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A B S T R A C T 
The search for gravitational waves using Pulsar Timing Arrays (PTAs) is a computationally expensive complex analysis that 
involves source-specific noise studies. As more pulsars are added to the arrays, this stage of PTA analysis will become increasingly 
challenging. Therefore, optimizing the number of included pulsars is crucial to reduce the computational burden of data analysis. 
Here, we present a suite of methods to rank pulsars for use within the scope of PTA analysis. First, we use the maximization 
of the signal-to-noise ratio as a proxy to select pulsars. With this method, we target the detection of stochastic and continuous 
gra vitational wa v e signals. Ne xt, we present a ranking that minimizes the coupling between spatial correlation signatures, namely 
monopolar , dipolar , and Hellings & Downs correlations. Finally, we also explore how to combine these two methods. We test 
these approaches against mock data using frequentist and Bayesian hypothesis testing. For equal-noise pulsars, we find that 
an optimal selection leads to an increase in the log-Bayes f actor tw o times steeper than a random selection for the hypothesis 
test of a gravitational wave background versus a common uncorrelated red noise process. For the same test but for a realistic 
European PT A (EPT A) data set, a subset of 25 pulsars selected out of 40 can provide a log-likelihood ratio that is 89 % of the 
total, implying that an optimally selected subset of pulsars can yield results comparable to those obtained from the whole array. 
We expect these selection methods to play a crucial role in future PTA data combinations. 
Key w ords: gravitational w aves – methods: data analysis – pulsars: general. 
1  I N T RO D U C T I O N  
Pulsar Timing Array (PTA) experiments search for nanohertz- 
frequency gra vitational wa ves (GWs) through induced shifts in radio- 
pulse arri v al times from Galactic millisecond pulsars (Sazhin 1978 ; 
Detweiler 1979 ). The timing precision and regularity of the pulse 
times of arri v al (TOAs) from these pulsars make them exquisite 
laboratories for studying a variety of astrophysical and fundamental 
physics phenomena (e.g. Verbiest et al. 2009 ). This includes GWs, 
which impart changes to the proseparation of Earth and the pulsar, 
causing pulses to arrive earlier or later than expected. These timing 
deviations are a function of the GW source characteristics, as well 
as the geometry of the GW source relative to the Earth-pulsar line- 
of-sight. Upon fitting a deterministic timing ephemeris (describing 
leading order behaviour such as the rotational period, spindown 
rate, etc.) to a pulsar’s TOAs, the remaining timing residuals can 
be analysed to search for the presence of GW signals amidst noise 
contributions. In a single pulsar’s timing residuals, GW signals can 
easily be conflated with intrinsic pulsar noise effects (e.g. Shannon & 
! E-mail: lorenzo.speri@aei.mpg.de 

Cordes 2010 , and references therein) or even poorly understood 
artefacts of the ionized interstellar medium that radio pulses must 
traverse (e.g. Cordes & Shannon 2010 , and references therein). But 
by constructing an array of pulsars, the fact that the GW-induced 
timing deviations are correlated between pulsars can be leveraged to 
distinguish it from uncorrelated astrophysical and instrumental noise 
processes (Foster & Backer 1990 ). 

Several large collaborations have been monitoring ensembles of 
millisecond pulsars o v er long timing baselines in a bid to detect both 
a stochastic GW background (GWB) and indi vidually resolv able GW 
sources. These include the European Pulsar Timing Array (EPTA; 
Kramer & Champion 2013 ), the North American Nanohertz Ob- 
servatory for Gravitational waves (NANOGrav; McLaughlin 2013 ), 
and the Parkes Pulsar Timing Array (PPTA; Manchester et al. 2013 ). 
Together with the more recently established Indian PT A (InPT A; 
Joshi et al. 2018 ), these collaborations constitute the International 
Pulsar Timing Array (IPTA; Verbiest et al. 2016 ; Perera et al. 2019 ), 
which aims to synthesize the aforementioned regional efforts to 
achieve more significant and rapid disco v eries. Other recent timing 
efforts include the Chinese PT A (CPT A; Lee 2016 ), the MeerTIME 
programme (Bailes et al. 2018 ) conducted at the MeerKAT telescope 
(Camilo et al. 2018 ), CHIME/Pulsar (Ng 2018 ), GMRT (Swarup 
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1990 ), and FAST (Jiang et al. 2019 ). Recent results from NANOGrav 
(Arzoumanian et al. 2020 ), the PPTA (Goncharov et al. 2021 ), 
the EPTA (Chen et al. 2021 ), and the IPTA (Antoniadis et al. 
2022 ) all show strong evidence in fa v our of a common-spectrum 
process versus independent red-noise processes with Bayes factors 
of order ∼10 3 − 10 4 . These stochastic processes have similar spectral 
characteristics with estimated amplitudes around A ∼ 2 − 3 × 10 −15 , 
and are all in broad agreement with expectations for a GWB 
generated by an astrophysical population of supermassive black-hole 
binaries (SMBHBs, e.g. Middleton et al. 2021 ). Ho we ver, there is 
not yet significant evidence for the distinctive pattern of interpulsar 
correlations, known as the Hellings & Downs (HD) curve. In fact 
such evidence needs more time to emerge than the presence of a 
common process (Pol et al. 2021 ; Romano et al. 2021 ). 

Building evidence for GW-induced interpulsar correlations re- 
quires many well-timed pulsars in order to forge ef fecti ve pairings 
across different angular separations in order to trace out the HD 
pattern (Hellings & Downs 1983 ). This pattern is mostly quadrupolar 
in angular separation, with two zero crossings between 0 ◦ and 180 ◦. 
Yet there are several issues associated with building an effective 
pulsar array for GW detection. (i) First, we are constrained by the 
Galactic distribution of millisecond pulsars, so there is little reason 
to consider array geometries that contradict this. (ii) Furthermore, if 
one were to only try to disco v er new pulsars that would maximize 
the significance of HD correlations, then the best strategy would 
be to surv e y close to the most sensitive pulsars. However, this 
would not trace the full pattern of this correlation curve, thereby 
severely inhibiting our ability to discriminate it from systematic 
noise processes that can also induce interpulsar correlations (Tiburzi 
et al. 2016 ). The latter include solar-system ephemeris errors that 
create dipolar correlations (Champion et al. 2010 ; Caballero et al. 
2018 ; Guo et al. 2019 ; Roebber 2019 ; Vallisneri et al. 2020 ), and 
long time-scale systematics in time standards that create monopolar 
correlations (Hobbs et al. 2012 , 2020 ). (iii) Finally, the next- 
generation of radio facilities such as DSA-2000 (Hallinan, Ravi & 
team 2021 ), the Square Kilometre Array (SKA; Dewdney et al. 
2009 ; Janssen et al. 2015 ), and the next-generation Very Large Array 
(ngVLA; Murphy et al. 2018 ) will lead to a torrent of new pulsars 
and observations. Future PTA data analysts will need metrics to 
judge which pulsars will most ef fecti vely characterize the GWB 
and resolve multiple individual SMBHBs out of this confusion 
background. 

Therefore, exploring how to optimize the observing and analysis 
strate gies of PTA e xperiments is crucial. In previous works, compu- 
tational techniques to optimize the observational schedule (Lee et al. 
2012 ; Lam 2018 ), and arri v al-time precision as a function of radio 
frequency and bandwidth (Lam et al. 2018 ) have been investigated. 
In Roebber ( 2019 ), the author proposed a technique to optimize the 
disentangling between different spatial correlations and, therefore, 
to separate the signal due to GWs from that produced by clock 
or ephemeris errors. This paper also argued that such a method 
could be used to decide which pulsars should be included in PTAs. 
Beyond standard quality checks related to a pulsar’s long-term timing 
stability, PTA searches aim to include as many pulsars as possible. 
Ho we ver, a standard timing baseline cut of ∼3 yr is usually made 
in order to reduce the data volume while at the same time ensuring 
that all pulsars inform GW frequencies ! 10 nHz where a GW 
background signal should be strongest. 

In this work, we introduce for the first time a robust methodology 
for pulsar selection optimization in order to detect and characterize 
both the stochastic background and single continuous gravitational 
wave (CGW) sources. We develop ranking (or selection) methods to 

understand which pulsars contribute most to GW searches, where we 
target three key analyses: (i) detection of a GWB versus a Common 
Uncorrelated Red Noise (CURN) process, (ii) detection of a GWB 
versus Monopolar and Dipolar correlated signals, (iii) detection of 
CGW sources. These methods use statistical tools introduced in 
previous studies, making our methods easily implemented within 
established pipelines. Each method takes as input the intrinsic timing 
and noise properties of the whole pulsar array – which could be 
potentially provided by previous data releases – and outputs a ranked 
list of pulsars for a specified GW search. 

This paper is organized as follo ws. We re vie w the standard PTA 
statistical tools such as likelihood and frequentist and Bayesian 
hypothesis testing in Sections 2.1 and 2.2 . These tools are used to test 
the performance of the ranking methods introduced in Sections 2.3 
and 2.4 . In particular, the ranking method based on signal-to-noise 
ratio (SNR) maximization is presented in 2.3.1 , and the one aimed 
at disentangling different spatial correlations in 2.3.2 . In Section 2.4 , 
we develop a selection method that targets the search for continuous 
gra vitational wa ve signals. The results are presented in Section 3 
where the selection methods are tested using simulated data sets 
with increasing level of noise complexity. We conclude with our 
expectations for future investigations in Section 4 . 
2  M E T H O D S  
2.1 Pulsar timing array likelihood 
In this section, we introduce the marginalized PTA likelihood which 
is ultimately the fundamental tool for the statistical analysis of 
PTA data (van Haasteren et al. 2009 ). We predominantly follow the 
‘Gaussian process’ treatment described in details in van Haasteren & 
Vallisneri ( 2014 ), Arzoumanian et al. ( 2016 ). The TOAs for each 
pulsar can be represented by a vector t of length N TOA . t can be 
written as a sum of a deterministic and a stochastic component: 
t = t det + t sto . 

