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Abstract—In this paper, a new voltage stability constrained
optimal power flow (VSC-OPF) model is developed using semi-
definite programming (SDP), which optimally calculates the
cost of increasing stability margins. The main advantages of
the proposed method are, it a) incorporates voltage stability
constraints in a convex optimal power flow (OPF) formulation,
b) always finds the optimal solution in comparison with probable
local optimum solutions while using other non-convex methods,
and c) can compare the cost of increasing loading margin using
convex relaxation. The effectiveness of this method is evaluated
using the IEEE 14-bus and IEEE 118-bus test systems with
various network constraints. The results show that the proposed
convex formulation find the optimal operating schedule and
critical loading point. The effect of incorporating voltage stability
margin can also be examined using the proposed method.

Index Terms—OPF, Transmission System, Convex Optimiza-
tion, Voltage Stability, Semi-Definite Programming (SDP).

I. NOMENCLATURE

[ i, ] [[ bus index |
[ Ng [ set of generation buses |
[ x [[ state variables in OPF |
[ P,Q,S [ active, reactive and apparent power |
[ g(),h() [ equality and inequality constraints of OPF ]
[ ~y [[ set of variable i.e. active or reactive power |
[ 7() [[ current and maximum loading point function |
[ AT [[ current and maximum loading points |
[ w1, Wo [[ coefficients of cost and loading margin |
[ V3, 0; “ voltage magnitude and voltage angle of bus % ]
[ W, Wwm [[ 2n X 2n positive semidefinite matrices |
[ ci, C; [[ cost function and cost coefficient at bus % |
[ dmazx [[ maximum angle deviation ]
[ AXmin [[ minimum loading distance |
[ Pp,.Qp, [[ active and reactive load connected at bus i |
[ Y;,Yi; [[ System admittance matrices ]
[ Jik “ Coefficient matrices ]
l K 7"], Lij H Coefficient matrices for angle relaxation ‘
[ Tr [[ Matrix trace |
[ ai, al™, @;, a* ][ min & max limits of variables |

II. INTRODUCTION

N the age of large, renewable energy integrated dynamic
power system, the transmission systems are changing fre-

quently with added generation and demand. These radical
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changes pose a severe stress on system stability. As a result,
there is a need for fast optimal power flow (OPF) methods
to calculate the optimal dispatch for generators [1]. Various
methods have been introduced to solve the OPF problem
since 1930’s when it started basically for economic dispatch
[2]. OPF problem is non-convex because of the non-linear
power flow equations. The OPF problem is also NP hard
[3], because of which it is difficult to reach an exact global
solution. Main methods that have been studied include Linear
Programming, Non-linear Programming, Quadratic Program-
ming, Interior point methods, and methods using Artificial
Intelligence [4]. These days modern power grid has become
dynamic and heavily stressed because of high power utilization
by the consumer and variable generators. This needs a special
attention on system voltage stability while solving OPF. Thus,
optimal power flow methods are formulated having voltage
stability as a constraint or by including stability margin in the
objective function [5]. Some of the earlier methods reported
in the literature introduces an index called voltage collapse
proximity indicator and include it as a constraint or in the
objective function [6], [7].

Wide range of study for finding more accurate and fast
method for OPF has been reported in the literature [8].
Recently the research in the field of convexification of OPF
problem is quite notable [9], [10]. One of the most popular
methods is DC-OPF, where the power flow equations are
linearized by imposing few approximations for voltage mag-
nitudes, angles and line impedance. For radial system, second
order conic programming (SOCP) in branch flow model is
another effective method and for meshed network system
semi-definite programming (SDP) relaxation [11] using bus
injection model is most accurate [12] [13]. In [14], the SDP
relaxation is analyzed and used to formulate the dual of an
equivalent of OPF problem. For the distribution networks,
SOCP method is used to convexify the problem constraints
which enables the controller to achieve global solution for a
faster computation time [15]. This method is implemented on
a more detailed system incorporating neighboring Distribution
Company (DISCO), distributed generators, wind generator and
energy storage systems [16]. Ref. [17], [18] and [19] has
discussed convexification methods of OPF problem for trans-
mission system using SDP relaxation by incorporating convex-
ification and VSC-OPF. These studies analyze the methods on
the basis of stability margin index or total operation cost.

In this paper a new convex method is proposed that focuses
on the stability margin index as well as the node voltage
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angles to analyze the system stability and optimality. In the
problem formulation, the voltage angles have been relaxed to
convexify the constraints. Then after convergence, the angles
are recovered implementing the angle recovery algorithm.
Further, analyzing the node voltage magnitudes, angles, and
the total cost, the optimal solution is derived. The proposed
method has the following advantages:
o The method is convex which overcome the local solution
problem of the non-convex optimal power flow methods.
o Along with voltage magnitudes and total cost, voltage
angles are also recovered inorder to obtain the global
solution of the power system.
o This method is scalable and works seamlessly for larger
system with different types of generators.
The rest of the paper is organized as follows. In section
III, general formulation of the proposed method described.
It includes formulation of VSC-OPF in III-A, convexification
algorithm in III-B and the angle recovery method in III-C. In
Section IV implementation results are discussed. Conclusions
and future work is included in section V.

