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A B S T R A C T

Averaging a certain class of quasiperiodic monotone operators can be simplified to the periodic homogenization
setting by mapping the original quasiperiodic structure onto a periodic structure in a higher dimensional
space using the cut-and projection method. We characterize the cut-and-projection convergence limit of the
nonlinear monotone partial differential operator −div 𝜎

(

𝒙, 𝐑𝒙
𝜂
,∇𝑢𝜂

)

for a bounded sequence 𝑢𝜂 in 𝑊 1,𝑝
0 (𝛺),

where 1 < 𝑝 <∞, and 𝛺 is a bounded open subset in R𝑛 with Lipschitz boundary. We identify the homogenized
problem with a local equation defined on a hyperplane, or a lower dimensional plane in the higher-dimensional
space. A new corrector result is established.
1. Introduction

Nonlinear physical phenomena are ubiquitous in modern electronic
devices. A few examples are current surge protectors made of varistor
ceramics, solid state amplifiers, and integrated circuits. This is one
motivation to develop mathematical tools that can be used to analyze
the effective properties of polycrystalline quasiperiodic semiconduc-
tors. In Braides et al. (2009), it is shown that integral energies 𝐹𝜂 where
the spatial dependence follows the geometry of a Penrose tiling, or
more general quasicrystalline geometries, can be homogenized. More
precisely,

𝐹𝜂(𝑢) = ∫𝛺
𝑓
(

𝒙
𝜂
,∇𝑢(𝒙)

)

𝑑𝒙 , 𝑢 ∈ 𝑊 1,𝑝(𝛺) (1)

where 𝛺 is an open subset of R2, and 𝑓 depends on 𝒙 through the shape
and the orientation of the cell containing 𝒙 in an a-periodic tiling of the
space, 𝛤 -converge in 𝑊 1,𝑝(𝛺) with respect to the 𝐿𝑝 convergence to the
functional

𝐹0(𝜉) = lim inf
𝑇→∞

{

1
𝑇 2 ∫(0,𝑇 )2

𝑓 (𝒚,∇𝑣(𝒚) + 𝜉) 𝑑𝒚 , 𝑣 ∈ 𝑊 1,𝑝
0 ((0, 𝑇 )2)

}

(2)

where 𝜉 is the macroscopic field. This general homogenization result
was shown using that 𝑓 is Besicovitch almost periodic in 𝒚 and thus
a previous result on Besicovitch almost periodic functionals (Braides,
1986) could be applied. Homogenization of interfacial energies on
Penrose lattices making use of 𝛤 -convergence for similar functionals
to (1) but with the surface integral replaced by a line integral has
also been addressed in Braides et al. (2012).

∗ Corresponding author.
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𝛤 -convergence is a very powerful tool in homogenization the-
ory (Braides, 2002), but two-scale convergence (Nguetseng, 1989;
Allaire, 1992) can more easily identify homogenized equations in the
periodic setting. A similar tool is the periodic unfolding approach (Cio-
ranescu et al., 2008), in which one first maps the original sequence of
functions to a sequence that is defined on R𝑛×]0, 1[𝑛, and then takes
the usual weak limit in suitable function spaces, using this extended
domain. This is similar to the two-scale Fourier transform approach
proposed in Wellander (2009).

Due to its simplicity, one might wish to apply two-scale homoge-
nization (or the periodic unfolding and Fourier transform approaches)
to quasiperiodic materials or mixtures of materials with rational and
irrational periodicity, e.g., see Braides (1991) and Casado-Diaz and
Gayte (2002) for a setting in an almost periodic regime, Blanc et al.
(2015a,b) for some recent work on quasiperiodic multiscale homoge-
nization setting.

This has been proposed in Guenneau (2001) and Bouchitté et al.
(2010) wherein two-scale convergence is applied to the quasiperiodic
setting making use of the cut-and-projection method. Indeed, quasiperi-
odic materials can often be described by periodic structures in
higher spatial dimensions cut and projected onto a hyperplane or a
lower dimensional (physical) space, typically R2 (such as for Penrose
tilings) and R3, as proposed by de Bruijn (1981) and generalized
in Duneau and Katz (1985). This makes it possible to use standard
periodic homogenization tools such as two-scale convergence, to ho-
mogenize quasiperiodic materials, illustrated in Fig. 1. We note that
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Fig. 1. Principle of cut-and-projection method: the projection of a periodic structure in higher dimensional space 𝑅𝑚 (𝑚 = 2 here) onto a hyperplane (represented by a straight
line) or a lower dimensional plane 𝑅𝑛, generates a quasiperiodic structure in 𝑅𝑛 (𝑛 = 1 here), when the slope is irrational. With a rational slope the line is folded back onto a
finite number of segments in the periodic cell 𝑌 𝑚, whereas with an irrational slope, as shown here, the set of segments is countable and dense in 𝑌 𝑚 (note that we only show 10
segments within the countable set).
in Golden et al. (1990), effective properties of quasiperiodic structures
were deduced from the cut-and-projection of checkerboards.

To do that one has to complement existing tools with the cut-and-
projection operator, which was done in Bouchitté et al. (2010) in the
framework of 𝑊 1,2, making use of Fourier representation of two-scale
limits of gradients. Importantly, this was revisited in Wellander et al.
(2018, 2019).

However, two-scale convergence can also be applied to nonlinear
operators, see Allaire (1992). The approach is based on a generalization
of the usual weak convergence in Lebesgue spaces 𝐿𝑝, 1 < 𝑝 < ∞,
in which one uses oscillating test functions to capture oscillations on
the same scale as the test functions in the sequence of functions that
are investigated. As a consequence one obtains limit functions that are
defined on the product space R𝑛×]0, 1[𝑛.

In this paper we extend the two-scale cut-and-projection conver-
gence method to Sobolev spaces 𝑊 1,𝑝, 1 < 𝑝 < ∞. We build upon
(Wellander et al., 2019) to characterize the limits of nonlinear partial
differential operators in this setting. We illustrate the method on a
nonlinear electrostatic problem that was previously homogenized using
the tool of G-convergence for a larger class of almost periodic functions
in Braides et al. (1992). We finally establish a corrector result for the
gradients. We note that Kozlov (1979) established a corrector result for
the case of almost periodic coefficients, which are the restriction of
sufficiently smooth periodic functions of greater number of variables,
when the problem is set in the whole space.

1.1. Setup of a nonlinear electrostatic equation in a quasiperiodic structure

Throughout the paper, we consider a bounded domain 𝛺 in R𝑛
ith Lipschitz boundary. We study the electrostatic equation, which

s applicable to model DC currents in semiconductors, e.g., ZnO based
aristor ceramics,

⎧

⎪

⎨

⎪

⎩

−div 𝜎𝜂
(

𝒙,∇𝑢𝜂(𝒙)
)

= 𝑓 (𝒙) , 𝑢𝜂 ∈ 𝑊 1,𝑝
0 (𝛺), 1 < 𝑝 <∞

𝑢𝜂
|

|

|𝜕𝛺
= 0

(3)

where 𝜎𝜂
(

𝒙,∇𝑢𝜂(𝒙)
)

is a nonlinear function of the electric field ∇𝑢𝜂 ,
and 𝜂 is a positive parameter that will be passed to zero. It measures the
fine scale in the composite. The homogenization analysis will identify
a homogenized problem with a solution that, when 𝜂 is small enough,
is a good approximation of the solution to the original equation (3).
Further, we assume 𝑓 ∈ 𝑊 −1,𝑞(𝛺), 1∕𝑝 + 1∕𝑞 = 1. We use standard
notations for Lebesgue and Sobolev spaces. The Euclidean norm and
2

the scalar product in R𝑛 are denoted by ∣ ⋅ ∣ and (⋅, ⋅), respectively.
The heterogeneous problem is modeled by the use of a unit cell,
with periodic boundary conditions, in the higher dimensional space,
as in Fig. 1 which is denoted 𝑌 𝑚. The modeling of the quasiperiodic
composite is done with the help of a matrix 𝐑, which is real valued,
with 𝑚 rows and 𝑛 columns. The transposed matrix 𝐑𝑇 cuts-and-project
the unit cell, as the line does in Fig. 1, and produces a quasiperiodic
pattern in R1,R2 or R3 if 𝐑 satisfies criterion (4) given below.

Following de Bruijn (1981) and Duneau and Katz (1985), it is useful
to decompose the higher-dimensional periodic space 𝑌 𝑚 into the n-
dimensional plane 𝑌 𝑚∥ = {𝒚 ∈ R𝑚 ∣

(

𝐈𝑚 − 𝐑𝐑𝑇
)

𝒚 = 𝟎} and its
orthogonal complement 𝑌 𝑚⟂ = {𝒚 ∈ R𝑚 ∣ 𝐑𝐑𝑇 𝒚 = 𝟎}, which is
the essence of the cut-and-projection method. This is illustrated in
Fig. 1 where 𝑌 𝑚∥ corresponds to the oblique blue line and 𝑌 𝑚⟂ is thus
a line perpendicular to it (not shown). This geometric decomposition
underpins the decomposition of the functional space in Eq. (37), as well
regularity of material constituents, characterized here by the function
𝜎 in (3).

The current density is given by a non-linear map, 𝜎, that satisfies
assumptions (i)–(vi):

(i) 𝜎(𝒙, ⋅, 𝜉) is 𝑌 -periodic in R𝑚, is Lebesgue measurable on 𝑌 𝑚∥ and
continuous on 𝑌 𝑚⟂ , for every 𝒙 ∈ 𝛺, 𝝃 ∈ R𝑛.

