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Understanding how cells grow and adapt under various nutrient conditions is pivotal in the study of biological 
stoichiometry. Recent studies provide empirical evidence that cells use multiple strategies to maintain an 
optimal protein production rate under different nutrient conditions. Mathematical models can provide a solid 
theoretical foundation that can explain experimental observations and generate testable hypotheses to further 
our understanding of the growth process. In this study, we generalize a modeling framework that centers on 
the translation process and study its asymptotic behaviors to validate algebraic manipulations involving the 
steady states. Using experimental results on the growth of E. coli under C-, N-, and P-limited environments, we 
simulate the expected quantitative measurements to show the feasibility of using the model to explain empirical 
evidence. Our results support the findings that cells employ multiple strategies to maintain a similar protein 
production rate across different nutrient limitations. Moreover, we find that the previous study underestimates 
the significance of certain biological rates, such as the binding rate of ribosomes to mRNA and the transition 
rate between different ribosomal stages. Furthermore, our simulation shows that the strategies used by cells 
under C- and P-limitations result in a faster overall growth dynamics than under N-limitation. In conclusion, 
the general modeling framework provides a valuable platform to study cell growth under different nutrient 
supply conditions, which also allows straightforward extensions to the coupling of transcription, translation, and 
energetics to deepen our understanding of the growth process.

1. Introduction

Growth is a fundamental process of life. The study of cell growth has always been of great interest to the scientific community, especially with 
increasing technological advances that allow for precise measurements and modifications of the biochemical composition and gene expressions of 
cells [1]. Protein synthesis is directly linked to cell growth rate, in particular during the exponential growth phase. However, the overall cell growth 
is a complex process that involves other heavily regulated cell functions that are necessary for cell survival [2, 3]. Thus, understanding how cells 
distribute their resources for growth and survival under different conditions is crucial to obtain a complete picture of integrated cellular function.

One promising direction examines optimal resource allocation theory to provide a quantitative framework to study cell growth under contrasting 
nutrient supply conditions [4, 5]. The theory proposes that cell growth is the result of optimal resource allocation, which is usually embedded in 
simple models of the translation process. Some of the earliest developments hypothesize the so-called “the constant-efficiency (of ribosome action) 
hypothesis”, which suggests that, since protein production is the most limiting process involved in cell growth, cell should optimize the protein 
synthesis rate of ribosomes to keep it at an optimal maximum regardless of situation. This implies that for one cell to grow twice as fast as another, 
it then must have twice the number of ribosomes [2, 6, 7]. This concept is an underlying principle behind “the growth rate hypothesis”, an important 
component in the study of ecological stoichiometry, which uses mass balance principles to link growth to organismal biochemistry and elemental 
composition [8, 9].
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A version of the constant-efficiency hypothesis takes the form of a simple system of differential equations involving protein translation by 
ribosomes and self-replicating ribosomes [10]. An important implication of the model is that the protein to RNA ratio is linearly proportional to the 
growth rate, which is supported experimentally [4, 11]. While the translation rate may be relatively constant across different growth rates, it has 
been noted that there maybe alternative mechanisms that cells employ under different scenarios, especially during nutrient shifts or different types 
of nutrient limitation [6, 10, 11].

In a recent study, Li and colleagues carried out experiments to more deeply assess how the growth of E. coli is affected by carbon (C), nitrogen 
(N), and phosphorus (P) limitation. They find that E. coli uses three different mechanisms to maintain the same growth rate under the three 
scenarios [12]. In the same year, Iyer et al. (2018) reported how C and N starvation would affect cell growth and also find distinct patterns of 
transcription and translation regulation [13].

To qualitatively and quantitatively describe complex experimental findings, a theory or mathematical model is often necessary. One popular 
approach in E. coli studies [14] is to build a quantitative model that incorporates all relevant biological mechanisms and experimental parameters 
to describe the complex regulation system, as seen in the work by Hu et al. [15]. On the other hand, a simple model can also be built based on 
fundamental principles. One benefit of simpler models is that it can often be studied thoroughly to extract insights regarding general behaviors of 
the biological system, which can then be used in the formulation of more complex models. For example, a class of stochastic model called Totally 
Asymmetric Simple Exclusion Process (TASEP) which describes particles hopping on a one-dimension chain that exhibits a broad range of complex 
behaviors, has been used widely in biophysical literature to explore core elements of biological processes that involved transportation of biological 
matters such as translation [16, 17, 18, 19].

Additionally, Scott and colleagues constructed a simple model by arguing that cell growth must be balanced between varying levels of translation 
inhibition and varying nutrient quality [4]. Furthermore, Scott et al. also employed the approach of partitioning the ribosomes and protein into 
multiple factions each with its own function, which is further explored in subsequent studies [20]. Perhaps inspired by this idea, Li et al. constructed 
a model which partitions ribosomes and mRNA into several classes to describe the translation process under different nutrient limitations.

The model by Li et al. produces predictions that are consistent with experimental results to elucidate on biological mechanisms of cell growth 
and thus is of interest for further exploration. However, the study focuses on the experimental evidence, so the analytical properties and biological 
insights of the model are not explored in great detail. For example, it is unclear whether the model dynamics satisfy the assumptions used in its 
construction, or perhaps contain interesting dynamical properties. Furthermore, the authors use the steady state values for their calculations without 
guaranteeing their existence, uniqueness, positivity, and stability. In addition, to bypass the need for parameter estimations of two unknowns, the 
authors absorbed the two unknowns into a new parameter called the saturation parameter and use it to characterize the cell growth under different 
nutrient profiles. While ingenious from an analytical point of view, this approach does not allow for simulation of the dynamics of the model 
since the values and ranges of two parameters are unknown. Furthermore, the saturation parameter is somewhat ambiguous and unlikely to be 
experimentally measurable, reducing its usefulness to provide more in-depth biological insights into mechanisms regulating organismal growth.

Therefore, it is critical to accurately estimate the values of the biologically interpretable unknown parameters to obtain further hypothesis 
on contrasting effects of limitations by different nutrients on cell growth. In order to do so, we first generalize the model formulation by Li and 
colleagues and examine the interpretation and possible connection between each parameter. We then calibrate the model using the experimental 
results from Li et al. and discuss their implications on the growth dynamics and growth strategies under different nutrient limitation conditions. By 
thoroughly examining the model, we obtain valuable insights that may allow for better future model calibrations and developments to reach a more 
complete theory of cell growth.

2. Methods

In this section, we will first motivate and discuss the formulation of the macroscopic model by Li and colleagues and how it was used to describe 
the experimental data. Then, we will describe our approach to analyze the model and study its connections and implications using the experimental 
measurements by Li et al. [12].

2.1. Model motivation

Various formulations of a mathematical expression for cell growth rate exist [4, 5, 6, 10]. In the work of Li and colleagues, the growth rate 
was looked at from the perspective of protein mass accumulation in the translation process of each cell. Let 𝐽𝑝 be the protein synthesis rate, or the 
amount of proteins being synthesized per second (amino acids/sec), 𝑃𝑚 be the protein mass in a cell (g), and 𝑚𝑎𝑎 be the average mass of amino acid 
(g). Then the amount of protein mass produced every second is the product of the protein synthesis rate and the average mass of amino acid (𝐽𝑝𝑚𝑎𝑎). 
In other words, the growth rate, 𝜇 (ℎ𝑟−1), is the relative increase in protein mass rate:

𝜇 =
3600𝐽𝑝𝑚𝑎𝑎

𝑃𝑚
, (1)

where 3600 is the conversion factor from seconds to hour. Additionally, assuming the elongation rate in the translation process is a constant, then 
the protein synthesis rate (or the amount of amino acids being translated per second) is proportional to the number of ribosomes working on the 
translation process (𝑅𝑤).

𝐽𝑝 =𝑅𝑤𝑘𝑒𝑙, (2)

where 𝑘𝑒𝑙 is the elongation rate. Equating the protein synthesis rate in both equations and solve for the growth rate, we obtained an expression of 
the growth rate in term of the working ribosomes:

𝜇 =𝑅𝑤𝑘𝑒𝑙
3600𝑚𝑎𝑎

𝑃𝑚
. (3)

Ideally, a model describing the growth of cells (in a chemostat) should produce a uniquely globally stable steady state. Thus, if we suppose the 
dynamics of cell growth indeed reaches a steady state, then the growth rate is proportional to the constant number of working ribosomes. Therefore, 
we want a model that can capture the dynamics of different fractions of ribosomes during the translation process to explain the impacts of different 
nutrient limitation conditions on growth rate.
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2.2. Model formulation

To provide a theoretical framework for different mechanisms of cell growth under various nutrient limitations, Li and colleagues formulated 
the following kinetic ODEs describing the translation dynamics of ribosomes (R) and mRNA (M). The assumptions of the model will be marked in 
bolded texts with the superscript denoting the numerical order.

Ribosomes are separated into three groups. 𝑅𝑢 signifies the unbound ribosomes, which includes the free ribosomes and ribosomal sub-units 30S 
and 50S (i.e. separate, un-assembled sub-units are considered as part of 𝑅𝑢). 𝑅𝑖 is the initiating ribosomes, or the ribosomes that successfully bind 
to the initiation site and occupy no more than the first 10 codons (since one ribosome occupies about 10 codons on an mRNA). 𝑅𝑤 signifies the 
working ribosomes, which are bound to mRNA starting at the 11𝑡ℎ or higher numbered codons.

The bound ribosomes are composed of the initiating ribosomes and the working ribosomes. The differentiation between initiating and working 
ribosomes is supported using a microscopic model and some experimental data (see the supplementary material in [12]); however, this distinction, 
especially the length of mRNA corresponding to 𝑅𝑖, has not been explored in depth in literature, so it remains an assumption(1) of the model 
formulation. We will not discuss the microscopic model in detail here; however, the microscopic version resembles a continuous-differential version 
of the TASEP, and perhaps can be further analyzed within the existing framework of TASEP [18]. The main functional difference is that during the 
initiating phase, ribosomes can abort translation, while they cannot do so during the working phase.