The deterministic part comprises the so-called timing model which 
depends on a set of timing parameters β. The timing model describes 
the intrinsic spin evolution of a source, propagation effects as well as 
time delays associated with the relative motion of a source and the 
Earth and kinematic and light propagation effects in the binary system 
(see e.g. Lorimer & Kramer 2012 ). The initial estimate of the m 
timing model parameters β0 is obtained using the minimization of the 
sum of the squares of the residuals δ t = t − t det ( β). This least-square 
linear fit to the timing model, which is performed using the TEMPO2 
softw are (Edw ards, Hobbs & Manchester 2006 ; Hobbs, Edwards & 
Manchester 2006 ), is equi v alent to likelihood maximization when 
assuming Gaussian white noise errors. In reality the stochastic noise 
component is dominated by coloured noises. Assuming that the initial 
estimate of the timing parameters β0 obtained from TEMPO2 does 
not differ significantly from the final estimate βf obtained from a full 
analysis that includes more sophisticated stochastic noise modelling, 
the timing model can be approximated to impact the timing residuals 
linearly via the term M ε, where ε = βf − β0 and M is an N TOA ×
m design matrix (van Haasteren et al. 2009 ). 

The correlated components of the stochastic piece t sto are modelled 
in terms of a Fourier decomposition (Lentati et al. 2013 ). In practice, 
the analysis focuses on the noise with dominant power at lower 
frequencies, so that only a finite number of Fourier components N f 
are used. In this case the signal can be written in a matrix form of 
the type F a , where the vector a of length 2 N freqs contains the Fourier 
coefficients, whereas the N TOA × 2 N freqs matrix F is constructed with 
alternating columns of sines and cosines e v aluated at the TOAs of 
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each pulsar. The base sampling frequency is given by the inverse of 
the observation time-span of the entire pulsar timing array, 1/ T . 

The influence of white-noise on the timing residuals is described 
by the N TOA × N TOA white noise covariance matrix N . Finally, the 
noise-mitigated timing residuals r , which is our best approximation 
to the white noise n for each pulsar can be written in a compact form 
as a function of the input residuals δ t : 
r = δ t − T b T = [M F ] b = [εa ], (1) 

and the likelihood is given by: 
p( δ t | b ) = exp {− 1 

2 r T N −1 r }
√ 

2 π det { N } . (2) 
The prior covariance and corresponding Gaussian prior on the 
coefficients & b are written as: 
B = [∞ 00 φ] p( b | φ) = exp {− 1 

2 b T B −1 b }
√ 

2 π det { B } , (3) 
so that the timing model piece of b is a uniform unconstrained prior on 
the timing model parameters ε, and the spectrum of all low-frequency 
processes enters in the variance φ as: 
φ( ai) , ( bj ) = % ab S i δij + P ai δab δij , (4) 
where the intrinsic low-frequency (‘spin-noise’) spectrum of pulsar 
a at the i -th sampling frequency is represented by P ai , and the GWB 
spectrum, which is common to all pulsars, is given by S i . Both of 
these processes can be modelled with a power-law functional form: 
P ai = A 2 a 

12 π2 T 
(

f i 
yr −1 

)−γa 
yr 2 . (5) 

The reduction in correlated power due to the spatial separation of 
the pulsars is described by the o v erlap reduction function (ORF) % ab 
between pulsars a and b . For an isotropic and stochastic GWB, the 
ORF is described by the HD curve (Hellings & Downs 1983 ), which 
depends only on the angular pulsar separation. If we group all the 
red noise and GWB spectral hyperparameters into the vector η we 
can obtain the likelihood of the full PTA array (van Haasteren & 
Vallisneri 2014 ), marginalized o v er b : 
L ( η) = p( { δ t }| η) = ∫ N ∏ 

a= 1 p( δ t a | b a ) × p( { b }| η) d N b , 
ln L = −1 

2 [δ t T C −1 δ t + Tr ln 2 πC ], (6) 
where C = N + TBT T , and N is the total number of pulsars. A 
deterministic signal s ( θ) can be incorporated in the modelling by 
performing the following replacement δ t → δ t − s ( θ ). More details 
on likelihood construction and handling correlated noise processes 
in pulsar timing analysis can be found in e.g. van Haasteren & Levin 
( 2013 ), Arzoumanian et al. ( 2015 , 2016 ), Taylor ( 2021 ). 

Having constructed the PTA marginalized likelihood, we can 
estimate the parameters η. In frequentist inference, the true model 
parameters are considered to be fixed ηTrue , and are estimated 
by maximizing the likelihood to obtain the maximum-likelihood 
estimator (MLE), ηMLE . In Bayesian inference, model parameters 
are no longer regarded as fixed, but are themselves random variables. 
The probability distribution of the parameter values before the data 
acquisition (the prior distribution p( η)) is updated to a probability 
distribution after the data incorporation (the posterior distribution 
p( η| δ t )) through the likelihood of the observed data L ( δ t | η). With 
several intrinsic noise parameters per pulsar, in addition to several 
global parameters describing the GW signal, the posterior distri- 
bution can be as high as O(100)-dimensional. Thus, it is typically 

explored and sampled numerically using Markov chain Monte Carlo 
(MCMC) techniques. 
2.2 Hypothesis testing 
The essential step of the PTA analysis is testing whether the observed 
data are consistent with our expectations, e.g. the presence of a 
GW signal or its absence. Therefore, we use hypothesis testing to 
investigate if the data provides suf ficient e vidence for one hypothesis 
H 1 with respect to another one H 2 . The tools developed in this 
section will be used in Section 3 as a proxy to test our selection 
methods. 

If we adopt a frequentist approach, we can maximize the likelihood 
under each hypothesis to find the MLE for the parameters, i.e. 
ηMLE 1 = max η ln L ( η| H 1 ) and analogously for H 2 . Then, the log- 
likelihood ratio defined as: 
ln ' = ln L ( ηMLE 1 | H 1 ) − ln L ( ηMLE 2 | H 2 ) (7) 
can be used to test whether our data supports hypothesis H 1 with 
respect to H 2 . Roughly speaking, a large value of ln ' indicates a 
stronger support for H 1 with respect to H 2 . Therefore, we can use 
ln ' to assess if an optimally selected subset of pulsars supports our 
expectations as much as the full data set. 

To statistically quantify the significance of a measured log- 
likelihood value, it is necessary to create multiple realizations of 
the data under the reference hypothesis H 2 . For each realization, we 
must then e v aluate the log-likelihood ratio to obtain a distribution of 
ln ' under the reference hypothesis. This distribution can be used to 
calculate the p -value of the measured log-likelihood. This approach 
is only viable if our ranking methods are tested on mock data set 
realizations. 

In reality, we cannot generate multiple realizations of the data 
because we do not have access to the true parameters and data 
generation process. We have access only to the most likely values 
of such parameters from previous data releases. Therefore, we 
can use those for the data generation of the reference hypothesis. 
By e v aluating the p -v alue for the real data set, we estimate the 
significance of such an experiment and check the consistency of 
our assumptions on the data generation process. Similar tests are 
e xtensiv ely used in PTA analysis (see sky scrambles, phase shifts, 
and optimal statistic analysis, e.g. Chamberlin et al. 2015 ; Cornish & 
Sampson 2016 ; Taylor et al. 2017 ). We e v aluate this procedure as a 
consistency check for hypothesis testing of a realistic PTA analysis 
in Section 3.2 . 

In Bayesian statistics, the Bayes Factor (BF) 
BF = ∫ d ηL ( δ t | η, H 1 ) p( η, H 1 ) ∫ 

d ηL ( δ t | η, H 2 ) p( η, H 2 ) (8) 
is used to assess which model is fa v oured by the observations, 
assuming that the two models are equally probable a priori. A ‘rule of 
thumb’ for interpreting Bayes’ factors is presented in Kass & Raftery 
( 1995 ), where BF > 20 is considered strong evidence for H 1 . 1 

If the posterior volumes of the two hypotheses are approximately 
the same, then the log-likelihood ratio at the MLE is approximately 
equal to the log-Bayes factor, i.e. ln BF ≈ ln ' (Romano & Cornish 
2017 ; Pol et al. 2021 ). 
1 Alternatively, the distribution of the Bayes factor can be computed under the 
null hypothesis and used, in a frequentist way, to produce a mapping between 
p -values and Bayes factors. However, this approach is computationally 
e xpensiv e. 
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In practice, BFs are widely used to perform robust statistical 
analysis, including hypothesis testing, when processing real PTA 
data sets. In this work, full Bayesian inference is only used for 
computationally feasible analysis of simplified data sets. For the 
realistic mock data sets which require more sophisticated noise 
modelling, we utilize the log-likelihood ratio test as it requires fewer 
computational resources. 
2.3 Ranking pulsars for stochastic signal searches 
One of the primary goals of the current PTA experiments is to 
detect the stochastic GWB from a population of SMBHBs. An 
isotropic GWB manifests itself as a long time-scale, low-frequency 
(or red) common signal across the pulsars in a PTA. This common 
signal is characterized by the common spectrum and the interpulsar 
spatial correlations. The distinctive signature of the gravitational 
nature lies in this correlation which depends only on the pulsar’s 
angular separation and has an expectation value given by the HD 
curve (Hellings & Downs 1983 ). Current experiments found strong 
evidence for the presence of a common red noise signal. While 
such a signal could potentially represent the expected GWB from 
SMBHBs, there is not yet strong evidence for either HD or other 
alternative angular correlations. 

