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Abstract—This paper proposes a fully decentralized distributed
convex optimal power flow model for inverter-based distributed
energy resources (DERs) integrated electric distribution networks
based on Semi-Definite Programming (SDP) and alternating di-
rection method of multipliers (ADMM) namely (SDP D-ADMM).
The proposed approach is based on the SDP relaxed branch flow
model of distribution networks within an auto-tuned accelerated
decentralized ADMM architecture. The approach is based on
dividing the power grid network into subproblems representing
individual areas by interchanging minimum network information.
In the proposed model the requirement of a central processor is
also waived thus making the proposed approach more robust
toward cyber-attacks. The effectiveness and scalability of the
proposed method are validated by implementing modified IEEE
123 and IEEE 8500 bus systems with different levels of DER
penetration. It has been observed that the proposed architecture
outperforms other distributed optimization variants in terms of
accuracy, global optimality, scalability, and computational time.

Index Terms—Optimal power flow (OPF), distribution net-
works (DN), alternating direction method of multipliers
(ADMM), decentralized optimization, semidefinite programming
(SDP).

NOMENCLATURE
Vectors
Ba Vectors of lagrangian multiplier in area a
dk Vectors of dual residual in area a after iteration k
rk Vectors of primal residual in area a after iteration k
Xa Vectors of control variables in area a
Parameters
T Upper limit of current magnitude squared between buses i
and j
€ Threshold value of error for convergence
A Local penalty parameter of area a at iteration t

P, P*%* Lower and upper limit of active power generation at
- busiinareaa

Lower and upper limit of active power flow between buses

iand j

, Q%% Lower and upper limit of reactive power generation

at bus i in area a

Qﬁj,Q” Lower and upper limit of reactive power flow between
buses i and j

Va.is ™' Lower and upper limit of voltage magnitude squared at bus
iin area a

Py p.i,Qa,p,: Active and reactive demand at bus i in area a

Pp,i,Qp,; Active and reactive demand at bus i

Tij, Ti; Resistance and reactance of branch between bus i and j

Vrer Voltage magnitude of reference bus

P,,, PV

=ij?
Q

—a,G,i
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Sets

a,b Indices of areas, from 1 to R

E Sets of branches

E® Sets of branches in area a

G Sets of generator buses

G* Sets of generator buses in area a

2,7,k  Indices of buses, from 1 to N

N Sets of buses in the whole network

N*® Sets of buses in area a

Variables

wh Local updated auxiliary variable of area a at iteration t

Ia,i5,1a,i; Current magnitude between bus i and j in area a and the
square of it

I;;,1;; Current magnitude between bus i and j and the square of it

P, g.i,Qa,c,; Active and reactive power generation at bus i in area
a

FPg.i,Qc,: Active and reactive power generation at bus i

Sa,ij, Pa,ij, Qa,i; Apparent, active and reactive power flow between
bus i and j in area a

Sij, Pij, QU Apparem, active and reactive power flow between bus
iand j

Va,i,va,; Voltage magnitude at bus i in area a and the square of it

Vi,v;  Voltage magnitude at bus i and the square of it

wh Local auxiliary variable of area a at iteration t

[. INTRODUCTION

PTIMAL Power Flow (OPF) was first introduced by

Carpentier in 1962 [1] as method to manage the power
flow with specific objectives. The objective of OPF is to
minimize a specific objective function such as generation
cost, distribution line losses, or voltage deviation. OPF was
first formulated on transmission networks that consists of
traditional generation resources in an effort to find cost optimal
solution for power generation. A detailed study on optimal
power flow can be found in [2]-[9]. With surge in popularity
of renewable generation like photovoltaics, wind turbine, and
energy storage systems, it has been challenging to the distri-
bution network operators to maintain the stability of power
distribution system operation considering overall objectives
of economic operation. Thus, formulating OPF methodologies
for distribution networks with high penetration of distributed
energy resources (DER) has drawn a significant amount of
interest for power system researchers [10]-[12]. In contrary
to the transmission networks, the distribution networks usually
consist of thousands of buses with highly unbalanced loading
and different R/X ratio making the OPF problem more com-
plex for power distribution networks.

OPF problem is an NP-hard problem and non-convex in
nature. Thus, when the system size increases the OPF problem
becomes a massive computational burden for the optimization
solver. Also, due to the complexity and dimensionality issues,
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the solver most likely fails to provide the global optimal
solution [13]-[15]. To handle computational complexity and
non-linearity, several approximations and relaxation methods
have been adopted such as Linear approximation, and Convex-
ification based relaxation and approximation. Among them,
convex optimization methods are a very popular and feasible
approach. There are different relaxation approaches for con-
vexification of the problem such as SemiDefinite Programming
(SDP) [16]-[18], Second Order Cone Programming (SOCP)
[19], [20], and Chordal Relaxation [21]. The convex optimiza-
tion approaches can provide the global optimal solution if the
relaxation is tight but when the system size and variables
increase along with the dynamics, the convex optimization
solvers may also fail to converge. As an effective way to
ensure convergence, the distributed approaches are becoming
the point of interest for the researchers [22]. There are other
advantages to distributed approaches too such as, the ability to
access the controllers through an aggregator as opposed to a
centralized approach where the whole network’s information
should be available to the central controller to access. For
example, sometimes the distribution networks contain large
power grid nodes and different parts of the network are
owned by different utilities. In such situations, information
exchange becomes difficult due to confidentiality issues. So the
distributed approaches can share only very little information
related to the adjacent buses of the consensus region and the
privacy of the information should be ensured.

