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Abstract

With strong evidence of a common-spectrum stochastic process in the most recent data sets from the NANOGrav
Collaboration, the European Pulsar Timing Array (PTA), Parkes PTA, and the International PTA, it is crucial to
assess the effects of the several astrophysical and cosmological sources that could contribute to the stochastic
gravitational wave background (GWB). Using the same data set creation and injection techniques as in Pol et al.,
we assess the separability of multiple GWBs by creating single and multiple GWB source data sets. We search for
these injected sources using Bayesian PTA analysis techniques to assess recovery and separability of multiple
astrophysical and cosmological backgrounds. For a GWB due to supermassive black hole binaries and an
underlying weaker background due to primordial gravitational waves with a GW energy-density ratio of
ΩPGW/ΩSMBHB= 0.5, the Bayes’ factor for a second process exceeds unity at 17 yr, and increases with additional
data. At 20 yr of data, we are able to constrain the spectral index and amplitude of the weaker GWB at this density
ratio to a fractional uncertainty of 64% and 110%, respectively, using current PTA methods and techniques. Using
these methods and findings, we outline a basic protocol to search for multiple backgrounds in future PTA data sets.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675);
Astronomy data analysis (1858); Millisecond pulsars (1062); Pulsars (1306); Pulsar timing method (1305)

1. Introduction

Predicted sources of low-frequency gravitational wave back-
grounds (GWBs) range from the most massive binary systems in
the universe to the quantum fluctuations stretched to super-horizon
size during the epoch of cosmic inflation in the early universe.
With the recent observation of a common-spectrum process in
several pulsar timing array (PTA) data sets, many potential
astrophysical and cosmological sources have been proposed (see,
e.g., Bhattacharya et al. 2021; Blasi et al. 2021; De Luca et al.
2021; Ellis & Lewicki 2021; Vaskonen & Veermäe 2021). The
primary expected source of a low-frequency GWB is a population
of supermassive black hole binaries (SMBHBs; Rajagopal &
Romani 1995; Jaffe 2003; Sesana et al. 2004; Burke-Spolaor et al.
2019). In addition to SMBHBs, more exotic sources could
contribute to a common-spectrum process, including cosmic
strings (Kibble 1976; Vilenkin 1981, 1985; Vilenkin &
Shellard 2000; Siemens et al. 2007; Ölmez et al. 2010; Blanco-
Pillado et al. 2018; Samanta & Datta 2021), primordial
gravitational waves (GWs; Grishchuk 1976, 1977; Staro-
binsky 1980; Linde 1982; Fabbri & Pollock 1983; Grishchuk 2005;
Lasky et al. 2016), and phase transitions in the early universe

(Winicour 1973; Deryagin et al. 1986; Hogan 1986; Caprini et al.
2010; Kobakhidze et al. 2017; Arzoumanian et al. 2021).
Spectra of stochastic GWBs are often characterized by the

relative GW energy density per logarithmic frequency to the
critical density required to close the universe,
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critical density, H0= 100h km s−1 Mpc−1 is the Hubble
expansion rate, and we use the same assumption as Lasky
et al. (2016) of h= 0.67 as the dimensionless Hubble parameter
(Planck Collaboration et al. 2020). Our conclusions do not
depend on the value of the dimensionless Hubble parameter
and thus should be independent of the tension associated
with h.
The GW energy density can also be expressed as the strain
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or characteristic strain by
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For a simple power-law spectrum, the form of the dimension-
less energy-density spectrum can be simplified to

W = Wb
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where β is the spectral index, Ωβ is the amplitude of the energy
density, and fref is an arbitrary reference frequency, which
PTAs often assume to be fref= 1/yr. Thus the characteristic
strain becomes the familiar
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relates the strain spectral index α to β via β= 2α+ 2 and the
strain amplitude, Aα to Ωβ (Thrane & Romano 2013).

For working with PTA data, the power-law form is
commonly transformed again in terms of the timing-residual
cross-power spectral density
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where γ≡ 3–2α, and Γab is the overlap reduction function that
represents the expectation value of the inter-pulsar spatial
cross-correlation. For an isotropic GWB, the overlap reduction
function takes the form of the Hellings–Downs correlation
(Hellings & Downs 1983). We often express this in residual
space, and thus it becomes the GWB residual delay

r =( ) ( ) ( )f
S f

T
, 8ab

obs

where Tobs is the longest observing timescale in seconds.
We do not expect the cross-correlations to provide much

additional evidence until baselines longer than 20 yr, so the
auto-correlation terms provide the bulk of the information at
the PTA timescales examined here (Pol et al. 2021; Romano
et al. 2021). Thus in this work, we restrict our injections to the
simpler case of only auto-correlations for each background type
and do not take into account the cross-correlations due to the
above considerations and significant computational costs. In all
of this work, we assume that there is a detectable GW signal,
and are only concerned with its origin.

1.1. Gravitational Wave Background Sources in the PTA Band

The GWB for each predicted source in the PTA frequency
band has a characteristic predicted spectral shape. In this work,
we focus on two main sources: SMBHBs, because they are
predicted to be the primary source of a low-frequency GWB,
and primordial gravitational waves (PGWs), for their diversity
of spectral indices both steeper and shallower than a GWB
from SMBHBs.

1.1.1. Supermassive Black Hole Binaries

SMBHBs are predicted to be the most plausible signal in the
PTA frequency regime (for our work, between ∼2 nHz and
80 nHz; Rajagopal & Romani 1995; Jaffe 2003; Sesana et al.