Moti v ated by these latest results, in Section 2.3.1 we design a 
method to identify the optimal subset of pulsars for increasing 
the confidence in the detection of an HD correlation, whereas in 
Section 2.3.2 we use the decoupling formalism to find the best 
subset of pulsars for distinguishing this correlation from alternative 
hypotheses. Recent work has cautioned that GWB upper limits can 
be biased and even lie below the true value when small ( ! 20) 
combinations of pulsars are analysed (Johnson et al. 2022 ). Our work 
here is likely immune from such unwanted effects for several reasons: 
(i) the field of PTAs has mo v ed be yond the re gime of setting upper 
limits, to now estimating the statistical parameters of a common 
process and performing model selection on spatial correlations; and 
(ii) our metrics here are based on the detectability and discrimination 
of stochastic processes, rather than upper limits. 
2.3.1 Spatially correlated signal-to-noise ratio maximization 
As previously mentioned, the target signal is described by a correlated 
red noise process S ( f ) with spatial correlations % ab . An optimal 
subset of pulsars can be constructed based on an optimal statistic that 
maximizes the detection probability at a fixed false alarm probability 
for this specific case. As a proxy for this, it is convenient to consider 
statistics that maximize the signal-to-noise ratio (SNR), which is the 
ratio of the expected value of a statistic in the presence of a signal, 
µ1 , to its standard deviation. The standard deviation can either be 
computed in the absence of a signal, σ 0 , or in the presence of a 
signal, σ 1 . In Rosado, Sesana & Gair ( 2015 ), the authors introduce 
two statistics: the A-statistic constructed by maximizing µ1 / σ 0 and 
the B-statistic constructed by maximizing µ1 / σ 1 . This procedure 
leads to the respective SNR definitions: 
SNR 2 A = 2 ∑ 

a>b ∫ % 2 ab S 2 ( f ) T ab 
P a ( f ) P b ( f ) d f , (9) 

SNR 2 B = 2 ∑ 
a>b ∫ % 2 ab S 2 ( f ) T ab 

[ P a ( f ) + S( f )][ P b ( f ) + S( f )] + S 2 ( f ) % 2 ab d f . (10) 
We use these quantities as a proxy to identify the best subset of 
pulsars from the full array. SNR A and SNR B are obtained under the 
expectation value of the true hypothesis and do not depend on the 
timing residuals but only on the general properties of the pulsars’ red 

and white noises. In equations ( 9 )–( 10 ), the sum is o v er the pulsar 
pair a , b , with a > b and T ab is the o v erlapping time of observation 
of the a , b arrays. The term P a ( f ) represents the sum of the intrinsic 
noise processes of pulsar a such as red noise, white noise, etc.: 
P a ( f ) = P rn + P wn + ... 

= A 2 a 
12 π2 

(
f 

yr −1 
)−γa 

yr 3 + 2 σ 2 )t + ... (11) 
where σ is the root-mean-square (RMS) error and ) t is the cadence 
of the TOAs. We also assume that the correlated noise process S ( f ) 
can be described by a power-law functional form. 

As pointed out in Rosado et al. ( 2015 ), the SNR B is more robust in 
the strong-signal regime. In fact, as we can see from equations ( 9 )–
( 10 ), one of the useful differences with respect to the other statistic is 
that SNR B does not diverge for S ) P a . The SNR B is very similar to 
the so-called optimal statistic SNR presented in Siemens et al. ( 2013 ), 
Chamberlin et al. ( 2015 ), ho we ver the last term in the denominator 
of SNR B is missing in those studies. 

One downside of using the SNR B of equation ( 10 ) is that it assumes 
the amplitude and slope of S ( f ) to be known. Since we have constraints 
on such parameters from the current PTA experiments, we can 
assume these to be known and use them to calculate the SNR. We will 
later show that the selection procedure using this SNR is not strongly 
affected by the variations of these quantities when estimated o v er 
noise realizations. The SNR A definition has the advantage that the 
amplitude factors out and therefore its maximization is not affected 
by the choice of A GWB . 

In theory, we would need to compare the SNRs with all possible 
combinations of subsets of pulsars from the whole array. Since this is 
computationally intractable in practice, we start from a few fiducial 
pulsars and add pulsars one by one until we reach the desired 
level of SNR. We will see in Section 3.2 that this ‘one-by-one’ 
implementation of SNR-maximization performs very well, reaching 
a high proportion of the full data set BF with only a small selection 
of pulsars. The small impro v ement that might be achieved from an 
e xhaustiv e search of all possible pulsar subsets is unlikely to be worth 
the considerable increase in computational cost. 

If we set the spatial correlation % ab to be the HD correlation, 
we can use these SNRs to rank pulsars and increase the detection 
probability of a GWB. Therefore, the SNR-maximization selection 
method introduced here aims at providing the best pulsars for the 
hypothesis test of an HD correlation (hypothesis H 1 ) versus a CURN 
(hypothesis H 2 ). 

2.3.2 Maximization of the decoupling between spatial correlations 
An unambiguous detection of a GWB relies on the characterization 
of the angular correlation between pulsars. In order to claim a 
detection, PTA e xperiments must pro vide strong evidence that 
an HD correlation is clearly identified in the data. Ho we ver, the 
detection of a GWB is complicated by the presence of other types of 
correlated signals. Specifically, errors in clocks used to calibrate 
timing residuals, and poorly determined solar system ephemeris 
induce large-scale correlations between pulsars and can mimic the 
effects of a GWB. The irregularities in terrestrial time standards 
produce signals with monopolar spatial correlation (Hobbs et al. 
2012 , 2020 ), while emphemeris errors can result in dipolar signals 
(Champion et al. 2010 ; Tiburzi et al. 2016 ). In order to provide 
an optimal separation of the quadrupole GWB signal from those 
produced by clock or ephemeris errors, Roebber ( 2019 ) proposed a 
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method to minimize the leakage between spatially correlated noises. 
We briefly re vie w this formalism here. 

The degree to which power from one spatial harmonic can leak 
into another one can be quantified by the coupling matrix (Peebles 
1973 ; Gorski et al. 1994 ; Wandelt, Hivon & G ́orski 2001 ; Hivon et al. 
2002 ; Mortlock, Challinor & Hobson 2002 ; Efstathiou 2004 ): 
K ( l m ) , ( l m ) ′ = ∫ Y lm ( &) W ( &) Y ( lm ) ′ ( &)d & , (12) 
where Y lm is the spherical harmonic of degree l and order m , W ( &) 
is the window function, and the integral is performed o v er all sk y 
directions, &. The Coupling Matrix formalism can be directly applied 
to the pulsar selection problem. Within the PTA framework, a GWB 
has maximum power at l = 2, while clock noise and ephemeris noise 
appear at l = 0 and l = 1, respectively. Therefore, the coupling 
matrix elements with l from 0 to 2 are of interest for the problem 
of mode disentangling. While forming an orthonormal basis in the 
case of continuous co v erage ( W ( &) = 1 everywhere on the sky), 
the coupling matrix loses its orthogonality when the sampling of the 
sky becomes discrete, resulting in non-zero off-diagonal elements in 
K ( l m ) , ( l m ) ′ . 

In the context of PTA analysis, the window function is given by the 
Kronecker-delta modulated by the individual weights w of pulsars 
placed at sky positions ˆ p a : 
W ( &) = ∑ 

a w a δ( & − ˆ p a ) . (13) 
In the case of all-equal pulsars, the choice of the weighting function 
is straightforward: w a = 1 for all pulsars. Ho we ver, the problem 
becomes less trivial when each pulsar has different properties (in 
terms of RMS residuals, observation time, intrinsic red noise, etc.). 
Roebber ( 2019 ) suggests to use the inverse of the RMS of a source, 
1 /σ 2 

a , as weights, to account for the relative sensitivity of different 
pulsars in an array. In order to additionally account for the coloured 
noise in an array, we will use SNR A ∼ 1 /σ 2 

a as weights in the 
coupling matrix formula, where SNR A is defined using the self- 
term ( a = b ) of equation ( 9 ). Although this is a natural choice, it is 
worth noting that the optimal choice of the weighting function for 
the coupling matrix construction does not have a unique solution and 
in some cases requires a heuristic approach (Efstathiou 2004 ). As 
shown in Appendix A , for the two realistic mock data sets described 
in Section 3 , an SNR 4 A weighting on average performs better than 
the other types of weighting function considered. Ho we ver, in order 
to provide a definitive solution to the problem of weight selection, 
e xtensiv e testing on more diversified samples of mock data sets is 
required, which we leave for future work. 

The level at which one mode leaks to another is estimated via the 
ratio of minimum and maximum eigenvalues λmin / λmax of K ( l m ) , ( l m ) ′ , 
which is 1 when the coupling matrix is diagonal and drops to 0 when 
the coupling matrix is ill-defined. Since we are mainly interested in 
decoupling the spherical harmonics with different l , we can average 
equation ( 12 ) o v er m . Thus, the final expression for the coupling 
matrix is Efstathiou ( 2004 ): 
M l ,l ′ = 1 

(2 l + 1)(2 l ′ + 1) ∑ 
m,m ′ K ( l ,m )( l ′ ,m ′ ) . (14) 

We construct the pulsar ranking list by selecting those that lead 
to the largest eigenvalue ratio δλ = λmin / λmax of the M l ,l ′ matrix. 
The Coupling Matrix selection method introduced here aims at 
providing the best pulsars for the hypothesis test of an HD correlation 
(hypothesis H 1 ) versus the presence of all three signals in the 
data, namely common uncorrelated, monopolar and dipolar spatially 

correlated red noise processes (hypothesis H 2 ). As pointed out 
in Roebber ( 2019 ), the minimum number of pulsars required to 
disentangle up to l max is ∑ l max 

l= 0 (2 l + 1) = ( l max + 1) 2 , which is 9 
for l = 2. After averaging over m , the coupling matrix M l ,l ′ is well- 
defined when the number of pulsars is ≥3, meaning that at least three 
pulsars are required to resolve the spatial modes up to the quadrupole. 
Therefore, when the Coupling Matrix formalism is applied to realistic 
data sets, in order to a v oid ambiguity, the first three pulsars in the 
ranking are fixed to those with the highest self-SNR. 
2.3.3 Chimera method: combining SNR- and 
decoupling-maximization algorithms 
The Coupling Matrix selection method is aimed at disentangling 
different types of correlations, while the total SNR-maximization is 
disregarded. Therefore, the Coupling Matrix can only be used as 
a complementary scheme for array optimization, especially, for an 
array of pulsars in mixed SNR regime. 2 Here we propose a new 
selection method that combines the merits of both the Coupling 
Matrix and SNR-maximization: hereafter the ‘Chimera’ 3 method. 
The basic idea is to add a new pulsar to a subset, so that the HD-SNR 
is maximized along with the decoupling power. One of the possible 
norms that satisfies the latter requirement is the multiplication of the 
rele v ant scores of both methods, i.e. SNR and eigenvalue ratio: 
SC Chimera = SNR 2 B δλ. (15) 
Note that the ranking of pulsars within the Chimera approach is 
purely heuristic and the score that we offer in equation ( 15 ) is one 
of many possible choices. As in the case of the Coupling Matrix, 
the first three pulsars are selected according to the highest self-SNR, 
while the following ones are picked so that the score in equation ( 15 ) 
is maximized. 

