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Averaging a certain class of quasiperiodic monotone operators can be simplified to the periodic homogenization
setting by mapping the original quasiperiodic structure onto a periodic structure in a higher dimensional
space using the cut-and projection method. We characterize the cut-and-projection convergence limit of the
nonlinear monotone partial differential operator —div o ( x, %,Vu,, for a bounded sequence u, in WO""(.Q),
where 1 < p < o0, and @ is a bounded open subset in R” with Lipschitz boundary. We identify the homogenized

problem with a local equation defined on a hyperplane, or a lower dimensional plane in the higher-dimensional
space. A new corrector result is established.

1. Introduction

Nonlinear physical phenomena are ubiquitous in modern electronic
devices. A few examples are current surge protectors made of varistor
ceramics, solid state amplifiers, and integrated circuits. This is one
motivation to develop mathematical tools that can be used to analyze
the effective properties of polycrystalline quasiperiodic semiconduc-
tors. In Braides et al. (2009), it is shown that integral energies F, where
the spatial dependence follows the geometry of a Penrose tiling, or
more general quasicrystalline geometries, can be homogenized. More
precisely,

F,u) = / f <§,Vu(x)> dx , ue wWhv(Q) e))
Q

where Q is an open subset of R?, and f depends on x through the shape
and the orientation of the cell containing x in an a-periodic tiling of the
space, I'-converge in W ’() with respect to the L convergence to the
functional

r©=ipint {7 [ r0.vem oy, vewromn ) @
—00 T 0,1)?

where ¢ is the macroscopic field. This general homogenization result
was shown using that f is Besicovitch almost periodic in y and thus
a previous result on Besicovitch almost periodic functionals (Braides,
1986) could be applied. Homogenization of interfacial energies on
Penrose lattices making use of I'-convergence for similar functionals
to (1) but with the surface integral replaced by a line integral has
also been addressed in Braides et al. (2012).

* Corresponding author.

I'-convergence is a very powerful tool in homogenization the-
ory (Braides, 2002), but two-scale convergence (Nguetseng, 1989;
Allaire, 1992) can more easily identify homogenized equations in the
periodic setting. A similar tool is the periodic unfolding approach (Cio-
ranescu et al., 2008), in which one first maps the original sequence of
functions to a sequence that is defined on R"x]0, 1[", and then takes
the usual weak limit in suitable function spaces, using this extended
domain. This is similar to the two-scale Fourier transform approach
proposed in Wellander (2009).

Due to its simplicity, one might wish to apply two-scale homoge-
nization (or the periodic unfolding and Fourier transform approaches)
to quasiperiodic materials or mixtures of materials with rational and
irrational periodicity, e.g., see Braides (1991) and Casado-Diaz and
Gayte (2002) for a setting in an almost periodic regime, Blanc et al.
(2015a,b) for some recent work on quasiperiodic multiscale homoge-
nization setting.

This has been proposed in Guenneau (2001) and Bouchitté et al.
(2010) wherein two-scale convergence is applied to the quasiperiodic
setting making use of the cut-and-projection method. Indeed, quasiperi-
odic materials can often be described by periodic structures in
higher spatial dimensions cut and projected onto a hyperplane or a
lower dimensional (physical) space, typically R? (such as for Penrose
tilings) and R3, as proposed by de Bruijn (1981) and generalized
in Duneau and Katz (1985). This makes it possible to use standard
periodic homogenization tools such as two-scale convergence, to ho-
mogenize quasiperiodic materials, illustrated in Fig. 1. We note that
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Fig. 1. Principle of cut-and-projection method: the projection of a periodic structure in higher dimensional space R™ (m = 2 here) onto a hyperplane (represented by a straight
line) or a lower dimensional plane R", generates a quasiperiodic structure in R" (n = 1 here), when the slope is irrational. With a rational slope the line is folded back onto a

finite number of segments in the periodic cell Y™, whereas with an irrational slope, as shown here, the set of segments is countable and dense in Y” (note that we only show 10

segments within the countable set).

in Golden et al. (1990), effective properties of quasiperiodic structures
were deduced from the cut-and-projection of checkerboards.

To do that one has to complement existing tools with the cut-and-
projection operator, which was done in Bouchitté et al. (2010) in the
framework of W2, making use of Fourier representation of two-scale
limits of gradients. Importantly, this was revisited in Wellander et al.
(2018, 2019).

However, two-scale convergence can also be applied to nonlinear
operators, see Allaire (1992). The approach is based on a generalization
of the usual weak convergence in Lebesgue spaces L?, 1 < p < oo,
in which one uses oscillating test functions to capture oscillations on
the same scale as the test functions in the sequence of functions that
are investigated. As a consequence one obtains limit functions that are
defined on the product space R"x]0, 1[".

In this paper we extend the two-scale cut-and-projection conver-
gence method to Sobolev spaces W!?, 1 < p < co. We build upon
(Wellander et al., 2019) to characterize the limits of nonlinear partial
differential operators in this setting. We illustrate the method on a
nonlinear electrostatic problem that was previously homogenized using
the tool of G-convergence for a larger class of almost periodic functions
in Braides et al. (1992). We finally establish a corrector result for the
gradients. We note that Kozlov (1979) established a corrector result for
the case of almost periodic coefficients, which are the restriction of
sufficiently smooth periodic functions of greater number of variables,
when the problem is set in the whole space.