2004; Burke-Spolaor et al. 2019). SMBHBs in their early
inspiral, where their component black holes’ orbits slowly
evolve at large separations, are potentially individually
resolvable with PTAs, but are likely not yet detectable at
current PTA sensitivities (Rosado et al. 2015; Mingarelli et al.
2017; Kelley et al. 2018).
In a universe filled with many individual binaries (in which

we expect to find ourselves), they each contribute stochastically
to a superposition of all of their signals (Rajagopal &
Romani 1995; Jaffe 2003; Sesana et al. 2004; Burke-Spolaor
et al. 2019). While the exact shape of the spectrum from
SMBHBs is dependent on many factors (gas and stellar
environment, eccentricity, etc.; Kelley et al. 2017; Taylor et al.
2017; Chen et al. 2019), we assume a GW background from
SMBHBs is characterized by a continuous distribution of
circular binaries evolving purely due to GW emission. These
assumptions lead to a simple power-law spectrum over all
frequencies in the PTA band with α=− 2/3 (γ= 13/3)
(Rajagopal & Romani 1995; Phinney 2001; Jaffe 2003; Sesana
et al. 2008). Because GW radiation from the stochastic
SMBHB background is expected to be the brightest GWB
source in the PTA band, in this work, we treat it as a
foreground when examining the possibility of multiple
backgrounds.

1.1.2. Primordial Gravitational Waves

PGWs originate from quantum fluctuations stretched to
super-horizon size during the epoch of cosmic inflation in the
early universe. The first attempts at indirectly detecting PGWs
were made by searching for a characteristic polarization in the
cosmic microwave background (see Kamionkowski &
Kovetz 2016 for a review). Due to the early times at which
these PGWs are generated, their spectrum is tied to the
particular model of inflation used and the equation of state
(EOS) of the early universe immediately after inflation by

a = -
+

( )n
w2

2
3 1

, 9t

where nt is the tensor index of the primordial power spectrum
and w is the EOS parameter of the early universe (Arzoumanian
et al. 2016; Lasky et al. 2016).
There is a wide range of combinations of tensor index and

EOS that produce spectral indices around that of an SMBHB
GWB. Since this work is restricted to power-law spectra for
GWBs in the PTA frequency band, the particular values of the
tensor index and EOS are not evaluated here. We consider two
plausible spectral indices resulting from PGWs: α=−1
(γ= 5) and α=−1/2 (γ= 4). Using these two trial spectral
indices has the added benefit of allowing the examination of
spectra both steeper and shallower than the predicted spectrum
from SMBHBs (α=− 2/3, γ= 13/3). Upper limits have been
set on each of these sources of PGWs in PTAs; however, each
assume PGWs are the only source when setting limits.
Arzoumanian et al. (2018) set an upper limit using the
NANOGrav 11 yr data set of

W ´ -( ) ( ) ( )f h 3.4 1 10 10gw
2 10

where h is the dimensionless Hubble parameter, for PGW
GWB with spectral index α=−1. Lasky et al. (2016) set a
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tighter constraint of

W ´ -( ) ( )f h 1.0 10 11gw
2 10

after combining multiple limits from CMB, LIGO/Virgo, and
PTA GW experiments. Because this work only looks at 20 yr
of simulated data, our PGW injections are all above
Ωgw( f )h2� 2.5× 10−10 to be able to make reasonable
comparisons to the injected SMBHB of Ωgw( f )h2∼ 2.5×
10−9. Future work with extended baseline data sets will be able
to look at realistic amplitudes below current limits.

2. Methods

2.1. Simulated Data

In this paper, we use the same methods of simulating
realistic PTA data as Pol et al. (2021), which is rooted in the
characteristics of the NANOGrav 12.5 yr data set (Arzouma-
nian et al. 2020). The times-of-arrival (TOAs) in the simulated
data set are the same as those in the real data set. The
radiometer uncertainties and pulse-phase jitter noise are
determined using the maximum likelihood pulsar noise
estimates made as part of the 12.5 yr analysis. Each pulsar
also contains intrinsic red noise (RN), which was derived by
modeling the intrinsic RN alongside a GWB-like α=−2/3
process in order to filter out any covariance with the common
process detected in the real 12.5 yr data set.

The data set is then extended into the future up to a baseline
of 20 yr by drawing TOAs from distributions of the
observational cadence and TOA uncertainties from the last
year of the 12.5 yr data set. We retain all 45 pulsars used in the
12.5 yr analysis, and do not add new pulsars in these
simulations. As described in Pol et al. (2021), this implies
that growth rate of the detection statistics in this work will be a
conservative estimate, since the addition of pulsars is known to
improve the ability of PTAs to detect and characterize the
GWB (Siemens et al. 2013).

After injecting the intrinsic pulsar RN, we inject 50
realizations of multiple stochastic GWBs in this data set to
forecast the detection, characterization, and separability of
these GWB signals. When injecting multiple GWBs, we inject
two separate stochastic signals. We use libstempo, a Python
wrapper for TEMPO2, to inject each GWB (Hobbs et al. 2006;
Edwards et al. 2006; Hobbs et al. 2009; Vallisneri et al. 2021).
Each GWB is injected over the duration of the entire data set at
frequencies from 1/(10 Tobs), where Tobs in this case is taken to
be our longest baseline of 20 yr, to the Nyquist frequency (half
of the sampling rate), which we assume to be half of the
observing cadence for a cadence of once per two weeks, with
linear spacing of 1/(10 Tobs). The amplitude and spectral index
of each GWB is then constructed in residual space as a pure
power law over these frequencies. Once in residual space, the
power law is used to scale the Hellings–Downs overlap
reduction function that is constructed based on the position of
the pulsars with random zero-mean, unit variance Gaussian
shifts in the frequency series. The resulting residuals in the
frequency domain are then transformed via an inverse Fourier
transform to the TOA space and injected into each pulsar’s
TOA over its corresponding observed timespan.

Finally, in order to mimic the PTA analysis pipeline, we then
refit the timing models of each pulsar using TEMPO2 to extract
a new parameter file that is then used in the analyses.

