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Abstract. For any finite horizon Sinai billiard map T on the two-torus, we find t∗ > 1 such
that for each t ∈ (0, t∗) there exists a unique equilibrium state µt for −t log JuT , and µt is T -
adapted. (In particular, the SRB measure is the unique equilibrium state for − log JuT .) We
show that µt is exponentially mixing for Hölder observables, and the pressure function P (t) =
supµ{hµ −

∫
t log JuTdµ} is analytic on (0, t∗). In addition, P (t) is strictly convex if and only if

log JuT is not µt-a.e. cohomologous to a constant, while, if there exist ta 6= tb with µta = µtb , then
P (t) is affine on (0, t∗). An additional sparse recurrence condition gives limt↓0 P (t) = P (0).
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1. Introduction and Statement of Main Results

1.1. Set-up. A Sinai or dispersive billiard table Q on the two-torus T2 is a set Q = T2 \ ∪Ω
i=1Oi,

for some finite number Ω ≥ 1 of pairwise disjoint closed domains Oi (the obstacles, or scatterers)
with C3 boundaries having strictly positive curvature K. (In particular, the domains are strictly
convex.) The billiard flow, also called a periodic Lorentz gas, is the motion of a point particle
traveling in Q at unit speed and undergoing specular reflections at the boundary of the scatterers.
(At a tangential — also called grazing — collision, the reflection does not change the direction of
the particle.)

We study here the associated billiard map T : M →M on the compact set M = ∂Q× [−π
2 ,

π
2 ],

defined to be the first collision map on the boundary of Q. We use the standard coordinates
x = (r, ϕ), where r is arclength along ∂Oi and ϕ is the angle the post-collision trajectory makes
with the normal to ∂Oi. Grazing collisions cause discontinuities in the map T . We remark, however,
that since the flow is continuous, the map T is well-defined and bijective on M . There is no need
to reduce the domain to a smaller set.

For x ∈ M , let τ(x) denote the distance from x to T (x) (the free flight time). Set Kmax =
supK <∞, Kmin = inf K > 0, and τmin = inf τ > 0. Then [CM] the cones in R2 defined by

Cu = {(dr, dϕ) : Kmin ≤
dϕ

dr
≤ Kmax + 1

τmin
} , Cs = {(dr, dϕ) : −Kmin ≥

dϕ

dr
≥ −Kmax −

1
τmin
}

are strictly invariant under DT and DT−1, respectively, whenever these derivatives exist.
The map T is uniformly hyperbolic, in the following sense: Let

(1.1) Λ := 1 + 2τminKmin > 1 .
Then there exists C1 > 0 such that, for all x for which DTn(x), respectively DT−n(x), is defined,
(1.2) ‖DTn(x)v‖ ≥ C1Λn‖v‖, ∀v ∈ Cu, ‖DT−n(x)v‖ ≥ C1Λn‖v‖, ∀v ∈ Cs , ∀n ≥ 0 .
Let S0 = {(r, ϕ) ∈M : ϕ = ±π

2 } denote the set of tangential collisions on M . Then

(1.3) Sn = ∪−ni=0T
iS0 , n ∈ Z ,

is the singularity set for Tn. In other words, there exists n ∈ Z such that DTn(x) is not defined if
and only if x belongs to the (invariant and dense, [CM, Lemma 4.55]) set of curves ∪m∈ZSm. Let
(1.4) M ′ = M \ ∪m∈ZSm .
The spaces Eu(x) and Es(x) are defined at any x ∈M ′. Indeed, for each n ≥ 0, let xn = Tnx, and
consider vn = DT−n(xn)v/‖DT−n(xn)v‖ for some v ∈ Cs. Since x ∈M ′, we have that DT−n(xn)
is well-defined for each n ≥ 0. By uniform hyperbolicity, the sequence vn converges to a vector
v∞. The direction of v∞ is Es(x). Similarly, for y ∈ M \ ∪m≤0Sm, consider yn = T−ny and
un = DTn(yn)u/‖DTn(yn)u‖, for n ≥ 0 and u ∈ Cu. The limit of un is Eu(y).