1.1. Setup of a nonlinear electrostatic equation in a quasiperiodic structure

Throughout the paper, we consider a bounded domain £ in R”
with Lipschitz boundary. We study the electrostatic equation, which
is applicable to model DC currents in semiconductors, e.g., ZnO based
varistor ceramics,

—div o, (x, Vu,(x)) = f(x),

u, € W, '(Q). 1<p<oo

3
“n ‘m =0

where o, (x Vun(x)) is a nonlinear function of the electric field Vu,,
and 7 is a positive parameter that will be passed to zero. It measures the
fine scale in the composite. The homogenization analysis will identify
a homogenized problem with a solution that, when 5 is small enough,
is a good approximation of the solution to the original equation (3).
Further, we assume f € W~19(Q), 1/p+ 1/q = 1. We use standard
notations for Lebesgue and Sobolev spaces. The Euclidean norm and

the scalar product in R” are denoted by | - | and (-,-), respectively.
The heterogeneous problem is modeled by the use of a unit cell,
with periodic boundary conditions, in the higher dimensional space,
as in Fig. 1 which is denoted Y™. The modeling of the quasiperiodic
composite is done with the help of a matrix R, which is real valued,
with m rows and n columns. The transposed matrix R” cuts-and-project
the unit cell, as the line does in Fig. 1, and produces a quasiperiodic
pattern in R!,R? or R? if R satisfies criterion (4) given below.

Following de Bruijn (1981) and Duneau and Katz (1985), it is useful
to decompose the higher-dimensional periodic space Y” into the n-
dimensional plane Y" = {y € R" | (L, -RRT) y = 0} and its
orthogonal complement Y" = {y € R” | RR”y = 0}, which is
the essence of the cut-and-projection method. This is illustrated in
Fig. 1 where Y" corresponds to the oblique blue line and Y}" is thus
a line perpendicular to it (not shown). This geometric decomposition
underpins the decomposition of the functional space in Eq. (37), as well
regularity of material constituents, characterized here by the function
o in (3).

The current density is given by a non-linear map, o, that satisfies
assumptions (i)—(vi):

@) o(x,-,¢) is Y-periodic in R™, is Lebesgue measurable on Y”"' and

continuous on Y /", for every x € 2,& € R".

(i) o(-, y,&) is continuous for almost every y € R™ and every & € R".

(iii) o(x,y,-) is continuous for almost every x € Q2 and y € R".

@{iv) 0 < c|é)? < (o(x,y,8),&) ,¢ > 0, for almost every x € 2 and
y € R™, for any & € R".

W) (06(x,3.8) —0(x,y.£)).& = &) > ¢, |€, =&, ¢; > 0, for all
&,,& € R", and almost every x € 2 and y € R™.

i) lo(x, 3, &) < ¢ (1+E77Y), ¢, > 0,V€ € R”, almost every x € Q
and y € R™.

Standard estimates yield solutions that are uniformly bounded in
Wol’p (€) with respect to 7.

Remark 1.1. Assumptions (i) and (ii) implies that ¢ is a Carathéodory
function. This is stated and proved in Proposition 1.4 Assumption (v)
is needed for a corrector result. It can be replaced by a strict monotone
assumption if only the homogenized equation is needed, e.g., see Allaire
(1992).

1.2. Two-scale cut-and-projection convergence

In this section, we recall some properties of two-scale convergence
in L?(2), 1 < p < 0, 2 C R", Allaire (1992), and revisit the extension
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to the quasiperiodic setting, see Bouchitté et al. (2010) when p = 2.
More precisely, we consider a real valued matrix R with m rows and
n columns, and we would like to approximate an oscillating sequence
{u,(®)},ep011 Dy @ sequence of two-scale functions u, (x, %) where
uy (x,-) is Y™-periodic on R™, a higher dimensional space paved with
periodic cells Y™ =10, 1[". In what follows, we assume that R : R" —
R™, n < m, fulfills the criterion

RTk#0, VkezZ™\ {0} ©)]

In fact, when defining a quasiperiodic structure through cut-and-
projection, one notes that the matrix R is not uniquely defined (e.g,
an icosahedral phase using a mapping from R® or R!? onto R, or a
Penrose tiling using a mapping from R* or R’ onto R?, see Duneau
and Katz (1985) and Janot (1992)). However, if g is a trigonometric
polynomial, then the composite function f = goR admits the following
(uniquely defined) ergodic mean:

L(f)= lim

T—+c (ZT)n 1-T:T["

f(x)ydx = / gy dy =gl (5)
ym

where [g] denotes the mean of g over the periodic cell Y” in R™. This
is the case provided that R fulfills the criterion (4), see Bouchitté et al.
(2010).

This result suggests the following concept of two-scale convergence
attached to a matrix R.

Definition 1.1 (Distributional Two-scale Convergence). We say that the
sequence {u,} in LP(£2), 1 < p < oo, two-scale converges in the
distributional sense towards the function u, € LP(£2 x Y™) for a matrix
R, if for every ¢ € D(£2; C;"’(Y"’)):

lim [ u,(x)¢ (x, &> dx = // uy(x, y)p(x, y) dxdy (6)
1=0/q n oxym

Definition 1.2 (Weak Two-scale Convergence). We say that the sequence
{u,} in LP(Q), two-scale converges weakly towards the function u, €
LP(2 x Y™) for a matrix R, if for every ¢ € LI(Q2,Cy(Y™)), 1 < p < oo,
1/p+1/q =1, (6) holds.

We denote weak two-scale convergence for a matrix R with u, R uy.
The following result, which is a straightforward extension of a proof
in Bouchitté et al. (2010) to L? case corresponding to Corollary 1.15
in Allaire (1992), ensures the existence of such two-scale limits when
the sequence (1) is bounded in L?(£2) and R satisfies (4).