2.2. Analysis Methods

In this work, we use similar techniques to the standard
analysis methods for PTA GW detection (e.g., Arzoumanian
et al. 2016, 2018, 2020). We restrict our searches to a time-
correlated process that is common to all pulsars, but ignoring
spatial correlations. This drastically speeds up the analysis
time, and does not affect the test of our spectral analysis’s
ability to differentiate between processes with different spectral
indices. Searching for spatial correlations would allow us to
isolate the signal further, hence making these simulations a
conservative assessment of this search when correlations are
detectable.
Each type of analysis and their combinations include noise

for each pulsar. The white noise (WN; e.g., EFAC, EQUAD,
and ECORR; Arzoumanian et al. 2015, 2016) is applied to the
TOA uncertainties when producing the simulated data sets, and
thus it is already incorporated in the analysis. Therefore, only
the intrinsic RN (e.g., the spin noise) of each pulsar is
necessary to model in addition to the GWB. We model the
pulsar RN as a single power law over 30 Fourier-basis
frequencies linearly spaced starting at 1/Tobs and separated by
1/Tobs with a varying spectral index and amplitude. Since the
injected GWBs are more densely spaced (1/(10Tobs)) and
shifted, we are searching over different frequencies than we
injected. In order to improve the sampling and convergence of
the 90 pulsar RN parameters, we employ jump proposals from
empirical distributions like those in Aggarwal et al. (2019). To
do so, we first run the free spectrum base model with all pulsars
until their RN parameters are reasonably converged (auto-
correlation lengths <1000, and a Gelman–Rubin split R hat
statistic <1.1; Vehtari et al. 2019), then construct two-
dimensional empirical distributions for the amplitude and
spectral index of each pulsar. During subsequent runs, we
include jump proposals that draw from these two-dimensional
empirical distributions to reduce the number of samples
without affecting the probability of future parameter value
draws.

2.2.1. Base Models

Throughout this work we use five types of models for the
GWB spectrum summarized in Table 1 with examples plotted
in Figure 1.
Power Law—We use two subtypes of a power law (PL) with

the form in Section 1. The fixed PL, a PL with freely varying
amplitude but fixed spectral index, allows us to extract the
power at a particular spectral index. This is particularly useful
when we assume that we have detected a foreground signal and
are seeking an additional PL at a different spectral index. The
second subtype is the free PL, with freely varying amplitude
and spectral index. In the same example of a foreground and a
background, we can use a varying spectral index to determine
the amplitude and spectrum for the unknown background. This
free PL model is especially useful at determining if there is
evidence for extra power not associated with the dominant
GWB source. In addition to restricting or freeing the spectral
index, we can use models that employ frequency restrictions to
better separate excess WN from the power-law processes much
like the technique used in Arzoumanian et al. (2020). For this
particular study, we use 30 frequency components. As an
additional test, we performed the same analyses on five
frequencies, but found minimal differences in the results.

3
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Free Spectrum—The free spectral model allows us to
analyze the power at each of the sine-cosine pairs in the RN
Fourier basis independently. This method is particularly useful,
as it is agnostic of the source model; thus, it does not require
the prescription of a particular spectral model. It also can be
used to assess the number of frequencies at which each power
law or noise is dominant, if there are frequencies with excess
power, and how well other multifrequency models capture the
overall shape of each pulsar’s spectrum.

Broken Power Law—The broken power law (BPL) model,
introduced by Sampson et al. (2015), allows for a smooth
transition between two PLs of the form

p
= +g

g k k g d- -

-( ) ( )
( )
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where γ is the spectral index of the PL at frequencies lower
than fbend, δ is the slope at higher frequencies, κ captures the
smoothness of the transition between the two, Aγ is the
amplitude of the PL governed by the γ spectral index, and fref is
an arbitrary reference frequency, which we assume to be
fref= 1/yr. In a data set where the GW spectrum is composed
of several processes, a BPL is ideal to determine the transition
frequencies between two processes. In general, the second,
high-frequency PL is the ever-present WN in the detector. We
use the BPL much like Arzoumanian et al. (2020) to determine
the optimal number of frequencies at which a low-frequency
PL dominates over the WN that is omnipresent at higher
frequencies.
Extra-broken Power Law—This new extra-broken power

law (EBPL) model allows for a smooth transition between three
power laws of the form
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where β is the spectral index of the PL at frequencies lower
than flow, γ is the spectral index at frequencies between flow and
fhigh, δ is the slope at higher frequencies, κlow and κhigh capture
the smoothness of the transition between the flow and fhigh,
respectively, Aβ is the amplitude of the PL governed by the β
spectral index, and fref is an arbitrary reference frequency,
which we assume to be fref= 1/yr. We developed this broken
power-law model with an extra break to better differentiate
between three power laws. This will allow us to probe whether
we can identify the PGW-dominated, SMBBH-dominated, and
WN-dominated regimes. It behaves exactly like the BPL
model, but with an extra transition at the lowest frequencies to
a steeper PL.

2.2.2. Model Comparisons

We can directly compare two different models for the GWB
by fitting for two models with common parameters simulta-
neously using product space sampling (Carlin & Chib 1995;
Godsill 2001; Hee et al. 2016; Arzoumanian et al. 2018). We
use the same methodology for product space sampling
(hereafter called “hypermodels”) as in Taylor et al. (2020).
The crucial model mixing parameter is a hyperparameter that
independently samples between the two models and builds up
samples in both. The ratio of the samples between the two
models directly corresponds to the Bayes’ factor (BF) and
indicates whether one model is preferred over the other. It also

Table 1
Base Model Types

Extra-
broken
Power
Law

Broken
Power
Law

Free
Power
Law

Fixed
Power
Law

Free
Spectrum

Intrinsic Pulsar
Noise
Parameters

Ared ✓ ✓ ✓ ✓ ✓
γred ✓ ✓ ✓ ✓ ✓

GWB Power-
law
Parameters

ρ( fi) L L L L ✓
A ✓ ✓ ✓ ✓ L
γ ✓ ✓ ✓ L L
δ ✓ ✓ L L L
κ, (κlow) ✓ ✓ L L L
fbend, ( fhigh) ✓ ✓ L L L
κhigh ✓ L L L L
flow ✓ L L L L

Note. Different base model types performed in our analyses.