III. PROBLEM FORMULATION
A. Voltage Security Constraint OPF

The objective of voltage stability constrained OPF is to
dispatch the optimal operating point and also at the same
time maximize the stability margin. The generalized VSC-OPF
problem can be formulated as [20].

Min Zzi (z, A, A", 1) (D

h(z, i, Ai) =0

h(z™, 7" A") =0
st.qa; <g(z,\vi) <a;

a" < g(a™ A" ) <@

bi S f()‘v )‘m) S Bz

The functions h(.) and g(.) represents the equality and in-
equality constraints of the problem which are bounded by
the lower and upper limits of the dependent and independent
variables. Here, x € N denotes the dependent variable of
the system which is the node voltage magnitude. Vector
v € N¢ represents the set of independent variables of the
system, which is active and reactive power generation at the
generator buses. The A and A stands for the parameter
loading factor. The proposed formulation includes both cost
minimization and maximizing the voltage stability margin as
the objective function. Two weighting factors w; and ws have
been introduced to further optimize the contribution of each
objective for the global solution. Based on this the objective
function in (1) can be reformulated in convex form as follows

Min w Y {Ci, (Pg,)’” )
1€Ng
+ Cil (PGz) + Cio} — W2 (/\m - )‘)

where wy; +we =1

B. Convexification Procedure

The convexification procedure of the VSC-OPF problem
using the semi-definite programming is as follows. First,
two vectors of voltages are considered; the current operating
voltage vector and maximum loading point of the system.

Min wy Y {Cy, (Tr{Y;W} + APp,)* 3)
1€ENg

+ Cil (T’I"{)/ZW} + )\PDl) + Czo} + wo ()\m — )\)

Pmin < Tr{Y;W} + A\Pp, < P/e®

Pmin < Tr{Y;W™} + \mPp < pmaz
Q' < Tr{Y;W}+A\Qp, < Q"

Qi < Tr{Y;W™} + AmQp, < Qpor
(Vmm)? < Tr{Jiw} < (Vmes)?

(Vym)® < Tr{Jiwm} < (Vmes)®
Tr{Y;;W} < Ppas

Tr{Yy;Wm}t < Pree

Tr{Ji;W} < A (Vig)?

Tr{Ji; W™} < A (Viy)?

w1 +wy =1

ax (A™ = X) > Admin

tan (5maz) X T'I"{KZ]W} — TT‘{L”W} >0
tan (Smaz) X Tr{Ky;W™} — Tr{Li;W™} > 0
w=vvT

wm =ymymt

s.t.

Ye, = enel; Yo, = (Ui + vij) eie; — (Yij) ez‘ejT “4)

Yln - Yen + Yej,:; Y2n - Yen, - Yej,:

}/lij = 1/:372]' + }/61:]7 YQz‘j = }/e'ij - Yej;j
b= [0 Imon)
" 2 |—Im (an) Re (Yln)
o1 [Im (Vi) Re <Y2n>}
" 2 |—Re (an) Im (Yln)
Yi; = 1 { Re (Ylij) —Im (YQij)]
2 |~Im (YQij) Re (Ylij)

Y= 1[Im(Y1i]_) Re(y%)]

2 —Re(YQi].) Im(Yl,)

1 eneg 0
In = 2 [ 0 enef]
J..:l (ei—ej)(ei—e])T 0
4 2 0 (ei — ej) (81‘ — €j)T

V = [Re{v}" Im{v}"]
V™ = [Re{v™} Im{v™}7]
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6 —6; < Omax  V(i,i) € Np 6)
tan (6; — ;) < tan (Omaz) VYV (4,5) € Np (6)
_ Re{ViHm{Vi} = Re{Vil Im{Vi}

Re{V;}Re{V;} + Im{V;} Im{V;}

tan (52 — (5J)

tan (5mar) X TT{K”W} — T’I"{L”W} > 0 (8)

1 0 eie? —ejer
Lij = 2 LiejT —ejel 0 ®)
1 [e;ef +e;el 0
R ] I
KZJ 2 l: 0 eie}“ + ejeZT (10)

The current operating point voltage vector is denoted as
V = [Re{v}"Im{v}"] and the maximum loading point volt-
age vector is denoted as V™ = [Re{v™}TIm{v™}T]. The
variables A and A" denote the current and maximum loading
points with V and V" in the VSC-OPF problem expressed as a
quadratic equations. To transform the quadratic equation in to
a linear equation, V'V and V™V™" are replaced by another
matrices W and W™ respectively. Equation (3) represents the
objective function and constraints and (4) represents all the
matrices that are used to convexify the VSC-OPF problem. The
angle drop constraint of the node voltages is in the form shown
in (5) which can be written as (6). Modification of (6) can be
written using the real and imaginary part of voltage, which
is shown in (7). Using the semi-definite programming, these
equations can be expressed as convex constraints as shown in
(8)-(10). All the required notations are given in Section L.