The mRNA is categorized as free (𝑀𝑓 ) and bound (𝑀𝑏); however, a distinction should be noted because of a novel characterization of the mRNA. 
𝑀𝑓 is used to indicate when the binding site of the mRNA is available for binding, and 𝑀𝑏 is used when the binding site is occupied by a ribosome 
(𝑅𝑖). In other words, 𝑀𝑓 (𝑡) represents the number of mRNA with an available binding site (i.g. unbound at the first 10 codons), and 𝑀𝑏 is the 
number of mRNA whose binding site is currently occupied.

Note that the definition of 𝑀𝑓 is not exactly indicative of the starting region that includes the Shine-Dagalno sequence, but rather whether the 
mRNA is available for another ribosomes to bind to it or not. Li and colleagues argue that the binding region contains up to the first 10 codons 
of the mRNA (or the approximate occupancy of one ribosome on an mRNA). This classification allows the model to be structurally simple, while 
capturing key biological features of the process.

2.2.1. General framework
The interactions between different components of the system can be characterized as follows. Unbound ribosomes can bind to free mRNA to 

become initiating ribosomes. We let 𝑓 (𝑅𝑢, 𝑀𝑓 ) represent this binding action. In principle, the more abundant 𝑅𝑢 and 𝑀𝑓 , the higher 𝑓 (𝑅𝑢, 𝑀𝑓 )
should be, so 𝑓 is a monotone function with respect to both variables. Furthermore, 𝑓 (0, 0) = 𝑓 (0, 𝑀𝑓 ) = 𝑓 (𝑅𝑢, 0) = 0. For mathematical simplicity, 𝑓
is also assumed to be differentiable everywhere except at (0, 0). This interaction is represented below, where 𝑓 (𝑅𝑢, 𝑀𝑓 ) is the functional form of the 
binding process. We note that the function form of 𝑓 (𝑅𝑢, 𝑀𝑓 ) may contain parameters that relates to the binding rate of 𝑅𝑢 to 𝑀𝑓 . Such parameters 
maybe under the influence of nutrient limitations.

𝑅𝑢 +𝑀𝑓

𝑓 (𝑅𝑢,𝑀𝑓 )
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑅𝑖 +𝑀𝑏. (4)

Initiating ribosomes can abort translation, which revert to unbound ribosomes and free mRNA. Otherwise, the initiating ribosomes proceed to 
the 11th codon to become working ribosomes, which also releases the binding site, or increases the number of mRNA with available binding site. It 
is worth pointing out that the classification of mRNA allows the model to naturally incorporate the possibility that multiple ribosomes can translate 
a single strand of mRNA at the same time (e.g. polysomes). An alternative method to denote this multiple binding of ribosomes to mRNA is to use 
a chemical binding formulation, where the mass action approximation would be 𝑓 (𝑅𝑢, 𝑀𝑓 ) = 𝛼𝑅𝑛

𝑢𝑀𝑓 , where 𝑛 is the average number ribosomes 
translating one mRNA strand at a given time and 𝛼 is a first-order binding rate. However, this process cannot account for the fact that ribosomes 
can only bind to mRNA one at a time. Another method is to use the TASEP framework as mentioned in the introduction; however, this method is 
perhaps more suitable if we want to accurately capture the microscopic nature of the translation process.

During the working phase, ribosomes do not abort translation and continue translating at a constant rate until the stop codon. We note that 
previous studies suggest that ribosomes can abort translation after the initiation phase [21, 22]. However, we elected to ignore this possibility in 
our model formulation and will discuss the implications of this choice in the discussion section. Upon arriving at the last coding codon, the working 
ribosomes complete the translation and unbind the mRNA to become free ribosomes (or ribosomal sub-units). In Li et al., the elongation rate is 
assumed to be independent of the progression rate from initiating to working ribosomes and the translation abortion rate. However, this creates 
several potential problems such as parameter unidentifiability and model interpretation. Instead, we note that the model readily provides a platform 
to connect these different transition rates.

We assume(2) that elongation rate 𝑘𝑒𝑙(⋅) is a function of the nutrient composition of the medium. Since the composition in each experiment is 
fixed, 𝑘𝑒𝑙 is taken to be a constant for each experiment. 𝑘𝑒𝑙 accounts for how many amino acids (𝑎𝑎) are added to the polypeptide chain per second 
(sec), so it has the unit (𝑎𝑎∕sec). Thus, the amount of initiating ribosomes becoming working ribosomes per second is given by 𝑘𝑒𝑙∕𝑀𝑎𝑎, where 𝑀𝑎𝑎

is the length of mRNA corresponding to the initiating stage (e.g. 𝑀𝑎𝑎 is taken to be the first 10 codons in Li et al.). Recall that this is possible because 
the section of the mRNA that determines its binding availability is not restricted to just the binding site. Similarly, 𝑘𝑒𝑙∕(𝑁𝑎𝑎 −𝑀𝑎𝑎) is the fraction of 
the coding mRNA region (𝑁𝑎𝑎 −𝑀𝑎𝑎) translated by a working ribosome in one second, where 𝑁𝑎𝑎 is the full length of the mRNA (i.g. from the 5’ 
cap to the 3’ end).

Regarding the translation aborting events during the initiating phase, we introduce a function 𝑔(⋅) which is the probability of aborting a trans-
lation. To simplify the biological mechanisms regarding 𝑔(⋅), such as the regulatory actions of guanosine pentaphosphate (p)ppGpp under nutrient 
limitation [23], we assume(3) 𝑔(⋅) to be dependent on the nutrient composition of the medium, so it also stays relatively constant within one ex-
periment. Furthermore for consistency with the modeling framework, the aborting event is assumed(4) to be decided at the last coding codon of 
mRNA corresponding to 𝑅𝑖. It is worth noting that if the initiating region includes up to the first 10 codons (as in the original study), then the 
aborting event can only happen when the ribosome completely occupies the initiating region (prior to entering the working region) because a single 
ribosome occupies about 10 codons. Thus, the rate at which 𝑅𝑖 becomes 𝑅𝑤 is given by (𝑘𝑒𝑙∕𝑀𝑎𝑎)(1 − 𝑔), which serves the original purpose of 𝑘𝑝. 
On the other hand, the rate at which 𝑅𝑖 aborts translation is given by (𝑘𝑒𝑙∕𝑀𝑎𝑎)𝑔, which serves the original purpose of 𝑘𝑟. Together, these processes 
can be represented as:

𝑅𝑢 +𝑀𝑓

𝑘𝑒𝑙
𝑀𝑎𝑎

𝑔(⋅)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←𝑅𝑖

𝑘𝑒𝑙
𝑀𝑎𝑎

(1−𝑔(⋅))
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑅𝑤 +𝑀𝑓 , (5)
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𝑅𝑤

𝑘𝑒𝑙
𝑁𝑎𝑎−𝑀𝑎𝑎
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑅𝑢. (6)

The differential equation system for this translation model takes the following form.

𝑑𝑅𝑢

𝑑𝑡
=

𝑘𝑒𝑙(⋅)
𝑀𝑎𝑎

𝑔(⋅)𝑅𝑖

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

ribosomes released from 
aborted translation

+
𝑘𝑒𝑙(⋅)

𝑁𝑎𝑎 −𝑀𝑎𝑎

𝑅𝑤

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

ribosomes released from 
completing translation

− 𝑓 (𝑅𝑢,𝑀𝑓 )
⏟⏞⏞⏞⏟⏞⏞⏞⏟

binding of ribosomes 
and mRNA

, (7)

𝑑𝑅𝑖

𝑑𝑡
= 𝑓 (𝑅𝑢,𝑀𝑓 )

⏟⏞⏞⏞⏟⏞⏞⏞⏟

bound ribosomes from bind-
ing of ribosomes and mRNA

−
𝑘𝑒𝑙(⋅)
𝑀𝑎𝑎

𝑅𝑖

⏟⏞⏟⏞⏟

translating rate of ribosomes 
through the initiating phase

, (8)

𝑑𝑅𝑤

𝑑𝑡
=

𝑘𝑒𝑙(⋅)
𝑀𝑎𝑎

(1 − 𝑔(⋅))𝑅𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

working ribosomes transitioned 
from initiating ribosomes

−
𝑘𝑒𝑙(⋅)

𝑁𝑎𝑎 −𝑀𝑎𝑎

𝑅𝑤

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

translating rate of ribosomes 
through the working phase

, (9)

𝑑𝑀𝑓

𝑑𝑡
=

𝑘𝑒𝑙(⋅)
𝑀𝑎𝑎

𝑅𝑖

⏟⏞⏟⏞⏟

binding site released from ribo-
somes leaving the initiating phase

− 𝑓 (𝑅𝑢,𝑀𝑓 )
⏟⏞⏞⏞⏟⏞⏞⏞⏟

binding of ribosomes 
and mRNA

, (10)

𝑑𝑀𝑏

𝑑𝑡
= 𝑓 (𝑅𝑢,𝑀𝑓 )

⏟⏞⏞⏞⏟⏞⏞⏞⏟

bound mRNA from binding of ri-
bosomes and free mRNA

−
𝑘𝑒𝑙(⋅)
𝑀𝑎𝑎

𝑅𝑖

⏟⏞⏟⏞⏟

binding site released from ribo-
somes leaving the initiating phase

. (11)

Note that the model does not contain any degradation or production terms, which is due mainly to the assumption(5) of time scale separation. The 
processes within translation happen on a much faster time scale (seconds) than the production and degradation of mRNAs and ribosomes (hours). 
Hence, degradation and production terms can be omitted. Furthermore, if we assume the total amount of ribosomes 𝑅𝑡(⋅) and the total amount of 
mRNA 𝑀𝑡(⋅) are constant for each experiment (perhaps using a quasi-steady state assumption(6) of the transcription process), then 𝑅𝑡 =𝑅𝑢 +𝑅𝑖 +𝑅𝑤

and 𝑀𝑡 =𝑀𝑓 +𝑀𝑏 with 𝑅𝑖 =𝑀𝑏 lead to a simplification of the full system to a two dimensional model.