We have [CM, Theorem 4.66, Theorem 4.75] that Lebesgue(M ′ \M) = µSRB(M ′ \M) = 0, where
µSRB = (2|∂Q|)−1 cosϕdrdϕ is the unique absolutely continuous invariant measure. Also, at each
x ∈ M ′, the unstable and stable Jacobians JuT (x) and JsT (x), with respect to arclength along
unstable, respectively stable, manifolds, are well-defined and nonzero. Note also that, if JLebT
denotes the Jacobian of T with respect to Lebesgue, then, setting E(x) = sin(∠(Es(x), Eu(x))),

(1.5) JLebT (x) = cos(ϕ(x))
cos(ϕ(T (x))) = JuT (x) · JsT (x) · E ◦ T (x)

E(x) , ∀x ∈M ′ .

We assume that the billiard table Q has finite horizon, i.e., the billiard flow on Q does not
have any trajectories making only tangential collisions. This implies (but is not1 equivalent to)
τmax := sup τ <∞, see [BD, Remark 1.1].

1We need the stronger condition e.g. in the proof of Proposition 5.2.
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1.2. Potentials and Pressure. Theorems 1.1–1.2. Corollaries 1.3– 1.6.The Operator Lt.
Since T admits a finite generating partition (see the beginning of Section 2.3), it follows that for
any T -invariant probability measure2 µ, the Kolmogorov entropy hµ(T ) is finite ([W, Theorem 4.10,
Theorem 4.17]).

Fix t ≥ 0. Let µ be a T -invariant probability measure µ. If µ(M \M ′) = 0, define the pressure
of µ for the (so-called geometric) potential −t log JuT by

Pµ(−t log JuT ) = hµ(T )− t
∫
M

log JuT dµ .

If µ(M \M ′) 6= 0, we set
∫
M log JuT dµ = ∞, so that Pµ(−t log JuT ) = −∞ if t > 0. Due to the

invariance of µ, the bound (1.2) implies that
∫
M log JuT dµ = limn→∞

1
n

∫
M log JuTn dµ ≥ log Λ,

thus the integral is either well-defined and nonnegative or infinite. (See Remark 2.3 for more
comments.) It is known that

(1.6) χu :=
∫
M

log JuT dµSRB = hµSRB(T ) ∈ (log Λ,∞) ,

so that PµSRB(− log JuT ) = 0 (this is the Pesin entropy formula, see e.g. [CM, Theorem 3.42]).
For a bounded function g : M → R, we set Pµ(−t log JuT + g) = Pµ(−t log JuT ) +

∫
g dµ, and

we define the pressure P (t, g) of the potential −t log JuT + g by

(1.7) P (t, g) := sup{Pµ(−t log JuT + g) : µ a T -invariant probability measure } , P (t) := P (t, 0) .

We call µ an equilibrium state for the potential −t log JuT + g if Pµ(−t log JuT + g) = P (t, g).
The case t = 0, g = 0, corresponds to the measure of maximal entropy. Under an additional

condition of “sparse recurrence to the singularity set” (see Definition 5.4), a measure µ0 with
P (0) = Pµ0(0) was recently constructed in [BD] (µ0 was called µ∗ there), shown to be mixing (in
fact, Bernoulli), to be the unique measure µ satisfying Pµ(0) = P (0), and to satisfy the T -adapted
condition (1.9) below. (The speed of mixing of µ0 is not known.)

For t = 1, we mentioned above that PµSRB(− log JuT ) = 0. In addition, µSRB is T -adapted
and, for any T -invariant probability measure µ giving small enough weight to neighbourhoods of
singularity sets [KS, Part IV, Theorem 1.1], the Ruelle inequality Pµ(− log JuT ) ≤ 0 holds. The
measure µSRB is mixing, in fact, correlations for Hölder observables decay exponentially [Y].

For t in a small interval3 around 1, [CWZ] established the existence of equilibrium states for the
potential −t log JuT using a Young tower construction with exponential tails, proving that these
measures are exponentially mixing on Hölder observables and are unique in the class of measures
that lift to the Young tower.

We establish a thermodynamic formalism for Sinai billiards for t ∈ (0, t∗), with t∗ > 1 defined by

(1.8) t∗ := sup{t > 0 : Λ−t < eP (t)} = sup
{
t > 0 : t > − P (t)

log Λ

}
.