C. Angle Recovery

In the SDP method the angle recovery after the optimal
power flow is a major concern. In this proposed algorithm,
using the optimized value of the Positive-Semi-Definite (PSD)
matrix W, all other parameters are calculated. Thus, we can
re-write (9) as follows for angle recovery purpose.

T’I“{Lij W}
tCLn((S”) Z TT{K”W}
From (11), the numerator and the denominator values can be
extracted and the node voltage angle differences are calculated.
Further, considering the slack bus voltage angle same as the
initial value, all other node voltage angles are calculated. For
extraction GAMS optimization package is used and then using
MATLAB the voltage angle differences are calculated.

(1)

IV. CASE STUDIES

The VSC-OPF methodology proposed in this paper was
applied to two IEEE test systems. The first test system is
the IEEE 14 bus system. It has 5 synchronous machines, 16
lines and 3 transformers. Bus 1 works as the slack bus which
contains the largest generator as well. The cost coefficients
of the generators are given in Table I. The second system,
IEEE 118 bus system is considered to test the algorithm
for scalability. This system includes 19 generators, 35 syn-
chronous condensers, 177 lines, 9 transformers and 91 loads.

Here the slack bus is bus 69. Fig. 1 and fig. 2 represents the
test systems. All the case studies are conducted using a PC
equipped with 2.5GHz i7 processor and 8GB RAM. For the
proposed methodology the GAMS optimization software with
MOSEK solver package is used. Three cases are considered to
evaluate the proposed method. These cases are set to compare
the performance of the proposed approach with the existing
state-of-the-art methods.

13
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I > 8

6 9

1 —1©
7
5 4

Fig. 2. IEEE 118 Bus Transmission Test System single line diagram [21]

A. Casel

In this case [17], the objective function is to minimize the
generator cost. So, the modified objective function is

Min Y " {Cy, (Tr{Y;W} + APp,)*
i€ENg

The constraints remains the same as in (3).

12)
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B. Case2

In this case, the objective function emphasizes on maximiz-
ing the stability margin rather that cost or loss minimization.
So, the objective function takes the form as,

Min —(A\™ =) 13)

C. Case3

In this case, both the cost minimization and loading stability
margin maximization are combined as descried in (3).

D. Results and Discussions

Both the 14 bus system and 118 bus system have been
simulated for all the three cases. Fig 3, 4 and Fig 5, 6 shows
the node voltage magnitude and angle of IEEE 14 bus and 118
bus transmission system. It can be seen that, voltage magnitude
for cost minimization is lower than the voltage stability
maximization case, since the power generation is higher in
the case 2. However, for the combined objective function, in
case 3, the voltage magnitude is improved compared to case
1 even though not as robust as in case 2.

—0—-Case 1

—+-Case 2
1.05 -e-Case 3]

Voltage (p.u.)

0.9 I I I I I I

Fig. 3. IEEE 14 bus system node voltage magnitude comparison.

—0-Case 1
——Case 2

2 4 6 8 10 12 14

Fig. 4. IEEE 14 bus system node voltage angle comparison.

In the results shown below, it is seen that, this proposed
approach provides flexibility to the system operator to increase
the loading of the system while keeping the generation cost
at its minimum value.

Fig 7 shows the bus 2 voltage of 14 bus system for a range
of 0.9 to 1.9 loading factor. It can be seen that the bus voltage

p.u.)

0.95

Voltage

0.75 I I I I I
20 40 60 80 100

Bus

Fig. 5. IEEE 118 bus system node voltage magnitude comparison.

Fig. 6. IEEE 118 bus system node voltage angle comparison.

values are largely varying especially for case 1 and case 2, the
lowest being at a loading factor 1.4. For case 3, both objectives
from case 1 and 2 is incorporated so the voltage profile is much
more stable. Similar trend is seen for the cost comparison case.
The cost profiles from case 1 and case 2 are shown in Fig 8.
It is evident that, to maximizing the system stability comes
with a higher cost of generation. Thus case 2 costs is higher
than the total cost in case 1. Similar trends are visible from
Fig 9 and Fig 10 for IEEE 118 bus system. From Fig 11, the
minimum bus voltage of each test system has been compared,
where the previous trend for the node voltage change in case
3 is justified. It can be seen that the minimum voltage occurs
at loading factors 1.5 - 1.8.