𝑑𝑅𝑖

𝑑𝑡
= 𝑓 (𝑅𝑡 −𝑅𝑖 −𝑅𝑤,𝑀𝑡 −𝑅𝑖) −

𝑘𝑒𝑙(⋅)
𝑀𝑎𝑎

𝑅𝑖, (12)

𝑑𝑅𝑤

𝑑𝑡
=
𝑘𝑒𝑙(⋅)
𝑀𝑎𝑎

(1 − 𝑔(⋅))𝑅𝑖 −
𝑘𝑒𝑙(⋅)

𝑁𝑎𝑎 −𝑀𝑎𝑎

𝑅𝑤. (13)

It is worth pointing out that the dependence of 𝑘𝑒𝑙(⋅) and 𝑔(⋅) on nutrient composition only accounts for the nutrients specifically reserved or 
allocated for the translation process. Furthermore, without incorporating the transcription process, we assume the machinery needed for translation 
is at an optimal constant (𝑀𝑡, 𝑅𝑡). Regarding this observation, Li et al. attempted to study the effect of nutrient up-shift with an extended model; 
however, without explicitly incorporating the transcription process to account for temporal variation in the total number of ribosomes and mRNA, 
it may be misleading to extend their results to study the transient and asymptotic dynamics of cell growth after nutrient up-shift.

2.2.2. Li et al. model formulation
In Li et al., the authors assumed(7) 𝑓 (𝑅𝑢, 𝑀𝑓 ) takes the form of mass action. This assumption is justified as the number of ribosomes is much 

larger than the number of mRNA at almost any given time, especially at steady state growth. Furthermore, the effective rate at which ribosomes 
proceed to the 11th codon to become working ribosomes (𝑘𝑝), the rate at which initiating ribosomes abort translation (𝑘𝑟), and the elongation rate 
(𝑘𝑒𝑙) are assumed(8) to be independent. We note a small inaccuracy regarding the term denoting the translation from the last coding codon to the 
stop codon, which should be the quotient between the elongation rate and the length of mRNA corresponding to working ribosomes (i.g., just the 
coding sequence on mRNA instead of the entire mRNA). However, since the length corresponding to the working ribosomes is nearly all of mRNA, 
we will use the original formulation, which does not affect the dynamical properties of the model.

For each nutrient limitation condition, 𝑘𝑒𝑙(⋅) is treated as constant (along with other parameters). Thus, under these assumptions, the model in 
Li et al. takes the following form.

𝑑𝑅𝑖

𝑑𝑡
= 𝑘𝑓𝑀𝑓𝑅𝑢

⏟⏞⏞⏟⏞⏞⏟

binding of 
ribosomes 
and mRNA

− 𝑘𝑟𝑅𝑖
⏟⏟⏟

initiating ribo-

somes aborting 
translation

− 𝑘𝑝𝑅𝑖
⏟⏟⏟

initiating ribosomes 
becomes working 
ribosomes

, (14)

𝑑𝑅𝑤

𝑑𝑡
= 𝑘𝑝𝑅𝑖

⏟⏟⏟

working ribosomes from 

−
𝑘𝑒𝑙

𝑁𝑎𝑎

𝑅𝑤

⏟⏞⏟⏞⏟

translation from the last coding 

, (15)
initiating ribosomes codon to the stop codon
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Fig. 1. The schematics for ribosomal dynamics for Equations (14)–(16) adapted from Fig. 2b in the study by Li and colleagues [12]. Note that the classification for 
mRNA depends on whether the binding site is available for binding (𝑀𝑓 ) or not (𝑀𝑏).

𝑑𝑀𝑓

𝑑𝑡
= − 𝑘𝑓𝑀𝑓𝑅𝑢

⏟⏞⏞⏟⏞⏞⏟

binding of 
ribosomes 
and mRNA

+ 𝑘𝑟𝑅𝑖
⏟⏟⏟

aborted trans-
lation releases 
mRNA

+ 𝑘𝑝𝑅𝑖
⏟⏟⏟

producing working 
ribosomes releases 
mRNA

. (16)

Using the conservation properties of the system, we can reduce equations (14)–(16) to two dimensional ODEs.
𝑑𝑅𝑖

𝑑𝑡
= 𝑘𝑓𝑀𝑡𝑅𝑡 − 𝑘𝑓𝑀𝑡𝑅𝑤 − (𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡)𝑅𝑖 + 𝑘𝑓𝑅

2
𝑖 − 𝑘𝑓𝑅𝑖𝑅𝑤, (17)

𝑑𝑅𝑤

𝑑𝑡
= 𝑘𝑝𝑅𝑖 −

𝑘𝑒𝑙

𝑁𝑎𝑎

𝑅𝑤. (18)

A diagram of the system is presented in Fig. 1 and summaries of the model parameters and experimental values are presented in Tables 1 and 2, 
respectively. Recall the growth rate expression that we introduced in Equation (3). To obtain a more useful form, we first let 𝑓𝑟 and 𝑚𝑟 be the 
fraction of rRNA in RNA and the mass of rRNA in ribosomes, respectively. Then the total number of ribosome, 𝑅𝑡, is given by 𝑅𝑡 = 𝑃𝑚𝜉

𝑓𝑟
𝑚𝑟
, where 𝜉 is 

the mass ratio of total RNA to total protein. Define Φ𝑅𝑤
to be the fraction of working ribosomes (i.g. Φ𝑅𝑤

=𝑅𝑤∕𝑅𝑡), then the new growth equation 
becomes:

𝜇 = 𝜉Φ𝑅𝑤
𝑘𝑒𝑙

(
3600𝑚𝑎𝑎

𝑓𝑟
𝑚𝑟

)
. (19)

Li and colleagues carefully parametrize the models with global constants and their experimental measurements [12]. In addition to the estimable 
parameters, the values of 𝑘𝑓 and 𝑘𝑟 are unknown. Instead, a new parameter called the saturation parameter (𝑆) was introduced. As 𝑆 is the only 
unknown, the value of 𝑆 can be approximated. Finally, 𝑆 was used to characterize the difference of cell growth under different nutrient limitation 
conditions.

Regarding cell growth under various nutrient limitations, there are three main findings by Li and colleagues corresponding with three different 
mechanisms under C-, N-, or P-limitation.

1. Under C-limitation, there is a low fraction of working ribosomes, which results in lower translation rate. However, the pool of ribosomes and 
the elongation rate are both high.

2. Under N-limitation, the elongation rate is slowed (due to stalling at glutamine codons) leading to a slow translation. However, the fraction of 
working ribosomes is moderate and a large pool of ribosomes compensates for the slow elongation.

3. Under P-limitation, there is a low abundance of ribosomes, which slows down translation. However, the lack of ribosomes is made up for by 
the high fraction of working ribosomes and fast elongation rate.

Their experimental results provide estimates of the fractions of free, initiating, and working ribosomes, i.g. Φ𝑅𝑢
, Φ𝑅𝑖

, Φ𝑅𝑤
respectively, the elongation 

rates, and the abundance of ribosomes (𝑅𝑡) calculated via the mass ratio of total RNA to total protein.

2.3. Parameter estimation

The main objective of our parameter estimation is to estimate possible values of 𝑘𝑟 and 𝑘𝑓 using the experimental values for 𝜇, Φ𝑅𝑢
, Φ𝑅𝑖

, Φ𝑅𝑤

(at steady state), and 𝜉 in each condition (C-limited, N-limited, and P-limited). Table 2 contains the experimental values from Li et al. [12]. Table 1
contains the ranges and fixed values of all parameters. Since one of our goals is to quantify/verify the difference in elongation rate under different 
nutrient-limited conditions, we will also estimate 𝑘𝑒𝑙 , which means we will need to re-estimate 𝑘𝑝 (since 𝑘𝑝 is calculated at steady-state based on 
𝑘𝑒𝑙).
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Table 1. Parameter ranges and definitions for E. coli. The ad hoc ranges are based on the estimated values in Li et al. [12]. The ranges indicate 
the min and max range for each parameter. During the parameter estimations, a more refined range is used for each scenario to obtain the 
best convergence. The model dynamic variables are listed at the end. The experimental variables and parameters are given in Table 2. The 
parameter indicated with ∗ represents similar quantities with the parameters in the parentheses from Loladze and Elser [31].
Symbol Definition Ranges Ref

𝑘𝑓 effective rate constant for unbound ribosomes and free mRNA to initiate translation (1∕sec) [1.0e−5,2.4e−4] ad hoc

𝑘𝑟 rate constant for initiating ribosomes to abort translation (1∕sec) [5e−3,5e−2] ad hoc

𝑘∗
𝑒𝑙
(𝜎𝑎) elongation rate (𝑎𝑎∕sec) [6,20] ad hoc

𝑘𝑝 rate constant for initiating ribosomes to transition into working ribosomes (1∕sec) [0.3,1.4] ad hoc

𝑓𝑚 fractional mass of mRNA 0.02 [24]

𝑉𝑐 cell volume (m3) 10−18 [25]

𝐶𝑝 concentration of proteins (g/m3) 2.4 × 105 [26]

𝑚𝑟 mass of rRNA component in a ribosome (g) 2.8 × 10−18 [27]

𝑚∗
𝑛𝑢𝑐

(𝑚𝑟) average mass of a nucleotide in RNA (g) 5.4 × 10−22 [28]

𝑚∗
𝑎𝑎
(𝑚𝑎) average mass of an amino acid in protein (g) 1.8 × 10−22 [29]

𝑀𝑎𝑎 average length of the initiating region (𝑎𝑎) 10 [30]