For reference, in Fig. 1 we sho w ho w the three different selection 
methods for GWB searches pick equal-noise pulsars on the sky. The 
full array is composed of 200 pulsars uniformly distributed o v er the 
sky and the number of selected pulsars is 25. The first pulsar was 
randomly selected and the following ones were picked according to 
the different selection methods. The SNR depends on % 2 ab and so 
the SNR-maximization method tends to add pulsars where the HD 
correlation is largest, i.e. with θab = 0 ◦ and 180 ◦. The region between 
−0.6 and 0.6 will be eventually filled as the number of selected 
pulsars increases. 4 The Coupling Matrix and Chimera methods also 
picked pulsars at θab = 0 ◦ and 180 ◦, but the distribution of angular 
separations is broader and co v ers more values of θab . We find that of 
the first 25 pulsars selected by the Chimera method, none of them 
are placed around cos θab ≈ −0.7 and cos θab ≈ 0.7. This might be 
due to some interaction between SNR-maximization and Coupling 
2 This means that the vast majority of pulsars in an array are in the weak 
signal regime (Siemens et al. 2013 ) and only a few sources actually contain 
the detectable signal. In this case, the latter are expected to contribute a 
significant fraction of the whole array sensitivity, while the addition of the 
former sources is largely irrele v ant. 
3 The name was inspired by the mythological creature composed of different 
animal parts. Homer describes it as follows in the Iliad: ‘she was of divine 
stock, not of men, in the fore part a lion, in the hinder a serpent, and in 
the midst a goat, breathing forth in terrible wise the might of blazing fire.’ 
Homer & Lattimore ( 2005 ). 
4 We included in the supplementary materials two animated figures that show 
how the SNR-maximization method sequentially adds pulsars, see animate h 
ist HDvsNoise loc 3d.gif and animate hist HDvsNoise.gif. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
8
/2

/1
8
0
2
/6

8
2
3
7
1
7
 b

y
 J

e
a
n
 a

n
d
 A

le
x
a
n
d
e
r H

e
a
rd

 L
ib

ra
ry

 u
s
e
r o

n
 2

9
 N

o
v
e
m

b
e
r 2

0
2
2

file:animate_hist_HDvsNoise_loc_3d.gif
file:animate_hist_HDvsNoise.gif


Quality over quantity 1807 

MNRAS 518, 1802–1817 (2023) 

Figure 1. Distribution of angular separations of 25 pulsars selected with 
three selection methods, namely SNR B -maximization, Coupling Matrix, and 
Chimera. These methods have been applied to a data set consisting of 
200 pulsars with uniform sky distribution and equal noise properties. For 
reference, we also show a random selection of 25 pulsars. 
Matrix selection. Note that the pattern in Fig. 1 could change if we 
were starting with two or more pulsars with different sky locations. 
2.4 Continuous gravitational wave SNR-maximization 
Continuous gravitational waves are deterministic signals and their 
analysis has been treated separately from the stochastic GWB. CGWs 
are included in the model as a periodic delay applied to the timing 
residuals δ t while the effect of the GWB is included in the covariance 
matrix C of the likelihood. This fundamental difference between the 
two signals and their mathematical description calls for a different 
ranking method. 

Here, we want to rank pulsars according to their response to a 
CGW signal. One way to proceed is to inject a large number of f ak e 
CGW signals with randomized parameters except for fixed frequency 
and amplitude (Babak et al. 2015 ). Then, for each pulsar, the CGW 
signal-to-noise ratio is computed for each injection and averaged 
numerically . In this way , we ha ve the a verage response of each 
individual pulsar in the array at a given frequency of the CGW 
signal. This averaging can also be done analytically, as shown in the 
following paragraph. Note that we refer to the signal-to-noise ratio 
of CGWs using the acronym SNR. Ho we ver, we use the symbol ρ to 
distinguish the SNR of CGWs from the previously defined SNRs. 

In the likelihood of equation ( 6 ), the inclusion of a deterministic 
signal is performed by changing the timing residuals as δ t → δ t −
s ( θ ), where s ( θ ) is the signal template we aim to measure. In that 
case, the likelihood can be rewritten as: 
ln L = −1 

2 [ ( δ t | δ t ) + ( s | s ) − 2( δ t | s ) + Tr ln 2 πC ] , (16) 
where we have introduced the noise weighted inner product ( x | y ) = 
x T C −1 y . 

We can now calculate this expression for the hypothesis of the 
presence of a CGW ( H 1 ) versus its absence ( H 2 ). The expectation 
value of the log-likelihood ratio becomes: 
〈 ln ' 〉 H 1 = 〈 ln (p( δ t | s ) 

p( δ t | 0) 
)〉

H 1 = 〈 ( δ t | s ) − 1 
2 ( s | s ) 〉 H 1 

= 1 
2 ( s | s ) , (17) 

where ρOpt = √ 
( s | s ) is the optimal SNR for the CGW source. 

Since the source parameters are not known a priori, we average ρ2 
Opt 

o v er gra vitational wa ve polarization ψ , initial phase φ0 , inclination 

ι, and sky location ( θ , φ). To do so, we analytically compute the 
inte gral o v er the defined bounds of the CGW parameters: 
ρ2 = ∫ π0 dψ 

π

∫ 2 π
0 dφ0 

2 π ∫ −1 
1 d cos ι

2 ∫ −1 
1 d cos θ

2 ∫ 2 π
0 dφ

2 π ( s | s ) . (18) 
Using the formula for a CGW signal from a circular SMBHB, 
s( t, &), as presented in Babak & Sesana ( 2012 ), the Earth-term SNR 2 
av eraged o v er CGW parameters takes this simple form: 
ρ2 ( h, f ) = 4 

15 
(

h 
2 πf 

)2 
×[ ( cos 2 πf t | cos 2 πf t ) + ( sin 2 πf t | sin 2 πf t ) ] , (19) 

with 
h = 2 M 5 / 3 ( πf ) 2 / 3 

d L , (20) 
where f and h are the gravitational wave frequency and amplitude, 
M is the chirp mass, and d L is the luminosity distance. For pulsar 
a , we e v aluate ρ2 

a at the TOAs t a . We consider an Earth-term only 
SNR for simplicity as the inclusion of the pulsar term is unlikely to 
make a significant difference to the ranking. In the absence of a chirp, 
the contribution of the pulsar term to the SNR 2 is equal to that of 
the Earth term, therefore leaving the relative contribution of different 
pulsars unchanged. When the system is chirping this is no longer true 
as different pulsar terms contribute at different frequencies. However, 
it is slightly misleading to include these in the ranking on an equal 
footing with the Earth terms, since matching the pulsar terms in 
the data is much harder and requires good knowledge of the pulsar 
distance. In addition, the resulting ranking would be dependent on 
the nature of the source in the data, as this determines the frequencies 
of each of the pulsar terms, which would not be known until after the 
analysis using the reduced set of pulsars had been completed. The 
correlated noises (e.g. intrinsic and dispersion measure noises) are 
taken into account in the covariance matrix C of the noise-weighted 
inner product of the cosine and sine terms. 

Common (correlated) processes were not included in our noise 
model, so the covariance matrix is block diagonal. In this way, 
the likelihood can be factorized and SNR 2 s can be computed 
independently for each pulsar. Common uncorrelated processes can 
be included without affecting the block diagonal form of the matrix, 
and this could be used as a proxy for the presence of a GWB 
background or other processes. In practice, we should incorporate 
these common processes in the noise model, but this adds another 
lev el of comple xity that is irrele v ant for the goal of the selection 
procedure. 5 The ultimate goal is identification of the best pulsars for 
CGW detection, and therefore, only the intrinsic properties of the 
pulsars were considered. 

We estimate the relative contribution of one pulsar to the total SNR 
of the array using the normalized SNR 2 : 
ρ̄2 

a ( f ) = ρ2 
a ( h, f ) ∑ 

b ρ2 
b ( h, f ) . (21) 

Note that the amplitude h cancels out in this expression and the CGW 
frequency f remains the only parameter. Therefore we can fix h to 
any value without affecting the ranking. 

We construct the cumulative sum of the normalized SNR 2 s of 
the pulsars ranked from best to worst. We fix a threshold value for 
the SNR 2 cumulative sum above which pulsar contributions to the 
5 Furthermore, detectable CGW signals must be louder than the GWB. Since 
the GWB is stronger at lower frequencies, CGW signals are more likely to 
be found at high frequencies. 
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Figure 2. Cumulative ρ̄2 plot for the pulsars in the IPTA DR2 at CGW 
frequency of 5 nHz. The pulsars above the red dashed line contribute less 
than 5% of the total SNR 2 . This means only 12 pulsars out of 65 contribute 
on average to 95 % of the total SNR 2 of the array at 5 nHz. Note that, while 
only the best 22 pulsars are shown in the figure, the normalized total SNR 
has been e v aluated using all 65 pulsars in the array. 
total SNR 2 are not considered significant. This value was chosen 
to be 0.95. The process is illustrated in Fig. 2 and in the animated 
Figure ( cgw ranking.gif included in the supplementary materials) for 
pulsars from the IPTA second data release (DR2; Perera et al. 2019 ). 

Due to the strong dependence of ρ̄2 
a ( f ) on f , the resultant CGW 

pulsar ranking is also frequency dependent. This can be clearly seen 
from Fig. 3 . In our analysis, we use 100 log-spaced frequency bins 
between 10 −9 and 10 −7 Hz. Ranking lists were obtained separately 
for each frequency bin. In order to construct the final ranking 
catalogue of best pulsars at a given frequency range, the lists at 
each frequency are merged together. This procedure ensures that we 
will gain at least, no matter the CGW frequency, 95 % of the total 
SNR 2 of the array. 
3  RESU LTS  
We create mock PTA data sets with increasing complexity in the 
noise models and test the performance of the selection methods. The 
PTA data sets are simulated using LIBSTEMPO 6 and analysed using 
ENTERPRISE (Ellis et al. 2020 ) giving the marginalized likelihood. 
Bayes factors are computed using DYNESTY (Speagle 2020 ). 
3.1 Testing the selection methods for GWB searches 
In this section, we investigate the performance of the three ranking 
methods that target GWB searches (Section 2.3 ). We consider a 
simplified framework, in which the pulsar noise is white noise only, 
and there is an injected GWB with amplitude A GWB = 3 × 10 −15 
and slope γ = 13/3, consistent with findings from the EPTA analysis 
(Chen et al. 2021 ). We pick pulsars one by one using the SNR B 
maximization, the Coupling Matrix method (with weights w ∼
SNR A ), and the Chimera method, and we investigate the performance 
of these procedures by calculating the log-Bayes factor ( ln BF natural 
logarithm) of the following hypothesis tests: 
6 https:// github.com/vallis/ libstempo 

Figure 3. Normalized ρ̄2 
a of the five best pulsars of the IPTA DR2, at different 

CGW frequencies. The glitches at the right of the plots are due to the one 
year and half-year peaks. 