(ii) 𝜎(⋅, 𝒚, 𝜉) is continuous for almost every 𝒚 ∈ R𝑚 and every 𝝃 ∈ R𝑛.
(iii) 𝜎(𝒙, 𝒚, ⋅) is continuous for almost every 𝒙 ∈ 𝛺 and 𝒚 ∈ R𝑚.
(iv) 0 ≤ 𝑐|𝝃|𝑝 ≤ (𝜎(𝒙, 𝒚, 𝝃), 𝝃) , 𝑐 > 0, for almost every 𝒙 ∈ 𝛺 and

𝒚 ∈ R𝑚, for any 𝝃 ∈ R𝑛.
(v)

(

𝜎(𝒙, 𝒚, 𝝃1) − 𝜎(𝒙, 𝒚, 𝝃2), 𝝃1 − 𝝃2
)

≥ 𝑐1 ||𝝃1 − 𝝃2||
𝑝 , 𝑐1 > 0, for all

𝝃1, 𝝃2 ∈ R𝑛, and almost every 𝒙 ∈ 𝛺 and 𝒚 ∈ R𝑚.
(vi) |𝜎(𝒙, 𝒚, 𝝃)| ≤ 𝑐2

(

1 + |𝝃|𝑝−1
)

, 𝑐2 > 0,∀𝝃 ∈ R𝑛, almost every 𝒙 ∈ 𝛺
and 𝒚 ∈ R𝑚.

Standard estimates yield solutions that are uniformly bounded in
𝑊 1,𝑝

0 (𝛺) with respect to 𝜂.

Remark 1.1. Assumptions (i) and (ii) implies that 𝜎 is a Carathéodory
function. This is stated and proved in Proposition 1.4 Assumption (v)
is needed for a corrector result. It can be replaced by a strict monotone
assumption if only the homogenized equation is needed, e.g., see Allaire
(1992).

1.2. Two-scale cut-and-projection convergence

In this section, we recall some properties of two-scale convergence
in 𝐿𝑝(𝛺), 1 < 𝑝 < ∞, 𝛺 ⊂ R𝑛, Allaire (1992), and revisit the extension
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to the quasiperiodic setting, see Bouchitté et al. (2010) when 𝑝 = 2.
More precisely, we consider a real valued matrix 𝐑 with 𝑚 rows and
𝑛 columns, and we would like to approximate an oscillating sequence
{𝑢𝜂(𝒙)}𝜂∈]0,1[ by a sequence of two-scale functions 𝑢0

(

𝒙, 𝐑𝒙𝜂
)

where
0 (𝒙, ⋅) is 𝑌 𝑚-periodic on R𝑚, a higher dimensional space paved with
eriodic cells 𝑌 𝑚 = ]0, 1[𝑚. In what follows, we assume that 𝐑 ∶ R𝑛 →

R𝑚, 𝑛 < 𝑚, fulfills the criterion

𝐑𝑇 𝒌 ≠ 𝟎 , ∀𝒌 ∈ Z𝑚 ⧵ {𝟎} (4)

In fact, when defining a quasiperiodic structure through cut-and-
projection, one notes that the matrix 𝐑 is not uniquely defined (e.g.,
an icosahedral phase using a mapping from R6 or R12 onto R3, or a
Penrose tiling using a mapping from R4 or R5 onto R2, see Duneau
and Katz (1985) and Janot (1992)). However, if 𝑔 is a trigonometric
polynomial, then the composite function 𝑓 = 𝑔◦𝐑 admits the following
(uniquely defined) ergodic mean:

𝐿(𝑓 ) = lim
𝑇→+∞

1
(2𝑇 )𝑛 ∫]−𝑇 ;𝑇 [𝑛

𝑓 (𝒙) d𝒙 = ∫𝑌 𝑚
𝑔(𝒚) d𝒚 = [𝑔] (5)

where [𝑔] denotes the mean of 𝑔 over the periodic cell 𝑌 𝑚 in R𝑚. This
is the case provided that 𝐑 fulfills the criterion (4), see Bouchitté et al.
(2010).

This result suggests the following concept of two-scale convergence
attached to a matrix 𝐑.

Definition 1.1 (Distributional Two-scale Convergence). We say that the
sequence {𝑢𝜂} in 𝐿𝑝(𝛺), 1 < 𝑝 < ∞, two-scale converges in the
distributional sense towards the function 𝑢0 ∈ 𝐿𝑝(𝛺 × 𝑌 𝑚) for a matrix
𝐑, if for every 𝜑 ∈ (𝛺;𝐶∞

♯ (𝑌 𝑚)):

lim
𝜂→0∫𝛺

𝑢𝜂(𝒙)𝜑
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙 = ∫ ∫𝛺×𝑌 𝑚
𝑢0(𝒙, 𝒚)𝜑(𝒙, 𝒚) d𝒙d𝒚 (6)

Definition 1.2 (Weak Two-scale Convergence). We say that the sequence
{𝑢𝜂} in 𝐿𝑝(𝛺), two-scale converges weakly towards the function 𝑢0 ∈
𝐿𝑝(𝛺 × 𝑌 𝑚) for a matrix 𝐑, if for every 𝜑 ∈ 𝐿𝑞(𝛺,𝐶♯(𝑌 𝑚)), 1 < 𝑝 < ∞,
1∕𝑝 + 1∕𝑞 = 1, (6) holds.

We denote weak two-scale convergence for a matrix 𝐑 with 𝑢𝜂
𝐑
⇀⇀ 𝑢0.

The following result, which is a straightforward extension of a proof
in Bouchitté et al. (2010) to 𝐿𝑝 case corresponding to Corollary 1.15
in Allaire (1992), ensures the existence of such two-scale limits when
the sequence (𝑢𝜂) is bounded in 𝐿𝑝(𝛺) and 𝐑 satisfies (4).

Proposition 1.1. If 𝐑 is a matrix satisfying (4) and {𝑢𝜂} is a bounded
sequence in 𝐿𝑝(𝛺), 1 < 𝑝 <∞, then there exists a vanishing subsequence 𝜂𝑘
and a limit 𝑢0(𝒙, 𝒚) ∈ 𝐿𝑝(𝛺 × 𝑌 𝑚) (𝑌 𝑚-periodic in 𝒚) such that 𝑢𝜂𝑘

𝐑
⇀⇀ 𝑢0,

as 𝜂𝑘 → 0.

A proof of Proposition 1.1 uses the same arguments as in the peri-
odic case, e.g., see Lukkassen et al. (2002) and can be found in Ferreira
et al. (2021).

We will need to pass to the limit in integrals ∫𝛺 𝑢𝜂 𝑣𝜂 d𝒙 where

𝑢𝜂
𝐑
⇀⇀ 𝑢0 and 𝑣𝜂

𝐑
⇀⇀ 𝑣0. For this, we introduce the notion of strong

two-scale (cut-and-projection) convergence for a matrix 𝐑.

Definition 1.3 (Strong Two-scale Convergence). A sequence {𝑢𝜂} in
𝐿𝑝(𝛺) is said to two-scale converge strongly, for a matrix 𝐑, towards a

limit 𝑢0 in 𝐿𝑝(𝛺×𝑌 𝑚), which we denote 𝑢𝜂
𝐑
→→ 𝑢0, if and only if 𝑢𝜂

𝐑
⇀⇀ 𝑢0

and

‖𝑢 (𝒙)‖ → ‖𝑢 (𝒙, 𝒚)‖ (7)
3

𝜂 𝐿𝑝(𝛺) 0 𝐿𝑝(𝛺×𝑌 𝑚)
‖

This definition expresses that the effective oscillations of the se-
quence {𝑢𝜂} are on the order of 𝜂. Moreover, these oscillations are fully
identified by 𝑢0.

We note the following two propositions which are useful to estab-
lish a link between weak quasiperiodic convergence in Definition 1.2
and strong 𝐿𝑝 convergence (see Corollary 1.2).

Proposition 1.2. Let 𝐑 be a linear map from R𝑛 to R𝑚 satisfying (4).
Let 𝑓 (𝒙, 𝒚) ∈ 𝐿1(𝛺;𝐶♯(𝑌 𝑚)). Then 𝑓

(

𝒙, 𝐑𝒙𝜂
)

is a measurable function on
𝛺 such that
‖

‖

‖

‖

‖

𝑓
(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿1(𝛺)
≤ ‖𝑓 (𝒙, 𝒚)‖𝐿1(𝛺;𝐶♯(𝑌 𝑚)) ∶= ∫𝛺

sup
𝒚∈𝑌 𝑚

∣ 𝑓 (𝒙, 𝒚) ∣ 𝑑𝒙 (8)

and

lim
𝜂→0∫𝛺

𝑓
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙 = ∫ ∫𝛺×𝑌 𝑚
𝑓 (𝒙, 𝒚) d𝒙d𝒚 (9)

Proof. Measurability of 𝑓
(

𝒙, 𝐑𝒙𝜂
)

follows from Theorem 1 in
Lukkassen et al. (2002) (see also Proposition 1.4) that ensures 𝑓 is of
Carathédory type. Inequality (8) is obvious. Finally, (9) follows from
Lemma 2.4 in Bouchitté et al. (2010). □

We have the following corollary which is useful to establish a
corrector type result (see Proposition 1.3).