Proposition 1.1. If R is a matrix satisfying (4) and {u,} is a bounded
sequence in L”(Q), 1 < p < oo, then there exists a vanishing subsequence 1,

and a limit uy(x,y) € LP(2 X Y™) (Y™-periodic in y) such that Uy, = U,
as . = 0.

A proof of Proposition 1.1 uses the same arguments as in the peri-
odic case, e.g., see Lukkassen et al. (2002) and can be found in Ferreira
et al. (2021).

We will need to pass to the limit in integrals /,u, v, dx where

R

R
u, = uy and v, — v,. For this, we introduce the notion of strong

two-scale (cut-and-projection) convergence for a matrix R.

Definition 1.3 (Strong Two-scale Convergence). A sequence {u,} in
LP(Q) is said to two-scale converge strongly, for a matrix R, towards a

R
limit u; in LP(2XxY™), which we denote u, = ug, if and only if U, = iy
and

||uﬂ(x)||Lp(Q) = [lup(x, Y)”Lp(gxym) )
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This definition expresses that the effective oscillations of the se-
quence {u,} are on the order of . Moreover, these oscillations are fully
identified by u,.

We note the following two propositions which are useful to estab-
lish a link between weak quasiperiodic convergence in Definition 1.2
and strong L? convergence (see Corollary 1.2).

Proposition 1.2. Let R be a linear map from R" to R™ satisfying (4).
Let f(x,y) € LI(Q;Cn(Y’”)). Then f (x %) is a measurable function on
Q such that

=
n

<Gl @ = /Q up | [ dx (®)
S

LY(Q)
and
. Rx
tim [ £ <x,—> ai= [ reyasay ©
n=0J¢q n oxym
Proof. Measurability of f x,& follows from Theorem 1 in

Lukkassen et al. (2002) (see also Proposition 1.4) that ensures f is of
Carathédory type. Inequality (8) is obvious. Finally, (9) follows from
Lemma 2.4 in Bouchitté et al. (2010). O

We have the following corollary which 1is useful to establish a

corrector type result (see Proposition 1.3).

Corollary 1.1. Let R be a linear map from R" to R™ satisfying (4). Let
d(x,y) € LP(Q; Cy(Y™)). Then

p
lim/ q&(x,&) dx=// |(x, p)|? dxdy (10)
n-0 Jo n Qxym

Proof. We first consider the case when ¢ can be expressed as ¢(x, y) =
(x)B(y), where 7(x) € L*(£2) and f(y) € C4(Y™). Since f? € C;(¥Y™), we
deduce from Proposition 1.2 that p? (% converges towards its mean
[pP] weakly in L'(£2). As 7” belongs to L®(£2), we obtain

Jim r”(x)/i"<&> dx = / o (x) dx / 57(y)dy
-0 Jo n Q ym

From Fubini’s theorem, this implies that (10) holds.

This result is extended by linearity to step functions ¢, € S,(€2,C;
(¥™) such that ¢, = X1 1,14 ()w;(y), where 4, = {x € 2, ¢;(x..) =
t;} and w;(y) € Cy(Y™). We deduce that (10) holds by density in
LP(Q,Cy(Y™)). More precisely, we consider ¢, € S,(€2,Cy(Y™)). There
exists a sequence of step functions ¢, = Zf.;l 1;x4,(0)w;(y) such that

p
H . _ — 1i _ p —
lim Q(yseufmwk(x,y) $(x.) |> dx = lim [l = DIl ¢, ym) = 0

k— o0

Moreover, from the triangular inequality and the continuity of the
linear map R, we deduce that there exists a constant C > 0 such that

‘¢<x,&> ¢<x,&>—¢k <x,&>

n n n

(o)
n

Noting that for every v € LP(2, Cy(Y™))

P P
Rx . P
/g ’ <x’ 7) = /g (ybeuypm |”(x’y)|> dx = Mol cyorm)

we deduce from (11) that for every integer k
Rx
[ <x, —>
“\

=
n

<C
LP(Q)

LP(Q)

+ an

LP(Q)

<Cll¢p - ¢k”LP(Q,Cﬁ(Y’")) +

LP(Q) LP(2)
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Since ¢, is admissible, we deduce that there exists a constant C > 0
such that

Rx
¢ ("’ 7)

lim sup
-0

<Cll¢ - ¢’k||Lp(Q,cn(er)) + ||¢k||Lp(_Qxym)
LP(Q)

<Cll¢ - ¢ ”LP(Q,Cu(Y’"))
+ldy — ¢||Lp(_(z><ym) + ||¢||Lp(QxYM)

<(C+ Do - (ﬁk”Lp(_(),cu(ym))

+ll#ll LP(QXY™)

12)
Passing to the limit k — oo in (12), we obtain
. Rx
lim sup ¢ <x, —> < ”¢||LP(.(2><YV") (13)
n—0 n ()

Similar arguments hold for the lower limit. In that case, we obtain that
for every integer k

o(<5)
n

lim inf
n—0

> ||¢k||Lp(Q><ym) -Cll¢ - ¢’k||Lp(_Q,cﬁ(ym))
LP(Q)

2 191l Locaxymy = bk = Dl Loasym)
—Cli¢ — ¢y “LP(Q,Cn(Y”‘))

2 191l oaxym)

~(C+ D19~ Dl racyvmy

(14)
Passing to the limit k — oo in (14), we obtain
.. R
liminf ¢<x,—"> > 19l oty (15)
n—0 n LP(Q)