𝑁𝑎𝑎 average length of mRNA (𝑎𝑎) 300 [30]

𝑛𝑎 N content averaged over 20 amino acids 17% [31]

𝑛𝑟 N content averaged over 4 nucleotides 15% [31]

𝑝𝑟 P content averaged over 4 nucleotides 9% [31]

𝑙𝑎 length of RNA polymerase (aa) 3400 [31]

𝑙𝑟 length of rRNA (nt) 4560 [31]

𝜎𝑟 transcription elongation rate (nt∖sec) 71 [31]

𝜙𝑟 fraction of total protein that is RNA polymerase actively transcribing rRNA 0.2% [31]

𝑃𝑚 total protein mass in a cell (g) 𝐶𝑝𝑉𝑐 [12]

𝑅𝑡 total number of ribosomes per cell 𝑃𝑚𝜉
𝑓𝑟

𝑚𝑟

[12]

𝑀𝑡 total number of mRNAs per cell 𝑃𝑚𝜉
𝑓𝑚

𝑁𝑎𝑎𝑚𝑛𝑢𝑐3
[12]

𝑅𝑢 Number of Unbound ribosomes (count)
𝑅𝑖 Number of initiating ribosomes (count)
𝑅𝑤 Number of working ribosomes (count)
𝑀𝑓 Number of mRNA with available binding site (count)
𝑀𝑏 Number of mRNA with bound binding site (count)

Table 2. Summary of the mean of the processed experimental values for wild type E. coli from Li et al. [12]. The values of 𝑓𝑟 are used as 
input and the values of 𝑘𝑒𝑙 are used to cross check with our independent estimation of 𝑘𝑒𝑙 . The parameter indicated with ∗ represents similar
quantities with the parameters in the parentheses from Loladze and Elser [31].
Symbol Definition C-limit N-limit P-limit

𝜉 Mass ratio of total RNA to total protein 0.16 0.16 0.08

𝜇 steady-state growth rate (h−1) 0.09 0.09 0.09

Φ𝑅𝑢
Fraction of ribosomes not bound to mRNA 0.69 0.49 0.35

Φ𝑅𝑖
Fraction of ribosomes located at the first 10 codons of mRNA that may abort translation prematurely 0.03 0.03 0.03

Φ∗
𝑅𝑤

(𝜙𝑎) Fraction of ribosomes located after the first 10 codons of mRNA, which contributes to the protein production 0.29 0.47 0.62

𝑓𝑟 Fractional mass of rRNA among total RNA 0.64 0.59 0.51

𝑘𝑒𝑙 Elongation rate (aa/sec) 12.5 7.5 12.5

Data: Li and colleagues performed various experiments using batch and continuous (chemostat) cultures, where the experiments using batch 
cultures were mainly for supporting findings from the continuous cultures. For our purpose, we will use the three sets of data for the E. coli strain 
NCM3722 at growth rate of 0.09 hr−1 under three different nutrient limitations. In each experiment involving the wild type E. coli, Li and colleagues 
determine the mass ratio of total RNA to total protein and quantify rRNA and ribosome fractions. The elongation rate was also measured using lacZ 
induction; since the values for 𝑘𝑒𝑙 are from Fig. 6.a in the supplementary materials of Li et al., we approximate their values from that figure. The 
means of the processed experimental data are summarized in Table 2. Note that, in our parameter estimation, we will try to estimate the elongation 
rate 𝑘𝑒𝑙 directly and independently, so we will use their experimentally measured value to cross check. The values for 𝑓𝑟 are used as input for the 
model. For specific details of the experiments, please refer to the method section in Li et al. [12].

Our approach is similar to that of an Approximate Bayesian computation scheme, for additional details see [32]. Our goal is not to obtain a 
precise estimation of the posterior distribution, but rather to find admissible estimations that satisfy all biological measurements at the same time. 
Let 𝜃 = {𝑘𝑓 , 𝑘𝑟, 𝑘𝑒𝑙, 𝑘𝑝, 𝜉} and 𝑥 = {𝜇, Φ𝑅𝑢

, Φ𝑅𝑖
, Φ𝑅𝑤

}.

1. First, we created 5 × 105 samples 𝜃∗ from some uniform distributions 𝜋(𝜃).
2. Then, we simulated 5 × 105 data set 𝑥∗ corresponding to 𝜃∗.
3. Finally, we compared 𝑥∗ with the experimental data 𝑥0 from Li et al. [12]. In this case, we wanted each component of 𝑥∗ to be within 10% 
error of the corresponding element in 𝑥0. Thus, we accepted the proposed parameter sets if

𝑑(𝑥0𝑖 , 𝑥
∗
𝑖 ) ≤ 0.1 ∗ 𝑥0𝑖 , (20)

where 𝑖 = 1, 2, 3, 4 representing {𝜇, Φ𝑅 , Φ𝑅 , Φ𝑅 }, respectively, and 𝑑(⋅, ⋅) is a measure of the absolute distance between its arguments.

𝑢 𝑖 𝑤
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Fig. 2. An example to demonstrate that the unique positive steady state is globally asymptotically stable. (a) Phase-plane with trajectory – note that the positive 
steady state exists within the biological bounds of 𝑅𝑡 . (b) Effects of varying model parameters on the asymptotic behaviors of the model. While the stability does 
not change, the relative ratios between 𝑅∗

𝑤
and 𝑅∗

𝑖
can be altered by changing 𝑘𝑝 or 𝑘𝑒𝑙 . This is consistent with the steady state expression from Theorem 3, 

𝑅∗
𝑤
=𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
𝑅∗
𝑖
.

To determine the range of 𝜋(𝜃) in step 1, we started with the baseline estimates from Li et al. whenever possible. If the range of certain parameters 
was not available, we were able to obtain an initial estimate using the upper and lower bounds of other parameters in combination with experimental 
estimated values of x at steady state. We slowly expand the range, about 10–20% each time, within biologically reasonable values until the fitting 
found no acceptable values near the lower and upper bounds.

To test for the possibility that a completely different set of parameters might also satisfy the acceptable criteria, we also expanded the lower 
and upper bounds by many-fold (10 to 100) with the exception of parameters that were well-constrained biologically (e.g., 𝑘𝑒𝑙 should not be too 
close to 0 or much larger than 20, etc.). While more systematic approaches exist in literature, the stable convergence in our results demonstrates the 
sufficiency of our method in estimating the parameter distributions.

2.4. Global sensitivity analysis

To study the influence of parameters under each nutrient profile and in general, we calculate the partial rank correlation coefficients (PRCC) 
using 2000 samples obtained from the Latin hypercube Sampling. The details of the scheme can be found in the studies by [33, 34]. We vary the 
parameters within 1% range assuming uniform distribution. As a separate scenario, we also vary the parameters within a 25% range to study the 
impact of more uncertainty in the parameter values. The sensitivity and uncertainty analyses are carried out for each nutrient limitation using the 
estimated and fixed parameters.

3. Results

3.1. Mathematical analysis

Recall that in the study by Li and colleagues, the focus was to establish a mathematical model that can explain the experimental observations. 
Thus, certain assumptions were made during the model formulation; however, whether the dynamical behaviors of the model satisfy those assump-
tions was not considered. Furthermore, the existence of a unique globally asymptotically stable positive steady state was assumed and used as part 
of several key algebraic manipulations. For these reasons, we aimed to verify the basic biological assumptions and the asymptotic behaviors of the 
model.

Theorem 1 and 2 establish that each variable is always positive and bounded by the biological bounds (𝑀𝑡 and 𝑅𝑡). Theorem 3 shows that the 
system always exhibits a unique biologically relevant positive steady state. Finally, Theorem 4 shows the local asymptotic stability of the positive 
steady state, which is indeed globally asymptotically stable by Theorem 5. Fig. 2 shows an example that demonstrates the stability of the system. 
These stability results provide mathematical justification for the algebraic manipulations that were done in Li et al. [12]. The proofs are given in 
subsection A.1 of the Appendix A.

Theorem 1 (Positivity). The system is positive given positive initials.

Theorem 2 (Boundedness). Each compartment of ribosome is bounded by 𝑅𝑡 and each compartment of mRNA is bounded by 𝑀𝑡.

Remark 1. We note that the positivity and boundedness of the general model also hold similarly.

Theorem 3 (Positive equilibrium). With the biological bounds of 𝑅𝑡 and 𝑀𝑡, then there is a unique positive equilibrium at (𝑅∗
𝑖− , 𝑅∗

𝑤− ), where 𝑅∗
𝑖− =

1
(
−𝐵 −

√
𝐵2 − 4𝐴𝐶

)
and 𝑅∗

− =𝑁𝑎𝑎

𝑘𝑝 𝑅∗
− with 𝐴 = 𝑘𝑓

(
1 −𝑁𝑎𝑎

𝑘𝑝
)
, 𝐶 = 𝑘𝑓𝑀𝑡𝑅𝑡, and
𝐴 𝑤 𝑘𝑒𝑙 𝑖 𝑘𝑒𝑙
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Table 3. Parameter estimations for the purpose to provide consistency between the model 
prediction and experimental results. The tables show the mean and standard deviation 
of the parameter values. The median and 25–75% quartiles are shown in Fig. 4 with the 
corresponding fitting in Fig. 3.
Params C-lim C-sd N-lim N-sd P-lim P-sd

𝑘𝑓 1.76 × 10−5 4.14 × 10−6 2.51 × 10−5 5.15 × 10−6 1.54 × 10−4 3.39 × 10−5

𝑘𝑟 2.77 × 10−2 1.29 × 10−2 2.77 × 10−2 1.29 × 10−2 2.79 × 10−4 1.30 × 10−2

𝑘𝑒𝑙 1.42 × 101 1.97 × 100 9.28 × 100 1.20 × 100 1.62 × 101 1.90 × 100

𝑘𝑝 4.59 × 10−1 6.43 × 10−2 4.94 × 10−1 6.23 × 10−2 1.12 × 100 1.40 × 10−1

Fig. 3. Model vs. experiments – the red star is the estimated value from the experiments. The red line is the median of the parameter estimation. The box represents 
the 25%–75% quantiles. The variables used for fitting are for: (a) 𝜇, (b) Φ𝑅𝑢

, (c) Φ𝑅𝑖
, (d) Φ𝑅𝑤

, (e) 𝜉. The stars staying within the box means the simulation results 
agree well with the experimental results. The resulting parameter estimates are given in Table 3 and Fig. 4.