Corollary 1.1. Let 𝐑 be a linear map from R𝑛 to R𝑚 satisfying (4). Let
𝜙(𝒙, 𝒚) ∈ 𝐿𝑝(𝛺;𝐶♯(𝑌 𝑚)). Then

lim
𝜂→0∫𝛺

|

|

|

|

|

𝜙
(

𝒙, 𝐑𝒙
𝜂

)

|

|

|

|

|

𝑝

d𝒙 = ∫ ∫𝛺×𝑌 𝑚
|𝜙(𝒙, 𝒚)|𝑝 d𝒙d𝒚 (10)

roof. We first consider the case when 𝜙 can be expressed as 𝜙(𝒙, 𝒚) =
(𝒙)𝛽(𝒚), where 𝜏(𝒙) ∈ 𝐿∞(𝛺) and 𝛽(𝒚) ∈ 𝐶♯(𝑌 𝑚). Since 𝛽𝑝 ∈ 𝐶♯(𝑌 𝑚), we
educe from Proposition 1.2 that 𝛽𝑝

(

𝐑𝒙
𝜂

)

converges towards its mean
𝛽𝑝] weakly in 𝐿1(𝛺). As 𝜏𝑝 belongs to 𝐿∞(𝛺), we obtain

lim
𝜂→0∫𝛺

𝜏𝑝(𝒙)𝛽𝑝
(

𝐑𝒙
𝜂

)

d𝒙 = ∫𝛺
𝜏𝑝(𝒙) d𝒙∫𝑌 𝑚

𝛽𝑝(𝒚)d𝒚

rom Fubini’s theorem, this implies that (10) holds.
This result is extended by linearity to step functions 𝜙𝑘 ∈ 𝑆𝑡(𝛺,𝐶♯

𝑌 𝑚)) such that 𝜙𝑘 =
∑𝑘
𝑖=1 𝑡𝑖𝜒𝐴𝑖 (𝒙)𝜓𝑖(𝒚), where 𝐴𝑖 = {𝒙 ∈ 𝛺 , 𝜙𝑘(𝒙, .) =

𝑖} and 𝜓𝑖(𝒚) ∈ 𝐶♯(𝑌 𝑚). We deduce that (10) holds by density in
𝑝(𝛺,𝐶♯(𝑌 𝑚)). More precisely, we consider 𝜙𝑘 ∈ 𝑆𝑡(𝛺,𝐶♯(𝑌 𝑚)). There
xists a sequence of step functions 𝜙𝑘 =

∑𝑘
𝑖=1 𝑡𝑖𝜒𝐴𝑖 (𝒙)𝜓𝑖(𝒚) such that

lim
→∞∫𝛺

(

sup
𝒚∈𝑌 𝑚

∣ 𝜙𝑘(𝒙, 𝒚) − 𝜙(𝒙, 𝒚) ∣

)𝑝

d𝒙 = lim
𝑘→∞

‖𝜙𝑘 − 𝜙‖
𝑝
𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚))

= 0

oreover, from the triangular inequality and the continuity of the
inear map 𝐑, we deduce that there exists a constant 𝐶 > 0 such that

𝜙
(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
≤ 𝐶

‖

‖

‖

‖

‖

𝜙
(

𝒙, 𝐑𝒙
𝜂

)

− 𝜙𝑘

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)

+
‖

‖

‖

‖

‖

𝜙𝑘

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
(11)

Noting that for every 𝑣 ∈ 𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚))

∫𝛺

|

|

|

|

|

𝑣
(

𝒙, 𝐑𝒙
𝜂

)

|

|

|

|

|

𝑝

d𝒙 ≤ ∫𝛺

(

sup
𝒚∈𝑌 𝑚

|𝑣(𝒙, 𝒚)|

)𝑝

d𝒙 = ‖𝑣‖𝑝𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚))

e deduce from (11) that for every integer 𝑘

𝜙
(

𝒙, 𝐑𝒙
)

‖

‖

‖

‖

≤ 𝐶‖𝜙 − 𝜙𝑘‖𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚)) +
‖

‖

‖

‖

𝜙𝑘

(

𝒙, 𝐑𝒙
)

‖

‖

‖

‖
𝜂
‖𝐿𝑝(𝛺) ‖

𝜂
‖𝐿𝑝(𝛺)
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Since 𝜙𝑘 is admissible, we deduce that there exists a constant 𝐶 > 0
such that

lim sup
𝜂→0

‖

‖

‖

‖

‖

𝜙
(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
≤ 𝐶‖𝜙 − 𝜙𝑘‖𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚)) + ‖𝜙𝑘‖𝐿𝑝(𝛺×𝑌 𝑚)

≤ 𝐶‖𝜙 − 𝜙𝑘‖𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚))
+‖𝜙𝑘 − 𝜙‖𝐿𝑝(𝛺×𝑌 𝑚) + ‖𝜙‖𝐿𝑝(𝛺×𝑌 𝑚)

≤ (𝐶 + 1)‖𝜙 − 𝜙𝑘‖𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚))
+‖𝜙‖𝐿𝑝(𝛺×𝑌 𝑚)

(12)

Passing to the limit 𝑘 → ∞ in (12), we obtain

lim sup
𝜂→0

‖

‖

‖

‖

‖

𝜙
(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
≤ ‖𝜙‖𝐿𝑝(𝛺×𝑌 𝑚) (13)

imilar arguments hold for the lower limit. In that case, we obtain that
or every integer 𝑘

im inf
𝜂→0

‖

‖

‖

‖

‖

𝜙
(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
≥ ‖𝜙𝑘‖𝐿𝑝(𝛺×𝑌 𝑚) − 𝐶‖𝜙 − 𝜙𝑘‖𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚))

≥ ‖𝜙‖𝐿𝑝(𝛺×𝑌 𝑚) − ‖𝜙𝑘 − 𝜙‖𝐿𝑝(𝛺×𝑌 𝑚)

−𝐶‖𝜙 − 𝜙𝑘‖𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚))
≥ ‖𝜙‖𝐿𝑝(𝛺×𝑌 𝑚)

−(𝐶 + 1)‖𝜙 − 𝜙𝑘‖𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚))

(14)

Passing to the limit 𝑘 → ∞ in (14), we obtain

lim inf
𝜂→0

‖

‖

‖

‖

‖

𝜙
(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
≥ ‖𝜙‖𝐿𝑝(𝛺×𝑌 𝑚) (15)

Equality (10) is established combining inequalities (13) and (15). □

The following proposition provides us with a corrector type result
for the sequence {𝑢𝜂} when its limit 𝑢0 is smooth enough:

Proposition 1.3. Let 𝐑 be a linear map from R𝑛 in R𝑚 satisfying (4). Let

{𝑢𝜂} be a sequence such that 𝑢𝜂
𝐑
⇀⇀ 𝑢0(𝒙, 𝒚) (weakly). Then

(i) 𝑢𝜂 weakly converges in 𝐿𝑝(𝛺) towards 𝑢(𝒙) = ∫𝑌 𝑚 𝑢0(𝒙, 𝒚) d𝒚 and

lim inf
𝜂→0

‖𝑢𝜂‖𝐿𝑝(𝛺) ≥ ‖𝑢0‖𝐿𝑝(𝛺×𝑌 𝑚) ≥ ‖𝑢‖𝐿𝑝(𝛺) (16)

(ii) Let {𝑣𝜂} be another bounded sequence in 𝐿𝑞(𝛺), 1∕𝑝 + 1∕𝑞 = 1, such

that 𝑣𝜂
𝐑
→→ 𝑣0 (strongly), then

𝑢𝜂𝑣𝜂 → 𝑤(𝒙) in ′(𝛺) where 𝑤(𝒙) = ∫𝑌 𝑚
𝑢0(𝒙, 𝒚)𝑣0(𝒙, 𝒚) d𝒚 (17)

(iii) If 𝑢0 is smooth enough (e.g., 𝑢0 ∈ 𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚))) and
‖

‖

‖

‖

‖

𝑢0

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
→ ‖𝑢0(𝒙, 𝒚)‖𝐿𝑝(𝛺×𝑌 𝑚) (18)

then
‖

‖

‖

‖

‖

𝑢𝜂 − 𝑢0

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
→ 0 (19)

roof. (i) Choosing test functions 𝜙 in 𝐿𝑞(𝛺;𝐶♯(𝑌 𝑚)) independent of
the 𝑦 variable in Definition 1.2, one has that for every 𝜙 ∈ 𝐿𝑞(𝛺)

lim
𝜂→0∫𝛺

𝑢𝜂(𝒙)𝜙 (𝒙) d𝒙 = ∫ ∫𝛺×𝑌 𝑚
𝑢0(𝒙, 𝒚)𝜙(𝒙) d𝒙d𝒚

= ∫𝛺
𝜙 (𝒙)

(

∫𝑌 𝑚
𝑢0(𝒙, 𝒚)d𝒚

)

d𝒙

Moreover, {𝑢 } is bounded in 𝐿𝑝(𝛺) as a weakly convergent sequence.
4

𝜂

Then, let 𝜑𝑚 be a sequence in 𝐿𝑞(𝛺,𝐶♯(𝑌 𝑚)) such that 𝜑𝑚 converges
to ∣ 𝑢0 ∣𝑝−2 𝑢0 strongly in 𝐿𝑞(𝛺 × 𝑌 𝑚).

We first apply the Young inequality for real numbers 𝑎 and 𝑏, and
1 < 𝑝 < ∞, 1∕𝑝 + 1∕𝑞 = 1, which states that 𝑎𝑏 ≤∣ 𝑎 ∣𝑝 ∕𝑝+ ∣ 𝑏 ∣𝑞 ∕𝑞. We
consider 𝑎 = 𝑢𝜂 and 𝑏 = 𝜑𝑚 to get

∫𝛺
∣ 𝑢𝜂(𝒙) ∣𝑝 d𝒙

≥ 𝑝∫𝛺
𝑢𝜂(𝒙)𝜑𝑚

(

𝒙, 𝐑𝒙
𝜂

)

d𝒙 − (𝑝 − 1)∫𝛺

|

|

|

|

|

𝜑𝑚

(

𝒙, 𝐑𝒙
𝜂

)

|

|

|

|

|

𝑞

d𝒙

We first pass to the limit when 𝜂 goes to zero:

lim inf
𝜂→0

‖𝑢𝜂‖
𝑝
𝐿𝑝(𝛺)

≥ 𝑝∫ ∫𝛺×𝑌 𝑚
𝑢0(𝒙, 𝒚)𝜑𝑚(𝒙, 𝒚) d𝒙d𝒚 − (𝑝 − 1)∫ ∫𝛺×𝑌 𝑚

|

|

𝜑𝑚(𝒙, 𝒚)||
𝑞 d𝒙d𝒚

where we have used that 𝑢𝜂
𝐑
⇀⇀ 𝑢0(𝒙, 𝒚) weakly and

𝜑𝑚
(

𝒙, 𝐑𝒙𝜂
) 𝐑
→→ 𝜑𝑚(𝒙, 𝒚) strongly (making use of Corollary 1.1).