On the other hand, the distributed approaches can be more
computationally expensive than the centralized approaches
since each subsystem is solving partial OPF and through iter-
ative adjustment, the global optimum is achieved. For the past
few years, researchers have explored different methodologies
for distributed OPF. The most known methods are Auxiliary
Problem Principal (APP), Analytical Target Cascading (ATC),
Optimality Condition Decomposition (OCD), Alternating Di-
rection Method of Multipliers (ADMM) [23]-[26] and other
miscellaneous approaches. Among these approaches, ADMM
is a very well-suited method to implement distributed convex
optimization problems. ADMM was first introduced in the
1970s as a combination of benefits of dual decomposition
and augmented lagrangian method for constraint optimization
[27]. [28]. The ADMM method has different variants based on
the formulation such as consensus ADMM, Proximal Jacobian
ADMM, and Fast or Accelerated ADMM [29]. All of these
approaches are applicable to formulate the OPF problem
for power systems. Commonly, in ADMM-based distributed
OPF formulation, the problem is modeled on region-based or
component-based subproblems. After each iteration, individual
subproblems share the information regarding the adjoining
buses or components. This information can be referred to as
”public information”. The convergence of the whole program
depends on the convergence of the solution for boundary bus
variables.

In most of the ADMM-based distributed approaches, there
exists a central coordinator which collects the boundary bus
information after each iteration and exchanges the information
among the partitions [30]. These connections are prone to both
physical and cyber-attacks. If any of the communication links
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got attacked the whole problem may lose the convergence.
Since in distributed approaches communication structure plays
a vital role, the communication delay time has a significant
effect on the total solving time. For example, if a single loop
of communication between connecting buses takes 50ms, then
for a period of 1000 iterations, costing around 0.8 minute as a
delay. Thus, reducing the number of iterations is a prime objec-
tive of distributed approach [31]. The speed of convergence in
ADMM-based formulations significantly depends on the right
choice of penalty parameter [32]. The value of the penalty
parameter is initialized at the beginning of the problem and
stays constant throughout the iterations [33], [34]. However,
if the penalty parameter can be updated by looking at the
primal and dual residuals update, the convergence will be
faster. All these motivations behind the formulation of the
proposed decentralized method of solving OPF for the highly
penetrated radial distribution network.

In this paper, for the first time, a convex optimization-
based distributed optimization framework is proposed for a
power distribution system that is fully decentralized, scalable,
can converge faster, and ensures a globally optimum solution.
The approach is compared with other state-of-the-art and the
feasibility is evaluated on the real-life feeders. The main
contribution of the proposed architecture is as follows. In
[35] authors have proposed an SDP-based ADMM framework.
Compared to that work and state-of-the-art the main innovation
and contribution of the proposed approach are as follows.

o A fully decentralized approach is proposed to solve the
distributed OPE. By removing the necessity of a central
processor, the communication topology has been made
more secure and robust.

« The update process of the consensus variables is acceler-
ated to guarantee faster convergence.

« The adaptive update of the penalty parameters has been
implemented based on the change in primal and dual
residuals which as result make the convergence faster.

« Most importantly, the proposed distributed approach is
developed in a convex optimization model.

The rest of the paper is organized as follows. Section II dis-
cusses the mathematical preliminaries of ADMM formulation
and various features including acceleration and residual bal-
ancing based auto-tuning. Section III discusses the formulation
of the proposed OPF viz., D-SDP ADMM. In section IV, the
numerical result and discussions are presented on two IEEE
test systems and the conclusion and future work are discussed
in section V.

II. MATHEMATICAL PRELIMINARIES

In this section, the fundamental theory behind distributed
and decentralized optimization based on ADMM is discussed
first. Then, the theoretician framework on algorithm accelera-
tion, and auto-tuning is discussed. Lastly, the linear algebraic
characteristic of semidefinite programmin is briefly discussed.

ADMM is an algorithm that leverages the better conver-
gence properties of method of multipliers to solve constrained
optimization problems. Assume a problem in following form,

Min f(z) +g(y) (1)
st Ar+ By=c
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where = € R and y € R are the variables and A, B € R are
parameter matrices. Based on the field of the application, these
variables may refer to various entities. In this case of optimal
power flow formulation, the variables which are considered to
be in consensus are bus voltages, V', branch current, I, branch
power P, Q.

The augmented Lagrangian of this problem can be written as:
Ly(z,2,8) = f(z) +9(y) + BT(Az + By —¢)  (2)
+ g”AI + By — c||?

ADMM solves the problem in three updation steps. First, =
is updated with fixed y, then y is solved with updated = from
previous step and in the final step B is updated from fixed
values of = and y. These steps are as follows.

o**! == argmin{f(z) + (8*)"(Az + By* —¢) ()

p
+ )14z + By — cl}3)

k+1

Yt = arg;nin{g(y) + (B (A" +By—¢) @

p
+ 21142k + By — clj3}

B+ = B* + p(Az™! + Byt —¢) 5)
where p > 0 is the penalty factor and B is the vector
of lagrangian multipliers. The convergence of the ADMM
depends on the following criterion,

i (A1 + By~ ) —0

A. Consensus Optimization via ADMM

If the objective function of the ADMM problem consists of
N terms, then the problem takes new form which is known
as consensus ADMM. This form of objective function may
represent to minimize the loss function of an individual area
of the distribution system, or to minimize the line losses of a
region of a large distribution network written as

N
Min Zf(l:) (6)

stx;—y=20
where z; is the local variable and y is the global variable.

The objective is to have all the local variables converge to
a global value. For this work, the objective is to minimize
the line power loss in the network. The variables of the
branch flow model formulation are bus voltage magnitude, line
current, and active and reactive line power flow. Thus in the
consensus formulation, the constraint would be to have the bus
voltage and line power flow of certain buses and lines between
the regions converge as observed from each region. Definition
of these local and global variables are discussed in section III
where the ADMM-based OPF problem is formulated.

The difference between conventional ADMM and consensus
based ADMM is in the update process of the global variable,

which is done as shown below:
N

1
yk+1 = _Z(I?—i-l) (?)
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In the consensus ADMM approach all the regions solve
their OPF problem for a constraint set and a global variable .
The iterative updating process continues till the error reduces
below the threshold value. After each iteration the primal and
dual residuals of all the subproblems are calculated using the
following equations:

st =B - Al (8)

dgtt = px[lys ™ -yl 9)
where r5+1 and d%*! are the primal and dual residuals for
area a after k-th iteration.

