simplified data set (Section 3.1.3) the results are
shown in Fig. B2. The RMS selection method provides Bayes factors
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Figure B2. Log-Bayes factor as a function of the number of chosen pulsars
by each of the selection methods (shown in different colours) for the EPTA-
simplified data set and for different hypothesis tests: HD versus CURN (top),
and HD versus CURN+MN+DN (Bottom). The shown log-Bayes factors
represent the average over 20 different noise realizations.

comparable to the ones of the Chimera method for 25 pulsars and
slightly smaller than the SNRy method, for the hypothesis test HD
versus CURN. For the hypothesis test HD versus CURN-+MN+DN,
the RMS selection method yields a Bayes factor comparable to
the one of the SNRy selection. The reason why for the hypothe-
sis test HD versus CURN+MN+DN in the EPTA-simplified and
mock MeerTime data sets the RMS selection performs better than
other selection methods is that the lowest RMS pulsars are almost
uniformly distributed on the sky, so that the most sensitive pulsars of
the array are picked in sufficiently optimal parts of the sky. For the
arrays in which low-RMS pulsars are clustered in a specific region
of the sky, this will not be the case. For the hypothesis test HD versus
CURN, the RMS method does not differ significantly from the SNR-
maximization, because the SNR formula already takes into account
the RMS values and the aforementioned data sets are affected only
by white noise.

For the realistic EPTA data sets (Section 3.2), we performed
the lowest RMS and longest time-span selections, and we show
the results in the top panel of Fig. B3. The lowest RMS selection
does not seem to differ from the SNR-maximization selection and
it yields in median approximately the same log-likelihood ratio,
which is ~0.87 times the total one. The longest time-span selection
performs slightly worse than the SNR-maximization and lowest RMS
selections, and it provides a log-likelihood ratio 0.71 times the one
from the full data set.

To highlight the difference between the lowest RMS selection and
the SNR-maximization selection we created a new data set which

Quality over quantity 1817
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Figure B3. (Top): Distribution of log-likelihood ratios obtained as in Fig. 10
but with the addition of the distributions of log-likelihood ratios obtained
with the lowest RMS (RMS) and the longest time-span (Tobs) selections.
The median values for the shown distributions are: 5.88 (N = 40), 5.17
(SNRp), 5.14 (SNRy), 5.13 (RMS), 4.19 (Tobs), 2.73 (Random). (Bottom):
Same analysis as above but for the simulated realistic EPTA data set with
a number of TOAs as in the real EPTA data set and not every 14 d as in
the (simulated) realistic EPTA data set. The median values for the shown
distributions are: 7.71 (N = 40), 6.80 (SNRp), 6.69 (SNRy), 6.11 (RMS),
5.53 (Tobs), 3.66 (Random).

the number of TOAs of each pulsar. The pulsars simulated for the
realistic EPTA data set have the same time-span as the real EPTA
data set, but with TOAs observed every 14 d. Now, the new data
set has the same number of TOAs as the real EPTA data set and
their TOA cadence range between one per day up to one every 18 d.
The results of the same analysis of Section 3.2 are shown in the
bottom panel of Fig. B3. Contrary to the previous results, the lowest
RMS selection method is now suboptimal compared to the SNR-
maximization method. The contribution to the total noise power due
to white and red noise has changed as the TOA cadence is different.
This has an impact on the selection methods. In fact, the SNR ranking
recovers 88 % of the total log-likelihood, whereas the lowest RMS
selection reaches only 79%.

Even if the SNR-ranking method does not perform as well as the
RMS selection in some scenarios, it is more flexible and its relatively
cheap computational cost makes it worth using it instead of RMS
or longest time-span selection, when testing the HD versus CURN
hypothesis.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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