Figure 1. Examples of various base models used in this analysis. Power laws
(PLs) for the injected SMBHB (solid gray line), example WN (dark pink
dashed–dotted line), and PGW (solid orange line) with the range in spectral
indices for the three early universe models covered in the orange region. An
example broken PL encapsulating the combination of SMBHB and WN PLs
(cyan dashed line) with the bend frequency is marked with the dashed light
blue line, and an example EPBL combining the PGW, SMBHB, and WN PLs
(dotted dark blue line) with the low- and high-frequency breaks is marked by
the dashed olive green and light blue lines, respectively. Amplitudes are quoted
at fref = 1/yr.
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saves computation power by burning in common parameters
(e.g., the intrinsic pulsar RN and the GW amplitude) while
switching between unique parameters. For example, we
examined the preference of a single 30 frequency fixed PL
corresponding to the SMBHB index versus the same 30
frequency fixed PL with an additional 30 frequency free PL
model (hypermodel A in Table 2). The latter model only added
two parameters (and the parameter to sample between models)
and can demonstrate the preference of the presence of an
additional common RN process in the data.

We use four types of hypermodels for the GWB spectrum
outlined in Table 2:

Hypermodel A—One of the first tests done on new data sets
to investigate the significance of a particular single spectral
index PL at a relatively low computational cost is the fixed PL.
This is distinctly useful in this work since we assume there is a
foreground with a spectral index of α=− 2/3 (γ= 13/3). In
order to test the hypothesis of a background spectrum, we set
up an additional model in a hypermodel framework to allow for
the inclusion of a free PL model on top of the fixed PL model.
If the hypermodel shows significance (i.e., a high BF) for
including the additional free PL, particularly if the spectral
characteristics are well constrained, we conclude there is excess
power at lower frequencies that should be looked at more
carefully to conclude if it is indeed a physical signal.

Hypermodel B—To discover the amount of power associated
with a particular spectral index, we follow up the hypermodel
A with one that is more restrictive. We wish to determine if two
fixed PLs are preferred to a single fixed PL with our
hypermodel B. This is a direct follow-up from our previous
model since power in the free PL can soak up power from the
fixed PL, or vice versa. This search allows us to pinpoint the
amount of power at a particular index to help mitigate cross-
contamination of the signal. It is important to note that this test
should be secondary to a free PL, as fixed PLs make a strong
assumption of a particular index being present in the data.

Hypermodel C—In the event of finding significance of an
additional process with either a hypermodel A or B, one should
be sure to examine that the background “signal” picked up by

the fixed PLs is actually favored. Hypermodel C is a further
combination of fixed and free PLs where the selection is
between just a free PL and the combination of fixed and free
PLs. This setup allows one to be sure the fixed PL is assumed
to be at the correct spectral index by testing the evidence for the
inclusion of a fixed PL on top of just a free PL.
Hypermodel D—For this hypermodel setup, we compare a

30 frequency BPL versus a single free PL. This model
comparison gives us information about whether the spectrum
has a distinct break frequency. Arzoumanian et al. (2020) used
the BPL model to provide support for a steep red process
present at the lowest frequencies, but still account for the flatter
spectrum from the superposition of various noise processes at
higher frequencies. We employ the same strategy in the
hypermodel framework to determine both whether the
spectrum contains a distinct break (i.e., preferring a BPL to a
simple free PL) and around which frequencies the break occurs,
if a break is preferred, to inform our other models.
Hypermodel E—Finally, we construct hypermodels to

compare the BFs of two break frequencies in the data (i.e.,
three distinct PLs, the EBPL) to a free PL. This introduces
another degree of freedom in characterizing the spectral
properties of the data. If there is significant evidence for three
separate PLs (one at high frequencies for the WN, another at
mid-range frequencies marking the foreground spectral pro-
cess, and one at the lowest frequencies for a steeper
background process), then this particular model setup allows
us to compare to both the models used in usual detection
techniques. While it may be some time before current PTAs
have the sensitivity to discriminate three backgrounds, this new
model is applicable beyond this study in future searches.
Arzoumanian et al. (2020) fit a five-frequency PL model and
found a common spectral process with a marginally steeper
index at the 1σ level than predicted from a GWB made up of
only SMBHBs. By implementing the EBPL model, one could
determine whether there is evidence for multiple low-frequency
PLs present in the data, in particular, one with a steeper spectral
index at the lowest frequencies.

Table 2
Model Selection Types

Hypermodel A Hypermodel B Hypermodel C Hypermodel D Hypermodel E

Signal Model 1

First Base Model Fixed PL Fixed PL Free PL Free PL Free PL
A Log-uniform [−18,−11] Log-uniform [−18,−11] Log-uniform [−18,−11] Log-uniform [−18,−11] Log-uniform [−18,−11]
γ 13/3 13/3 Uniform [0,8] Uniform [0,8] Uniform [0,8]

Signal Model 2

First Base Model Fixed PL Fixed PL Fixed PL BPL EBPL
A Log-uniform [−18,−11] Log-uniform [−18,−11] Log-uniform [−18,−11] Log-uniform [−18,−11] Log-uniform [−18,−11]
γ 13/3 13/3 13/3 Uniform [0,8] Uniform [0,8]
δ L L L Uniform [0,8] Uniform [0,8]
κ, (κlow) L L L Uniform [0.01,0.5] Uniform [0.01,0.5]
fbend, ( fhigh) L L L Log-uniform [−8,−7] Log-uniform [−8,−7]
κhigh L L L L Uniform [0.01,0.5]
flow L L L L Log-uniform [−10,−8]
Second Base Model Free PL Fixed PL Free PL L L
A Log-uniform [−18,−11] Log-uniform [−18,−11] Log-uniform [−18,−11] L L
γ Uniform [0,8] γPGW (4, 5) Uniform [0,8] L L

Note. Different model selection types performed in our analyses or recommendations. All PL types include 30 frequencies to model the PL.
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3. Results

Here we discuss the results of our analyses on the injected
data sets. In Section 3.1 we first analyze injections with two
GWB signals. We use a hypermodel A to compute BFs and
fractional uncertainties and then perform hypermodel D and E
analyses to determine whether there is evidence for break
frequencies in the data. The analyses in this section allow us to
assess directly the separability of two GWB signals. In
Section 3.2 we analyze a single injection of a PGW GWB to
determine if our analyses are robust enough to assure that we
will not misconstrue a single signal with our multiple-signal
model framework.