𝐵 = −
(
𝑘𝑓𝑀𝑡𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
+ 𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡

)
.

Theorem 4 (Local stability). The biological equilibrium at (𝑅∗
𝑖− , 𝑅∗

𝑤− ) is locally asymptotically stable.

Theorem 5 (Global stability). The biological equilibrium at (𝑅∗
𝑖− , 𝑅∗

𝑤− ) is globally asymptotically stable in the region bounded by

𝐶 = {𝑅𝑖,𝑅𝑤 > 0;𝑅𝑖 +𝑅𝑤 ≤𝑅𝑡;𝑅𝑖 ≤𝑀𝑡}.

3.2. Computational results

Recall that our parameter estimation process focuses on finding sets of parameters that allow the model to fully capture the experimental values 
within an acceptable error range. Table 3 gives the estimated range of the parameters (𝑘𝑟, 𝑘𝑓 , 𝑘𝑒𝑙 , 𝑘𝑝). Important simulation results are shown in 
Figs. 3 and 4. Multiple rounds of simulations confirmed that there were no significant differences in the convergence of the estimated parameters, 
see Figs. 7,8 in Appendix subsection A.2

Using the estimated parameters in each case, we simulate the dynamics of ribosomes under C-, N-, and P-limitation, see Fig. 5. For the simulation, 
we assume that initially all ribosomes are unbounded, meaning 𝑅𝑢(0) = 𝑅𝑡. We observe that in all three scenarios, the dynamics of 𝑅𝑢 and 𝑅𝑤 are 
monotonically decreasing and increasing, respectively. 𝑅𝑖 reaches an early peak within the first few hours (1.71 hr under C-limitation, 5.14 hr under 
N-limitation, and 2.13 hr under P-limitation) before settling into a steady state. The steady state of 𝑅𝑖 is reached (within 10%) at 24.75 hr under 
C-limitation, 41.61 hr under N-limitation, and 22.17 hr under P-limitation. Additionally, under C-limitation, the ribosomal dynamics take 24.75 hr 
and 37.59 hr to reach within 10% of the equilibrium for 𝑅𝑢 and 𝑅𝑤, respectively. Under N-limitation, the ribosomal dynamics take 41.61 hr and 
42.91 hr to reach within 10% of the equilibrium for 𝑅𝑢 and 𝑅𝑤, respectively. And under P-limitation, the ribosomal dynamics take 21.56 hr and 
17.40 hr to reach within 10% of the equilibrium for 𝑅𝑢 and 𝑅𝑤, respectively.

We note that, while it is non-optimal to use the same set of initial conditions for the comparisons in Fig. 5, our main goal was to compare the rate 
at which the ribosome profile settles to the steady states under each nutrient limitation. Thus, by starting with the same initial values, the combined 
effect of all parameters dictates the reaction rate, allowing us to make relative comparisons across treatment. We also tested the ribosomal dynamics 
under four different scenarios, while there are qualitative differences, the ribosomal dynamics under C- and P-limitation is still faster than under 
N-limitation, see Fig. 9 in Appendix subsection A.2.

Fig. 6 shows the global sensitivity results with respect to 𝜇 for large uncertainty in the parameters (10–200%). The result is with respect to 
the growth rate under C limitation; however, similar results are obtained for N- and P-limited conditions. We also carried out sensitivity analysis 
T. Phan, C. He, I. Loladze et al. Heliyon 8 (2022) e09820
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Fig. 4. Parameter estimation from data fitting in Fig. 3 – the red star is the estimated value from the experiments (for the elongation rate only). The red line is the 
median of the parameter estimation. The box represents the 25%–75% quantiles. The red crosses are the outliers. The estimated parameters are: (a) 𝑘𝑓 , (b) 𝑘𝑟, (c) 𝑘𝑝 , 
(d) 𝑘𝑒𝑙 .

Fig. 5. Ribosomes dynamics under different nutrient limitation conditions – simulated using the mean values from the parameter estimations presented in Table 3. 
The simulations are for: (a) C-limitation, (b) N-limitation, (c) P-limitation.

Fig. 6. Global sensitivity with respect to the growth rate 𝜇 given large uncertainty in parameter values. The results indicate that 𝑘𝑝 is the most sensitive parameter, 
while 𝑘𝑟 is the least sensitive parameter. Additionally, the elongation rate 𝑘𝑒𝑙 is among the most sensitive parameters, but fails behind 𝑘𝑝. We suspect this is an 
artifact of the model formulation where 𝑘𝑒𝑙 is assumed to be independent of 𝑘𝑝 .
9
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Table 4. Estimation of N:P ratio under each nutrient limitation condition. The 
values are converted from 𝜃 using atomic ratio of N:P (14.007u:30.97376u). The 
first three estimates (without ∗) used the experimentally reported values in Li 
et al. The second three estimates (with ∗) used the numerically fitted values.
Condition C-lim N-lim P-lim C-lim∗ N-lim∗ P-lim∗

N:P 9.76 9.68 12.57 10.16∗ 10.35∗ 13.80∗

when the uncertainty is small (1%). Under both assumptions about the uncertainty level, we observe that 𝜇 is sensitive to all parameters with the 
exception of 𝑘𝑟 (all results are statistically significant except for 𝑘𝑟). Moreover, we note that 𝑘𝑝 seems to be the most impactful parameter. The 
sensitivity analysis is consistent with what we observe in our parameter estimation, where the values and ranges of 𝑘𝑟 are similar across all three 
nutrient limitations, see Fig. 4. This makes sense from our generalized derivations, where there is a hidden relationship between 𝑘𝑟, 𝑘𝑝, and 𝑘𝑒𝑙 . This 
suggests that least one of the three parameters is not identifiable, a recurring problem in mathematical modeling of biological systems [35].

3.3. Connection to the growth rate hypothesis

The growth rate hypothesis relates the abundance of P-rich ribosomal RNA to differences in maximal growth rate. But when the maximal growth 
rate is similar under different nutrient limitation conditions, it is of interest to study the N:P ratio of cell under each condition. Switching from 
considering Protein:RNA to N:P helps to identify the stoichiometric mass balance aspect of growth-limitation and gives a first-principle mechanistic 
understanding as to how organisms alter their elemental allocation to optimize growth. It also gives us simple predictions that can be tested 
empirically, so we can work iteratively to better understand nutritional controls on organismal biology.

Using the framework established by Loladze and Elser [31], we shall estimate the N:P ratio of the E.coli in the three nutrient limitation conditions 
in the study by Li and colleagues. Let 𝜃 denote the N:P mass ratio of the system. Note that the N content within a cell can be approximated by (N 
content average over 20 amino acids) × (mass of all protein) + (N content average over 4 nucleotides) × (mass of all rRNA). And the P content 
within a cell can be approximated by (P content average over 4 nucleotides) × (mass of all rRNA). Recall that 𝑃𝑚 is the mass of all proteins inside 
the cells. Let 𝑟 be the mass of all rRNA; then the N:P mass ratio can be expressed as

𝜃 =
(
𝑛𝑎𝑃𝑚 + 𝑛𝑟𝑟

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

N content

∶
(
𝑝𝑟𝑟

)
⏟⏟⏟
P content

, (21)

where 𝑛𝑎 and 𝑛𝑝 represent the N content average over 20 amino acids and 4 nucleotides, respectively, while 𝑝𝑟 represents the P content average over 
4 nucleotides. Loladze and Elser estimated that 𝑛𝑎 is between 15% to 18%, 𝑛𝑟 is approximately 15%, and 𝑝𝑟 is about 9%, so we take 𝑛𝑎, 𝑛𝑟, and 𝑝𝑟 to 
be 17%, 15%, and 9%, respectively, for our calculations. By using a model that couples protein and rRNA synthesis, Loladze and Elser reformed the 
above expression into the equivalence:

𝜃 = 𝑛𝑎
𝑚𝑎

𝑚𝑟

√
𝑙𝑎𝜙𝑎𝜎𝑎

𝑙𝑟𝜙𝑟𝜎𝑟
+ 𝑛𝑟 ∶ 𝑝𝑟. (22)

The definitions of the parameters are recorded in Tables 1 and 2. Here, we note that 𝜙𝑎 and 𝜎𝑎 are the same as Φ𝑅𝑤
and 𝑘𝑒𝑙 in the Li et al. 

model. Furthermore, the 𝑚𝑎 and 𝑚𝑟 also represent similar quantities in both models. The bridge between the two models is the unique, globally, 
asymptotically stable equilibrium that allows us to pass the estimations from one model to the other. Thus, we can first estimate the values of Φ𝑤𝑘

and 𝑘𝑒𝑙 with the Li et al. model, then use them to estimate the N:P mass ratio in each limitation condition, which then gives us the actual N:P ratio 
via a conversion based on their atomic numbers. The results are presented in Table 4.

4. Discussion

The effects of nutrient conditions on cell growth have attracted significant modeling effort due to their wide implications, such as in the fields of 
ecology [36, 37, 38, 39, 40] and agriculture [41, 42, 43, 44, 45]. Furthermore, these effects introduce interesting dynamical properties extending 
the Lotka-Volterra framework [36, 37, 38, 46, 47]. While the overall aim is to reach a deeper understanding of biological systems by means of 
constructing a quantitative framework, the mathematical and biological properties of the model are often neglected. Without careful consideration, 
models may violate fundamental principles, such as mass conservation, or give unrealistic implications about the biological systems that they are 
meant to describe. In this study, we analyzed the model that Li et al. [12] formulated to describe their experimental data. Our main findings are 
summarized below.