(i) HD versus CURN: Hellings & Downs correlation versus a 
common uncorrelated red noise process; 

(ii) HD versus CURN + MN + DN: Hellings & Downs correlation 
versus a combination of common uncorrelate red process, monopolar 
noise (MN), and dipolar noise (DN). 

Since a detectable GWB signal is injected, we expect the log- 
Bayes factor to always increase in the limit of a high number of 
pulsars N . Of particular importance, ho we ver, are the dynamics of 
growth of the log-Bayes factor with respect to a random selection. A 
further comparison of these selection methods against a lowest RMS 
selection procedure is presented in Appendix B . 

Note that the white noise parameters are kept fixed, and only 
the amplitudes and slopes of the common red noise processes 
are varied. In the next sections, we present the evolution of the 
log-Bayes factor obtained with the N pulsars selected with the 
aforementioned methods. We anticipate that the performance of the 
selection methods strongly depends on the specifics of the data set 
considered. Therefore, we tested our ranking methods with three 
different simulated data sets. 
3.1.1 Galaxy-distributed data set 
We created an array of 200 pulsars with equal RMS of 100 ns with 
Galaxy distribution on the sk y. The sk y coordinates were drawn 
randomly from the av ailable v alues of kno wn pulsars in the PSRCAT 
catalogue (Hobbs et al. 2004 ). The total time-span of the data set is 
10 yr with a sampling rate of 28 d. A data set consisting of all equal 
pulsars with a dense sky coverage serves to demonstrate how each 
selection method performs under idealized conditions. In Fig. 4 we 
show the log-Bayes factor computed using the pulsars selected by 
the different ranking methods when applied to the Galaxy-distributed 
data set for the hypothesis tests: HD versus CURN, and HD versus 
CURN + MN + DN. The very first pulsar in the array was selected at 
random 20 times, so that the log-Bayes factor shown in Fig. 4 is an 
av erage o v er these realizations. This procedure was done in order to 
ensure that our results are independent of the initial pulsar choice. 
For reference, we also show the log-Bayes factor obtained with a 
random selection of pulsars. 

The left-hand panel of Fig. 4 demonstrates that the Coupling 
Matrix method (dashed yellow line) performs similarly to the random 
selection (dotted blue line) for the HD versus CURN hypothesis 
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Figure 4. Log-Bayes factor as a function of the number of chosen pulsars by each of the selection methods (shown in different colours) for the Galaxy-distributed 
data set and for different hypothesis tests: HD versus CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel). The 200 simulated pulsars 
have the same noise properties and Galaxy-distributed sky locations. The first pulsar is selected at random 20 times and the shown log-Bayes factors are the 
av erage o v er these 20 realizations. F or 25 selected pulsars the mean and standard de viation v alues are: SNR B : 20 ± 6, Coupling Matrix: 15 ± 7, Chimera: 
16 ± 5, Random: 10 ± 4 (HD versus CURN hypothesis test (left-hand panel)); SNR B : 6 ± 2, Coupling Matrix: 14 ± 7, Chimera: 16 ± 5, Random: 11 ± 4 
(HD versus CURN + MN + DN hypothesis test (right-hand panel)). The log-Bayes factors of the whole array for one realization are 198 and 194 for HD versus 
CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel), respectively. 
test, with slightly better performance after ∼15 pulsars are included 
in the array. Both the SNR-maximization (solid green line) and 
Chimera method (purple dash-dotted line) outperform the other 
two types of selection. For the SNR-maximization method the log- 
Bayes factor increases with the number of pulsars in the array like 
∼0.8 N , which results in almost double log-Bayes factor for N = 25 
than the one obtained using random selection. These results are 
expected, since the SNR-maximization is designed to maximize 
the confidence of detecting the HD correlation versus a CURN 
process. 

The hypothesis test HD versus CURN + MN + DN is proposed 
to demonstrate the benefits of the Coupling Matrix, as the method 
is designed to disentangle the HD correlation from other types of 
common correlated noises. The right-hand panel of Fig. 4 confirms 
these expectations. We see that, in this context, the Coupling Matrix 
and Chimera methods provide a log-Bayes factor for N = 25 
pulsars which is 1.4 and 1.6 times larger than a random selection, 
respectively. The scaling of the log-Bayes factor for the Chimera 
selection is ∼0.8 N , while the SNR selection scales only as ∼0.2 N . 
The SNR-maximization is severely suboptimal for this test, as it tends 
to pick pulsars at locations where the HD o v erlap reduction function 
is the largest, i.e. at 180 ◦ and 0 ◦, making it harder to discern HD from 
other types of correlation. A random selection of pulsars provides a 
more distributed sky coverage which improves the situation in this 
regard. 

The slightly impro v ed performance of the Chimera method in 
comparison to the Coupling Matrix formalism is due to the fact that 
it accounts for both the optimal sky coverage and total gain in SNR. 
These results confirms that both of these components are essential 
for PTA optimization and cannot be ignored. One can conclude that 
the inclusion of the SNR-maximization in the Chimera method is of 
special rele v ance in the case of non-equal pulsar arrays. The latter 
point is even more evident in one of the following subsection, where 
we consider a simplified EPTA data set. 

3.1.2 Mock MeerTime data set 
We now consider a PTA data set which resembles the properties 
of the recently published 5-yr MeerTime Large Surv e y (Spiewak 
et al. 2022 ). This surv e y is e xpected to significantly increase the 
sensitivity of current PTAs in the very near future. Using this as 
moti v ation, we created a mock MeerTime data set consisting of 
189 pulsars with sky positions taken from the survey. Observations 
were performed every 28 d on a baseline of 10 yr. The white noise 
RMS is set to the median TOA uncertainties delivered by MeerTime, 
in which each observation epoch of each source consisted of 256 
s of integration time with the MeerKat radio telescope. The data 
set provides an insight on how the pulsar selection performs with 
a large data set composed of non-equal pulsars with realistic sky 
positions. 

We generate 20 noise realizations of this data set and show the 
averaged log-Bayes factor in Fig. 5 . The first pulsar in the ranking is 
fixed to the one with the smallest RMS. 

The left-hand panel of Fig. 5 shows the ranking for the HD versus 
CURN test, and it confirms that the Chimera method and the SNR- 
maximization are optimal in this case. Even though the pulsars 
selected with the Coupling Matrix method provide a log-Bayes factor 
smaller than the other methods, it still gives an evidence which is 
approximately three times larger in comparison to random selection 
for N = 25. 

The evolution of the log-Bayes factor for the hypothesis test HD 
versus CURN + MN + DN is shown in the right-hand panel of Fig. 5 . 
The Coupling Matrix and Chimera selections increase the log-Bayes 
factor up to log 10 BF ≈12. Differently from the ‘Galaxy-distributed’ 
data set, the SNR-maximization performs slightly better than the 
random selection, although still worse than the Coupling Matrix and 
Chimera methods. Up to the first 18 pulsars, the Chimera method 
provides a stronger support for HD versus CURN + MN + DN than 
the Coupling Matrix, reaching similar levels for larger number of 
pulsars. 
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Figure 5. Log-Bayes factor as a function of the number of chosen pulsars by each of the selection methods (shown in different colours) for the mock MeerTime 
data set and for different hypothesis tests: HD versus CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel). The shown log-Bayes 
factors represent the average over 20 different noise realizations. For 25 selected pulsars the mean and standard deviation values are: SNR B : 15 ± 10, Coupling 
Matrix: 13 ± 8, Chimera: 16 ± 10, Random: 3 ± 2 (HD versus CURN hypothesis test (left-hand panel)); SNR B : 7 ± 3, Coupling Matrix: 12 ± 6, Chimera: 
11 ± 6, Random: 4 ± 2 (HD versus CURN + MN + DN hypothesis test (right-hand panel)). The log-Bayes factors of the whole array are 57 ± 21 and 47 ± 16 
for HD versus CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel), respectively. 
3.1.3 EPTA-simplified data set 
We construct an EPTA-simplified data set, which consists of 40 
pulsars with RMS and sky location of the latest EPTA data set 
(Desvignes et al. 2016 ; Chen et al. 2021 ). The total time-span is 
fixed to 10 yr with observations being performed every 28 d. In 
order to reduce required computational resources, only white noise 
w as tak en into account, ignoring the red intrinsic and interstellar 
medium noise contributions. Despite the significant simplification, 
this data set serves to imitate a realistic PTA setup with a modest 
number of pulsars and representative pulsar sensitivities, which has 
been principally used for GW searches to date. We have simulated 
20 statistically equi v alent noise realizations. The averaged log-Bayes 
factor are shown in Fig. 6 . As in the case of the mock MeerTime data 
set, the first initial pulsar is chosen to be the one with the smallest 
RMS. 

It can be seen from both panels of Fig. 6 , that the restricted data set 
of 25 pulsars chosen by the Chimera or SNR-maximization methods 
on average reaches higher log-Bayes factors than those selected 
randomly or using the Coupling Matrix formalism. Moreo v er, Fig. 6 
shows that by using only 25 of pulsars picked by one of the two former 
methods, we account for ≈ 90% of the sensitivity of the whole array. 
The Coupling Matrix approach, on the other hand, falls behind, even 
for the HD versus CURN + MN + DN hypothesis test. These results 
clearly demonstrate that pulsar quality is as important as optimal 
sky location, when disentangling different types of correlations. The 
Coupling Matrix is not aimed at maximizing the SNR, therefore it 
cannot be used as a selection method on its own, as some of the highly 
sensitive sources could be discarded. The best results are obtained 
when the optimal sky location and gain in SNR are finely balanced. 
Therefore, ‘good’ pulsars must be picked at proper sky locations, 
which is the main idea behind the Chimera method. In other words, 
neither lo w-sensiti vity sources selected at proper angular distances, 
nor high-SNR sources with poorly chosen coordinates, e.g. clustered 
at a specific location on the sk y, can pro vide an adequate impro v ement 
in performance. The former case is the Coupling Matrix selection 
for the EPTA-simplified data set (yellow dashed line in the left-hand 
panel of Fig. 6 ), while the latter corresponds to SNR-maximization 

for the MeerTime data set (solid green line in the right-hand panel 
of Fig. 5 ). 