3.1. Multiple Sources

Here we examine the injected backgrounds of an SMBHB
GWB with a spectral index of α=− 2/3 and a PGW GWB
with a spectral index of α=−1. We inject the SMBHB GWB
at an amplitude of 2× 10−15 at a frequency of fref= 1/yr,
which is consistent with the amplitude measured for the
common-spectrum stochastic process by Arzoumanian et al.
(2020). For the PGW GWB, we inject a series of amplitudes:
Ayr= 1.4× 10−15, 1.2× 10−15, 1× 10−15, 8.4× 10−16, and
6.3× 10−16, corresponding to GW density ratios of ΩPGW/
ΩSMBHB= 0.5, 0.375, 0.25, 0.125, and 0.1, respectively, at a
reference frequency of fref= 1/yr.

Figure 2 shows the BFs as a function of PTA timing baseline
and injected PGW GWB amplitude for the hypermodel A. As
the timing baseline increases, irrespective of the amplitude
injected, the evidence for an extra process increases. After
around the 17 yr mark, the greater the injected PGW GWB
amplitude with respect to the SMBHB GWB amplitude, the
greater evidence there is for an extra process. While the median
BFs for all 50 realizations at all baselines remain low from a
Bayesian perspective, in 22% of realizations of the 20 yr
baseline for the ΩPGW/ΩSMBHB= 0.5 injection, the BF for an
additional process is greater than 1000.

In Figure 3, we show the results of using a hypermodel A
from Section 2.2.2 on the loudest injection with
ΩPGW/ΩSMBHB= 0.5 over the course of our 20 yr, 50
realization simulated data sets. We represent the 50 realizations
at each time slice by taking the medians and confidence
intervals (CIs) for individual realization posteriors, then taking
the median of those values over all of the realizations. As our

analyses use the typical reference frequency of fref= 1/yr, and
for this study we are concerned only with separating the
spectral indices at lower frequencies, we then re-parameterize
the posteriors in terms of a lower reference frequency of
fref= 1/(10 yr). We quote errors at frequencies closer to those
of concern to more accurately represent the recovered
parameter space. We report recovered values at both
fref= 1/yr and fref= 1/(10 yr) in Table 3. It is clear that the
recovered amplitudes of the SMBHB GWB in the fixed PL
only model overestimate the injected value (see the inset in
Figure 3). The majority of the SMBHB GWB posterior space
for the fixed PL combined with a free PL prefers a higher
amplitude for the injected value until the second process’
constraints begin to improve. At the 20 yr mark, the median
value of all 50 realizations lies around the injected values (see
Table 3). We suspect that the overestimation of the SMBHB
GWB is due in part to exchanging power with the PGW GWB
injection as the amplitudes of each are covariant with each
other.
To determine the evolution of the constraints on the

parameters of another signal in the data, we use the fractional
parameter uncertainty ΔX/X, where X is the median measured
value, and ΔX is the 95% CI uncertainty of the relevant
parameter. We show the results of this in Figures 4 and 5 for
the spectral index and amplitude, respectively. To keep the
comparisons between figures simple, we report the fractional
uncertainties for Figure 5 with reference frequencies for
fref= 1/(10 yr), yet keep the injected amplitude labels for a
reference frequency of fref= 1/yr.
In both cases, the parameter becomes more constrained as

the timing baseline increases and as the strength of the PGW
GWB increases. The spectral index of the PGW GWB achieves
a minimum fractional uncertainty of 64% at the 20 yr mark for
a GW density ratio compared to the SMBHB GWB of 0.5.
Since the measured spectral index will be the primary
identifying criterion of an additional GWB, it is necessary to
constrain the parameter to a high degree.

Figure 2.Median BFs for 50 realizations of an additional process in addition to
an SMBHB GWB PL with respect to injected strain amplitudes at fref = 1/yr
(left axis) and GW density fraction (right axis) versus the timing baseline of
the PTA.

Figure 3. Hypermodel A on an injected density ratio of ΩPGW/ΩSMBHB = 0.5
corresponding to an SMBHB GWB (α = − 2/3, γ = 13/3) at an amplitude of
ASMBHB,Inj = 2 × 10−15 and a PGW GWB (α = −1, γ = 5) at APGW,

Inj = 1.4 × 10−15 both at fref = 1/yr. All parameter amplitude panels
correspond to the re-parameterized posteriors in terms of a lower reference
frequency of fref = 1/(10 yr). The second-from-the-top plot more closely
examines the narrow region of the fixed-PL-only signal model shown in the top
panel.
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The fractional uncertainty of the PGW GWB amplitude is
much less constrained that the background’s spectral index
even after shifting the reference frequency to fref= 1/(10 yr).
Over the simulated 20 yr in this study, we expect the amplitude
of an additional process below a foreground GWB to have a
fractional uncertainty of over 110% at fref= 1/(10 yr) for all
injected amplitudes. Much like the predictions in Pol et al.