(That t∗ > 1 follows since Λ > 1 from (1.1), while P (t) ≥ 0 for t ≤ 1.) The definition of t∗ can be
viewed as a pressure gap condition, controlling by P (t) the contribution from pieces that constantly
get cut by the singularities. In particular, for any t < t∗, we may4 choose θ ∈ (Λ−1, 1) in the
one-step expansion Lemma 3.1 so that θt < eP (t). This complexity bound permits us to prove the
required growth lemmas essential to our analysis. Our first main result is the following theorem:

Theorem 1.1 (Thermodynamic Formalism for Sinai Billiards). For each t ∈ (0, t∗), the potential
−t log JuT admits a unique equilibrium state µt. The measure µt is mixing, gives positive mass to

2All probability measures in the present work are Borel measures.
3The interval depends on the exponential rate of return (itself close to 1) to the Young tower coupling magnet.
4It is in fact enough to require there that θt < eP∗(t).
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any nonempty open set, and does not have atoms. Moreover, µt is T -adapted, that is5

(1.9)
∫
| log d(x,S±1)| dµt <∞ .

In addition, µt has exponential decay of correlations for Hölder observables. Finally, if T satisfies
the sparse recurrence condition then limt↓0 P (t) = P (0).

We prove Theorem 1.1 for t ∈ (0, t∗) in three steps:
• First, we introduce in Section 2.2 an equivalent (topological) expression P∗(t) for P (t),
generalising what was done in [BD] for t = 0, and we show that P∗(t) is convex and strictly
decreasing (Proposition 2.6), and that P (t) ≤ P∗(t) (Proposition 2.4), for all t > 0.
• Next, for t ∈ (0, t∗), we prove the following properties for the transfer operator

(1.10) Ltf = f ◦ T−1

|JsT |1−t ◦ T−1

acting on an anisotropic Banach6 space B (Theorem 4.1): The operator Lt has spectral radius
eP∗(t), essential spectral radius strictly smaller than eP∗(t), and the maximal eigenvectors
of Lt and its dual give rise to a T -invariant probability measure µt. In addition, Lt has a
spectral gap on B, so that µt is exponentially mixing on Hölder observables.
• Finally, in Section 5, still for t ∈ (0, t∗), we show that Pµt(−t log JuT ) = P∗(t) , so that
P (t) = P∗(t) (Corollary 5.3), as well as the remaining claims about µt: in particular that µt
is the unique equilibrium state among all T -invariant Borel probability measures realising
the variational principle P (t) = P∗(t) (Theorem 2.5), and that sparse recurrence implies
that P (t) tends to P (0) as t ↓ 0 (Proposition 5.5). Our proof of uniqueness also gives a
more general variational principle, P (t, g) = P∗(t, g), Theorem 5.8.

We use the Banach spaces B introduced in [DZ2], except that we work with (exact) stable
manifoldsWs (as in [BD]) instead of cone stable curves Ŵs (see Section 2.1). More importantly, we
must tune the parameters used to define B = B(t0, t1) in Section 4.1 to an interval [t0, t1] ⊂ (0, t∗)
containing t. In particular, the decay rate k−q defining the homogeneity strips (2.1) in [DZ2] was
q = 2, while we need to assume qt > 1 here (due to (3.2)). Also, we need to let the parameter p
used in the definition (4.3) of the strong stable norm tend to infinity when t→ t∗ (see Lemma 4.7).
It follows that our bound for the essential spectral radius of Lt on B(t0, t1) deteriorates as t0 → 0
or t1 → t∗, and we lose the spectral gap in both limits.

The keys to the proof of the spectral Theorem 4.1 are the delicate growth lemmas given in Sect. 3.
To prove these growth lemmas, subtle modifications of the fundamental ideas of Chernov [CM] and
of the original techniques introduced in [DZ1, BD] were necessary. In particular, the analysis for
t > 1 required a new bootstrap argument (see the beginning of Sect. 3 and Sect. 3.4 and 3.6).