We want to remark that the Chimera implementation we offer in 
this paper is not the ultimate solution. Alternative ways to address 
this issue are proposed in Appendix A . Furthermore, as demonstrated 
in Appendix B , simpler ranking criteria might perform better than the 
Chimera method for some data sets. More thorough investigations 
are left for future works. 
3.2 Optimizing the search for a GWB in a realistic EPTA data 
set 
To speed-up the assembly of the new data set and to impro v e 
computational efficiency of the analysis, the EPTA collaboration 
decided to select a subsample of pulsars timed by its radio facilities. 
In this context, it is of paramount importance to wisely pick the 
pulsars to be included. Therefore, we create another simulated array 
to address this problem. We consider a data set similar to the one of 
Section 3.1.3 , i.e. 40 pulsars with RMS, time-span, and sky locations 
of the EPTA data set, but more realistic in the sense that we include 
the intrinsic red-noise properties of the preliminary EPTA data set 7 
(Lentati et al. 2015 ; Chen et al. 2021 ). 

For simplicity, we focus on ranking the best pulsars to distinguish 
an HD correlation (hypothesis H 1 ) from a CURN process (hypothesis 
H 2 ) and we study how this can be affected by possible noise 
realizations. As shown in the previous sections, SNR-maximization 
and the Chimera method should be a good selection proxy for this 
hypothesis test. Since the SNR-maximization method is constructed 
to target this hypothesis and it has been shown to perform as well as 
the Chimera method, we will only use this method for this study. The 
first six pulsars are fixed to those which constitute the preliminary 
combination of Chen et al. ( 2021 ): J1909-3744, J1713 + 0747, J1744- 
1134, J0613-0200, J1600-3053, J1012 + 5307. 
7 For simplicity we adopt the best-fitting estimates as representative values 
from the EPTA constraints on the red noise parameters and set the time 
interval between observations to be 14 d. 
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Figure 6. Log-Bayes factor as a function of the number of chosen pulsars by each of the selection methods (shown in different colours) for the EPTA-simplified 
data set and for different hypothesis tests: HD versus CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel). The shown log-Bayes 
factors represent the av erage o v er 20 different noise realizations. For 25 selected pulsars the mean and standard deviation values are: SNR B : 2.2 ± 1.9, Coupling 
Matrix: 0.5 ± 1.1, Chimera: 2.1 ± 1.9, Random: 1.0 ± 1.2 (HD versus CURN hypothesis test (left-hand panel)); SNR B : 2.9 ± 1.8, Coupling Matrix: 1.5 ± 1.0, 
Chimera: 2.7 ± 1.9, Random: 1.6 ± 1.4 (HD versus CURN + MN + DN hypothesis test (right-hand panel)). The red-dashed line shows the log-Bayes factor of 
the full data set ( N = 40): 2.5 ± 2.3 for HD versus CURN and 3.1 ± 2.2 for HD versus CURN + MN + DN. 

Figure 7. Normalized SNR evolution as a function of the number of selected 
pulsars N with the SNR maximization method of statistic B and A. The SNR 
is normalized to the total SNR of the data set and the initial pulsar subset is 
composed of the six initial pulsars of the EPTA analysis (Chen et al. 2021 ). 

First, we estimate the number of sources that need to be added 
to the preliminary combination in order to achieve a reasonable 
detection confidence. For this, we apply the SNR-maximization 
selection using the injected GWB parameters, and iteratively add 
the pulsars which increase the SNR the most. Results are shown in 
Fig. 7 . SNR A tends to saturate more quickly than SNR B . This is 
because the latter is suppressed by the term S ( f ) in the denominator 
of equation ( 10 ). We find that with N = 25 pulsars we reach 94% 
of the total SNR B . Therefore, adding 19 SNR-maximization selected 
pulsars to the starting six sources increases the SNR from 30% to 
94% of the total SNR of the array. 

Next, we want investigate whether the selection procedure is 
strongly affected by the choice of GWB parameters. To this end, 
we simulate the EPTA mock data set 1000 times with the same 
injection parameters, and find the Maximum Likelihood Estimator 
using only the first six pulsars (preliminary data set) and assuming 
an HD correlation only. The intrinsic red and white noise parameters 
were fixed to the true values. The results are shown in Fig. 8 . Different 

Figure 8. Maximum-likelihood estimation of the amplitude A and slope γ
of the stochastic gra vitational-wa ve background using the first six pulsars of 
the EPTA mock data set (the red triangles show the respective intrinsic red 
noise properties). The blue dots show the estimated values of A and γ per 
noise realization, and the dashed lines indicate the median distribution value. 
The orange dot shows the true injected value, whereas the red crosses show 
the values of the intrinsic red noises injected in the remaining pulsars. 
noise realizations lead the MLE values (blue dots) to be shifted from 
the true parameters (orange dot). It can be clearly seen that the 
distribution of MLEs lies along the line o v er which the six initial 
pulsars are located (red triangles), and its median (dashed black 
lines) is consistent with the injected true parameters. For reference, 
we show the adopted intrinsic red noise parameters of the other 
pulsars in the simulated data sets as red crosses. 

We now use each of the MLEs of Fig. 8 as a new set of GWB 
parameters and run the SNR ranking procedure. The histogram of 
the best 25 selected pulsars is shown in Fig. 9 . Since the GWB 
parameters are different at every realization, the subset of selected 
pulsars slightly changes. As expected, the histogram for the SNR B 
selection has larger tails since different GWB parameters affect both 
the denominator and numerator of the equation ( 10 ). Instead, the 
SNR A is affected only by the variation in the GWB slope γ . Both 
SNR A and SNR B selections exclude 15 pulsars in each realization. 
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Figure 9. Histogram of the 25 pulsars selected with the SNR B (blue) and 
SNR A (orange) maximization o v er 1000 noise realizations. 

Figure 10. Distribution of log-likelihood ratios obtained with the full data set 
N = 40 (solid blue) and with 25 pulsars selected with SNR B (dashed orange) 
and SNR A -maximization (dash-dotted purple) for 1000 noise realizations. 
For each noise realization we also randomly select 25 pulsars and calculate 
the log-likelihood ratio of this distrib ution. The distrib ution of these log- 
likelihoods is also shown as a green dotted histogram. The medians of the 
distributions are shown as vertical lines and are 5.88 for N = 40, 5.17 for 
SNR B N = 25, 5.14 for SNR A N = 25, and 2.73 for Random N = 25. The 
log-likelihood ratios have been all e v aluated at the maximum likelihood value. 
This selection reduces the total number of TOAs to analyse from 
18 584 to 12 191 (in median). Therefore, the SNR ranking procedure 
excludes 6393 / 18584 ≈ 35% of the TOAs of the full data set by 
excluding 15 out of 40 pulsars. As shown in Fig. 9 , both methods 
pick the same 20 pulsars in majority of the cases. In practice, we 
could find the best pulsars by performing the selection process with 
the GWB and intrinsic red noise parameters taken from posterior 
chains of the previous data release. However, such an analysis is 
beyond the scope of this work. 

We now demonstrate that the SNR-maximization selection method 
performs better than a random selection, and it provides evidence 
comparable to the full data set. For each of the 1000 noise re- 
alizations, we select 25 pulsars in three ways: using the SNR- 
maximization methods (SNR B and SNR A ) as done in Fig. 9 , and 
randomly. We compute the log-likelihood ratios obtained with the 
three different pulsar subsets and with the full data set and we show 
the results in Fig. 10 . These distributions are e v aluated at maximum- 
likelihood estimates of the parameters (amplitudes and slopes of the 
GWB). Based on the median values of the distributions, one finds that 
the optimally selected data sets provide a factor of 1.84–1.90 stronger 
evidence with respect to the random selection. Furthermore, we find 
that the log-likelihood ratio for the 25 optimally selected data set 

Figure 11. Distribution of log-likelihood ratios ln ' for the hypothesis test 
of the HD correlation versus Common uncorrelated Red Noise process o v er 
many noise realizations and different injections. The dashed lines show the 
distribution when the log-likelihood is computed using the 25 pulsars selected 
with the SNR B maximization, whereas the solid lines when all 40 pulsars are 
used. The median values of the distributions for the CURN injection are 
−4.56 and −4.60 for N = 40 and SNR B N = 25, respectively, whereas for 
the HD injection these are 5.87 and 5.17 for N = 40 and SNR B N = 25, 
respectively. The log-likelihood ratios have all been e v aluated at the true 
injected parameters. 
is in median ∼0.89 times the one obtained from the full array. The 
distributions of log-likelihood ratios e v aluated at the true parameters 
do not significantly differ from those shown in Fig. 10 . Therefore, 
the search o v er the GWB parameters with the MLE is not affecting 
the distribution of log-likelihood ratios. 

These results demonstrate that the SNR-maximization selection 
method is a good proxy for choosing pulsars and it is robust against 
noise realizations. Furthermore, we have demonstrated that the log- 
likelihood ratio obtained with a subset of 25 pulsars is comparable 
to the one from the full array. 

Now, we establish the significance achieved by the optimally 
selected pulsars. To this purpose, we simulate two sets of realistic 
EPTA data sets: with an injected CURN process; and with an injected 
HD correlated process. The two injected common processes are 
characterized by the same amplitudes and slopes. We show in Fig. 11 
the log-likelihood ratios obtained using the full data set ( N = 40) 
and the 25 SNR B selected pulsars for the HD and CURN injection 
subsets. The median of the log-likelihood ratios of the best 25 pulsars 
for the HD injection (orange dashed-line histogram) corresponds to 
a p -value of ≈2 × 10 −3 with respect to the CURN log-likelihood 
ratio distribution (black dashed-line histogram). The log-likelihood 
ratio distributions for the full array ( N = 40) are shown in Fig. 11 as 
solid-line histograms for the CURN (grey) and HD injection (blue), 
respectively. Since the median of the latter distribution (HD) is abo v e 
all the log-likelihood ratios obtained with the CURN injection with 
N = 40 pulsars, we estimate the respective p -value as smaller than 
one o v er the number of noise realizations/samples, i.e. ! 10 −3 . 
We caution the reader that the aforementioned p -values are only 
approximate. In fact, to resolve the tails of the CURN log-likelihood 
distribution, we would need to run our analysis for a larger number 
of noise realizations. Nevertheless, these results demonstrate that 
the selection of pulsars does not significantly affect the statistical 
significance of the hypothesis test. 