Equality (10) is established combining inequalities (13) and (15). []
The following proposition provides us with a corrector type result

for the sequence {u,} when its limit u, is smooth enough:

Proposition 1.3. Let R be a linear map from R" in R™ satisfying (4). Let

R
{u,} be a sequence such that u, — uy(x,y) (weakly). Then
(D) u, weakly converges in L?(£2) towards u(x) = fy,,, uy(x,y) dy and

lifin_jgflluqllu(g) 2 llull Loaaxymy 2 llull o) (16)

(i) Let {v,} be another bounded sequence in LI(£2), 1/p+1/q = 1, such

R
that v, = Uy (strongly), then

u,v, = w(x) in D'(£2) where w(x) = / ug(x, y)vg(x, y) dy 7)
Y"l
(iii) If ug is smooth enough (e.g., uy € LP(£2, Cy(Y™))) and
R
Uy (x, _x) = lup(x, Y)”Lp(_oxyrn) (18)
UV 7))

then

u, — U (x, &> -0 19

m /e

Proof. (i) Choosing test functions ¢ in L?(L2; Cy(Y™)) independent of
the y variable in Definition 1.2, one has that for every ¢ € L9(£2)

lim / uy(X)p (x) dx = / / (%, y)gp(x) dxdy
n=0J/g oxym

= / @ (x) </ uo(x,y)dy> dx
Q ym

Moreover, {u,} is bounded in L?(£2) as a weakly convergent sequence.

European Journal of Mechanics / A Solids xxx (xxxx) xxx

Then, let ¢,, be a sequence in L9(£2, Cy(Y™)) such that ¢,, converges
to | ug P2 u, strongly in LI(Q X Y™).

We first apply the Young inequality for real numbers a and b, and
1 <p<oo,1/p+1/q =1, which states that ab <| a |? /p+ | b |1 /q. We
consider a = u, and b = @,, to get

/Iu,,(x) |7 dx
Q
Zp/ U, (X)@,, (x,&> dx —(p— 1)/
Q n Q

We first pass to the limit when 5 goes to zero:

q
dx

Rx
P | X, 7

o
tim inf e 17

Zp// Uy (X, Y)@,,(x, y) dxdy — (p — 1)// |@m(x, y)|* dxdy
Qxym Qxym
R

where we have used that u, —

ug(x,y) weakly and
R
P (x, %) — @,(x,y) strongly (making use of Corollary 1.1).
We then pass to the limit when m goes to infinity:

p

tim a1,

o[ lwenPaxay=o-1 [ [ ey 1 asay

Qxym Qxym

= lluolllzp(_qum) (20)

where we have used that ¢,, —| uy [P~2 u, strongly in L1(22 x Y™).
Moreover, thanks to Jensen’s inequality, we have that
p
o= [ | [ woteyts| ax< [ [ Jun pasay
QIlJym Qxym
= ol eym) (21

We conclude by combining (20) and (21).
(ii) Let y,, be a sequence in L?(£2, C4(Y™)) such that y,, converges
to uy strongly in LP(£2XY™). Let 7 be a function in C;°(£2). We note that

R
v,© = vy7 (strongly). Thus, passing to the two-scale cut-and-projection

limit when 5 goes to zero in the product of v,z and v,,, we have that
. Rx

lim [y, | x,— | v,(X)r(x)dx = v, (x,¥) vy(x, y)z(x) dxdy
=0 J o n oxym

We then pass to the limit when m goes to infinity

lim lim
m—o0 p—0 Ie)

Wi <x, %) v, (%)7(x) dx (22)

= // ug (x,y) vy(x, y)r(x)dxdy
Qxym

where we have used that y,, converges to u, strongly in L?(2 x Y™).
Moreover, from the triangular inequality, we have

| m@o,commax= [ [ vy axay
Q Qxym
Rx
/ [u,?(x) - Y, <x, —)] v, (x)(x)dx
Q n
/ Yo (x, &> u,,(x)r(x) dx
Q n

- / / ug (%, y) vo(x, y)v(x) dxdy
Qxym

Combining (23) and (23) we get

<

(23)
+

lim sup

=0

/ u, (), (x)7(x) dx — // ug (x,y) vy(x, y)7(x) dxdy‘
Q Qxym

/ [un(x) — Y, <x, &>] v, (x)(x)dx
Q n

< lim sup lim sup
m—co n—0

(24)
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It remains to prove that the right-hand side in (24) vanishes. We first
recall that r € Cy(£2) and we then invoke Holder’s inequality to deduce
that

/ [uﬂ(x) — W (x &>] 0, (x)7(x) dx
Q n

Smaxyeq | 7(x) | ‘/ [“n(x) —Yp <x7 &>] v,(x)dx
2 n

P 1/p
< max,eg | 7(0) | ( / 1y (%) = ¥, (x,&) dx> 25)
Q n
1/q
x(/ [ v, (x) |9 dx)
Q
Rx
Uy = Yy (x, T)

where in the last inequality we have used that v, is a bounded sequence
in L9(Q).
We now invoke the Clarkson inequalities applied to functions u, and

v, in LP(2):
Rx g
L e
n LP(Q)

Rx
Uy =Wy | X, 7

<C©)

LP(Q)

p

2p

1 »
< 3 <||ur]||Lp(Q) +

LP()
P
Mﬂ + Y (x, %)
— forl<p<2
LP(2)
(26)
and
q
Rx 1 »
e (m—) S EA
n = ¥m nLr(@)
24 n ) 2
1 Rx P
A,
2 L) 27)
q
v (22)
—||—— forp>2
2 p=z
LP(Q)
Passing to the 2-scale cut-and-projection limit in (26)
P
. Rx _
lim suplu, ~ v, (x —) <271 (g6 I gy,
n—0 n LP(Q)