A general framework of E. coli translation process.Mathematical models can be used to capture the essences of highly complex and nonlinear 
dynamic processes in a biological system. However, to do so, certain assumptions and generalization must be made. Thus, building upon the model 
formulation by Li and colleagues, we created a simple and generalizable mathematical framework for the translation process of cells such as E. coli. 
We stated all major assumptions related to the model formulation and pointed out possible limitations, especially with regards to the lack of the 
transcription process. Furthermore, when certain parameters are kept independent of one another, our theoretical and simulation results suggest a 
possible issue with parameter identification and interpretation.

Existence, uniqueness, and stability of the positive steady state. We analyzed the mathematical properties of the model developed by Li 
and colleagues to demonstrate that it satisfies the basic biological assumptions such as positive invariance and boundedness, specifically by the 
biological bounds established by the total number of ribosomes (𝑅𝑡) and the total number of mRNA (𝑀𝑡) from the model formulation. Furthermore, 
we confirm the existence of a unique positive steady state under all possible ranges of the parameter values, which is also globally asymptotically 
stable. This validates the algebraic manipulations based on the steady state values in Li et al. [12].

Model consistency with experimental results. Our results show that the model can produce simulation results that agree well with experi-
mental results under all three scenarios of C-, N-, and P-limitations. This supports the usefulness of the framework in aiding our understanding of 
the nonlinear relationships between growth, biochemical and stoichiometric under differential nutrient limitation. Furthermore, we were able to 
10
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estimate the values of the effective rate constant for unbound ribosomes and free mRNA to initiate translation (𝑘𝑓 ) and the rate constant for initi-
ating ribosomes to abort translation (𝑘𝑟), which are previously unknown due to grouping into the saturation parameter 𝑆. While 𝑘𝑟 stays relatively 
constant across three nutrient regimes (perhaps due to identifiability issue), we observe significant variation in the estimated values of 𝑘𝑓 between 
P-limited vs. C- and N-limited environments. Even when transcription and energetics are not explicitly incorporated, the model is able to capture 
the observed experimental differences under three different nutrient profiles.

Under P-limitation, the high fraction of working ribosomes and fast elongation rate are not sufficient to account for the lack of total 
ribosomes. Assuming the rate that unbound ribosomes and free mRNA initiate translation, 𝑘𝑓 , is similar across three nutrient conditions, we were 
unable to obtain simulations consistent with the experimental results in Li et al. Instead, by letting 𝑘𝑓 vary within an extended range (Table 1), we 
were able to simulate the experimental results. Specifically, we find that, under P-limitation, 𝑘𝑓 is several times larger than under C- or N-limitation, 
see Table 3. This implies that, other than having a higher fraction of working ribosomes and fast elongation rate, P-limited cells may also require 
a fast transition rate from initiating to working ribosomes to achieve the optimal growth rate. Additionally, our estimate of 𝑘𝑝 (transition rate 
from initiating ribosomes to working ribosomes) is also significantly higher under P-limitation, while remaining relatively similar under C- and 
N-limitation, see Fig. 4(c). These estimations suggest that, in order to overcome the lack of total ribosomes, multiple processes must work more 
rapidly. We suspect that this finding is mainly a consequence of lower value of 𝜉 under P-limitation (see Table 2), which leads to a much lower 
amount of total ribosomes. For instance, a possible explanatory hypothesis is that suppose a similar amount of energy is reserved for translation 
across three different nutrient limitations. When there are less working components, it may appear that each component is working faster or more 
efficient due to a higher per capita energy allocation.

The transition rate from initiating to working ribosomes is the most important factor regardless of which nutrient is limiting. The 
results of our sensitivity analysis demonstrate that all parameters are sensitive with respect to the growth rate, with the most sensitive parameter 
being 𝑘𝑝 and the least sensitive parameter being 𝑘𝑟. This partially explains why there is not much difference between the estimated values of 𝑘𝑟
across nutrient profiles. On the other hand, as pointed out in the model formulation, parameter unidentifiability maybe an issue for 𝑘𝑟, 𝑘𝑝, and 
𝑘𝑒𝑙 . Moreover, the difference in sensitivity becomes clearer under higher uncertainty, but the overall sensitivity order remains the same. This is 
surprising since the elongation rate, which directly impacts the growth rate, is intuitively thought to be the most important parameter that governs 
the process. A possible explanation is that the impact of 𝑘𝑝 is amplified artificially due to the assumption of independence between 𝑘𝑝 and 𝑘𝑒𝑙 . In 
our general formulation, since 𝑘𝑝 is proportional to 𝑘𝑒𝑙 , the sensitivity of 𝑘𝑒𝑙 should increase. Alternatively, if we consider translation as a transport 
problem (e.g., cars moving along a single highway), then 𝑘𝑝 represents the high traffic point (or the bottle neck) of the system. Hence, 𝑘𝑝 controls 
the flow of the system. This effect is further amplified by the assumption that there is no aborting events after initiation. A simple way to address 
this is to simply allow 𝑘𝑝 to be a function of 𝑘𝑒𝑙 . In other words, we can replace 𝑘𝑝 with a function of 𝑘𝑒𝑙 and a predetermined length of the initiating 
region on the mRNA strand. In addition, we may consider having a low but equal aborting rate after initiation. By doing so, we expect 𝑘𝑒𝑙 to be the 
most significant parameter in the general framework.

Ribosomal dynamics under C- and P-limitation occur on a faster time scale than under of N-limitation. Nitrogen contributes in many 
aspects of cell growth, such as in the production of proteins, DNA, and RNA. Using the values obtained from our estimations, we simulated the 
ribosomal dynamics under C-, N-, and P-limitation, see Fig. 5. We found that different types of nutrient limitation not only require cells to use 
different coping mechanisms, but also change the time scale of cell response. Under C- and P-limitation, we observed ribosomes reaching close to 
equilibrium (within 10%) significantly faster than under N-limitation for all three factions of the ribosomes. This may be due to the slow elongation 
rate under N-limitation, but other mechanisms may also play a role. We speculate that our observation is due to the involvement of 𝑁 in forming 
macromolecules that are necessary in cell growth. Alternatively, since carbon is also present in these macromolecules in addition to energy pathways, 
and ATP concentrations in N-limited organisms are also high, our observation may also be an effect of energy limitation in the C- and P-limited 
treatments in that they reach equilibrium faster due to coupled energy and elemental limitation for ribosome synthesis. Unfortunately, we would 
need a higher resolution model, particularly with transcription, to study this hypothesis in more detail.

Connection to the growth rate hypothesis. We connected the Li et al. model with the framework by Loladze and Elser [31] to estimate the 
N:P ratio under the three nutrient limitation conditions. This is possible because both models share similar underlying processes and are intrinsically 
globally stable. Our results (Table 4) show consistent findings between experimental estimates and numerical estimates of the N:P ratios. We 
observed that the N:P ratios under P-limited are higher than under N-limited conditions at the same growth rate, which is expected. However, the 
Li et al. model does not contain the description of the transcription process, so we used the estimates from the study by Loladze and Elser for the 
transcription parameters (fraction of actively transcribing rRNA, 𝜙𝑟, and the transcription rate, 𝜎𝑟). This may explain the similar N:P ratios under 
C-limited and N-limited conditions. Furthermore, 𝜎𝑟 maybe smaller under P-limited condition, which would lead to a higher N:P ratio.

Comparison of estimated parameters with literature

1. The translation abortion rate (𝑘𝑟): previous studies suggest that it is possible for ribosomes to dissociate at equal rates at every codon (even 
after the initiating phase). By using an exponential decay model, the drop-off rate was estimated to be on the order of 10−4 to 10−2 per elongation 
step in stress-free environments [21, 22]. Our estimated range for 𝑘𝑟 falls within this range and further shows that aborting events occur at a 
relatively constant rate for similar growth rates. However, it is difficult to accurately isolate the aborting rate using a simple exponential decay 
model because the exponential drop-off observed in the ribosome density along the mRNA is due to multiple factors. Thus, a single-parameter 
model cannot distinguish them. If data permit, a direct extension to the model would be to examine the possibility of aborting events taking 
place after initiation.

2. The translation elongation rate (𝑘𝑒𝑙): our estimated values for the translation elongation rates agree with the experimentally derived val-
ues from the original study by Li and colleagues. Furthermore, our estimation also falls within existing estimated range for elongation rate 
6–20 aa/sec [20, 48, 49, 50]. When comparing to similar experimental settings, our estimates also agree with the estimates by Iyer et al. for C 
and N starvation E. coli of about 12.9 aa/sec [13]. Additionally, the hopping rate is often set around 10 aa/sec in TASEP models. [19].

3. The translation initiation rate (𝑘𝑓 ): previous studies using the TASEP modeling framework and experimental data for E. coli growth estimated 
the ribosome-dependent initiation rate to be around 0.09–0.15 per second [17, 19]. This value is equivalent to 𝑘𝑓𝑅𝑢 in our model, which works 
out to be approximately 0.11, 0.097, 0.19 per second under C-, N-, P-limited conditions, respectively, at equilibrium. This means our estimates 
for the initiation rates are within range of previous estimates.
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4. The transition rate into working ribosomes (𝑘𝑝): is a unique parameter specific to our model, so it is difficult to find comparable estimates. 
On the other hand, we note that it is likely to depend on the length of the initiating of mRNA strand, the elongation rate, and the aborting rate. 
In future iteration, it is advisable to replace 𝑘𝑝 with a function of the elongation rate to eliminate this uncertainty.