(2021), however, we expect the constraints to continue to
improve as the PTA accrues more observing time.
In Figure 6, we show the results of the EBPL, the BPL, and

the free spectrum analyses performed on the ΩPGW/
ΩSMBHB= 0.25 injection. We vary all parameters present in
Equations (12) and (13) for the BPL and EBPL, respectively.
Both the EBPL and the BPL presented here were analyzed with

Table 3
Hypermodel A Results

W
W

a=-PGW, 1

SMBHB
0.5 0.375 0.25 0.175 0.1 W

W
a=-PGW, 1 2

SMBHB
0.5

=fref
1
yr

=fref
1
yr

( )Alog10 PGW,Inj =fref
1
yr

−14.85 −14.91 −15.0 −15.08 −15.20 −14.85

=fref
1

10 yr
−13.85 −13.91 −14.0 −14.10 −14.20 −14.35

Signal Model 1

( )Alog10 fixed =fref
1
yr

- -
+14.8 3.1

0.4 - -
+14.7 3.0

0.3 - -
+14.5 3.0

.1 - -
+14.5 2.8

0.1 - -
+14.54 2.07

0.08 - -
+14.54 0.07

0.09

=fref
1

10 yr
- -

+13.66 0.04
0.04 - -

+13.7 0.04
0.04 - -

+13.74 0.04
0.04 - -

+13.77 0.04
0.04 - -

+13.82 0.04
0.04 - -

+13.86 0.09
0.07

Signal Model 2

( )Alog10 fixed =fref
1
yr

- -
+14.8 3.1

0.4 - -
+14.7 3.0

0.3 - -
+14.5 3.0

.1 - -
+14.5 2.8

0.1 - -
+14.54 2.07

0.08 - -
+14.54 0.07

0.09

=fref
1

10 yr
- -

+14.1 3.06
0.43 - -

+13.8 3.2
0.1 - -

+13.79 3.11
0.07 - -

+13.83 2.83
0.08 - -

+13.85 2.09
0.05 - -

+13.87 0.09
0.07

( )Alog10 free =fref
1
yr

- -
+14.7 2.0

0.2 - -
+14.7 2.2

0.3 - -
+15.5 2.2

1.0 - -
+15.4 2.4

0.9 - -
+15.8 2.0

1.3 - -
+15.7 2.2

1.4

=fref
1

10 yr
- -

+13.68 1.05
0.09 - -

+13.9 2.6
0.2 - -

+14.1 3.8
0.4 - -

+14.2 4.0
0.5 - -

+15.3 3.2
1.5 - -

+15.4 3.2
1.4

D ( )
( )

A

A

log

log
10 free

10 free
=fref

1
yr

1.6 3.7 11 15 34 79

=fref
1

10 yr
1.1 1.8 2.7 2.8 32 60

γfree -
+5.0 0.5

2.6
-
+5 2

3
-
+5 5

2
-
+5 5

3
-
+5 5

3
-
+3 3

4

g
g
D free

free
0.64 1.1 1.5 1.8 1.6 2.2

BF 16 7 1.7 1.5 0.7 0.5

High BFs 22% 12% 10% 8% 6% 0%

Note. Hypermodel A results on six PGW GWB injected amplitudes all with an injected SMBHB GWB of ASMBHB = 2 × 10−15 ( = -( )Alog 14.7010 SMBHB ) at
=fref

1
yr
, or ASMBHB = 9.28 × 10−15 ( = -( )Alog 14.0310 SMBHB ) at =fref

1
10 yr

with a spectral index of γ = 13/3 for a 20 yr PTA timing baseline. The BF represents

the median of 50 realizations’ median BFs. The final row of high BFs represents the percentage of realizations with >( )log BF 310 . The fractional parameter
uncertainty is ΔX/X, where X is the median measured value and ΔX is the 95% CI uncertainty of the relevant parameter. All other recovered numbers represent the
medians of 50 realizations’ medians and 95% CI.

Figure 4. Fractional uncertainties on the spectral index for 50 realizations of an
additional process on top of an SMBHB GWB fixed PL with respect to injected
strain amplitudes at fref = 1/yr (left axis) and GW density fraction (right axis)
versus the timing baseline of the PTA.

Figure 5. Logarithmic fractional uncertainties on the amplitude at fref = 1/
(10 yr) for 50 realizations of an additional process on top of an SMBHB GWB
fixed PL with respect to injected strain amplitudes at fref = 1/yr (left axis) and
GW density fraction (right axis) versus the timing baseline of the PTA.
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the hypermodel D and hypermodel E framework, respectively.
In all of the comparisons, we find that the simplest model is
preferred, e.g., the 30 frequency free PL is preferred over the
BPL and EBPL. It is clear from the medians in Figure 6 (the
solid orange and dashed red lines) that a single PL without
breaks in frequency nor changes in spectral index is the
dominant feature.

The medians also trace the free spectral model that represents
the power at each frequency. Both the free spectrum and
medians of the PLs seem to overestimate the amplitude of the
injected GWBs. This was already evident in our earlier analysis
shown in Figure 3 where the SMBHB GWB fixed PL recovers
a higher amplitude than injected. This could pose a problem
when attempting to recover the amplitude of multiple back-
grounds (see Section 4 for further discussion).

In an attempt to rule out convergence issues causing the lack
of preference for break frequencies where the steeper PGW
GWB spectrum dominates and at higher frequencies where the
WN dominates, we restricted the ranges at which the break
frequencies occur. The low-frequency break-point is restricted
to below 10−8 Hz, while the high-frequency break occurs
above there. Despite these restrictions, there is no preferred
break frequency in either the high- or low-frequency regimes.

While there is still evidence that there is a break frequency in
some realizations based on the 95% CI of the BPL in Figures 6
and 10, the medians of all 50 realizations do not prefer a break
in the PL. Even for the case of the EBPL, the 95% CI is still
consistent with the 95% CI of the free spectral model except for
the highest few frequencies in the single PGW GWB injection
shown in Figure 10. Since the free spectral model only
encompasses the RN at each individual frequency, it has no
assumption of the spectrum’s shape. The BPL and EBPL
require more parameters than a simple free PL, but there seems
to be little evidence over the whole spectrum to require the
additional parameters.