DI iy )

uy(x, y) + v, (x, ) ||

_op
2 LP(QxY™)
(28)
for 1 < p <2, and similarly for (27)
q
. Rx
tim suplu, v, (x, —) <2 (1o 9 gy
n—0 n LP(Q) 1
Y D gy )
o || 40 )+ WX ) |
2 LP(QxY™)
(29)

for p > 2, where we have used 1/p+1/q=1,thus q/p=1/(p-1).
XY+, (X.y)
We now note that || <=2t I ll40Ges | Lo qascrm)
when m tends to infinity. Thus, taking the lim sup on m in both sides

of (28) and (29), we are ensured that
=0forl<p<oo (30)

Rx
Uy =Wy | X, —
K V)

We have thus proved that the RHS of (24) vanishes combining (25) and
(30).

lim sup lim sup
m—oo n—0
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(iii) We finally want to show (19). Assuming that u, € L’(£2, Cy
(Y'™)), we can replace y,, by u, in the Clarkson inequalities (26) and
(27), which leads to

Rx
Mn —Uy | X, 7

which is (19). [J

=0forl<p<o
LP()

lim sup lim sup
m—oo n—0

Remark 1.2. Our proof of Proposition 1.3 follows closely that of
Theorems 10 and 11 in Lukkassen et al. (2002). We stress that some
regularity is needed for u, in (iii) of Proposition 1.3. We refer to
Theorem 12 in Lukkassen et al. (2002) for a related result on regularity
of two-scale limit that remains valid for two-scale cut-and-projection
limit (its proof is a straightforward extension of that in Lukkassen et al.
(2002), but is rather technical and lengthy).

Remark 1.3. We point out that Proposition 1.3(i) does not hold if

weak two-scale convergence u, — u, is replaced by distributional
two-scale convergence (see Definition 1.1). Indeed, the choice of space
L%(Q,Cy(Y™)) for test functions ¢ in Definition 1.2 is essential. This
is exemplified by the counter-example in Lukkassen et al. (2002) of
a sequence {u,} in L”(0,1) defined by u,(x) = 1/nif 0 < x < n
and u,(x) = 0if y < x < 1. One can see that (6) is satisfied for
@ € D((O,l);C;"(Y"’)) and a two-scale limit uy(x,y) = 0. However,
considering the test function g(x) = 1 which is in L%(0,1), we get
lim, _, /01 u,(x)g(x)dx = 1, and so {u,} does not converge to uy(x, y) = 0
weakly in L?(0, 1).

We have the following corollary regarding sequences that converge
strongly in L?-spaces

Corollary 1.2.  Let 2 be an open bounded set in R" and Y™ = 10, 1["
with m > n. Let a sequence {u,} converge strongly to u in LP(Q). Then
there exist a vanishing subsequence n, and a limit uy(x,y) € LP(2 X Y™)

(Y"-periodic in y) such that u, — uy=u as g — 0.

Proof. By assumption {u,} converges strongly. It follows that the
sequence is uniformly bounded in L?(£2) and that there is a subsequence
that two-scale converges for a matrix R to uy(x,y) € LP(22 X Y™). The
strong convergence implies equalities in (16), i.e.,

li];’n_j(?f“uy,”u(m = ”uO”LF(Qme) = ”u”LP(Q)

which gives uy(x, y) = u(x), since the weak limit equals the strong limit
and the weak limit is given by u(x) = [, up(x.y) dy. O
= |luo(x, y)”LP(.QxY'")

w (x.%)
T Lr2)

are said to be admissible for the two-scale (cut-and-projection) con-
vergence. In particular, classes of functions in LP(£2,Cy(Y™)) (dense
subset in LP(£2 x Y™)) are admissible. As mentioned in Allaire (1992)
(Section 5), it is not always clear how smooth the test functions have
to be to become admissible. One issue to consider is the measurability
of the scaled test function ¢(x, Rx/x). Continuity in at least one of the
variables x or y is usually assumed, but this is not a necessary condition.
Although the conductivity does not play the role of a test function we
still need to be able to scale the local variable and get a function that is
measurable. A sufficient assumption is to make o(x, y, &) continuous in
both x and y, but that would rule out in principle all realistic compos-
ites, e.g., piecewise constant material properties. Assuming continuity
with respect to the macroscopic variable, x, is less restrictive when
modeling realistic composites compared with assuming continuity with
respect to the local variable y. However, continuity with respect to x
is not sufficient. To ensure measurability when scaling y, i.e., to make
o(x,Rx/n, &) measurable, we shall assume continuity of o(x, -, &) in the
direction orthogonal to the hyperplane YI’", ie, on Y". We have the
following proposition on required regularity for the conductivity.

Classes of functions such that
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Proposition 1.4. Let ¢ satisfy assumptions (i) and (ii), then for any
n >0, o(x,Rx/n, &) is measurable on Q x R".

Proof. The image of the mapping x — Rx is Y”"‘ It follows that the

scaling of the image in R", Rx/#, is a scaling of Y‘”’, only. Hence, the
conductivity function o satisfies the Carathéodory assumptions (i) and
(ii). It follows that o(x, Rx/#, &) is measurable for each £&. []

In order to homogenize nonlinear PDEs with a monotone partial
differential operator as in (3), we need to identify the differential
relationship between y and uj, given a bounded sequence {u,} in

W hr(Q) (such that u, B\ uy and Vu, E x). This problem was solved by
Allaire in the case of periodic functions (Allaire, 1992) and extended
by Bouchitté et al. for quasiperiodic functions (Bouchitté et al., 2010)
in W12(Q) and revisited in Wellander et al. (2018, 2019).