We showed that the SNR-maximization selection method is a 
good proxy for ranking pulsars and it allows us to reach detection 
confidence comparable to the full array. Ho we ver, it is important 
to remark that these results are obviously dependent on the specific 
pulsars’ sky localizations and noise properties and on the tested 
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hypothesis (here HD versus CURN). We expect this ranking method 
to be well suited also for other PTA data sets where the pulsars have 
very different noise properties. 

We remark that similar results can be obtained also with a lowest 
RMS selection. Ho we ver, such a method becomes suboptimal once 
the observation cadence is not the same across all pulsars. For a more 
detailed investigation see Appendix B2 . 
3.3 Optimizing IPTA and EPTA analysis of CGW signals 
We now test the performance of the CGW ranking method using 
noise-parameter v alues pre viously extracted from indi vidual pulsar 
noise analyses of the latest IPTA data release (Perera et al. 2019 ) and 
the realistic EPTA data set created in the previous Section 3.2 . 

Because the ranking method is based on an exact noise-averaged 
formula, it is unnecessary to simulate noise realizations to test its 
performance. Ho we ver, we still want to prove that the selected pulsars 
reco v er most of the total SNR in the presence of a true (i.e. non- 
averaged) signal. We test this by comparing the fraction of total 
SNR 2 obtained using the CGW ranked pulsars to that obtained from 
a random pulsar selection. For an array of N pulsars, the fraction of 
total SNR 2 , given a list of M < N pulsars, is defined as: 
ρ2 

M = M ∑ 
a= 1 ρ̄2 

a , with 0 < ρ2 
M < 1 , (22) 

where ρ̄2 
a is the normalized SNR 2 defined in equation ( 21 ). 

After extracting the list of best pulsars, we test the selection 
procedure as follows: 

(i) We draw the CGW signal parameters θ from a uniform 
distribution with bounds defined as in the integral of equation ( 18 ), 
and with frequency between 1 and 100 nHz. As pointed out in 
Section 2.4 , the strain amplitude has no influence on the ranking 
and therefore we fix it to h = 10 −14 . 

(ii) We compute the non-averaged optimal SNR ρOpt = √ 
( s | s ) 

for each pulsar for a CGW signal s( t, θ ) and we use this quantity to 
calculate the normalized ρ̄2 

a defined in equation ( 21 ). 
(iii) We compute ρ2 

M−CGW for the list of best selected pulsars and 
ρ2 

M−rand for a random subset of pulsars of random size M . 
(iv) We repeat the previous steps one thousand times. 
This gives us 1000 values of ρ2 

M−CGW and ρ2 
M−rand that we plot 

as histograms in Fig. 12 . For the IPTA data set, the distribution 
of fractional ρ2 

M−CGW for the selected pulsars is narrowly peaked 
around a mean value 0.97. The random selection ρ2 

M−rand gives an 
almost uniform distribution with 0.50 mean value. The distribution 
is not uniform because ρ2 

a is not uniform and a few ρ2 
a values are 

much bigger while many others are very small. Similar results are 
obtained for the realistic EPTA data set. We find that the number 
of pulsars which gives 95 % of the SNR 2 is 22 for both data sets, 
and these pulsars represents, respectively, 61 % of the total number 
of TOAs ( = 18 584) for the realistic EPTA data set, and 76 % of the 
total number of TOAs ( = 210 148) for the IPTA data set. 

Now we briefly discuss the comparison between the CGW and 
GWB selection methods. Focusing on the realistic EPTA data set, 
we find an o v erlap between the identified best pulsars with the CGW 
method and GWB method as shown in Table 1 . This time we run 
the Chimera and SNR B -maximization ranking without fixing the six 
initial pulsars of the EPTA. We find that 17 pulsars are common to 
all three selection methods (highlighted in bold). 

In summary, when true CGW signals are injected in the data, the 
CGW ranking method selects the pulsars which provides most of 

Figure 12. Distribution of the normalized SNR 2 co v erage for 1000 different 
sets of CGW parameters. The distributions are obtained with the list of 
pulsars chosen according to the CGW selection method, in this case 22 for 
both the real IPTA data set and the realistic EPTA data set. For comparison, 
we also show the distribution of the normalized SNR 2 obtained with a random 
selection. 
Table 1. List of the first 22 pulsars selected with the CGW ranking method 
and the 25 pulsars selected with the Chimera method and SNR B -maximization 
in the realistic EPTA data set. Bold font indicate the 17 pulsars that are selected 
by all three methods. 
CGW ranking Chimera method SNR B maximization 
J0030 + 0451 J0030 + 0451 J0030 + 0451 
J0613 −0200 J0034 −0534 J0613 −0200 
J0751 + 1807 J0613 −0200 J0621 + 1002 
J1012 + 5307 J0621 + 1002 J0751 + 1807 
J1022 + 1001 J0751 + 1807 J1022 + 1001 
J1024 −0719 J1012 + 5307 J1024 −0719 
J1600 −3053 J1024 −0719 J1600 −3053 
J1640 + 2224 J1455 −3330 J1640 + 2224 
J1713 + 0747 J1600 −3053 J1713 + 0747 
J1730 −2304 J1640 + 2224 J1730 −2304 
J1744 −1134 J1713 + 0747 J1744 −1134 
J1751 −2857 J1730 −2304 J1751 −2857 
J1804 −2717 J1744 −1134 J1801 −1417 
J1853 + 1303 J1751 −2857 J1804 −2717 
J1857 + 0943 J1801 −1417 J1843 −1113 
J1909 −3744 J1804 −2717 J1853 + 1303 
J1910 + 1256 J1843 −1113 J1857 + 0943 
J1911 + 1347 J1857 + 0943 J1909 −3744 
J1918 −0642 J1909 −3744 J1910 + 1256 
J2010 −1323 J1910 + 1256 J1911 + 1347 
J2124 −3358 J1911 −1114 J1911 −1114 
J2145 −0750 J1918 −0642 J1918 −0642 

J2010 −1323 J2010 −1323 
J2124 −3358 J2124 −3358 
J2322 + 2057 J2322 + 2057 

the SNR of the array, whereas a random selection is inefficient. This 
method extracts the few best pulsars to optimize the search for a 
CGW signal. 
4  C O N C L U S I O N S  A N D  F U T U R E  O U T L O O K  
PTA data analysis requires both significant human and computational 
resources. As the computational burden of such analyses grows with 
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the number of pulsars, the problem will be further exacerbated by the 
disco v ery of many new pulsars by next-generation radio facilities. In 
this work, we introduced the concept of pulsar selection optimization 
for specific analyses. We emphasize that the ranking procedure is 
not straightforward and depends on the properties of the sought 
signal, and the optimization requirements. Therefore, we considered 
optimal selection criteria for deterministic CGW and stochastic GWB 
searches separately. 

For the GWB, we presented three different ranking methods 
that target different aspects of a GWB search: SNR-maximization, 
Coupling Matrix, and Chimera method. The performance of our 
methods was assessed using frequentist and Bayesian hypothesis 
testing on simulated data sets. 

The SNR-maximization method aims to increase the detection 
confidence in fa v our of the HD correlation with respect to a CURN 
process. Pulsars selected with this method provide an evidence for the 
HD versus CURN hypothesis larger than a random selection for all 
the considered data sets. For instance, using the EPTA-simplified data 
set we obtained a log-Bayes factor which is double the one obtained 
with the random selection. Additionally, it was demonstrated that 
with this data set we can reach 88 % of the total sensitivity after 
including N = 25 pulsars out of 40. The SNR-maximization method 
was further studied in Section 3.1.3 for the case of a realistic EPTA 
data set with intrinsic red noise included. We found that the first ∼20 
pulsars are included regardless of the particular noise realization and 
respective GWB parameter estimations. It was shown that the method 
selects pulsars which provide 1.8–1.9 times larger log-likelihood 
ratio than a random selection. Furthermore, 25 pulsars out of the 40 
selected by the SNR-maximization method accounted for 89 % of 
the log-likelihood ratio of the full data set. 

Inherently, the SNR-maximization method tends to pick pulsars 
that maximize the HD ORF, which results in clustering of the sources 
at angular separations of 0 ◦ and 180 ◦. This fact can be detrimental for 
disentangling the HD from other spatially correlated noise processes. 
The Coupling Matrix selection is aimed at resolving this issue by 
maximizing the decoupling between different correlations, so that 
the HD spatial mode disentangles from the monopolar and dipolar 
correlations. This method has been shown to be efficient at increasing 
the evidence in the hypothesis test HD versus CURN + MN + DN in 
two out of the three data sets. The main pitfall of this method is that 
it weakly depends on the relative sensitivity of selected sources. As 
a consequence, some of the high-SNR sources are left behind, which 
is the main reason for the loss of sensitivity to GWB. 

The Chimera method combines the two approaches to optimize 
both the sky coverage and the gain in total SNR. Even though its 
formulation is heuristic, this selection method has been a good proxy 
for selecting the pulsars that increase confidence in a GWB detection 
comparable to Coupling Matrix and SNR maximization. Specifically, 
for the simplified-EPTA data set the method is able to reco v er 90 % 
of the sensitivity of the whole array with N = 25 pulsars. In future 
work this formalism is going to be further examined. In particular, it 
would be interesting to explore if the Information matrix formalism 
introduced recently in Ali-Ha ̈ımoud, Smith & Mingarelli ( 2021 ), 
Ali-Ha ̈ımoud, Smith & Mingarelli ( 2020 ) could be used to develop 
a more rigorous Chimera method, or a selection method targeting 
anisotropic searches. 

The CGW SNR maximization is constructed to find the best pulsars 
to detect a CGW from an SMBHB. In contrast to the GWB case, 
CGW ranking deals with purely deterministic signals and this allows 
us to treat every pulsar independently, within our formalism. The 
method is based on an averaged SNR formula, and was applied to 
continuous wave signal searches in the IPTA and realistic EPTA 

mock data sets. Because of the strong dependence of an individual 
pulsar’s SNR response ρ̄a ( f ) on the CGW frequency f , ranking was 
performed separately for different frequency bins. In order to find 
the best pulsars on some frequency range, we had to take the union 
of the best pulsars that were identified for several frequency bins. 
Using the 22 best-ranked pulsars we reco v ered more than 95 % of 
the total SNR 2 for both the IPTA and realistic EPTA data sets. 
Furthermore, we found that 17 of these pulsars are also selected by 
the SNR-maximization and Chimera methods. 