Once the maximum value of the residuals become less than the
threshold e then the convergence is considered to be achieved.

maz(rktl df 1) <e (10
B. Decentralized ADMM by Substituting Lagrange Multiplier

The consensus ADMM as well as the original formulation of
ADMM does not ensure the fully decentralized formation. The
local variable and lagrange multiplier update using (3) and (6)
can be performed locally but the update of the global variables
using (7) for overlapping regions requires a central controller
to execute. By replacing the global variable y and lagrange
multiplier S it is possible to formulate a fully decentralized
model. For that purpose, a new local variable vector w is
introduced for area a corresponding to the lagrange multiplier
Bi,

wg =Yg — Bs/p

Further, leveraging the features of radial distribution networks,
ADMM can be reformulated for any local problem as

(n

o5t = argmin{f(za) + Sllea —w*B}  (12)
x
k+1 k+1
wh = wk 4 gk ;—I (13)

C. Auto Tuning of Penalty Parameter by Residual Balancing

The convergence of ADMM based OPF problem is mathe-
matically proven although, the speed to convergence depends
significantly on the choice of penalty parameter. One way to
accelerate the ADMM convergence is to vary the penalty pa-
rameter depending on the residual values from each iteration.
Various approaches have been proposed by the researchers
to implement a self-tuning penalty parameter model. Most
of those approaches requires a central controller to look at
the residual values and update the penalty parameter. In the
decentralized approach, the penalty parameter for each area
can be updated based on the local primal and dual residual
values.So the central co-ordination is not required anymore.
The penalty parameter tuning can be performed as

k .
e if ||rf[l2 < €lldF |2,
k41 _ .
Pi (L+7)pf, if [|dFll2 < €lrfll, (14
oF, otherwise.

where £ and 7 are parameters whose values are usually
selected as = 0.1 and 7 = 1.0.
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Algorithm 1: Residual Balanced ADMM algorithm

Algorithm 2: Accelerated ADMM algorithm

1 Initialize the Lagrange multiplier 8 and global variable
y and penalty parameter p for each subsystem.

2 Initialize variables and 7

3 Initialize the error value to a large number.

4 Solve local OPF for each subsystems using objective
function as (4).

5 All the adjacent subsystems share the solution for

consensus variables y.

Update the global variables using (7).

Update the Lagrange multiplier 3 using (5).

error = max(r¥+1 gkt

if (error > €) then

w | if | < ||d§+1||2 then
k

|| o=

12 end

13 | else if ||[dET]|; < ||r5*1||2 then

u || AT =(14T)p,

15 end

16 else

n| |kt =k

18 end

19 end

D. Accelerated ADMM Method

In accelerated ADMM approach, additional steps included
to update the global variable y**1 and lagrange multiplier
BEFL as follows

?;,:C-i-l = aof. yk-i-l T (1 _ ak).yk (15)
ﬁk“ =of ! 4+ (1-oF).8* (16)
¢ maz([r*|la,[|s*||2)
o= [T i <)
1, otherwise

where v = [1+ /1 +4(y*—1)2)]/2 for k > 1. Here r and s

stands for the primal and dual residuals.

E. Semidefinite Programming
Let us consider a simple linear programming (LP) example,

minimize c.c

subject to, A.x =b

>0
Here, = is the control variable, ¢ and A are the parameter ma-
trices. All the equations in objective function and constraints
are linear or piecewise linear. Thus, the whole problem is
convex. Semidefinite programming is generalization of linear
programming where the inequality constraints are represented
by general inequalities which corresponds to the cone of posi-
tive semidefinite matrices [36], [37]. This is a pure primal form
of a semidefinite programming based optimization problem,

Minimize trace(CX)
Subject to, trace(A;X) =b;, fori=1,.n
X =0
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1 Initialize the Lagrange multiplier 8 and global variable
y for each subsystem.

2 Each subsystem solves the local optimal power flow
problem.

3 Copy variables corresponding to y are sent to the
leading subsystems of the respective variables.

4 Leading subsystem receives the copy variables and
update the global variable y*+! using (7) .

5 Leading subsystems transmit the updated y**! to the
adjacent subsystems.

6 if (Stopping criteria (10) satisfied) then

7 | Algorithm terminates

8 end

9 else

10 | Each subsystem sends 75! and d**! to global
controller to calculate o using (17)

11 The global controller transmits « to all the
subsystems.

12 The subsystems update y and 3 using (15) and
(16).

13 Go to step 2.

14 end

Here, X € S™ is the decision variable, it is also a positive
semidefinite matrix. Others, b, C' and A are symmetric matri-
ces which values are already known to the model. The feasible
set defined by the set of constraints are always convex. The
objective function is linear by nature. Thus the whole problem
is linear and convex.

ITI. PROPOSED DECENTRALIZED DISTRIBUTED
OPTIMIZATION APPROACH WITH SEMI-DEFINITE
PROGRAMMING (SDP) BASED ADMM

The proposed OPF approach is based on Branch Flow
Model (BFM) of the power distribution system. The model
is then convexified based on SDP. Further the model is made
distributed ad fully decentralized using the ADMM including
features such as auto-tuning and acceleration.