We then pass to the limit when 𝑚 goes to infinity:

lim inf
𝜂→0

‖𝑢𝜂‖
𝑝
𝐿𝑝(𝛺)

≥ 𝑝∫ ∫𝛺×𝑌 𝑚
∣ 𝑢0(𝒙, 𝒚) ∣𝑝 d𝒙d𝒚 − (𝑝 − 1)∫ ∫𝛺×𝑌 𝑚

∣ 𝑢0(𝒙, 𝒚) ∣𝑝 d𝒙d𝒚

= ‖𝑢0‖
𝑝
𝐿𝑝(𝛺×𝑌 𝑚) (20)

where we have used that 𝜑𝑚 →∣ 𝑢0 ∣𝑝−2 𝑢0 strongly in 𝐿𝑞(𝛺 × 𝑌 𝑚).
Moreover, thanks to Jensen’s inequality, we have that

‖𝑢‖𝑝𝐿𝑝(𝛺) = ∫𝛺

|

|

|

|

∫𝑌 𝑚
𝑢0(𝒙, 𝒚)d𝒚

|

|

|

|

𝑝
d𝒙 ≤ ∫ ∫𝛺×𝑌 𝑚

∣ 𝑢0(𝒙, 𝒚) ∣𝑝 d𝒙d𝒚

= ‖𝑢0‖
𝑝
𝐿𝑝(𝛺×𝑌 𝑚) (21)

We conclude by combining (20) and (21).
(ii) Let 𝜓𝑚 be a sequence in 𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚)) such that 𝜓𝑚 converges

to 𝑢0 strongly in 𝐿𝑝(𝛺×𝑌 𝑚). Let 𝜏 be a function in 𝐶∞
0 (𝛺). We note that

𝑣𝜂𝜏
𝐑
→→ 𝑣0𝜏 (strongly). Thus, passing to the two-scale cut-and-projection

limit when 𝜂 goes to zero in the product of 𝑣𝜂𝜏 and 𝜓𝑚, we have that

lim
𝜂→0∫𝛺

𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

𝑣𝜂(𝒙)𝜏(𝒙) d𝒙 = ∫ ∫𝛺×𝑌 𝑚
𝜓𝑚 (𝒙, 𝒚) 𝑣0(𝒙, 𝒚)𝜏(𝒙) d𝒙d𝒚

e then pass to the limit when 𝑚 goes to infinity

lim
→∞

lim
𝜂→0∫𝛺

𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

𝑣𝜂(𝒙)𝜏(𝒙) d𝒙 (22)

= ∫ ∫𝛺×𝑌 𝑚
𝑢0 (𝒙, 𝒚) 𝑣0(𝒙, 𝒚)𝜏(𝒙) d𝒙d𝒚

where we have used that 𝜓𝑚 converges to 𝑢0 strongly in 𝐿𝑝(𝛺 × 𝑌 𝑚).
Moreover, from the triangular inequality, we have
|

|

|

|

∫𝛺
𝑢𝜂(𝒙)𝑣𝜂(𝒙)𝜏(𝒙) d𝒙 − ∫ ∫𝛺×𝑌 𝑚

𝑢0 (𝒙, 𝒚) 𝑣0(𝒙, 𝒚)𝜏(𝒙) d𝒙d𝒚
|

|

|

|

≤
|

|

|

|

|

∫𝛺

[

𝑢𝜂(𝒙) − 𝜓𝑚
(

𝒙, 𝐑𝒙
𝜂

)]

𝑣𝜂(𝒙)𝜏(𝒙) d𝒙
|

|

|

|

|

+
|

|

|

|

|

∫𝛺
𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

𝑣𝜂(𝒙)𝜏(𝒙) d𝒙

− ∫ ∫𝛺×𝑌 𝑚
𝑢0 (𝒙, 𝒚) 𝑣0(𝒙, 𝒚)𝜏(𝒙) d𝒙d𝒚

|

|

|

|

|

(23)

ombining (23) and (23) we get

lim sup
𝜂→0

|

|

|

|

∫𝛺
𝑢𝜂(𝒙)𝑣𝜂(𝒙)𝜏(𝒙) d𝒙 − ∫ ∫𝛺×𝑌 𝑚

𝑢0 (𝒙, 𝒚) 𝑣0(𝒙, 𝒚)𝜏(𝒙) d𝒙d𝒚
|

|

|

|

≤ lim sup
𝑚→∞

lim sup
𝜂→0

|

|

|

|

|

∫𝛺

[

𝑢𝜂(𝒙) − 𝜓𝑚
(

𝒙, 𝐑𝒙
𝜂

)]

𝑣𝜂(𝒙)𝜏(𝒙) d𝒙
|

|

|

|

|

(24)
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It remains to prove that the right-hand side in (24) vanishes. We first
recall that 𝜏 ∈ 𝐶∞

0 (𝛺) and we then invoke Hölder’s inequality to deduce
that

|

|

|

|

|

∫𝛺

[

𝑢𝜂(𝒙) − 𝜓𝑚
(

𝒙, 𝐑𝒙
𝜂

)]

𝑣𝜂(𝒙)𝜏(𝒙) d𝒙
|

|

|

|

|

≤ max𝒙∈𝛺 ∣ 𝜏(𝒙) ∣
|

|

|

|

|

∫𝛺

[

𝑢𝜂(𝒙) − 𝜓𝑚
(

𝒙, 𝐑𝒙
𝜂

)]

𝑣𝜂(𝒙) d𝒙
|

|

|

|

|

≤ max𝒙∈𝛺 ∣ 𝜏(𝒙) ∣

(

∫𝛺

|

|

|

|

|

𝑢𝜂(𝒙) − 𝜓𝑚
(

𝒙, 𝐑𝒙
𝜂

)

|

|

|

|

|

𝑝

d𝒙

)1∕𝑝

×
(

∫𝛺
∣ 𝑣𝜂(𝒙) ∣𝑞 d𝒙

)1∕𝑞

≤ 𝐶(𝛺)
‖

‖

‖

‖

‖

𝑢𝜂 − 𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)

(25)

here in the last inequality we have used that 𝑣𝜂 is a bounded sequence
n 𝐿𝑞(𝛺).

We now invoke the Clarkson inequalities applied to functions 𝑢𝜂 and
𝑚 in 𝐿𝑝(𝛺):

1
2𝑝

‖

‖

‖

‖

‖

𝑢𝜂 − 𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖

𝑝

𝐿𝑝(𝛺)
≤ 1

2

(

‖𝑢𝜂‖
𝑝
𝐿𝑝(𝛺) +

‖

‖

‖

‖

‖

𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖

𝑝

𝐿𝑝(𝛺)

)

−
‖

‖

‖

‖

‖

‖

‖

𝑢𝜂 + 𝜓𝑚
(

𝒙, 𝐑𝒙𝜂
)

2

‖

‖

‖

‖

‖

‖

‖

𝑝

𝐿𝑝(𝛺)

for 1 < 𝑝 < 2

(26)

and

1
2𝑞

‖

‖

‖

‖

‖

𝑢𝜂 − 𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖

𝑞

𝐿𝑝(𝛺)
≤
( 1
2
‖𝑢𝜂‖

𝑝
𝐿𝑝(𝛺)

+ 1
2

‖

‖

‖

‖

𝜓𝑚
(

𝒙, 𝐑𝒙𝜂
)

‖

‖

‖

‖

𝑝

𝐿𝑝(𝛺)

)
𝑞
𝑝

−
‖

‖

‖

‖

‖

‖

‖

𝑢𝜂 + 𝜓𝑚
(

𝒙, 𝐑𝒙𝜂
)

2

‖

‖

‖

‖

‖

‖

‖

𝑞

𝐿𝑝(𝛺)

for 𝑝 ≥ 2

(27)

Passing to the 2-scale cut-and-projection limit in (26)

lim sup
𝜂→0

‖

‖

‖

‖

‖

𝑢𝜂 − 𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖

𝑝

𝐿𝑝(𝛺)
≤ 2𝑝−1

(

‖𝑢0(𝒙, 𝒚)‖
𝑝
𝐿𝑝(𝛺×𝑌 𝑚)

+‖𝜓𝑚(𝒙, 𝒚)‖
𝑝
𝐿𝑝(𝛺×𝑌 𝑚)

)

−2𝑝
‖

‖

‖

‖

𝑢0(𝒙, 𝒚) + 𝜓𝑚(𝒙, 𝒚)
2

‖

‖

‖

‖

𝑝

𝐿𝑝(𝛺×𝑌 𝑚)

(28)

for 1 < 𝑝 < 2, and similarly for (27)

lim sup
𝜂→0

‖

‖

‖

‖

‖

𝑢𝜂 − 𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖

𝑞

𝐿𝑝(𝛺)
≤ 2

(

‖𝑢0(𝒙, 𝒚)‖
𝑝
𝐿𝑝(𝛺×𝑌 𝑚)

+‖𝜓𝑚(𝒙, 𝒚)‖
𝑝
𝐿𝑝(𝛺×𝑌 𝑚)

)
1
𝑝−1

−2𝑞
‖

‖

‖

‖

𝑢0(𝒙, 𝒚) + 𝜓𝑚(𝒙, 𝒚)
2

‖

‖

‖

‖

𝑞

𝐿𝑝(𝛺×𝑌 𝑚)

(29)

for 𝑝 ≥ 2, where we have used 1∕𝑝 + 1∕𝑞 = 1, thus 𝑞∕𝑝 = 1∕(𝑝 − 1).
We now note that ‖