The main tak eaw ay points of our study can be summarized as 
follows: 

(i) Although the addition of new pulsars inevitably increases 
the sensitivity of a PTA towards CGW and GWB detection (see 
Siemens et al. 2013 ), there exists an optimal subset of pulsars 
which is responsible for a larger portion of the sensitivity of a 
PTA, especially if the pulsar have different noise properties. This 
behaviour is confirmed in Fig. 2 for CGWs, and Figs 6 and 10 for 
a GWB. If pulsars have all equal noise properties, it is possible to 
include pulsars such that the increase in the evidence is steeper than 
a random selection. This can be seen in Fig. 4 . 

(ii) In contrast to intuitive expectations, covering the sky uni- 
formly with pulsars is not the most optimal strategy of pulsar 
selection for the purpose of disentangling different spatial modes, 
even in the case that all pulsars are equally sensitive. Instead, as can 
be seen from Fig. 1 , the ultimate distribution of pulsars in cos θab has 
three distinctive peaks at angular separations of 0 ◦, 90 ◦, and 180 ◦. We 
expect that this distribution will converge to a uniform distribution, 
if we aim to resolve all multipoles. 

(iii) We stress that although a high SNR provides a steeper 
increase in the log-Bayes factor when HD is compared to all other 
considered types of common processes, it does not guarantee an 
optimal decoupling of spatial modes. This is clearly illustrated with 
the Galaxy-distributed and mock MeerTime data sets. 

(iv) Good sky coverage alone does not guarantee the ef fecti ve 
decoupling of spatial modes. The optimal pulsar selection criterion 
should balance between proper sky localization and high sensitivity. 
The Chimera method is an attempt to create such a criterion 
which accounts for both properties. Ho we ver, as demonstrated in 
Appendix B , simpler selection methods might perform better than the 
Chimera method for some data sets. The optimal weighting between 
the position and the sensitivity of a pulsar will be the subject of future 
investigations. 

The purpose of these ranking methods is not to discard the analysis 
of some pulsars but only to e v aluate their contribution to the full PTA 
analysis. Even though these results depend on the noise properties of 
the PTA data set considered, the selection of a subset of pulsars has 
been shown to be a good proxy for having an informative data set and 
at the same time reducing the computational burden of the analysis. 
Therefore, if a collaboration decides to limit pulsar sources due to 
resource restrictions, these tools will be essential for understanding 
how to make such a selection. These methods will be crucial to 
extend the array of existing experiments and target specific analyses 
when the next generation of radio facilities disco v er a large number 
of new pulsars. 
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Figure A1. Log-Bayes factor of the hypothesis test HD versus 
CURN + MN + DN as a function of the number of pulsars selected by various 
modifications of the Coupling Matrix formalism (shown in different colours). 
The corresponding result for the Chimera method (purple colour) are also 
shown for comparison. The upper panel shows the result for the simplified 
EPTA data set averaged over 45 noise realizations, and the log-Bayes factor 
of the full array is indicated with a horizontal red dashed line. The bottom 
panel demonstrates the results for the mock MeerTime data set. 
APPENDIX  A :  IM PLEMENTATION  O F  
DIFFER ENT  W E I G H T S  F O R  C O U P L I N G  
MAT R IX  FOR M A LISM  OPTIMIZATION  
In this paragraph, we provide further clarifications on the choice of 
the weighting function w α from equation ( 13 ). As mentioned in the 
main text, the weights for the construction of the coupling matrix 
should have a direct correspondence to the relati ve sensiti vity of a 
source in an array. Here, we tested the performance of the Coupling 
Matrix formalism using as the weighting function SNR A raised to 
the power of 2, 4, and 6. The results are demonstrated in Fig. A1 . 
The optimal performance is obtained using SNR 4 A weights. Coupling 
matrix selection with weights of lo wer po wer of SNR A tends to pick 
pulsars with a triple-peak distribution on the sky (see Fig. 1 ), while 
the indi vidual sensiti vity of a source is relegated to the background. 
The degradation of the efficiency of SNR 6 A weighting for the mock 
MeerTime data set is due to a saturation of the coupling matrix by the 
high SNR pulsars, so that it becomes essentially insensitive to adding 
further sources of lower sensitivity, or in some cases even ill-defined. 
In order to e v ade the problem of saturation, we have proposed to use 
the eigenvalue-ratio δλ ( w a = 1) and the individual SNRs of the 
pulsars combined in a Chimera-like manner: δλ

∏ N psr 
a= 1 SNR a A . The 

performance of the latter method is comparable to the one of the 
Coupling Matrix formalism with SNR 4 A weights. The efficacy of 
the Coupling Matrix selection and its modifications is going to be 

Figure B1. Log-Bayes factor as a function of the number of chosen pulsars 
for each of the selection methods (shown in different colours) for the Mock 
MeerTime data set and for different hypothesis tests: HD versus CURN (top), 
and HD versus CURN + MN + DN (Bottom). The shown log-Bayes factors 
represent the average over 20 different noise realizations. 
investigated more thoroughly in future work on a broader range of 
data sets. 
APPENDI X  B:  SIMPLE  A LT E R NAT I V E  
SELECTI ON  M E T H O D S  
Throughout the paper, we compared our selection methods to a 
random pulsar selection, because only a random selection can be 
considered independent of the specifics of the data sets. Ho we ver, 
such a selection method would not be adopted in a realistic setting. 
Therefore, we explore how the selection methods compare to more 
realistic, still simple, ranking criteria: selecting pulsars based on their 
lowest RMS noise and longest time-span. 

For the case of the Galaxy-distributed data set (Section 3.1.1 ) 
where all the pulsars have the same RMS and time-span, it is already 
clear that our ranking methods outperform a lowest RMS selection 
or a longest time-span selection, which are equi v alent to the random 
selection. For the EPTA-simplified data set (Section 3.1.3 ) and the 
Mock MeerTime data set (Section 3.1.2 ) we perform only the RMS 
selection because all the pulsars’ time-spans are equal. 

For the Mock MeerTime data set (Fig. B1 ), the RMS selection 
method provides Bayes factors comparable to those of the Coupling 
Matrix and worse than the SNR B and Chimera method, for the 
hypotheis test HD versus CURN. Ho we ver, for the hypothesis test 
HD versus CURN + MN + DN, the RMS selection method performs 
better than all the others. 

For the EPTA-simplified data set (Section 3.1.3 ) the results are 
shown in Fig. B2 . The RMS selection method provides Bayes factors 
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Figure B2. Log-Bayes factor as a function of the number of chosen pulsars 
by each of the selection methods (shown in different colours) for the EPTA- 
simplified data set and for different hypothesis tests: HD versus CURN (top), 
and HD versus CURN + MN + DN (Bottom). The shown log-Bayes factors 
represent the average over 20 different noise realizations. 
comparable to the ones of the Chimera method for 25 pulsars and 
slightly smaller than the SNR B method, for the hypothesis test HD 
versus CURN. For the hypothesis test HD versus CURN + MN + DN, 
the RMS selection method yields a Bayes factor comparable to 
the one of the SNR B selection. The reason why for the hypothe- 
sis test HD versus CURN + MN + DN in the EPTA-simplified and 
mock MeerTime data sets the RMS selection performs better than 
other selection methods is that the lowest RMS pulsars are almost 
uniformly distributed on the sky, so that the most sensitive pulsars of 
the array are picked in sufficiently optimal parts of the sk y. F or the 
arrays in which low-RMS pulsars are clustered in a specific region 
of the sky, this will not be the case. For the hypothesis test HD versus 
CURN, the RMS method does not differ significantly from the SNR- 
maximization, because the SNR formula already takes into account 
the RMS values and the aforementioned data sets are affected only 
by white noise. 

For the realistic EPTA data sets (Section 3.2 ), we performed 
the lowest RMS and longest time-span selections, and we show 
the results in the top panel of Fig. B3 . The lowest RMS selection 
does not seem to differ from the SNR-maximization selection and 
it yields in median approximately the same log-likelihood ratio, 
which is ∼0.87 times the total one. The longest time-span selection 
performs slightly worse than the SNR-maximization and lowest RMS 
selections, and it provides a log-likelihood ratio 0.71 times the one 
from the full data set. 

To highlight the difference between the lowest RMS selection and 
the SNR-maximization selection we created a new data set which 

is identical to the realistic EPTA data set of Section 3.2 , apart from 

Figure B3. (Top): Distribution of log-likelihood ratios obtained as in Fig. 10 
but with the addition of the distributions of log-likelihood ratios obtained 
with the lowest RMS (RMS) and the longest time-span (Tobs) selections. 
The median values for the shown distributions are: 5.88 ( N = 40), 5.17 
(SNR B ), 5.14 (SNR A ), 5.13 (RMS), 4.19 (Tobs), 2.73 (Random). (Bottom): 
Same analysis as abo v e but for the simulated realistic EPTA data set with 
a number of TOAs as in the real EPTA data set and not every 14 d as in 
the (simulated) realistic EPTA data set. The median values for the shown 
distributions are: 7.71 ( N = 40), 6.80 (SNR B ), 6.69 (SNR A ), 6.11 (RMS), 
5.53 (Tobs), 3.66 (Random). 

the number of TOAs of each pulsar. The pulsars simulated for the 
realistic EPTA data set have the same time-span as the real EPTA 
data set, but with TOAs observed every 14 d. Now, the new data 
set has the same number of TOAs as the real EPTA data set and 
their TOA cadence range between one per day up to one every 18 d. 
The results of the same analysis of Section 3.2 are shown in the 
bottom panel of Fig. B3 . Contrary to the previous results, the lowest 
RMS selection method is now suboptimal compared to the SNR- 
maximization method. The contribution to the total noise power due 
to white and red noise has changed as the TOA cadence is different. 
This has an impact on the selection methods. In fact, the SNR ranking 
reco v ers 88 % of the total log-likelihood, whereas the lowest RMS 
selection reaches only 79%. 

Even if the SNR-ranking method does not perform as well as the 
RMS selection in some scenarios, it is more flexible and its relatively 
cheap computational cost makes it worth using it instead of RMS 
or longest time-span selection, when testing the HD versus CURN 
hypothesis. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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