A. BFM Model of Power Distribution System

Let us assume a graph G = (N, E) represents a radial
distribution network where, N is the set of all vertices and
E is the set of all branches. Branch flow model comprises of
the branch variables such as branch current, branch active and
reactive power flow. Let, V; is the voltage of node 4, S;; and
I;; is the complex power and current flown through branch
i — 7, then branch flow model can be stated as follows

Vﬁ—V-Zziinj;V(i j)eE (18)
Sij EJ’V(Z J) < E {]9)
Y S Y (S —zllyl?) +ylVil> =55 (20)

k:j—k ii—+j

where z;; is the branch impedance and s; is the injected
complex power at node j.
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B. Convexification of BFM using SDP Framework

The relaxed BFM can be formulated from (18)-(20) by
ignoring the angles of the variables. For this, first, substituting
the expression of current I;; from (19) into (18) yields
Vi—V; = 245 S};/V;*. Then taking the square of the magnitudes
of this expression derives (22) as

k:j—k ii—j
v; =v; — 2(zgj..5}j. + zgj.Sij) + zgj.luzgj,‘v'(i,j) eE (22)
2
lij = 1Sil” ,V(i,j) € E (23)

i

It is worth noting that, in the relaxed model the squared
terms of the node voltage and branch current replaces the
previous variables as v; = |V;|? and l;; = |I;;]°

The non-linear equation (23) can be expressed in terms of
a positive semidefinte matrix as follows:

vy Sﬁj:|
: =0
[S ij Aij
S..
rank | oy 2| =1
[S ij Aij ]

The aforementioned model still hold the non-convexity due to
the rank-1 constraint of the PSD matrix. Relaxing the model
by adopting the semidefinite relaxation (SDR), the BFM-SDP
OPF problem is formulated:

Min Y 21y (24)
i

subject to

Sj = Z Sjk — Z — 245|li51%) + yjv; (25)
k:j—k iri—j

v; =v; — (Sijz;j + zijS:j) + Ziinjz;j (26)

v; Sy

[S;j )\E_j] >0 (27)

Uref — Vrefvr*gf (28)

pMIn < g, < pMmas 29)

Smin < G < gmaz (30)

In this paper, the reactive power dispatch of the DERs are
considered as the control variable. Assuming the apparent
power capacity of the DER as 120% of the active power
generation, the reactive power upper and lower bounds are
calculated as

Qai = /(12 Po,)?

— (Pg,)? (3D

C. Distributed BFM-SDP OPF in ADMM framework

Based on the consensus ADMM and the BFM-SDP OPF
formulation, the distributed problem can be formulated for
each region. Before that, the global variable can be defined
as, y; = [PanQmnPitQ1:VinVi]. Now, the augmented OPF
problem for each region can be formulated as follows. For the
master network all the nodes as shown in Fig. 1 along with
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the consensus region nodes are considered to formulate the
augmented OPF problem for master network.

Min Z zijlij + (BF)T (21 —
ii—j

subject to

(25) - (30)

where 11 = v.

p ;
5”11 — iz (32)

ur) +

Fig. 1.
Algorithm 3: Proposed D-SDP ADMM

1 Initialize the Lagrange multiplier 8 and global variable
y and penalty parameter p for each subsystem.

2 Initialize variables and 7

3 Initialize the error value to a large number.

4 Solve local OPF for each subsystems using objective
function as (12).

5 All the adjacent subsystems share the solution for
consensus variables.

6 Update the local auxiliary variables using (13).

7 Broadcast the updated local auxiliary variables to the
adjacent subsystems.

8 Calculate the local primal and dual residuals, rq,dg in
all subsystems. error = max(rk+1, dk+1)

9 if (error > ¢) then

10 Update the penalty parameter in each subsystems

using (14)
11 end

A distribution system divided into three regions.

Similarly for sub-network 1 the augmented OPF problem can
be formulated with updated z as follows

T
Y2 = [Pmnu Qm’m Vm]

The augmented Lagrangian objective function for sub-network

1 is as follows:

Min Z zijlij + (5§)T($2 - y§) +
ii—j
Further for sub-network 2 the augmented OPF problem can
be formulated with updated z as follows,

Y3 = [Pu,QmV:]T
With the objective function as
Min Z ziili; + (83) (x3 — v5) +
Qi
Once all the regions done solving for the variable x then, the
global variable z is updated using (30) as,

y(]": 3) 5) =0.5% [yl(]": 3) 5) + yZ]
y(21 4) 6) =0.5% [yl (21 4) 6) + y3]

p
Elles —u118 33)

Llles —will3 34

(35
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The primal and dual residual of the formulation are denoted
as follows,

L= |85 — B2
| Tad 1P

The dual variable are updated using (32). Then the error is
being calculated as,

(36)

2
.rk—i-l

ETTOoT
Sk+1

(37)

The threshold cut-off value for error is considered as 10e — 4.
If the error value becomes less than the threshold then a global
consensus is achieved.

D. Proposed D-SDP ADMM

In the fully decentralized proposed ADMM approach, the
main contributions when compared to the state-of-the-art are
a) relaxing the global variable and introducing an auxiliary
local variable b) auto tune the penalty parameters to improve
the convergence, and c) introduce the convex model in the
ADMM framework, The combined formulation takes the form
as

oh = argmm{f(ﬂz) + g”Ii —w”[|3} (3%)
k k
. + I
wf-i—l = wk +If+l - — 2 : (39
k .
2l it < lldble
k+1 .
Pt = @)k, if [[dE]]y < ||k (40)
or, otherwise.

For a generic network as shown in Fig. 1 the detailed im-
plementation of the proposed approach is explained below.
Assume the network is consist of three sub-networks as
N, ={1-5,6,9}, N, = {4,6—8}, N, = {5,9—12}. Now the
set of adjoining buses are N,NN, = {4,6}, N,NN, = {5,9}.
The boundary bus ¢ which is shared by adjoining areas a and
b will have it’s variables denoted as x,; and z;;. For the
network in example, ©1 4 = T24 = Y4, T16 = T26 = Y6.
Ti5 = I35 = ¥s and T1,9 = I39 = Yo- Now, to imple—
ment the decentralized approach, a local auxiliary variable is
introduced to replace the global variable as

_ P14 _ P16

Wig=Ya4 — —— Wie =Ye6 — ——
P P

. B2.4 _ B2

w24 =Yq4 — —— w26 = Y6 — ——
P P

_ P15 _ P19

w15 =Y — —— w19 =Y — ——
P P

_ B35 _ B30

w3s =Y — —— w39 =Yg — ——
P P

With the help of these local auxiliary variables, the update
equation for area 1 can be written as,

p
A = agmin{f) + 2 Y ey -l IB)
JEN1NNzMNN3
(41)
k4 ok
w?,}_l :wij‘l' g-l:;l Ty 25 5 23,}€N10N20N3