We suspect that the injected GWBs together are strong
enough to prefer inclusion of all 30 frequencies in a simple free
PL despite the WN at higher frequencies. Similarly, no low-
frequency break is preferred for the EBPL. We suspect this is
because of the closeness in spectral indices between γ= 5 and
γ= 13/3, but expect with baselines of greater than 20 yr,
evidence for the low-frequency break will increase.
Since there is the possibility of GWBs containing shallower

spectral indices than the SMBHB GWB (e.g., a population of
eccentric binaries; Taylor et al. 2017; Chen et al. 2019; or
PGWs), we inject an ΩPGW/ΩSMBHB= 0.5 PGW GWB with a
spectral index of α=−1/2 (γ= 4). The resulting medians and
CIs of a hypermodel A for 50 realizations is shown in Figure 7.
We find that even using the largest amplitude injection from
our analysis of the steeper PGW GWB, the hypermodel weakly
prefers only an SMBHB GWB. While the model with an
additional free PL has a median around the injected spectral
index value, there is not much improvement in the constraints
on the injected PGW GWB parameters.

3.2. Single GWB Sources

In order to verify the veracity of future potential claims of
detection of two backgrounds, we investigate the effect of
using the same analysis methods on a single background
injection. Pol et al. (2021) investigated the detectability of a
single SMBHB GWB with different spectral components at
lower frequencies based on different population models, and
found that they can differentiate different spectra at around the
17 yr slice. Thus we inject only a background from PGWs at an
amplitude of Ayr= 1× 10−15 and confirm our methods of
detecting two backgrounds are sufficiently rigorous to prefer a
PGW GWB and rule out the SMBHB GWB assumed to be in
the data.
In Figure 8 we show the BFs for the hypermodel A where we

examine the evidence of including a free PL at indices other
than at γ= 13/3. It is clear that an additional process begins to

Figure 6. Comparison of medians and 95% CIs in terms of the logarithmic GWB delay (Equation (8)) of three models for 50 realizations: the free spectrum (blue dots
and lines) in both panels, the BPL in the left panel, with its median (solid orange line) and 95% CI (vertically striped orange shaded region), and the EBPL in the right
panel, with its median (dashed red line) and 95% CI (horizontally striped red shaded region). We compare each model to the injected SMBHB GWB (α = − 2/3,
γ = 13/3) at our nominal amplitude of 2 × 10−15 at fref = 1/yr in the dotted gray line and the injected PGW GWB (α = −1, γ = 5) of density ratio ΩPGW/
ΩSMBHB = 0.25 in the black dashed–dotted line.
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be preferred in all baselines after around 18 yr with the strength
of preference growing with the timing baseline. Thus if we use
a hypermodel A on data that contains only one signal at a
different spectral index than the fixed PL, the inclusion of the
free PL can indicate that the signal has been mis-modeled. This
is a positive indicator that the hypermodel framework we use
can differentiate between a signal at the fixed PL’s spectral
index and one with a similar spectral index.

Despite including a signal model not present in the data, we
are able to constrain the single injected GWB to a fractional
uncertainty of 50% in the spectral index and 84% in amplitude
at fref= 1/(10 yr), as shown in Figure 9. By including the
incorrect model, however, we find again that some of the power
of the injected PGW GWB is absorbed into the SMBHB fixed
spectral model. The effect decreases as the baseline time
extends due to the push into lower frequencies and thus greater

resolution to differentiate between the SMBHB and the steeper
PGW GWB spectral index.
We now perform the same analyses as in Figure 6 on the

single injection of a PGW GWB with an amplitude of 10−15 at
fref= 1/yr in Figure 10. We use the same hypermodel scheme
to mimic our analysis with the double injection where we
compare the more complicated broken PLs to a simpler free
PL. Again we find that the simplest model is preferred: a single
free PL that includes all 30 frequencies used. In this single
injection analysis, we find that the free spectrum and the PLs
well characterize the injected spectrum and do not overestimate
the amplitudes. This lends support to the need for multiple
models when searching for more than one background, but
highlights the difficulty of correctly parameterizing each GWB.

4. Discussion and Conclusions

4.1. Detecting Multiple Backgrounds

Separability timescale—Over the course of a 20 yr timing
baseline, we expect the evidence for a single GWB to grow
rapidly. The origin of a GWB will continue to become more
evident, from a population of SMBHBs, PGWs, cosmic strings,
other exotic sources, and their combinations. PTAs are already
on track to reach sensitivities that are more than sufficient to
detect the SMBHB background within several years (Pol et al.
2021).
For the case of multiple backgrounds, the median BF of a

marginally steeper process of α=−1 (γ= 5) remains low over
50 realizations; however, in 10% of realizations, the evidence
for an additional process is highly significant by year 20, even
for a moderately strong signal of ΩPGW,α=−1/ΩSMBHB= 0.25.
For a shallower process of α=−1/2 (γ= 4), however, we
expect more time to be needed to separate out a moderately
strong background from a foreground signal.
How well can we distinguish between two backgrounds?—

Based on our simulations, even if there is strong evidence for a
second GWB (BFs> 1000), accurate parameter recovery is
more difficult. Even after 20 yr with a moderately strong signal
of ΩPGW,α=−1/ΩSMBHB= 0.5 using the methods used here, we

Figure 7. Hypermodel A on an injected density ratio of ΩPGW/ΩSMBHB = 0.5
corresponding to an SMBHB GWB (α = − 2/3, γ = 13/3) at an amplitude of
ASMBHB,Inj = 2 × 10−15 and a PGW GWB (α = −1/2, γ = 4) at APGW,

Inj = 1.4 × 10−15 both at fref = 1/yr. All parameter amplitude panels corresp-
onding to the re-parameterized posteriors in terms of a lower reference
frequency of fref = 1/(10 yr). The second-from-the-top plot more closely
examines the narrow region of the fixed-PL-only signal model shown in the top
panel.

Figure 8.Medians (blue lines) and distributions of log10 BFs for 50 realizations
of a hypermodel A analysis versus the timing baseline of the PTA. Only a
PGW GWB at an amplitude of APGW = 1 × 10−15 and spectral index α = −1
(γ = 5) has been injected in this data set, and thus these BFs represent the odds
of a separate free PL on top of a fixed PL, or just the fixed PL to show the
robustness of our previous analyses in the presence of only a PGW GWB.