In Table II and III, total active power generation for all 3
cases, total connected loads and line losses are shown. Table
V shows the comparison of total generation cost. From these
tables it is evident that, Case 1 provides the solution for
minimum cost, Case 2 provides maximum stability margin
with a notably higher cost, but in Case 3 for a rise in cost the
solution ensures maximum stability margin.

In Fig 12, the critical voltage magnitude profiles for differ-
ent loading factors (critical voltage, with Case 1, Case 2 and
Case 3) of bus 2 for different loading factors are shown. It can
be seen from the figure that, the voltage profile of case 2 is
most stable compare to the profile in case 1. For case 3, the
voltage profile is better than in case 1. Also, Table V represents
the percentage of distance to collapse point for various loading
factors for each case. For case 1, the system voltage is very
close to the critical voltage value while in case 3, the distance
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1.085 -e-Case 3] 1 -e-Case 3|
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Loading Factor A Loading Factor A
Fig. 7. IEEE 14 bus system bus 2 node voltage comparison. Fig. 11. IEEE 118 bus system minimum voltage comparison
TABLE I
~-Case 1 GENERATOR COST COEFFICIENTS IN IEEE 14 BUS SYSTEM
16000 - —+-Case 2 i
-e-Case 3
14000 H Gen ‘ Bus Cost ($/MW) H
1 Bus 1 20
12000
s 2 Bus 2 20
?5’10000 3 Bus 3 40
8 8000 4 Bus 6 40
5 Bus 8 40
6000
4000 ]
L L L L L L L 1.055F —+Critical Voltage

0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 —--Case 1

Loading Factor A ——Case 2
T e < Case3
Fig. 8. IEEE 14 bus system total generation cost comparison. S
S10a5)
()
jo))
i)
T o
—-Case 1 > 104r
1.04 —+—Case 2|
~-Case 3 1035}
1.02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
09 10 11 12 13 14 15 16 17 18 19

Loading Factor A

Voltage (p.u.)

Fig. 12. Comparison of the operating voltage with the critical voltage of
0.98 1 IEEE 14 Bus System

0.96 | | | | |
0.9 1 11 1.2 1A3. 14 15 16 17 18 19 V. CONCLUSIONS AND FUTURE WORK
Loading Factor A

Previous studies for optimal power flow in power system

Fig. 9. IEEE 118 bus system node voltage comparison for bus 10. . . . C
& Y & P networks either emphasizes on cost or line loss minimizing or

250000
TABLE II
COMPARISON OF POWER GENERATION, TOTAL LOAD AND ACTIVE POWER
200000 - LOSS FOR IEEE 14 BUS SYSTEM
g —~—Case 1 H [ Casel Case2 Case3 H
150000 —+—Case 2
3 oo 3 P,(MW) | 2685744 287.9147 278.446
o Py(MW) 259 259 259
100000 | Ploss (MW) | 95744 28.9147  19.2446
50000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ TABLE III
09 1 M1 12 13 14 15 16 17 18 19 COMPARISON OF POWER GENERATION, TOTAL LOAD AND ACTIVE POWER
Loading Factor A LOSS FOR IEEE 118 BUS SYSTEM
Fig. 10. IEEE 118 bus system total generation cost comparison. H ‘ Casel Case2 Case3 H
Py (MW) 4318.428 5271.601 4795.014
Py (MW) 1212 1212 1242
Ploss (MW) | 76427  1029.601  553.014

is notably improved.
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TABLE IV
POWER GENERATION COST COMPARISON FOR IEEE 14 BUs AND 118 Bus
SYSTEM
H ‘ Casel Case2 Case3 H
14 Bus($/hr) 5371.487  8593.777  6982.632
118 Bus($/hr) | 86366.43 146938.9 116652.7
TABLE V
% DIFFERENCE OF CRITICAL VOLTAGE AND OPERATING VOLTAGE

Loading factor, Casel Case2 Case3

N —Vi — V| —Vo—-V.| —V3-V
[%] [%] [%]

1.0 0.102 0.219 0.161
1.1 0.188 0.195 0.004
1.2 0.472 0.128 0.172
1.3 0.686 0.102 0.292
1.4 1.218 0.103 0.557
1.5 1.108 0.124 0.492
1.6 0.992 0.138 0.427
1.7 0.805 0.166 0.319
1.8 0.584 0.151 0.216
1.9 0.354 0.078 0.138

system stability maximizing. In those approaches the other ob-
jective has been neglected. In this paper, both the stability and
cost objectives are utilized to achieve a solution that ensures
a more stable power system operating at a significantly lower
cost. The combination of both cost minimization and stability
margin maximization with weighting factors in the objective
function, makes the total problem a non-linear. Linearizing this
set is difficult but very important. In future, further studies will
be conducted to convexify the whole problem applying proper
relaxations.
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