2. Function spaces for cut-and-projection partial differential oper-
ators

To carry out the homogenization analysis of nonlinear PDEs defined
on quasiperiodic domains, we need to pass to the limit when # goes to
zero in gradient and divergence operators acting on solutions of PDEs.
To do this we introduce some suitable function spaces and for this we
will define differential operators acting on the R”- plane in R”.

Defined as in Wellander et al. (2018) they are given as

Vi u(y) = gradg u(y) = R" grad, u(y) = RV, u(y)

divg u(y) =RV, - u(y)

We define the following functions spaces associated with the differen-
tial operators defined above

W (gradg, Y") = {u € LI(Y™) | gradgue L;’(Y’”;IR")} (31)
W] (divg, Y™) = {u € LI(Y™R") | divgu e Lg(Ym)} (32)

Wi divegr, Y™ = {u € LIY™R™) | (RRTV,)- ue /™)  (33)
and
WP(div, Q) = {u € LP(QRY | divue L”(.Q)} (34)

We have the following integration by parts type generalization to
the L? case of Lemma 6 given in the L? setting in Wellander et al.
(2019)

Lemma 2.1 (Green’s Identity). It holds that
—/ (RRTVy) - ¢(y) 6(y) dy =/ o(y) - (RRTVy) 0(y) dy (35)
m ym

for ¢ € W{(divegr. Y™ and 0 € W] (gradg, Y™), 1/p+1/q = 1.

Proof. The proof relies on standard matrix operations and the well
known extension from W2 Sobolev spaces to the setting of W' and
W l4-duality pairing (Brezis, 2010). The periodic boundary conditions
imply

- /Y [(RRTY,) - g03)] 6 dy =~ /Y [(RTV,) R 9] 609) dy =
- [ 19, RRTp] 0y = [ [RRT4)-, 00 dy
ym ym
= [ #»-RRTY, 0(y) dy
Ym

for any pair of functions for ¢ € W: (divggr,Y™) and 0 € Wé’ (gradg, Y™),
I/p+1/g=1. O
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This motivates us to make the following decomposition as in the
L?*-case in Wellander et al. (2019). We decompose Wnl"‘” (Y™) into two
spaces,

W™ =X, © X, (36)
where

Xt ={uew, 2 amIRR" v,u=0} 37)
and

X, = {uew,?(rm| (1, -RRT) V,u=0} (38)
Remark 2.1. Note that the projection of a vector v in R” on R”,

R” v = 0, where 0 is the zero vector in R”, implies that v is orthogonal
to the hyperplane Y”"', i.e., orthogonal to R”. It follows that RR” v =0,
where 0 is the zero vector in R™. Vectors w in R", orthogonal to v,
satisfy (I,, — RRT) w = 0. We conclude that X, contains all functions
in Wﬂ] *’(y™) whose gradients have all their components in the plane, R”,

which means that X » can be identified with W’f (gradg, Y™). Moreover,
X, is a subspace of a space much larger than W;"” (Y™) which is not

differentiable in the direction orthogonal to the plane Y”'", ie,onY"
3. Compactness results

Proposition 3.1. Let {u,} be a uniformly bounded sequence in wWlr(Q).
Then there exist a subsequence {uy, } and functions u € W'?(Q) and
uy(x,y) € LP(2, X,,) such that

R R
u, — u(x), grad Uy, = grad u(x) + gradg u;(x,y),

e m,—>0 (39)
Remark 3.1. Note that u(x,y) € L”(£2, X,) implies that gradg u;(x,y)
€ LP(Q, L;’ (Y™;R")) and that we cannot say if u; belongs to L?(£2, Wﬂl"’
(Y™)) or to some larger space with lower regularity mentioned in
Remark 2.1. Indeed, we cannot say anything about the regularity of
u; in the direction orthogonal to the hyperplane, Y”’" However, in
the decomposition in (36), the gradient of the potential in the ‘“di-
rection” of the hyperplane (or the lower dimensional plane) can be
obtained from the gradient of the potential via a rotation of coordinate
system. Further note that unlike in Wellander et al. (2018, 2019),
in the proof below we use the notion of 2-scale cut-and-projection
convergence in distributional sense (Definition 1.1), and not in weak
sense (Definition 1.2).

Proof. The first assertion follows by the compact embedding of LP(£2)
in W»(Q), Propositions 1.1, Definition 1.3 and Corollary 1.2. Note
that RVu,(x), x €  is uniformly bounded in LP(Q2;R™). Let ¢ €
D(£2; C;"(Y"’))’". We have the following identities

lim RVun(x)~(p(x,&> dx = lim/ Vu,,(x)‘RT(p< ,&> dx =
-0 Jo n -0 Jo n

= lim [ () <vx ‘RTg (x, ?) +n7' (R"V,)-RTe (x, %)) dx
(40)

and

(RTV,) -RTe <x %) = (RR'V)) - ¢ <x, %) (41)

Multiplying both sides in (40) with # and Lemma 2.1 gives the limit
0=// uy(x,y) (R”V,) - RT @ (x, y) dxdy
oxym
=// uo(X, y) (RRTVy) @ (x,y) dxdy (42)
Qxym