(42)

® 2022 |EEE. Personal use is

. . UL S 1 rmitted, but republication/redistribution requires IEEE permission. See hf
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on November 28,2022

Here, the variable vectors can be expressed elementwise
as, I1 {v4,ve, Pa6, Qu,6,v5,vo, P5,9,Qs,0} and wf =
Aflc:ﬁgup4 62 Q4 .61 i}g: ﬁg:PS 9 QS 9} Then the local OPF

problem for area 1 will take the form as shown below:
Min Y z145015 + %[(Il —wr)?]

i

43)

subject to
(25) - (30)

Once the OPF is solved, the local auxiliary variable w5+!
is updated using (36) and then the residuals are calculated for
area 1 using following equations:

ri = (1 ; — 23,)/2l] (44)

di =||((z7; +255) — (215 +235))/2l (45)
The convergence is assumed to be achieved once all the resid-
uals are calculated and maz(r®, d*) < e. If the convergence
is not reached for the subproblem, then the penalty parameter
is updated using (34) based on the ratio of primal and dual
residual. And since the penalty parameter update depends

only on the local residual, the decentralized approach stays
operational without the requirement of a central coordinator.

Load System Data

Initialize consensus variables
voltages = 1 and tie line flows =0
for flat start

Set values forp=5,1=
1,p=0.1, error= 100
-..&
Solve local DPF for each
suhs)stems |.1smg9 (‘4)

Adjacent subsystems share the
consensus variables to leading areas

Local auxiliary variables updated
using (35)and transmitted to
respective subsystems.

Primal and dual residuals are
caleunlated locally in all
subsystems

Error=
max(r,< 4. )

OPF
Converged

L+l
S0
I

Fig. 2. Flowchart for the proposed decentralized distributed convex OPF
based on ADMM (D-SDP ADMM).

ttps:iiwww.ieee.o

14:12:36 UT m |EEE Xplore. Restrictions apply.

blications/mghts/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/T1A 2022 3217023

IV. SIMULATION RESULTS AND DISCUSSIONS

The proposed methodology is implemented on the following
two IEEE test systems that are real-life feeders of power
distribution systems. They are a) modified IEEE 123 bus
system as shown in Fig 3 and, b) modified IEEE 8500 bus
system as shown in Fig 3

O Voltage Regulator
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Fig. 3. Modified IEEE 123 bus system with IBR Based DERs. .
The IEEE-123 bus system is a heavily loaded feeder with

one three-phase and 3 single-phase voltage regulator and four
shunt capacitors. This power grid model has been used to
prove the applicability of the proposed OPF algorithm on a
system with more number of regulators. For this purpose,
the converted single-phase network is considered for OPF
modeling, using the OpenDSS software. First, a single-phase
representation of the Ybus is performed using a positive
sequence representation of the three-phase Y bus. Then from
the Y bus matrix, the line impedance values are extracted.
The connected loads are also converted similarly. Table. I
represents the power grid loading. The 8500-node test feeder

TABLE 1
TEST SYSTEMS DESCRIPTION

S1 Test Volt. T Shunt Avg Total

No System Reg. rans Caps R/X Load
1.1633 MW
1 IEEE 123 4 1 4 0.2645 0.64 MVAR
3.3252 MW

2 IEEE 8500 4 1177 4 0.2145 0.8335 MVAR

consists of multiple feeder regulators, capacitor banks, split-
phase service transformers, and feeder secondaries. The circuit
has a 115kV source, 12.47kV medium voltage feeder sections,
and a 120V low voltage feeder section. There are 4876 three-
phase, two-phase, and single-phase medium-voltage nodes.
The single-phase nodes are connected to 1177 split phase
transformers. The two secondaries of these transformers are
connected to load nodes using triplex lines. In total, there are
3041 A phase nodes, 2830B phase nodes, and 2660C phase
nodes. Table. I represents the power grid loading.

For evaluating the performance of the proposed approach
on the power grid with DER, a 10%, 30%, and 50% DER
penetration is considered by placing DERs randomly at dif-
ferent locations on the feeder. The capacity of the DERs is
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TABLE II
DER LOCATION AND RATING FOR DIFFERENT PENETRATION LEVELS IN
IEEE 123 BUS SYSTEM

DER Power DER Power

D,?R LD[():EtR Capacity Capacity

A ation (KW) (KVA)
T1.30,80,102 B33 T6
50 70 &
10% &0 6667 g
&7 36,667 36
8 81,66 0%

81T.1821303237 45,
64,77.89,101,102.106,109 13.33 16
—3337.6086.98.113,1T6 6667 g
30% 50 70 &
&7 36,667 36
8 81,66 0%
§.11.18,21,24.26,30,32.35,
37,45,55,64.71.77.81.84.89, 13.33 16
92.96.101,102,106,109,111
4,14,19,34,40,43,47,53,57,60,
0% 86.98,113,116 6.667 8
50 70 &
67 36.667 36
&8 75 30
8 81,66 9%
TABLE TII

DER LOCATION AND ACTIVE POWER RATING FOR 10% DER
PENETRATION IN 8500 BUS SYSTEM

DER Active
Power Rating
(KW)

DER
%

DER Capacity

DER Location (KVAR)

1102,1183,1274,1368,1408,
1502,1642,1669,1674,1691,
1740,1816,1868,1883,2018,
1928,1969,1992,2043,2054,
2081,2092,2112,2139,2149,
2167,2180,2209,2299,2340,
2355,2364,2404,2420,2456,
2462,2516

2.9570 3.5484

10%

34,43,59,62,66,69,102,120,
149,151,162,194,200,213,224,
230,239,247,252,267,284,329,
363,372,384,402,409,432,486,
502,607,612,621,690,761,794,
800,823,833,850,885,899,928,
051,995,1038,1138,1146,1239,
1304,1313,1321,1416,1466,1473,
1647,1713,1723,1809,1860,1907,
1911,1938,2066,2097,2188,2194,
2311,2321,2326,2429,2468