‖

‖

𝑢0(𝒙,𝒚)+𝜓𝑚(𝒙,𝒚)
2

‖

‖

‖𝐿𝑝(𝛺×𝑌 𝑚)
→ ‖

‖

𝑢0(𝒙, 𝒚)‖‖𝐿𝑝(𝛺×𝑌 𝑚)
when 𝑚 tends to infinity. Thus, taking the lim sup on 𝑚 in both sides
of (28) and (29), we are ensured that

lim sup
𝑚→∞

lim sup
𝜂→0

‖

‖

‖

‖

‖

𝑢𝜂 − 𝜓𝑚

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
= 0 for 1 < 𝑝 <∞ (30)

We have thus proved that the RHS of (24) vanishes combining (25) and
5

(30).
(iii) We finally want to show (19). Assuming that 𝑢0 ∈ 𝐿𝑝(𝛺,𝐶♯
(𝑌 𝑚)), we can replace 𝜓𝑚 by 𝑢0 in the Clarkson inequalities (26) and
(27), which leads to

lim sup
𝑚→∞

lim sup
𝜂→0

‖

‖

‖

‖

‖

𝑢𝜂 − 𝑢0

(

𝒙, 𝐑𝒙
𝜂

)

‖

‖

‖

‖

‖𝐿𝑝(𝛺)
= 0 for 1 < 𝑝 <∞

hich is (19). □

emark 1.2. Our proof of Proposition 1.3 follows closely that of
heorems 10 and 11 in Lukkassen et al. (2002). We stress that some
egularity is needed for 𝑢0 in (iii) of Proposition 1.3. We refer to
heorem 12 in Lukkassen et al. (2002) for a related result on regularity
f two-scale limit that remains valid for two-scale cut-and-projection
imit (its proof is a straightforward extension of that in Lukkassen et al.
2002), but is rather technical and lengthy).

emark 1.3. We point out that Proposition 1.3(i) does not hold if

weak two-scale convergence 𝑢𝜂𝑘
𝐑
⇀⇀ 𝑢0 is replaced by distributional

two-scale convergence (see Definition 1.1). Indeed, the choice of space
𝐿𝑞(𝛺,𝐶♯(𝑌 𝑚)) for test functions 𝜑 in Definition 1.2 is essential. This
is exemplified by the counter-example in Lukkassen et al. (2002) of
a sequence {𝑢𝜂} in 𝐿𝑝(0, 1) defined by 𝑢𝜂(𝑥) = 1∕𝜂 if 0 < 𝑥 < 𝜂
and 𝑢𝜂(𝑥) = 0 if 𝜂 < 𝑥 < 1. One can see that (6) is satisfied for
𝜑 ∈ ((0, 1);𝐶∞

♯ (𝑌 𝑚)) and a two-scale limit 𝑢0(𝑥, 𝑦) = 0. However,
considering the test function 𝑔(𝑥) = 1 which is in 𝐿𝑞(0, 1), we get
lim𝜂→0 ∫

1
0 𝑢𝜂(𝑥)𝑔(𝑥)𝑑𝑥 = 1, and so {𝑢𝜂} does not converge to 𝑢0(𝑥, 𝑦) = 0

weakly in 𝐿𝑝(0, 1).

We have the following corollary regarding sequences that converge
strongly in 𝐿𝑝-spaces

Corollary 1.2. Let 𝛺 be an open bounded set in R𝑛 and 𝑌 𝑚 = ]0, 1[𝑚

with 𝑚 > 𝑛. Let a sequence {𝑢𝜂} converge strongly to 𝑢 in 𝐿𝑝(𝛺). Then
there exist a vanishing subsequence 𝜂𝑘 and a limit 𝑢0(𝒙, 𝒚) ∈ 𝐿𝑝(𝛺 × 𝑌 𝑚)

(𝑌 𝑚-periodic in 𝒚) such that 𝑢𝜂𝑘
𝐑
⇀⇀ 𝑢0 = 𝑢 as 𝜂𝑘 → 0.

Proof. By assumption {𝑢𝜂} converges strongly. It follows that the
sequence is uniformly bounded in 𝐿𝑝(𝛺) and that there is a subsequence
that two-scale converges for a matrix R to 𝑢0(𝒙, 𝒚) ∈ 𝐿𝑝(𝛺 × 𝑌 𝑚). The
strong convergence implies equalities in (16), i.e.,

lim inf
𝜂→0

‖𝑢𝜂‖𝐿𝑝(𝛺) = ‖𝑢0‖𝐿𝑝(𝛺×𝑌 𝑚) = ‖𝑢‖𝐿𝑝(𝛺)

which gives 𝑢0(𝒙, 𝒚) = 𝑢(𝒙), since the weak limit equals the strong limit
and the weak limit is given by 𝑢(𝒙) = ∫𝑌 𝑚 𝑢0(𝒙, 𝒚) d𝒚. □

Classes of functions such that
‖

‖

‖

‖

𝑢0
(

𝒙, 𝐑𝒙𝜂
)

‖

‖

‖

‖𝐿𝑝(𝛺)
→ ‖

‖

𝑢0(𝒙, 𝒚)‖‖𝐿𝑝(𝛺×𝑌 𝑚)

re said to be admissible for the two-scale (cut-and-projection) con-
ergence. In particular, classes of functions in 𝐿𝑝(𝛺,𝐶♯(𝑌 𝑚)) (dense
ubset in 𝐿𝑝(𝛺 × 𝑌 𝑚)) are admissible. As mentioned in Allaire (1992)
Section 5), it is not always clear how smooth the test functions have
o be to become admissible. One issue to consider is the measurability
f the scaled test function 𝜙(𝒙,𝐑𝒙∕𝜂). Continuity in at least one of the
ariables 𝒙 or 𝒚 is usually assumed, but this is not a necessary condition.
lthough the conductivity does not play the role of a test function we
till need to be able to scale the local variable and get a function that is
easurable. A sufficient assumption is to make 𝜎(𝒙, 𝒚, 𝜉) continuous in

oth 𝒙 and 𝒚, but that would rule out in principle all realistic compos-
tes, e.g., piecewise constant material properties. Assuming continuity
ith respect to the macroscopic variable, 𝒙, is less restrictive when
odeling realistic composites compared with assuming continuity with

espect to the local variable 𝒚. However, continuity with respect to 𝒙
is not sufficient. To ensure measurability when scaling 𝒚, i.e., to make
𝜎(𝒙,𝐑𝒙∕𝜂, 𝜉) measurable, we shall assume continuity of 𝜎(𝒙, ⋅, 𝜉) in the
direction orthogonal to the hyperplane 𝑌 𝑚∥ , i.e., on 𝑌 𝑚⟂ . We have the

following proposition on required regularity for the conductivity.
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Proposition 1.4. Let 𝜎 satisfy assumptions (i) and (ii), then for any
> 0, 𝜎(𝒙,𝐑𝒙∕𝜂, 𝜉) is measurable on 𝛺 × R𝑛.

roof. The image of the mapping 𝒙 → 𝐑𝒙 is 𝑌 𝑚∥ . It follows that the
caling of the image in R𝑚, 𝐑𝒙∕𝜂, is a scaling of 𝑌 𝑚∥ , only. Hence, the
onductivity function 𝜎 satisfies the Carathéodory assumptions (i) and
ii). It follows that 𝜎(𝒙,𝐑𝒙∕𝜂, 𝝃) is measurable for each 𝝃. □

In order to homogenize nonlinear PDEs with a monotone partial
ifferential operator as in (3), we need to identify the differential
elationship between 𝝌 and 𝑢0, given a bounded sequence {𝑢𝜂} in
1,𝑝(𝛺) (such that 𝑢𝜂

𝐑
⇀⇀ 𝑢0 and ∇𝑢𝜂

𝐑
⇀⇀ 𝝌). This problem was solved by

llaire in the case of periodic functions (Allaire, 1992) and extended
y Bouchitté et al. for quasiperiodic functions (Bouchitté et al., 2010)
n 𝑊 1,2(𝛺) and revisited in Wellander et al. (2018, 2019).

. Function spaces for cut-and-projection partial differential oper-
tors

To carry out the homogenization analysis of nonlinear PDEs defined
n quasiperiodic domains, we need to pass to the limit when 𝜂 goes to

zero in gradient and divergence operators acting on solutions of PDEs.
To do this we introduce some suitable function spaces and for this we
will define differential operators acting on the R𝑛- plane in R𝑚.

Defined as in Wellander et al. (2018) they are given as

𝐑 𝑢(𝒚) = grad𝐑 𝑢(𝒚) = 𝐑𝑇 grad𝒚 𝑢(𝒚) = 𝐑𝑇∇𝒚 𝑢(𝒚)

iv𝐑 𝒖(𝒚) = 𝐑𝑇∇𝒚 ⋅ 𝒖(𝒚)

e define the following functions spaces associated with the differen-
ial operators defined above
𝑝
♯ (grad𝐑, 𝑌

𝑚) =
{

𝑢 ∈ 𝐿𝑝♯ (𝑌
𝑚) ∣ grad𝐑 𝑢 ∈ 𝐿𝑝♯ (𝑌

𝑚;R𝑛)
}

(31)

𝑝
♯ (div𝐑, 𝑌

𝑚) =
{

𝒖 ∈ 𝐿𝑝♯ (𝑌
𝑚;R𝑛) ∣ div𝐑 𝒖 ∈ 𝐿𝑝♯ (𝑌

𝑚)
}

(32)

𝑝
♯ (div𝐑𝐑𝐓 , 𝑌 𝑚) =

{

𝒖 ∈ 𝐿𝑝♯ (𝑌
𝑚;R𝑚) ∣

(

𝐑𝐑𝑇∇𝑦
)

⋅ 𝒖 ∈ 𝐿𝑝♯ (𝑌
𝑚)
}

(33)

and

𝑝(div, 𝛺) =
{

𝒖 ∈ 𝐿𝑝(𝛺;R𝑛) ∣ div 𝒖 ∈ 𝐿𝑝(𝛺)
}

(34)

We have the following integration by parts type generalization to
the 𝐿𝑝 case of Lemma 6 given in the 𝐿2 setting in Wellander et al.
(2019)

Lemma 2.1 (Green’s Identity). It holds that

− ∫𝑌 𝑚
(

𝐑𝐑𝑇∇𝑦
)

⋅ 𝝓(𝒚) 𝜃(𝒚) d𝒚 = ∫𝑌 𝑚
𝝓(𝒚) ⋅

(

𝐑𝐑𝑇∇𝑦
)

𝜃(𝒚) d𝒚 (35)

for 𝝓 ∈ 𝑞
♯ (div𝐑𝐑𝐓 , 𝑌 𝑚) and 𝜃 ∈ 𝑝

♯ (grad𝐑, 𝑌
𝑚), 1∕𝑝 + 1∕𝑞 = 1.