= / / RR"V uy(x,y) - ¢ (x. ) dxdy
Qxym
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for all ¢ € D(£2; C;"(Y”’ ))™. The interpretation of (42) is that u, € X j,
Le., the gradient V,uy(x,y) has no component in the hyper plane in
R™ defined by R : R” — R™. Indeed, we conclude that the potential
uy(x, y) = u(x), is a function of x only due to the compact embedding of
LP(2) in WP(Q) and that the two-scale limit equals the strong limit,
if it exists. Next, let ¢ € D(£2; C;"(Y'"))'", and y € D(L2; C;"(Y'"))”. We
have three limits

. R .
lim [ RVu,(x)- @ <x, —x> dx = / / Xo(x,y) - @(x, y) dxdy
Q n Qxym

n—

(43)

lim [ RVu,(x)-¢@ <x, &> dx = lim
=0 /g n n=0Jq

= / / 20(x, ) - Rl @(x, y)dxdy = / / Ry(x, y) - @(x, y) dxdy
Qxym Qxym

and

Vu, (x) - RT(p <x, %) dx

lim [ Vu,(x) -y (x, &> dx=1lim [ Vu,(x)-y <x &> dx
0/a n 0Ja n (44)

n— n—
= / / Xo(x,y) - w(x,y)dxdy
Qxym

We find that J4(x,y) = Ryo(x,y) and ¥o(x,y) = RT 3o(x,¥) = xo(x, y).
Next, choosing test functions ¢ € D(£2; Cn°°(Y’"))"', such that (RRTV,) -
@(x,y) =0 in (40) with (41) gives

lim RVun(x) ] <x, &> dx
Q n

n—

_ RrT Rx _
= ;%Aun(x) <VX R (p<x, p dx =

- // u(x) (v, -RT @ (x,y)) dxdy = // RVu(x) - @ (x,y) dxdy
Qxym Qxym
(45)

Hence due to (43) and (45) we have for ¢ € D(£2; C;"(Y'"))'", such that
(RRTVy) c@(x,y)=0

// (Zo(x.y) —RVu(x)) - @ (x,y) dxdy =0
Qxym

We deduce, due to orthogonality in the dual pairing sense (35), that
there exists u; € LP(2; X)) such that

Z0(x,¥) = RVu(x) + RRTV u; (x,y)

We conclude that the limit of the gradient in (44) becomes
Jo(x,y) =RT 75(x,y) = R” (RVu(x) + RRTV u; (x,))

= Vu(x) + RTVyul (x,y) = grad u(x) + gradg u;(x,y)

which completes the proof. []

We define a strictly monotone operator a, which satisfies the fol-
lowing assumptions, (i)—(iv):

(i) a(-) is continuous on R”

(i) 0< ¢ lElf < (a(€). &), ¢ >0, VEER”
(i) (a€) —a(&). & &) >0 forall &,& €R".
V) la@®] <c, (1+1E177"), ¢, >0, VEER"

We will use the following Lemma when characterizing the two-scale
limit of divergences.

Lemma 3.1. Let1 < p< oo, 1/p+1/q =1 and assume the operator a
satisfies assumptions (i)—(iv) above and that f(x,-) € L;’(Y’"). The equation

—divg a(gradg 0(x,")) = f(x,)), aexe€Q (46)

with periodic boundary conditions, has a unique weak solution gradg 6(x, -)
in Ly(Y";R"),
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Proof. The proof follows from Browder (1963) and Minty (1963), e.g.,
see Lukkassen et al. (2002), page 62. []

Proposition 3.2. Let {u,} be a uniformly bounded sequence in W(div, 2).
Then there exist a subsequence {"nk} and functions u, € WP(div, Q2; L?
(Y™) and u, € LP(£, W:(divR, Y™)) such that

R R
u, — uy(x,y), div u, — div u(x) + divg u;(x,y), m—0 (47)
with
divg ug(x,y) =0 (48)

and

u(x) = /Y'" uy(x,y) dy

u € WP(div, Q).

Proof. The proof follows the lines of Lemma 5 and Proposition 6
in Wellander et al. (2019) with appropriately changed function spaces.

Let ¢ € L) and y € LI(2, Cy(Y™)). We have the weak limit of the
divergence,

lim/V-un(x)qb(x) dx:// V- uy(x, y) p(x) dxdy
n=0Jq oxym
= / V- u(x) ¢(x)dx, V¢ € LY(Q)

Q

where u(x) = /Ym uy(x,y)dy, where uy(x,y) is the two-scale cut-and-
project limit with respect to R. Next, we have the corresponding
two-scale cut-and-project limit of the divergence

lim [ V-u,(x)y <x &> dx = // Xo(x, Y)w(x,y)dxdy,
n=0Jq n Qxym
Yy € LYRL,C(Y™))

It follows, after an integration by parts (twice) that

0= limn/ Veu,(x)w <x, &> dx
n—0 o) n
= / / divg (g(x.y)) wix. ) dxdy, Yy € LU C;(Y™)
Qxym

which proves (48). Define a function as the difference of the two-
scale and the weak limits, i.e., f(x,y) := xy(x,y) — V - u(x). We have
f(x,) e Lg(Y’"). Lemma 3.1 implies that there is a unique gradg 6(x, -)
in L;’(Y’";R") that solves (46), ie., 0(x,-) € X, defined in (38). Next,
define u;(x,y) := —a (gradg 6(x,y)) with a as in Lemma 3.1. We get

Zo(x, ) =div u(x) + f(x,y) = div u(x) + divgu,(x,y) € LP(2xY™)
which completes the proof. []

4. Homogenization of a quasiperiodic heterogeneous nonlinear
electrostatic problem

Let us now consider the quasiperiodic heterogeneous nonlinear
electrostatic problem (3). Standard estimates yield solutions that are
uniformly bounded in Wol’p () with respect to . We can now state the
main homogenization result.