3.3900 4.068

23,40 5.0870 6.1044

2520 5.9130 7.0956

2485 29.560 35472

considered to be equal to the loads connected to that bus.
The reference bus voltage is considered as 1.05 pu. The upper
and lower bound of voltage magnitude are set as 1.05 pu
and 0.95 pu. For IEEE 123 bus system, the base MVA is
SMVA and for the IEEE 8500 bus, the base MVA is set as
IMVA. The details of the DERs including the location (bus
number), size, and total number are illustrated in Table. Table.
IT and Table. III for IEEE 123 and IEEE 8500 node system.
The active power generation of the DERs is considered to be
equal to the active power demand of the bus. The solution
of the proposed decentralized method is compared with other

12:36 UTH m |EEE Xplore. Restrictions apply.

blications/mghts/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/T1A_2022 3217023

== V\/oltage Regulator

2%

Area 4 AT

i
‘;%f Arth

ubstation

\ - /

Fig. 4. Modified IEEE 8500 bus one line diagram IBR Based DERs location.

state-of-the-art including centralized OPF, consensus ADMM
based OPF, residual balanced ADMM based OPF, Accelerated
ADMM OPF, Decentralized ADMM based SDP-OPF. All the
simulations were performed on a windows computer with a
2.5GHz Intel Core i5 processor and 16GB RAM. All the
coding was done in the MATLAB platform using the YALMIP
optimization toolbox and MOSEK solver.

A. IEEE 123 node system:

First, accuracy of the proposed method is analyzed on the
base case (which is without any DERs). The analysis is when
compared to other centralized and distributed method. As
the Nonlinear Programming (NLP) formulation provide global
optimal solution (for near equilibrium conditions) the proposed
approach is compared with the NLP. The comparisons are
with four distributed optimal power flow algorithms viz. con-
sensus ADMM (C-ADMM), residual balanced ADMM (RB-
ADMM), Accelerated ADMM (A-ADMM), and decentralized
ADMM (D-ADMM), one centralized approach based on NLP
and the proposed D-SDP ADMM. Fig. 5 shows the compar-
isons, It can be seen that the proposed approach provides close
optimal solution when compared with NLP. It can also be seen
that the solutions from other approaches are not accurate when
compared to NLP.

In Fig 5, the comparison of voltage profiles from different
approaches is shown. It can be observed that the distributed
approaches such as A-ADMM, RB-ADMM, D-ADMM, and
C-ADMM are deviating from the global optimal solution. The
proposed approach can provide the closest solution to the
globally optimal values in the NLP as illustrated. Further com-
parisons for higher levels of DER penetrations are performed.
From Fig. 6 it can see that the solution from A-ADMM is
deviating most from the NLP solution and the voltage profile
is very close to the lower bound for most of the buses. To get
a better comparison Fig. 7 is provided where all other profiles
except A-ADMM are compared. It can be seen that the profiles
are close but there are gaps among NLP solutions and other
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Base Case without DG (Comparisons)

1.06 —-C-ADMM ——RB-ADMM
A-ADMM D- ADMM
1.04
Proposed D-SDP ADMM ——Centralized NLP
1.02 \
1

Voltage (pu)
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o
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[r-]
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g
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Fig. 5. Voltage profile comparison of modified IEEE 123 bus system with
no DG penetration.

Case with 10% DG (Comparisons)
——C-ADMM —RB-ADMM
A-ADMM D- ADMM
——Proposed D-5DP ADMM — Centralized NLP

1.06

1.04

1.02

0.98

Voltage (pu)

0.96
0.94

0.92
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Fig. 6. Voltage profile comparison of modified IEEE 123 bus system with
10% DER penetration.

Case with 10% DG (Comparisons)

——C-ADMM —-RB-ADMM
1.055
D- ADMM ——Proposed D-SDP ADMM
1.05 —Centralized NLP
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Fig. 7. Voltage profile comparison of modified IEEE 123 bus system with
10% DER penetration.

approaches while the proposed approach was able to be the
most accurate method.

Fig. 8 and Fig. 9 shows the similar trend of the solution
from A-ADMM approach. In Fig. 9, it can be seen that as the
level of penetration increased the gap among the distributed
ADMM profiles when compared to the central solutions while
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9
TABLE IV
COMPARISON OF CONVERGENCE PROPERTIES OF DIFFERENT DISTRIBUTED OPTIMIZATION METHODS
Consensus Residual Balanced Accelerated Proposed
Centralized NLP ADMM ADMM ADMM D-ADMM D _sp[gp ADMM
(C-ADMM) (RB-ADMM) (A-ADMM)
Iteration Time (s) Iteration Time (s) Iteration Time (s) Iteration Time (s) Iteration Time (s) Iteration Time (s)
fg Bus 4810 108 2557 o7 2345 88 2076 173 4129 107 25.41
artitions
8300 Bus /0 19238 154 13665 NA N/A N/A N/A N/A N/A 189 178.71
4 Partitions
TABLE V
COMPARISON OF SUBSTATION POWER OF DIFFERENT DISTRIBUTED OPTIMIZATION METHODS
Consensus Residual Balanced Accelerated Proposed
Centralized NLP ADMM ADMM ADMM D-ADMM D SDPPRDMM
(C-ADMM) (RB-ADMM) (A-ADMM) -
Psub Qsub Psub Qsub Psub Qsub Psub Qsub Psub Qsub Psub Qsub
(KW) (KVAR) (KW) (KVAR) (KW) (KVAR) (KW) (KVAR) (KW) (KVAR) (KW) (KVAR)
41P23 _]3]15 921.07 251.081 921.5 287.1 921.4  287.1 1.3931 1.3319 921.2 2513 921.2 251.14
artitions
800Bus 315079 576734 32558 10516 NA NA NA  NA NA NA 31508 5768
4 Partitions
Case with 30% DG (Comparisons) Case with 50% DG (Comparisons)
1.06
1.04 5-'.‘ i - R A ﬂ
1.02 ' ' 1.02
z z
& T 1 —cabmm ~RB-ADMM
& ~-C-ADMM ~+RB-ADMM &
S0.98 A-ADMM D- ADMM ; 0.98 A-ADMM D- ADMM
= ——Proposed D-SDP ADMM —+Centralized NLP
0.96 0.96 —=-Proposed D-SDP ADMM ——Centralized NLP
0.94 0.94

0 10 20 30 40

50 60 70 80 90 100 110 120 130

Node Numbers

Fig. 8. Voltage profile comparison of modified IEEE 123 bus system with

309% DER penetration.