Proof. The proof relies on standard matrix operations and the well
known extension from 𝑊 1,2 Sobolev spaces to the setting of 𝑊 1,𝑝 and
𝑊 1,𝑞-duality pairing (Brezis, 2010). The periodic boundary conditions
imply

− ∫𝑌 𝑚
[(

𝐑𝐑𝑇∇𝑦
)

⋅ 𝝓(𝒚)
]

𝜃(𝒚) d𝒚 = −∫𝑌 𝑚
[(

𝐑𝑇∇𝑦
)

⋅ 𝐑𝑇𝝓(𝒚)
]

𝜃(𝒚) d𝒚 =

− ∫𝑌 𝑚
[

∇𝑦 ⋅ 𝐑𝐑𝑇𝝓(𝒚)
]

𝜃(𝒚) d𝒚 = ∫𝑌 𝑚
[

𝐑𝐑𝑇𝝓
]

⋅ ∇𝑦 𝜃(𝒚) d𝒚

= ∫𝑌 𝑚
𝝓(𝒚) ⋅ 𝐑𝐑𝑇∇𝑦 𝜃(𝒚) d𝒚

for any pair of functions for 𝝓 ∈ 𝑞
♯ (div𝐑𝐑𝐓 , 𝑌 𝑚) and 𝜃 ∈ 𝑝

♯ (grad𝐑, 𝑌
𝑚),
6

1∕𝑝 + 1∕𝑞 = 1. □
This motivates us to make the following decomposition as in the
𝐿2-case in Wellander et al. (2019). We decompose 𝑊 1,𝑝

♯ (𝑌 𝑚) into two
spaces,

𝑊 1,𝑝
♯ (𝑌 𝑚) = 𝑋𝑝 ⊕𝑋⟂

𝑝 (36)

where

𝑋⟂
𝑝 =

{

𝑢 ∈ 𝑊 1,𝑝
♯ (𝑌 𝑚)|𝐑𝐑𝑇 ∇𝑦𝑢 = 𝟎

}

(37)

and

𝑋𝑝 =
{

𝑢 ∈ 𝑊 1,𝑝
♯ (𝑌 𝑚)|

(

𝐈𝑚 − 𝐑𝐑𝑇
)

∇𝑦𝑢 = 𝟎
}

(38)

Remark 2.1. Note that the projection of a vector 𝒗 in R𝑚 on R𝑛,
𝐑𝑇 𝒗 = 𝟎, where 𝟎 is the zero vector in R𝑛, implies that 𝒗 is orthogonal
to the hyperplane 𝑌 𝑚∥ , i.e., orthogonal to R𝑛. It follows that 𝐑𝐑𝑇 𝒗 = 𝟎,

here 𝟎 is the zero vector in R𝑚. Vectors 𝒘 in R𝑚, orthogonal to 𝒗,
atisfy

(

𝐈𝑚 − 𝐑𝐑𝑇
)

𝒘 = 𝟎. We conclude that 𝑋𝑝 contains all functions
n𝑊 1,𝑝

♯ (𝑌 𝑚) whose gradients have all their components in the plane, R𝑛,
hich means that 𝑋𝑝 can be identified with 𝑝

♯ (grad𝐑, 𝑌
𝑚). Moreover,

𝑝 is a subspace of a space much larger than 𝑊 1,𝑝
♯ (𝑌 𝑚) which is not

ifferentiable in the direction orthogonal to the plane 𝑌 𝑚∥ , i.e., on 𝑌 𝑚⟂ .

. Compactness results

roposition 3.1. Let {𝑢𝜂} be a uniformly bounded sequence in 𝑊 1,𝑝(𝛺).
hen there exist a subsequence {𝑢𝜂𝑘} and functions 𝑢 ∈ 𝑊 1,𝑝(𝛺) and
1(𝒙, 𝒚) ∈ 𝐿𝑝(𝛺,𝑋𝑝) such that

𝜂𝑘
𝐑
→→ 𝑢(𝒙), grad 𝑢𝜂𝑘

𝐑
⇀⇀ grad 𝑢(𝒙) + grad𝐑 𝑢1(𝒙, 𝒚), 𝜂𝑘 → 0 (39)

emark 3.1. Note that 𝑢1(𝒙, 𝒚) ∈ 𝐿𝑝(𝛺,𝑋𝑝) implies that grad𝐑 𝑢1(𝒙, 𝒚)
𝐿𝑝(𝛺,𝐿𝑝♯ (𝑌

𝑚;R𝑛)) and that we cannot say if 𝑢1 belongs to 𝐿𝑝(𝛺,𝑊 1,𝑝
♯

𝑌 𝑚)) or to some larger space with lower regularity mentioned in
emark 2.1. Indeed, we cannot say anything about the regularity of
1 in the direction orthogonal to the hyperplane, 𝑌 𝑚∥ . However, in
he decomposition in (36), the gradient of the potential in the ‘‘di-
ection’’ of the hyperplane (or the lower dimensional plane) can be
btained from the gradient of the potential via a rotation of coordinate
ystem. Further note that unlike in Wellander et al. (2018, 2019),
n the proof below we use the notion of 2-scale cut-and-projection
onvergence in distributional sense (Definition 1.1), and not in weak
ense (Definition 1.2).

roof. The first assertion follows by the compact embedding of 𝐿𝑝(𝛺)
n 𝑊 1,𝑝(𝛺), Propositions 1.1, Definition 1.3 and Corollary 1.2. Note
hat 𝐑∇𝑢𝜂(𝒙), 𝒙 ∈ 𝛺 is uniformly bounded in 𝐿𝑝(𝛺;R𝑚). Let 𝝋 ∈
(𝛺;𝐶∞

♯ (𝑌 𝑚))𝑚. We have the following identities

lim
𝜂→0∫𝛺

𝐑∇𝑢𝜂(𝒙) ⋅ 𝝋
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙 = lim
𝜂→0∫𝛺

∇𝑢𝜂(𝒙) ⋅ 𝐑𝑇𝝋
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙 =

− lim
𝜂→0∫𝛺

𝑢𝜂(𝒙)
(

∇𝑥 ⋅ 𝐑𝑇𝝋
(

𝒙, 𝐑𝒙
𝜂

)

+ 𝜂−1
(

𝐑𝑇∇𝑦
)

⋅ 𝐑𝑇𝝋
(

𝒙, 𝐑𝒙
𝜂

))

d𝒙

(40)

and
(

𝐑𝑇∇𝑦
)

⋅ 𝐑𝑇𝝋
(

𝒙, 𝐑𝒙
𝜂

)

=
(

𝐑𝐑𝑇∇𝑦
)

⋅ 𝝋
(

𝒙, 𝐑𝒙
𝜂

)

(41)

Multiplying both sides in (40) with 𝜂 and Lemma 2.1 gives the limit

0 =∫ ∫𝛺×𝑌 𝑚
𝑢0(𝒙, 𝒚)

(

𝐑𝑇∇𝑦
)

⋅ 𝐑𝑇𝝋 (𝒙, 𝒚) d𝒙d𝒚

=∫ ∫𝛺×𝑌 𝑚
𝑢0(𝒙, 𝒚)

(

𝐑𝐑𝑇∇𝑦
)

⋅ 𝝋 (𝒙, 𝒚) d𝒙d𝒚

= 𝐑𝐑𝑇∇𝑦𝑢0(𝒙, 𝒚) ⋅ 𝝋 (𝒙, 𝒚) d𝒙d𝒚

(42)
∫ ∫𝛺×𝑌 𝑚
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for all 𝝋 ∈ (𝛺;𝐶∞
♯ (𝑌 𝑚))𝑚. The interpretation of (42) is that 𝑢0 ∈ 𝑋⟂

𝑝 ,
.e., the gradient ∇𝑦𝑢0(𝒙, 𝒚) has no component in the hyper plane in
𝑚 defined by 𝐑 ∶ R𝑛 → R𝑚. Indeed, we conclude that the potential
0(𝒙, 𝒚) = 𝑢(𝒙), is a function of 𝒙 only due to the compact embedding of
𝑝(𝛺) in 𝑊 1,𝑝(𝛺) and that the two-scale limit equals the strong limit,

f it exists. Next, let 𝝋 ∈ (𝛺;𝐶∞
♯ (𝑌 𝑚))𝑚, and 𝝍 ∈ (𝛺;𝐶∞

♯ (𝑌 𝑚))𝑛. We
have three limits

lim
𝜂→0∫𝛺

𝐑∇𝑢𝜂(𝒙) ⋅ 𝝋
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙 = ∫ ∫𝛺×𝑌 𝑚
𝝌̂0(𝒙, 𝒚) ⋅ 𝝋(𝒙, 𝒚) d𝒙d𝒚