There is significant value in the ability to predict cell growth based mainly on information about nutrient supply conditions. Being able to 
do so would allow us to naturally link supply to demand to biological function. For example, if we can make predictions about what the C:N:P 
ratios should be across different nutrient limitation treatments for a diverse group of organisms accurately, we can theoretically determine the 
growth rates off of elemental measurements of any animals out of the field. As there is currently no reliable way to carry out such task, it is 
difficult to extend these fundamental relationships governing growth on organismal scales to population and ecosystem-level dynamics. To this end, 
mathematical models are useful tools to facilitate this possibility. However, to do so, models need to be able to capture the expected qualitative 
behaviors and satisfy the standard biological constraints of the system. In this study, we provide a generalized framework for the translation process 
and study the mathematical and biological properties of the model. For simplicity, our modeling approach must make certain assumptions such 
as the independence between the translation and transcription process. Furthermore, transcription and translation processes are energy intensive, 
linked by the molecule Adenosine Triphosphate (ATP). Cells require energy to synthesize protein and DNA, which occur when energy is available 
via ATP reactions that themselves use phosphorus [51]. Thus, direct extension of the model may include explicit incorporation of the nutrient supply 
conditions and the coupling of transcription and translation processes with energy [52].

With regards to an extension to incorporate energy, the study by Scott et al. [4] inspires a simple possibility. Since cells must partition their 
energy usages into multiple processes, we can consider several compartments, each related to a major process such as transcription and translation 
elongation rates. For example, a compartment 𝐴𝑝(𝑡) can be used to keep track of the amount of energy used for translation. Then, 𝐴𝑝(𝑡)must influence 
the value of 𝑘𝑒𝑙(⋅), so we can introduce a new variable for the translation elongation rate that is a function of 𝑘𝑒𝑙 and 𝐴𝑝, perhaps 𝐾𝑒𝑙(𝑘𝑒𝑙, 𝐴𝑝). At 
equilibrium, we can argue that the allocation strategy is optimal, so an equilibrium must be reached, which should also be proven mathematically. 
This allows for a simplification of all the energy compartments into constants that represent their relative fraction of the total energy at equilibrium. 
Then the effect of the energy allocation strategy can be studied by estimating the values of these constants using energy data. If the optimal condition 
is loosened for generality, we would instead arrive at a much more complex problem of resource allocation, where cells are able to adjust their 
resource allocation continuously with respect to the differential changes in the environment for optimal growth. On the other hand, such system 
may be able to accurately reveal the different strategies that cells use in response to different growth condition.

Mathematically, certain interaction forms may provide interesting nonlinear dynamical behaviors for the model that contains biological in-
sights [53]. For example, a more biologically realistic functional form of 𝑓 (𝑅𝑢, 𝑀𝑓 ) may result in multiple equilibria within the biologically bounded 
region, or none at all. This may have significant implications for the biological system and help deepen our qualitative and quantitative understand-
ing of the growth process.
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Appendix A

A.1. Mathematical analysis

Theorem 1 (Positivity). The system is positive given positive initials.

Proof. Grouping terms and note that 𝑅𝑡 =𝑅𝑤 +𝑅𝑖 +𝑅𝑢 so 𝑅𝑡 > 𝑅𝑤:

𝑑𝑅𝑖

𝑑𝑡
= 𝑘𝑓𝑀𝑡(𝑅𝑡 −𝑅𝑤) + 𝑘𝑓𝑅

2
𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

− (𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡 + 𝑘𝑓𝑅𝑤)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

𝑅𝑖, (23)

𝑑𝑅𝑤

𝑑𝑡
= 𝑘𝑝𝑅𝑖 −

𝑘𝑒𝑙

𝑁𝑎𝑎

𝑅𝑤. (24)

Since the negative terms for the rate variables are proportional to the variables, positivity is guaranteed with positive initials. □

Theorem 2 (Boundedness). The system was constructed under the assumption that 𝑅𝑢(𝑡) +𝑅𝑖(𝑡) +𝑅𝑤(𝑡) =𝑅𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑀𝑓 (𝑡) +𝑀𝑏(𝑡) =𝑀𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

for all 𝑡 ≥ 0. We will verify that

1.
𝑑𝑅𝑡

𝑑𝑡
≡ 0,

2.
𝑑𝑀𝑡

𝑑𝑡
≡ 0.

Combine with positivity and bounded initials, this shows each state is bounded above by either 𝑅𝑡 or 𝑀𝑡.

Proof. Separating the two systems for ribosomes and mRNA.
Ribosomes: The system for ribosomes alone takes the form:

𝑑𝑅𝑢

𝑑𝑡
= 𝑘𝑟𝑅𝑖 +

𝑘𝑒𝑙

𝑁𝑎𝑎

𝑅𝑤 − 𝑘𝑓𝑀𝑓𝑅𝑢, (25)

𝑑𝑅𝑖

𝑑𝑡
= 𝑘𝑓𝑀𝑓𝑅𝑢 − 𝑘𝑟𝑅𝑖 − 𝑘𝑝𝑅𝑖, (26)

𝑑𝑅𝑤

𝑑𝑡
= 𝑘𝑝𝑅𝑖 −

𝑘𝑒𝑙

𝑁𝑎𝑎

𝑅𝑤. (27)

Adding together,
𝑑𝑅𝑡

𝑑𝑡
=
𝑑𝑅𝑢

𝑑𝑡
+
𝑑𝑅𝑖

𝑑𝑡
+
𝑑𝑅𝑤

𝑑𝑡
= 0. (28)

mRNA: The system for mRNA alone takes the form:

𝑑𝑀𝑓

𝑑𝑡
= 𝑘𝑝𝑅𝑖 + 𝑘𝑟𝑅𝑖 − 𝑘𝑓𝑀𝑓𝑅𝑢, (29)

𝑑𝑀𝑏

𝑑𝑡
= 𝑘𝑓𝑀𝑓𝑅𝑢 − 𝑘𝑟𝑅𝑖 − 𝑘𝑝𝑅𝑖. (30)

Adding together,

𝑑𝑀𝑡

𝑑𝑡
=
𝑑𝑀𝑓

𝑑𝑡
+
𝑑𝑀𝑏

𝑑𝑡
= 0. □ (31)

Theorem 3 (Positive equilibrium). With the biological bounds of 𝑅𝑡 and 𝑀𝑡, then there is a unique positive equilibrium at (𝑅∗
𝑖− , 𝑅∗

𝑤− ), where 𝑅∗
𝑖− =

1
𝐴

(
−𝐵 −

√
𝐵2 − 4𝐴𝐶

)
and 𝑅∗

𝑤− =𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
𝑅∗
𝑖− .

Proof. Recall the system:
𝑑𝑅𝑖

𝑑𝑡
= 𝑘𝑓𝑀𝑡𝑅𝑡 − 𝑘𝑓𝑀𝑡𝑅𝑤 − (𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡)𝑅𝑖 + 𝑘𝑓𝑅

2
𝑖 − 𝑘𝑓𝑅𝑖𝑅𝑤, (32)

𝑑𝑅𝑤

𝑑𝑡
= 𝑘𝑝𝑅𝑖 −

𝑘𝑒𝑙

𝑁𝑎𝑎

𝑅𝑤. (33)

Setting 𝑅𝑤

𝑑𝑡
= 0 and solving for 𝑅∗

𝑤,

𝑅∗
𝑤 =𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
𝑅∗
𝑖 . (34)

Setting 𝑑𝑅𝑖

𝑑𝑡
= 0, replacing 𝑅∗

𝑤 =𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
𝑅∗
𝑖
and organizing terms

𝑘𝑓

(
1 −𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(𝑅∗
𝑖 )

2 −
(
𝑘𝑓𝑀𝑡𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
+ 𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑅∗
𝑖 + 𝑘𝑓𝑀𝑡𝑅𝑡

⏟⏞⏟⏞⏟
𝐶

= 0 (35)
𝐴 𝐵

13
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From the quadratic formula,

𝑅∗
𝑖± = 1

2𝐴

(
−𝐵 ±

√
𝐵2 − 4𝐴𝐶

)
. (36)

Observe that

𝐵2 − 4𝐴𝐶 =
(
𝑘𝑓𝑀𝑡𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
+ 𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡

)2
− 4

(
1 −𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙

)
𝑘2
𝑓
𝑀𝑡𝑅𝑡, (37)

>

(
𝑘𝑓𝑀𝑡𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
+ 𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡

)2
− 4𝑘2

𝑓
𝑀𝑡𝑅𝑡, (38)

= 2𝑘2
𝑓
𝑀𝑡𝑅𝑡 + (𝑘𝑓𝑀𝑡)2 + (𝑘𝑓𝑅𝑡)2 + ...

⏟⏟⏟
>0

−4𝑘2
𝑓
𝑀𝑡𝑅𝑡, (39)

= (𝑘𝑓𝑀𝑡 − 𝑘𝑓𝑅𝑡)2 + ...
⏟⏟⏟

>0

> 0. (40)

This means there exists two real roots, or (𝑅∗
𝑖− , 𝑅∗

𝑤− ) and (𝑅∗
𝑖+
, 𝑅∗

𝑤+ ).

If 1 −𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
< 0 (or 𝐴 < 0), then 

√
𝐵2 − 4𝐴𝐶 > |𝐵|, so 𝑅∗

𝑖
is only positive if 𝑅∗

𝑖
=𝑅∗

𝑖− . Otherwise if 1 −𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
> 0 (or 𝐴 > 0), then both roots are 

positive. However, we see that 𝑅∗
𝑖+
=𝑅𝑡∕(1 −𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
) + positive terms >𝑅𝑡. Thus, only 𝑅∗

𝑖
=𝑅∗

𝑖− is biologically realistic. Furthermore, if 1 −𝑁𝑎𝑎

𝑘𝑝

𝑘𝑒𝑙
= 0

(or 𝐴 = 0), then 𝑅∗
𝑖
= −𝐶∕𝐵 > 0. □

Theorem 4 (Local stability). The biological equilibrium at (𝑅∗
𝑖− , 𝑅∗

𝑤− ) is locally asymptotically stable (without additional conditions).