Case with 30% DG (Comparisons)

1.055
1.05

—C-ADMM
D- ADMM
——Centralized NLP

1.045

2

1.035
1.03
1.025

Voltage (pu)

1.02

1.015

0 10 20 30 40 50 60 70 &0 90 100

——RB-ADMM
——Proposed D-SDP ADMM
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Node Numbers

Fig. 9. Voltage profile comparison of modified IEEE 123 bus system with

30% DER penetration.

the proposed method still gives the most accurate solution.
Results showed Fig. 10 and Fig. 11 validate the claim that the
A-ADMM fails to provide the global optimal solution while
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Fig. 10. Voltage profile comparison of modified IEEE 123 bus system with

50% DER penetration.

Case with 50% DG (Comparisons)
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Fig. 11.
50% DER penetration.

Voltage profile comparison of modified IEEE 123 bus system with

the proposed D-SDP ADMM approach still guaranty the exact
solution for any level of DER penetration.

The consensus ADMM-based OPF converged to the op-
timal solution with a minor gap compared with the global
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Residual Comparisons for Distributed Approaches
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Fig. 12. Residual comparison of modified IEEE 123 bus system base case.
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Fig. 13. Residual comparison of modified IEEE 123 bus system with 10%
DER penetration.
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Fig. 14. Residual comparison of modified IEEE 123 bus system with 30%
DER penetration.

optimal solution from centralized OPF. Similar convergence
was achieved using the residual balanced ADMM-based OPF.
Since, in the residual balanced approach, the penalty parameter
is updated after each iteration, it shows a faster convergence
speed. This is evident from data provided in Table IV. In the
accelerated ADMM-based distributed OPF the global variable
and Lagrangian multiplier are updated in additional steps. It is
noted that this approach does not guarantee faster convergence
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and globally optimal solutions all the time. The solution
from the decentralized ADMM was closest to the global
optimal solution although it takes more iterations to achieve
convergence. In the proposed approach, the auto-tuning of the
penalty parameter helps to speed up the convergence.

The exactness of the solution from the proposed D-SDP
ADMM method is further illustrated from the information
provided in Table. VI. In the Table. VI substation active
and reactive power dispatch, along with the number of itera-
tions and total computational time to converge from different
distributed methods i.e., centralized NLP, C-ADMM, RB-
ADMM, A-ADMM, D-ADMM, and proposed D-SDP ADMM
for base system and 10%, 30% and 50% DER penetration
cases are compiled. The speed of the convergence for different
methods can also be visualized from the plotting of residuals.
Fig 12-Fig 14, shows the residual profiles from different
approaches for different test system cases. In chronological
order, the figures represent the base system, 10%, and 30%
DER penetration cases. It can be seen that the profiles from
C-ADMM and RB-ADMM have similar slop while A-ADMM
has the steepest slope among the profiles. However, in the
earlier discussion, it has been shown that A-ADMM fails
to provide the global optimal solution. The proposed D-SDP
ADMM method doesn’t have the fastest convergence property
among all but it is faster than the C-ADMM and RB-ADMM
approaches and it ensures the global optimal point. Please note
that residue for 50% DER penetration case is similar to that
of 20% DER penetration case thus been omitted.

B. Scalability Analysis (IEEE 8500 node system):

Once the proposed model was able to provide satisfactory
results for the modified IEEE 123 bus system, it was tested on
another real-world test network, the modified IEEE 8500 node
system. In this case, 10% DER penetration was considered.
The total network was partitioned into four interconnected
subsystems. The numerical comparison of the solution for
different approaches is showcased in Table. VL. Although, few
of the methods i.e., residual balanced ADMM, accelerated
ADMM and decentralized SDP ADMM were not able to con-
verge to an optimal solution for the given threshold value. As
shown before, the proposed method shows similar convergence
properties compared with the consensus ADMM method. The
number of iterations and time of convergence is higher in the
proposed method but the solution is the closest to the global
optimal point. From Fig. 15 it can be seen that there is a
significant gap in the solution from consensus ADMM while
the profile from the proposed approach is almost similar to
the centralized solution. Fig. 16 shows the maximum residual
profile in each iteration while solving the 8500 bus system
using the proposed method. It is evident from the slop of the
plot that, the auto-tuning of the penalty parameter significantly
improved the speed of convergence.

C. Validation Through Real-time Simulation

The numerical solution comparison from Table VI shows
that the proposed distributed approach is able to converge
at the global optimal solution with conclusive tightness in
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TABLE VI
COMPARISON OF SUBSTATION POWER AND NUMBER OF ITERATIONS OF
DISTRIBUTED OPTIMIZATION METHODS

TEEE 123 Bus System with base case and different DG Penetration
All proposed methods are compared with 4 partitions