(43)

lim
𝜂→0∫𝛺

𝐑∇𝑢𝜂(𝒙) ⋅ 𝝋
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙 = lim
𝜂→0∫𝛺

∇𝑢𝜂(𝒙) ⋅ 𝐑𝑇𝝋
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙

∫ ∫𝛺×𝑌 𝑚
𝝌0(𝒙, 𝒚) ⋅ 𝐑𝑇𝝋(𝒙, 𝒚) d𝒙d𝒚 = ∫ ∫𝛺×𝑌 𝑚

𝐑𝜒0(𝒙, 𝒚) ⋅ 𝝋(𝒙, 𝒚) d𝒙d𝒚

and

lim
𝜂→0∫𝛺

∇𝑢𝜂(𝒙) ⋅ 𝝍
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙 = lim
𝜂→0∫𝛺

∇𝑢𝜂(𝒙) ⋅ 𝝍
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙

=∫ ∫𝛺×𝑌 𝑚
𝝌̃0(𝒙, 𝒚) ⋅ 𝝍(𝒙, 𝒚) d𝒙d𝒚

(44)

We find that 𝝌̂0(𝒙, 𝒚) = 𝐑𝝌0(𝒙, 𝒚) and 𝝌̃0(𝒙, 𝒚) = 𝐑𝑇 𝝌̂0(𝒙, 𝒚) = 𝝌0(𝒙, 𝒚).
Next, choosing test functions 𝝋 ∈ (𝛺;𝐶∞

♯ (𝑌 𝑚))𝑚, such that
(

𝐑𝐑𝑇∇𝑦
)

⋅
𝝋(𝒙, 𝒚) = 0 in (40) with (41) gives

lim
𝜂→0∫𝛺

𝐑∇𝑢𝜂(𝒙) ⋅ 𝝋
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙

= − lim
𝜂→0∫𝛺

𝑢𝜂(𝒙)
(

∇𝑥 ⋅ 𝐑𝑇𝝋
(

𝒙, 𝐑𝒙
𝜂

))

d𝒙 =

− ∫ ∫𝛺×𝑌 𝑚
𝑢(𝒙)

(

∇𝑥 ⋅ 𝐑𝑇𝝋 (𝒙, 𝒚)
)

d𝒙d𝒚 = ∫ ∫𝛺×𝑌 𝑚
𝐑∇𝑢(𝒙) ⋅ 𝝋 (𝒙, 𝒚) d𝒙d𝒚

(45)

ence due to (43) and (45) we have for 𝝋 ∈ (𝛺;𝐶∞
♯ (𝑌 𝑚))𝑚, such that

(

𝐑𝐑𝑇∇𝑦
)

⋅ 𝝋(𝒙, 𝒚) = 0

∫ ∫𝛺×𝑌 𝑚

(

𝝌̂0(𝒙, 𝒚) − 𝐑∇𝑢(𝒙)
)

⋅ 𝝋 (𝒙, 𝒚) d𝒙d𝒚 = 0

We deduce, due to orthogonality in the dual pairing sense (35), that
there exists 𝑢1 ∈ 𝐿𝑝(𝛺;𝑋𝑝) such that

𝝌̂0(𝒙, 𝒚) = 𝐑∇𝑢(𝒙) + 𝐑𝐑𝑇∇𝑦𝑢1(𝒙, 𝒚)

We conclude that the limit of the gradient in (44) becomes

𝜒0(𝒙, 𝒚) = 𝐑𝑇 𝜒̂0(𝒙, 𝒚) = 𝐑𝑇
(

𝐑∇𝑢(𝒙) + 𝐑𝐑𝑇∇𝑦𝑢1 (𝒙, 𝒚)
)

= ∇𝑢(𝒙) + 𝐑𝑇∇𝑦𝑢1 (𝒙, 𝒚) = grad 𝑢(𝒙) + grad𝐑 𝑢1(𝒙, 𝒚)

which completes the proof. □

We define a strictly monotone operator 𝑎, which satisfies the fol-
lowing assumptions, (i)–(iv):

(i) 𝑎(⋅) is continuous on R𝑛
(ii) 0 ≤ 𝑐1|𝝃|𝑝 ≤ (𝑎(𝝃), 𝝃) , 𝑐1 > 0, ∀𝝃 ∈ R𝑛

(iii)
(

𝑎(𝝃1) − 𝑎(𝝃2), 𝝃1 − 𝝃2
)

> 0 for all 𝝃1, 𝝃2 ∈ R𝑛.
(iv) |𝑎(𝝃)| ≤ 𝑐2

(

1 + |𝝃|𝑝−1
)

, 𝑐2 > 0, ∀𝝃 ∈ R𝑛

We will use the following Lemma when characterizing the two-scale
limit of divergences.

Lemma 3.1. Let 1 < 𝑝 < ∞, 1∕𝑝 + 1∕𝑞 = 1 and assume the operator 𝑎
satisfies assumptions (i)–(iv) above and that 𝑓 (𝒙, ⋅) ∈ 𝐿𝑞♯ (𝑌

𝑚). The equation

− div𝐑 𝑎
(

grad𝐑 𝜃(𝒙, ⋅)
)

= 𝑓 (𝒙, ⋅) , 𝑎.𝑒. 𝒙 ∈ 𝛺 (46)

with periodic boundary conditions, has a unique weak solution grad𝐑 𝜃(𝒙, ⋅)
𝑝 𝑚 𝑛
7

in 𝐿♯ (𝑌 ;R ),
Proof. The proof follows from Browder (1963) and Minty (1963), e.g.,
see Lukkassen et al. (2002), page 62. □

Proposition 3.2. Let {𝒖𝜂} be a uniformly bounded sequence in (div, 𝛺).
Then there exist a subsequence {𝒖𝜂𝑘} and functions 𝒖0 ∈ 𝑝(div, 𝛺;𝐿𝑝

(𝑌 𝑚)) and 𝒖1 ∈ 𝐿𝑝(𝛺,𝑝
♯ (div𝐑, 𝑌

𝑚)) such that

𝒖𝜂𝑘
𝐑
⇀⇀ 𝒖0(𝒙, 𝒚), div 𝒖𝜂𝑘

𝐑
⇀⇀ div 𝒖(𝒙) + div𝐑 𝒖1(𝒙, 𝒚), 𝜂𝑘 → 0 (47)

with

div𝐑 𝒖0(𝒙, 𝒚) = 0 (48)

and

𝒖(𝒙) = ∫𝑌 𝑚
𝒖0(𝒙, 𝒚) d𝒚

𝒖 ∈ 𝑝(div, 𝛺).

Proof. The proof follows the lines of Lemma 5 and Proposition 6
in Wellander et al. (2019) with appropriately changed function spaces.
Let 𝜙 ∈ 𝐿𝑞(𝛺) and 𝜓 ∈ 𝐿𝑞(𝛺,𝐶♯(𝑌 𝑚)). We have the weak limit of the
divergence,

lim
𝜂→0∫𝛺

∇ ⋅ 𝒖𝜂(𝒙)𝜙 (𝒙) d𝒙 = ∫ ∫𝛺×𝑌 𝑚
∇ ⋅ 𝒖0(𝒙, 𝒚)𝜙(𝒙) d𝒙d𝒚

= ∫𝛺
∇ ⋅ 𝒖(𝒙)𝜙(𝒙) d𝒙 , ∀𝜙 ∈ 𝐿𝑞(𝛺)

where 𝒖(𝒙) = ∫𝑌 𝑚 𝒖0(𝒙, 𝒚) d𝒚, where 𝒖0(𝒙, 𝒚) is the two-scale cut-and-
project limit with respect to 𝐑. Next, we have the corresponding
two-scale cut-and-project limit of the divergence

lim
𝜂→0∫𝛺

∇ ⋅ 𝒖𝜂(𝒙)𝜓
(

𝒙, 𝐑𝒙
𝜂

)

d𝒙 = ∫ ∫𝛺×𝑌 𝑚
𝜒0(𝒙, 𝒚)𝜓(𝒙, 𝒚) d𝒙d𝒚 ,

∀𝜓 ∈ 𝐿𝑞(𝛺,𝐶♯(𝑌 𝑚))

It follows, after an integration by parts (twice) that

0 = lim
𝜂→0

𝜂 ∫𝛺
∇ ⋅ 𝒖𝜂(𝒙)𝜓

(

𝒙, 𝐑𝒙
𝜂

)

d𝒙

= ∫ ∫𝛺×𝑌 𝑚
div𝐑

(

𝒖0(𝒙, 𝒚)
)

𝜓(𝒙, 𝒚) d𝒙d𝒚 , ∀𝜓 ∈ 𝐿𝑞(𝛺,𝐶♯(𝑌 𝑚))

which proves (48). Define a function as the difference of the two-
scale and the weak limits, i.e., 𝑓 (𝒙, 𝒚) ∶= 𝜒0(𝒙, 𝒚) − ∇ ⋅ 𝒖(𝒙). We have
𝑓 (𝒙, ⋅) ∈ 𝐿𝑝♯ (𝑌

𝑚). Lemma 3.1 implies that there is a unique grad𝐑 𝜃(𝒙, ⋅)
in 𝐿𝑞♯ (𝑌

𝑚;R𝑛) that solves (46), i.e., 𝜃(𝒙, ⋅) ∈ 𝑋𝑞 , defined in (38). Next,
define 𝒖1(𝒙, 𝒚) ∶= −𝑎

(

grad𝐑 𝜃(𝒙, 𝒚)
)

with 𝑎 as in Lemma 3.1. We get

𝜒0(𝒙, 𝒚) = div 𝒖(𝒙) + 𝑓 (𝒙, 𝒚) = div 𝒖(𝒙) + div𝐑𝑢1(𝒙, 𝒚) ∈ 𝐿𝑝(𝛺 × 𝑌 𝑚)

which completes the proof. □

4. Homogenization of a quasiperiodic heterogeneous nonlinear
electrostatic problem

Let us now consider the quasiperiodic heterogeneous nonlinear
electrostatic problem (3). Standard estimates yield solutions that are
uniformly bounded in 𝑊 1,𝑝

0 (𝛺) with respect to 𝜂. We can now state the
main homogenization result.