Theorem 4.1. Let {u,} be a sequence of solutions to (3). The whole
sequence {u,} converges weakly in I/VO'"’ () to the solution, u, of the
homogenized equation

—div / o (x.y, Vu(x)+RTVyul(x,y)) dy = f(x), ue WOI’”(.Q),
Ym
ulgo =0

(49)
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1 < p < oo, where RTVyu] S L/’(Q;L”(Y”’";R")) is the unique solution of
the local equation

—divg o (x,y,Vu@x) + R"V,u)(x,y)) =0  aec.yeY".xe, (50)

Proof. From the a priori estimates of sequences u, and 6, =0 (x, %,
R
Vu,,(x)), there is a subsequence such that u,, — u(x),

grad Uy B\ grad u(x) + gradg u;(x,y) and O E oy(x,y), when , — 0.
Since f + dive, = 0, Eq. (48) yields divgoy(x,y) = 0 and f(x) +
div, fY,,, oo(x,y)dy = 0. We now need to obtain an explicit expression
for o(y(x,y) in terms of o, u and u,. Following, e.g., Allaire (1992),
we introduce a test function v, (x) = V{u(x) + n¢;(x, %)} + t(x, %)
where t > 0, ¢ and ¢, are admissible test functions. This ensures that

R
v, = grad u(x) + gradg ¢;(x,y) + t¢(x, y). Since o is strictly monotone,
we have

R
L{an—a<x,%,wn>} - (Vu, —y,) dx >0

ie.,

di Rx Rx d
—dive, u, —o | X, —,y, ~VM,7—6,71[/,1+G sy vy X
Q n n
>

0

Using (3), passing to the two-scale limit and using the strong limit to
get u yields

/Q / {f(x)u(x) -0 (x, ¥, wo(x, y)) - (grad u(x) + gradg u;(x,y))
ym

- 0p(x, YWo(x. ¥) + 0 (%, 3. wp(x.¥)) wy(x.y)} dxdy >0

This equals, after a few integration by parts,

/Q/Y {fGu) +div, (o (x. 3, 95(x.))) ux)

-0 (x,y,wo(x,y)) - gradg u;(x,y)

+div, (o9(x,¥)) u(x) +divg (o4(x,¥)) ¢, (x,y) — o(x, Pid(x, y)

— div, (0 (x,y.wp(x.¥))) u(x) + o (x,y.w(x,y)) gradg ¢,(x,y)

+ o (%, 3. wp(x,y)) td(x, )} dxdy >0

The first terms in the first and third rows cancel each other due to the
statements above. We also note that the middle term in the third row
vanishes due to Eq. (48). The second term in the first row is canceled by

the first term in the fourth row. Taking a sequence of functions gradg ¢,
that converges strongly to gradg u; in L?(£2, Lg Y™, R")), yields

/ / {—o(x, ¥, grad u(x) + gradg u;(x,y) + tp(x,y)) - gradg u;(x,y)
o Jym

— oo(x, Y)ip(x, y)
+o(x,y,grad u(x) + gradg u;(x,y) +t¢(x,y)) - gradg u;(x,y)
+ o(x,y, grad u(x) + gradg u;(x,y) + t¢(x, y))tp(x, y)} dxdy >0

The first row cancels the third row. We divide the two terms left by
t > 0 and send ¢ to zero and obtain

/ / [U(x, ¥, grad u(x) + gradg u;(x,y)) — oy(x, y)] ¢(x, y)dxdy >0
oJym

for all admissible test functions, e.g., ¢ € D(£; Cj;” (Y™)). It follows that
oo(x,y) = o(x,y, grad u(x)+gradg u;(x, y)). Uniqueness of the solution of
the limit equation (see e.g. Lions (1969) and Wellander (1998)) implies
that the whole sequence converges. []

Proposition 4.1 (Correctors). If we assume that u,(x,y) is smooth and &

is uniformly monotone, then

Vu,(x) -V {u(x)+11ul (x,&> } =0
n

lim
=0 LP(Q:RM)
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Proof. Considering w,(x) = V {u(x) + nuy (x, %)} and using that ¢
is uniformly monotone yields (Allaire, 1992; Wellander, 2002)

R
/Q{an—a<x,Tx,y/n)}-(Vu,,—u/,,)dec/QIVu,,—y/,,lpdx (51)

where ¢ > 0. It follows from the fact that y, are admissible test
functions that the left hand side of (51) goes to zero as n — 0. The
technical details in the proof are similar to the ones in (Allaire, 1992;
Wellander, 2002). [

5. Concluding remarks

We have applied two-scale cut-and-projection convergence to a
canonical nonlinear electrostatic problem for quasiperiodic structures
generated by a periodic geometry in a higher dimensional space. Com-
pared with earlier work on homogenization of almost periodic mono-
tone operators (Braides, 1991; Nguetseng and Woukeng, 2007), our
annex problem has a simpler, less abstract structure, and should there-
fore facilitate its numerical implementation in a variety of problems
of physical interest, such as in electromagnetism (Wellander, 1998),
where intriguing features have been observed, such as transmitted fem-
tosecond pulses developed a trailing diffusive exponential tail that led
to some controversy (Ledermann et al., 2009). We further note that our
study can be adapted to the nonlinear elasticity case (Ponte Castaneda,
1989), whereby o would denote a rank-2 stress tensor.
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