Comparisons Sub. Base 10% 30% 50%
P Power DG DG DG
Psub 1192136 92107 728471 518527
. (KW)
Centralized Qsub
NLP (KVAR) 447.85 251.081 146.675 91.66
Tteration N/A N/A N/A N/A
Time (s) 0.4781 0.4772 0.4851 0.4369
Psub
Consensus (KW) 1192.38 921.5 729.017 519.819
ADMM Qsub
(C-ADMM) (KVAR) 448.146 287.1 222.618 166.464
Tteration 166 108 130 179
Time (s) 38.3792 255744 31213 42.1903
Residual [113(3&?] 130077 9214  720.122 519795
Balanced Qsub
ADMM 1327.48 287.1 222.662 166.502
(RB-ADMM) —KVAR)
Tteration 94 a7 117 134
Time (s) 22.5885 234449 283374 32.264
Psub
Accelerated (KW) 115240  922.847 607.636 581.744
ADMM Qsub
(A-ADMM) (KVAR) 1499.73 1266.08  1110.347  490.63
Tteration 32 4 32 54
Time (s) 122044 33418 1.5776 12.6954
Psub
(KW) 021.536 921.2 729.112 518.746
D-ADMM Qsub
(KVAR) 309.92 251.3 274.48 24.256
Tteration 200+ 173 129 200+
Time (s) 47.84+ 41.295T 31.1019 776+
(ll)(s;?] 1192.362 921.2 725.548 518.507
Proposed Qsub
Approach (KVAR) 448.024  251.144  153.271 114.81
Tteration 187 107 200+ 130
Time (s) 442442 254125 4836+ 42876
TABLE VII
SUMMARY OF OBSERVATIONS
Objective Function- Loss Minimization
Methods Feasibility Optimality Accuracy Scalability
Centralized
NLP Feasible  Global Opti- Most No
mal Accurate
C-ADMM Feasible Global/Local Accurate Scalable
optimal
RB-ADMM  Feasible Global/Local less accu-  Scalable
optimal rate
A-ADMM Feasible  Local optimal Inaccurate Scalable
D-ADMM Feasible  Local optimal less accu- Scalable
rate
Proposed
D-SDP Feasible  Global Very accu-  Scalable
ADMM optimal rate

solution when compared to the centralized and non-linear
approaches. For further validation and real-time applicability
of the proposed method, the solution was validated using a
real time power system simulator Opal-RT. The setup for the
real time simulation and validation is shown in Fig 17. The
DER setpoints, such as active and reactive power dispatches
for each individual DER inverter are transmitted to a similar
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Fig. 15. Voltage profile vomparison of modified IEEE 8500 bus system with
10% DG penetration.
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Fig. 16. Residual comparison of modified IEEE 8500 bus system with 10%
DG penetration.

model built inside the Opar-RT simulator and power flow was
solved. Once done, the active and reactive power dispatches
from the substation from Opal-RT simulation and the similar
from the proposed method are very conclusive. The % error
of the voltage profile from these two approaches are shown
in Fig 18. We can see that the maximum error is around 1%
which indicates that the solutions are very similar. Also the
substation active and reactive power dispatches from Oplar-
RT simulations are 924.844KW and 182.885KVAR while
the same from the proposed approach were 921.2KW and
251.144KVAR. Since the objective function selected was to
minimize the line active power losses, thus by comparing
the substation active power dispatch we can confirm that the
proposed approach’s solution is conclusive. Also, in Opal-
RT platform, each simulation takes around 60ms while the
proposed approach consumes around 25.41s. In real world
DSO, the operators usually perform the real time dispatch on
a 5 min time resolution. Since, the computational time of our
proposed approach is well below the 300s mark, it can be
confirmed that the proposed approach can also be implemented
in real world operation.
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Fig. 18. 9% Error of bus voltage magnitudes from proposed approach and
OpalRT simulation.

D. Summary of Observations:

The proposed method provides advantages of distributed
approaches such as C-ADMM, D-ADMM, and RB-ADMM.
Also, the optimality gap is minimal in the proposed architec-
ture due to the convexification of the model and the solution
is globally optimal. To analyze this criteria such as tightness
of the solution, speed of convergence, and scalability of the
method are compared. Based on the performances on these
criteria for different methods, a Table. VII is presented, which
summarises the feasibility, optimality, accuracy, scalability,
and usability of different distribution methods. In the analysis,
the solution from the centralized NLP is considered the
benchmark for all other approaches. The NLP method ensures
the global optimal solution if the size and type of the problem
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are not beyond its capacity. Thus it may not be able to provide
the global optimal solution for any size of the problem. The
C-ADMM approach is found to be feasible for different types
of networks and able to provide a solution that may not be the
global optimal but is very close to it. Then, the RB-ADMM
method speeds up the convergence but it cost the accuracy of
the solution. Next, the A-ADMM method is the fastest among
all the methods discussed here but it lacks accuracy by a very
high margin, thus losing its usability for implementation. Next,
the D-ADMM method is an improved method that enables to
implementation of the decentralized approach for distributed
optimization, albeit its solution also contains some gaps com-
pared with the benchmark solution, This method is further
improved in our proposed D-SDP ADMM using the auto-
tuning of the penalty parameter. This modification improves
the speed of convergence and the solution is validated to be
the global optimal point. Also, the proposed D-SDP ADMM
method holds its performance for a larger IEEE 8500 node
system and a higher level of DER penetration.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an adaptive ADMM-based fully decentralized
formulation of OPF based on the BFM-SDP architecture is
proposed. The method of adaptive tuning of penalty parameter
has been discussed which improves the speed of convergence
while achieving the global optimal solution. The proposed
method has been validated by implementing on two standard
distribution test networks, IEEE 123 bus system, and IEEE
8500 bus system. The solution of the proposed method is
validated by comparing that with the centralized solution.
Although the proposed method takes additional convergence
time when compared to certain distributed approaches, it
always reaches the global optimal point thus being more
accurate. Since the underlying OPF formulation is based on the
BFM-SDP model, it provides exact relaxation when compared
to the approximated linearized and SOCP, relaxed model. The
convergence properties and solution profiles for the IEEE 8500
bus system prove the scalability of the proposed method for
larger systems. The plan as an extension of this work is to
combine acceleration in the local auxiliary variable update
to further speed up the convergence while maintaining the
tightness of the solution. Also extending the formulation for
unbalanced multiphase network is a work in progress.
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