Theorem 4.1. Let {𝑢𝜂} be a sequence of solutions to (3). The whole
sequence {𝑢𝜂} converges weakly in 𝑊 1,𝑝

0 (𝛺) to the solution, 𝑢, of the
homogenized equation

⎧

⎪

⎨

⎪

⎩

−div ∫𝑌 𝑚
𝜎
(

𝒙, 𝒚,∇𝑢(𝒙) + 𝐑𝑇∇𝒚𝑢1(𝒙, 𝒚)
)

d𝒚 = 𝑓 (𝒙) , 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺),

𝑢|𝜕𝛺 = 0
(49)
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1 < 𝑝 < ∞, where 𝐑𝑇∇𝒚𝑢1 ∈ 𝐿𝑝(𝛺;𝐿𝑝(𝑌 𝑚∥ ;R𝑛)) is the unique solution of
the local equation

− div𝑹 𝜎
(

𝒙, 𝒚,∇𝑢(𝒙) + 𝐑𝑇∇𝒚𝑢1(𝒙, 𝒚)
)

= 0 𝑎.𝑒. 𝒚 ∈ 𝑌 𝑚,𝒙 ∈ 𝛺, (50)

Proof. From the a priori estimates of sequences 𝑢𝜂 and 𝜎𝜂 ∶= 𝜎
(

𝒙, 𝐑𝒙𝜂 ,

∇𝑢𝜂(𝒙)
)

, there is a subsequence such that 𝑢𝜂𝑘
𝐑
→→ 𝑢(𝒙),

grad 𝑢𝜂𝑘
𝐑
⇀⇀ grad 𝑢(𝒙) + grad𝐑 𝑢1(𝒙, 𝒚) and 𝜎𝜂𝑘

𝐑
⇀⇀ 𝜎0(𝒙, 𝒚), when 𝜂𝑘 → 0.

ince 𝑓 + div𝜎𝜂 = 0, Eq. (48) yields div𝐑𝜎0(𝒙, 𝒚) = 0 and 𝑓 (𝒙) +
div𝒙 ∫𝑌 𝑚 𝜎0(𝒙, 𝒚)d𝒚 = 0. We now need to obtain an explicit expression
for 𝜎0(𝒙, 𝒚) in terms of 𝜎, 𝑢 and 𝑢1. Following, e.g., Allaire (1992),
we introduce a test function 𝜓𝜂(𝒙) = ∇{𝑢(𝒙) + 𝜂𝜙1(𝒙,

𝐑𝒙
𝜂 )} + 𝑡𝜙(𝒙, 𝐑𝒙𝜂 )

where 𝑡 > 0, 𝜙 and 𝜙1 are admissible test functions. This ensures that

𝜓𝜂
𝐑
⇀⇀ grad 𝑢(𝒙) + grad𝐑 𝜙1(𝒙, 𝒚) + 𝑡𝜙(𝒙, 𝒚). Since 𝜎 is strictly monotone,

we have

∫𝛺

{

𝜎𝜂 − 𝜎
(

𝒙, 𝐑𝒙
𝜂
, 𝜓𝜂

)}

⋅ (∇𝑢𝜂 − 𝜓𝜂) d𝒙 ≥ 0

i.e.,

∫𝛺

{

−div𝜎𝜂 𝑢𝜂 − 𝜎
(

𝒙, 𝐑𝒙
𝜂
, 𝜓𝜂

)

⋅ ∇𝑢𝜂 − 𝜎𝜂𝜓𝜂 + 𝜎
(

𝒙, 𝐑𝒙
𝜂
, 𝜓𝜂

)

𝜓𝜂

}

d𝒙

≥ 0

Using (3), passing to the two-scale limit and using the strong limit to
get 𝑢 yields

∫𝛺 ∫𝑌 𝑚
{

𝑓 (𝒙)𝑢(𝒙) − 𝜎
(

𝒙, 𝒚, 𝜓0(𝒙, 𝒚)
)

⋅ (grad 𝑢(𝒙) + grad𝐑 𝑢1(𝒙, 𝒚))

− 𝜎0(𝒙, 𝒚)𝜓0(𝒙, 𝒚) + 𝜎
(

𝒙, 𝒚, 𝜓0(𝒙, 𝒚)
)

𝜓0(𝒙, 𝒚)
}

d𝒙d𝒚 ≥ 0

This equals, after a few integration by parts,

∫𝛺 ∫𝑌 𝑚
{

𝑓 (𝒙)𝑢(𝒙) + div𝒙
(

𝜎
(

𝒙, 𝒚, 𝜓0(𝒙, 𝒚)
))

𝑢(𝒙)

− 𝜎
(

𝒙, 𝒚, 𝜓0(𝒙, 𝒚)
)

⋅ grad𝐑 𝑢1(𝒙, 𝒚)

+ div𝒙
(

𝜎0(𝒙, 𝒚)
)

𝑢(𝒙) + div𝐑
(

𝜎0(𝒙, 𝒚)
)

𝜙1(𝒙, 𝒚) − 𝜎0(𝒙, 𝒚)𝑡𝜙(𝒙, 𝒚)

− div𝒙
(

𝜎
(

𝒙, 𝒚, 𝜓0(𝒙, 𝒚)
))

𝑢(𝒙) + 𝜎
(

𝒙, 𝒚, 𝜓0(𝒙, 𝒚)
)

grad𝐑 𝜙1(𝒙, 𝒚)

+ 𝜎
(

𝒙, 𝒚, 𝜓0(𝒙, 𝒚)
)

𝑡𝜙(𝒙, 𝒚)
}

d𝒙d𝒚 ≥ 0

The first terms in the first and third rows cancel each other due to the
statements above. We also note that the middle term in the third row
vanishes due to Eq. (48). The second term in the first row is canceled by
the first term in the fourth row. Taking a sequence of functions grad𝐑 𝜙1
that converges strongly to grad𝐑 𝑢1 in 𝐿𝑝(𝛺,𝐿𝑝♯ (𝑌

𝑚;R𝑛)), yields

∫𝛺 ∫𝑌 𝑚
{

−𝜎(𝒙, 𝒚, grad 𝑢(𝒙) + grad𝐑 𝑢1(𝒙, 𝒚) + 𝑡𝜙(𝒙, 𝒚)) ⋅ grad𝐑 𝑢1(𝒙, 𝒚)

− 𝜎0(𝒙, 𝒚)𝑡𝜙(𝒙, 𝒚)

+ 𝜎(𝒙, 𝒚, grad 𝑢(𝒙) + grad𝐑 𝑢1(𝒙, 𝒚) + 𝑡𝜙(𝒙, 𝒚)) ⋅ grad𝐑 𝑢1(𝒙, 𝒚)

+ 𝜎(𝒙, 𝒚, grad 𝑢(𝒙) + grad𝐑 𝑢1(𝒙, 𝒚) + 𝑡𝜙(𝒙, 𝒚))𝑡𝜙(𝒙, 𝒚)
}

d𝒙d𝒚 ≥ 0

The first row cancels the third row. We divide the two terms left by
𝑡 > 0 and send 𝑡 to zero and obtain

∫𝛺 ∫𝑌 𝑚
[

𝜎(𝒙, 𝒚, grad 𝑢(𝒙) + grad𝐑 𝑢1(𝒙, 𝒚)) − 𝜎0(𝒙, 𝒚)
]

𝜙(𝒙, 𝒚)d𝒙d𝒚 ≥ 0

for all admissible test functions, e.g., 𝜙 ∈ (𝛺;𝐶∞
♯ (𝑌 𝑚)). It follows that

𝜎0(𝒙, 𝒚) = 𝜎(𝒙, 𝒚, grad 𝑢(𝒙)+grad𝐑 𝑢1(𝒙, 𝒚)). Uniqueness of the solution of
the limit equation (see e.g. Lions (1969) and Wellander (1998)) implies
that the whole sequence converges. □

Proposition 4.1 (Correctors). If we assume that 𝑢1(𝒙, 𝒚) is smooth and 𝜎
is uniformly monotone, then

lim
𝜂→0

‖

‖

‖

‖

∇𝑢𝜂(𝒙) − ∇
{

𝑢(𝒙) + 𝜂𝑢1
(

𝒙, 𝑹𝒙
)}

‖

‖

‖

‖

= 0
8

‖

𝜂
‖𝐿𝑝(𝛺;R𝑛)
Proof. Considering 𝜓𝜂(𝒙) = ∇
{

𝑢 (𝒙) + 𝜂𝑢1
(

𝒙, 𝑹𝒙𝜂
)}

and using that 𝜎
is uniformly monotone yields (Allaire, 1992; Wellander, 2002)

∫𝛺

{

𝜎𝜂 − 𝜎
(

𝒙, 𝑹𝒙
𝜂
, 𝜓𝜂

)}

⋅ (∇𝑢𝜂 − 𝜓𝜂) d𝒙 ≥ 𝑐 ∫𝛺
∣ ∇𝑢𝜂 − 𝜓𝜂 ∣

𝑝 d𝒙 (51)

here 𝑐 > 0. It follows from the fact that 𝜓𝜂 are admissible test
unctions that the left hand side of (51) goes to zero as 𝜂 → 0. The
echnical details in the proof are similar to the ones in (Allaire, 1992;

ellander, 2002). □

. Concluding remarks

We have applied two-scale cut-and-projection convergence to a
anonical nonlinear electrostatic problem for quasiperiodic structures
enerated by a periodic geometry in a higher dimensional space. Com-
ared with earlier work on homogenization of almost periodic mono-
one operators (Braides, 1991; Nguetseng and Woukeng, 2007), our
nnex problem has a simpler, less abstract structure, and should there-
ore facilitate its numerical implementation in a variety of problems
f physical interest, such as in electromagnetism (Wellander, 1998),
here intriguing features have been observed, such as transmitted fem-

osecond pulses developed a trailing diffusive exponential tail that led
o some controversy (Ledermann et al., 2009). We further note that our
tudy can be adapted to the nonlinear elasticity case (Ponte Castaneda,
989), whereby 𝜎 would denote a rank-2 stress tensor.
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