Proof. The Jacobian takes the form:

𝐽 (𝑅∗
𝑖 ,𝑅

∗
𝑤) =

(
−(𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡) + 2𝑘𝑓𝑅∗

𝑖
− 𝑘𝑓𝑅

∗
𝑤 −𝑘𝑓𝑀𝑡 − 𝑘𝑓𝑅

∗
𝑖

𝑘𝑝 − 𝑘𝑒𝑙
𝑁𝑎𝑎

)
. (41)

Recall that 𝑀𝑡 =𝑀𝑓 +𝑀𝑏 =𝑀𝑓 +𝑅𝑖 and 𝑅𝑡 =𝑅𝑢+𝑅𝑖+𝑅𝑤, so 𝑅𝑖 <𝑀𝑡 and 𝑅𝑖 < 𝑅𝑡. Now, consider the trace and determinant of the Jacobian matrix.

𝑇 = 2𝑘𝑓𝑅∗
𝑖 − 𝑘𝑓𝑅

∗
𝑤 −

𝑘𝑒𝑙

𝑁𝑎𝑎

− (𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡) (42)

= −𝑘𝑓 (𝑀𝑡 +𝑅𝑡 − 2𝑅∗
𝑖 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

−𝑘𝑓𝑅∗
𝑤 − (𝑘𝑟 + 𝑘𝑝) −

𝑘𝑒𝑙

𝑁𝑎𝑎

< 0. (43)

𝐷 =
𝑘𝑒𝑙

𝑁𝑎𝑎

(
(𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡) + 𝑘𝑓𝑅

∗
𝑤 − 2𝑘𝑓𝑅∗

𝑖

)
+ 𝑘𝑝(𝑘𝑓𝑀𝑡 + 𝑘𝑓𝑅

∗
𝑖 ) (44)

=
𝑘𝑒𝑙

𝑁𝑎𝑎

⎛⎜⎜⎜⎝(𝑘𝑟 + 𝑘𝑝) + 𝑘𝑓𝑅
∗
𝑤 + 𝑘𝑓 (𝑀𝑡 +𝑅𝑡 − 2𝑅∗

𝑖 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

⎞⎟⎟⎟⎠+ 𝑘𝑝(𝑘𝑓𝑀𝑡 + 𝑘𝑓𝑅
∗
𝑖 ) > 0. (45)

Thus, (𝑅∗
𝑖
, 𝑅∗

𝑤) is locally asymptotically stable. □

Theorem 5 (Global stability). The biological equilibrium at (𝑅∗
𝑖− , 𝑅∗

𝑤− ) is globally asymptotically stable in the region bounded by

𝐶 = {𝑅𝑖,𝑅𝑤 > 0;𝑅𝑖 +𝑅𝑤 ≤𝑅𝑡;𝑅𝑖 ≤𝑀𝑡}.

Proof. First, we use Bendixson-Dulac criterion to show that there is no non-trivial orbit in the biological region bounded by 𝐶 . Let 𝜙(𝑅𝑖, 𝑅𝑤) =
1
𝑅𝑖
. 

Consider

Ω= 𝜕

𝜕𝑅𝑖

[
1
𝑅𝑖

(
𝑘𝑓𝑀𝑡𝑅𝑡 − 𝑘𝑓𝑀𝑡𝑅𝑤 − (𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡)𝑅𝑖 + 𝑘𝑓𝑅

2
𝑖 − 𝑘𝑓𝑅𝑖𝑅𝑤

)]
+ 𝜕

𝜕𝑅𝑤

[
1
𝑅𝑖

(
𝑘𝑝𝑅𝑖 −

𝑘𝑒𝑙

𝑁𝑎𝑎

𝑅𝑤

)]
(46)

= 𝜕

𝜕𝑅𝑖

[
𝑘𝑓𝑀𝑡𝑅𝑡

𝑅𝑖

−
𝑘𝑓𝑀𝑡𝑅𝑤

𝑅𝑖

− (𝑘𝑓𝑀𝑡 + 𝑘𝑟 + 𝑘𝑝 + 𝑘𝑓𝑅𝑡) + 𝑘𝑓𝑅𝑖 − 𝑘𝑓𝑅𝑤

]
+ 𝜕

𝜕𝑅𝑤

[
𝑘𝑝 −

𝑘𝑒𝑙

𝑁𝑎𝑎

𝑅𝑤

𝑅𝑖

]
(47)

=

(
−
𝑘𝑓𝑀𝑡𝑅𝑡

𝑅2
𝑖

+
𝑘𝑓𝑀𝑡𝑅𝑤

𝑅2
𝑖

+ 𝑘𝑓

)
−

𝑘𝑒𝑙

𝑁𝑎𝑎

1
𝑅𝑖

(48)

=
𝑘𝑓

𝑅2
𝑖

[(
𝑀𝑡𝑅𝑤 −𝑀𝑡𝑅𝑡 +𝑅2

𝑖

)
−
𝑅𝑖

𝑘𝑓

𝑘𝑒𝑙

𝑁𝑎𝑎

]
. (49)

Now, by the model assumption, 𝑅𝑖 =𝑀𝑏. Furthermore, the boundedness and positivity of the system in 𝐶 imply 𝑀𝑏 <𝑀𝑡 and 𝑅𝑖 +𝑅𝑤 < 𝑅𝑡, so we 
can make the following comparison
14
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Fig. 7. Testing the simulation convergence in Fig. 3 under four different scenarios: (a) 𝑅𝑢 = 0.9𝑅𝑡, 𝑅𝑖 = 0.05𝑅𝑡, 𝑅𝑤 = 0.05𝑅𝑡 ; (b) 𝑅𝑢 = 0.8𝑅𝑡, 𝑅𝑖 = 0.10𝑅𝑡, 𝑅𝑤 = 0.10𝑅𝑡 ; 
(c) 𝑅𝑢 = 0, 𝑅𝑖 =𝑅𝑡, 𝑅𝑤 = 0.0; (d) 𝑅𝑢 = 0, 𝑅𝑖 = 0, 𝑅𝑤 =𝑅𝑡. The convergence results are stable and agree with the result in Fig. 3 in all cases.

Fig. 8. Testing the simulation convergence in Fig. 4 under four different scenarios: (a) 𝑅𝑢 = 0.9𝑅𝑡, 𝑅𝑖 = 0.05𝑅𝑡, 𝑅𝑤 = 0.05𝑅𝑡 ; (b) 𝑅𝑢 = 0.8𝑅𝑡, 𝑅𝑖 = 0.10𝑅𝑡, 𝑅𝑤 = 0.10𝑅𝑡 ; 
(c) 𝑅𝑢 = 0, 𝑅𝑖 =𝑅𝑡, 𝑅𝑤 = 0.0; (d) 𝑅𝑢 = 0, 𝑅𝑖 = 0, 𝑅𝑤 =𝑅𝑡. The convergence results are stable and agree with the result in Fig. 4 in all cases.

Ω=
𝑘𝑓

𝑅2
𝑖

[(
𝑀𝑡𝑅𝑤 −𝑀𝑡𝑅𝑡 +𝑀𝑏𝑅𝑖

)
−
𝑅𝑖

𝑘𝑓

𝑘𝑒𝑙

𝑁𝑎𝑎

]
(50)

<
𝑘𝑓

𝑅2

[(
𝑀𝑡𝑅𝑤 −𝑀𝑡𝑅𝑡 +𝑀𝑡𝑅𝑖

)
−
𝑅𝑖

𝑘

𝑘𝑒𝑙

𝑁

]
(51)
𝑖 𝑓 𝑎𝑎
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Fig. 9. Testing the ribosomal dynamics, as compared to Fig. 5, with four different initial conditions: (a) 𝑅𝑢 = 0.9𝑅𝑡, 𝑅𝑖 = 0.05𝑅𝑡, 𝑅𝑤 = 0.05𝑅𝑡 ; (b) 𝑅𝑢 = 0.8𝑅𝑡, 𝑅𝑖 =
0.10𝑅𝑡, 𝑅𝑤 = 0.10𝑅𝑡 ; (c) 𝑅𝑢 = 0, 𝑅𝑖 =𝑅𝑡, 𝑅𝑤 = 0.0; (d) 𝑅𝑢 = 0, 𝑅𝑖 = 0, 𝑅𝑤 =𝑅𝑡 . While there are qualitative differences in the dynamical behaviors (especially in the third 
and fourth scenarios), under C- and P-limitation, the convergence rate is faster compared to the situation under N-limitation.

<
𝑘𝑓

𝑅2
𝑖

⎡⎢⎢⎢⎣𝑀𝑡

(
𝑅𝑤 +𝑅𝑖 −𝑅𝑡

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

<0

−
𝑅𝑖

𝑘𝑓

𝑘𝑒𝑙

𝑁𝑎𝑎

⎤⎥⎥⎥⎦ (52)

< 0. (53)

Thus, the system does not have a periodic orbit. Therefore, the unique positive steady state is globally asymptotically stable by Poincaré-Bendixson 
theorem. □

A.2. Convergence and sensitivity analyses

In order to test the convergence result and the sensitivity of the ribosomal dynamics under different initial conditions, we carry out simulations 
under four different scenarios: (1) 𝑅𝑢 = 0.9𝑅𝑡, 𝑅𝑖 = 0.05𝑅𝑡, 𝑅𝑤 = 0.05𝑅𝑡; (2) 𝑅𝑢 = 0.8𝑅𝑡, 𝑅𝑖 = 0.10𝑅𝑡, 𝑅𝑤 = 0.10𝑅𝑡; (3) 𝑅𝑢 = 0, 𝑅𝑖 = 𝑅𝑡, 𝑅𝑤 = 0.0; (4) 
𝑅𝑢 = 0, 𝑅𝑖 = 0, 𝑅𝑤 =𝑅𝑡. The results are presented in Figs. 7–9, which agree with our results in Figs. 3–5.
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