Figure 9. Hypermodel A on a single injection in this data set with an amplitude
of APGW,Inj = 1 × 10−15 at fref = 1/yr with a spectral index of α = −1 (γ = 5).
All parameter amplitude panels corresponding to the re-parameterized poster-
iors in terms of a lower reference frequency of fref = 1/(10 yr). The second-
from-the-top plot more closely examines the narrow region of the fixed-PL-
only signal model shown in the top panel.
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can only constrain the PL parameters to a fractional uncertainty
of 64% on γPGW and 110% on ( )Alog10 PGW for a PGW GWB
with a spectral index of α=−1 (γ= 5). There are compound-
ing problems with overestimating the SMBHB background as
well. The good news is that the evidence for an additional
process (through a hypermodel A analysis) grows at an
increasing rate, and the constraints seem to decrease by a few
to tens of percent per year. For a shallower spectrum, we
cannot put constraints on either parameter until the baseline is
at least longer than 20 yr. Applying frequentist methods, like
those developed in Parida et al. (2016, 2019) for ground-based
and Boileau et al. (2021) for space-based interferometric GW
observatories to separate multiple GW signals into their
components with distinct spectral indices, to PTAs will
continue to improve prospects of detection and separation of
multiple GWBs.

Protocol for detecting multiple backgrounds—Because
PTAs will have continually increasing sensitivity to GWBs
from astrophysical and cosmological origin, it is important to
have strategies for searching for multiple signals. Using the
exploratory study presented here, we outline the first protocol
for initial searches for multiple GWBs in PTA data sets using
Bayesian methods. The methods listed can and should be
adapted to individual data sets and searches, but provide a
guide to initial forays.

1. Use a free spectral model to analyze the power at each
frequency without a PL assumption.

2. Find out if there are one or two distinct break frequencies
with a BPL and an EBPL. This should be done in the
hypermodel framework to not force a break when there is
no (Bayesian) evidence for one.

3. Use a hypermodel A to search for excess power. This
could be done by searching only the frequencies below
the break(s) in the BPL and/or EBPL analysis. Searching
only the lowest frequencies is particularly sensitive to
steeper spectra with relatively low amplitudes at
fref= 1/yr since it will not be significantly affected by

higher-frequency WN. Searching over 30 (or more)
frequencies is also a good idea, especially if the broken
PLs did not prefer break frequencies.

4. If there is relatively strong evidence for another stochastic
process:
(a) Perform a hypermodel C analysis to confirm if there is

evidence for the fixed PL at the spectral index
searched for in the hypermodel A analysis.

(b) Perform a hypermodel B search at the recovered
spectral index from the hypermodel A free PL to help
to reduce the parameter space.

5. Then one can move on to different combinations of
hypermodel A using the recovered index as the fixed
process to confirm that multiple processes at the predicted
spectral indices truly have (Bayesian) support.

4.2. Mischaracterizing a GWB

A single two-signal model with two injected backgrounds—
In the hypermodel A setup, we find that the amplitude of the
stronger signal is biased higher compared to the second, lower
signal. We show that with more time, the covariance between
the two can be mitigated, and thus the louder signal’s amplitude
will decrease as the other increases. This assumes a steeper
index, lower-amplitude signal as the low-frequency end will
eventually dominate at the lowest frequencies. For a shallower
process, the more time observed, the better separability we can
achieve, but whether two models would be preferred over one
with a higher amplitude is left to future work.
A single-signal model with two injected backgrounds—Up to

the 20 yr baseline, we find that using a single EBPL, BPL, or
PL seems to prefer a single free PL even when injecting two
GWBs. In all cases, we found the amplitude of the single model
recovered a higher value than the injected amplitudes.
Furthermore, the single free PL model recovered a spectral
index centered between the two injected indices of γ= 13/3
and γ= 5. The spectral index skew only grew worse as more
frequencies were added due to the high frequencies preferring

Figure 10. Comparison of medians and 95% CIs of the logarithmic GWB delay of three models for 50 realizations as they evolve over time: the free spectrum (blue
dots and lines), the BPL median (solid orange line) and 95% CI (vertically striped orange shaded region), and the EBPL median (dashed red line) and 95% CI
(horizontally striped red shaded region). We compare each model to the injected PGW GWB (α = −1, γ = 5) of amplitude APGW = 1 × 10−15 at fref = 1/yr in the
black dashed–dotted line.
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the shallower spectrum, while the lower frequencies were
dominated by the γ= 5 process. An assumption of a single
source in a data set with multiple GWBs could affect the
recovered parameters both in amplitude and spectral index. It is
strongly recommended to search for excess power due to other
sources as even a separate background with ΩPGW/
ΩSMBHB= 0.1 can lead to misconstruing the GWB source.

A single two-signal model with only one injected background
—In the case of using a single two-signal model with only one
signal injected, we find that the hypermodel methods we use
rule out two signals after 20 yr of data, and in 14% of
realizations the evidence for excluding the extra, fixed process
is highly significant by year 18. It is clear from the work here
that using a two-signal model when only one source is present
can be corrected quickly when using Bayesian odds to rule out
the incorrect model. The erroneous recovered signal appears
unconstrained and consistent with zero, which should imme-
diately fall under skepticism if the free PL model has
constrained posteriors and is not consistent with zero.

A hypermodel comparing a single free PL with a fixed PL
and free PL could determine whether there is truly evidence for
the fixed process. These results again highlight the need for
multiple checks and axes of analyzing data sets and not just
searching for what one predicts to find.

4.3. Conclusions

In summary, this work explores the current and future
potential for PTAs to detect multiple GWBs. We find that
within the next two to five years, PTAs will be capable of
determining whether there is a combination of GWBs within
their data. Should there be evidence for multiple GWBs,
constraints will continue to improve on the fractional
uncertainty by several to tens of percent each year. We also
highlight the immediate need to search for multiple GWBs, as
neglecting to do so when two GWBs are present can artificially
inflate the amplitude and skew the spectral index for an
assumed single background.
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