In Section 6, a more careful study of the operator Lt yields our second main result:
Theorem 1.2 (Strict Convexity). The function t 7→ P (t) is analytic on (0, t∗), with

(1.11) P ′(t) =
∫

log JsT dµt = −
∫

log JuT dµt < 0 ,

and

(1.12) P ′′(t) =
∑
k≥0

[∫
(log JsT ◦ T k) log JsT dµt − (P ′(t))2

]
≥ 0 .

Moreover, P ′′(t) = 0 if and only if log JsT = f−f ◦T +
∫

log JsT dµt (µt a.e.) for some f ∈ L2(µt).
Finally, both t 7→

∫
log JuT dµt and t 7→ hµt are decreasing functions of t.

5The T -adapted property appears in particular in the work of Lima–Matheus [LM].
6We attract the reader’s attention to Lemma 4.3 showing Lt(C1) ⊂ B, which furnishes the proof of [BD, Lemma 4.9],

which had been omitted there, see Remark 4.4.
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The formula for P ′(t) in (1.11) implies that, if there exist ta 6= tb in [0, t∗) such that µta = µtb ,
then P (t) is not strictly convex: indeed, P ′(t) is constant on [ta, tb]. By analyticity, we then deduce
that P (t) must be affine on (0, t∗). Therefore, we get an immediate corollary of Theorem 1.2:
Corollary 1.3. If there exist ta 6= tb in (0, t∗) such that µta = µtb then P (t) is affine on (0, t∗),
and log JsT is µt a.e. cohomologous to its average

∫
log JsT dµt for all t ∈ (0, t∗).

We expect that there does not exist any Sinai billiard table such that log JsT is µt a.e. coho-
mologous to a constant on M ′ for some t ∈ [0, t∗). If we only want to verify that µ0 6= µ1 = µSRB,
it is enough to show that P ′′(1) 6= 0. Note that in [BD], assuming sparse recurrence (see Defini-
tion 5.4), we showed that µ0 = µSRB (i.e., µ0 = µ1) only if 1

p log |det(DT−p|Es(x))| = P (0) for every
nongrazing periodic orbit T p(x) = x.

The proof of analyticity of P (t) via analyticity of Lt in Theorem 1.2 gives the following two
corollaries.
Corollary 1.4 (Continuity of Equilibrium States). For each ψ ∈ C1(M), µt(ψ) is analytic for
t ∈ (0, t∗). Moreover, the measures µt vary continuously in the weak topology.
Corollary 1.5 (Uniform Rates of Mixing). The exponential rate of mixing of µt for C1 observables
is uniformly bounded away from 1 in any compact subinterval of (0, t∗).

In addition, the proof of the claim on P ′′(t) = 0 in Theorem 1.2 gives:7

Corollary 1.6 (Central Limit Theorem). For any t ∈ (0, t∗) such that P ′′(t) 6= 0, setting χt := P ′(t)
and σt := P ′′(t), we have limk→∞ µt

( 1√
k

∑k−1
j=0(log JsT − χt) ◦ T j ≤ z

)
= 1√

2πσt

∫ z
−∞ e

−v2/(2σ2
t ) dv ,

for any z ∈ R.

We next motivate heuristically the choice of the weight 1/|JsT |1−t in (1.10), by analogy with
the theory for smooth hyperbolic T . For a transitive Anosov diffeomorphism T , the transfer
operator whose maximal left and right eigenvectors on an anisotropic Banach space give rise to µt
is L̃t(f) =

(
f/(|JuT |tJsT )

)
◦T−1 (see [GL] or [Ba, Chapter 7]). A coboundary argument, reflecting

the fact that C1 functions are interpreted as distributions via integration with respect to the SRB
measure µSRB = (2|∂Q|)−1 cosϕdrdϕ here (see below Proposition 4.2), but with respect to Lebesgue
in [GL, Ba], will replace 1/(|JuT |tJsT ) by 1/|JsT |1−t: Indeed, (1.5) gives (on M ′)

− log
(
|JuT |tJsT

)
= − log |JsTJuT |t − log |JsT |1−t

= −t log
(

E cosϕ
(E cosϕ) ◦ T

)
− (1− t) log JsT .(1.13)

The first term of (1.13) is a coboundary. Thus we can expect that the operators L̃t and Lt from
(1.10) have isomorphic spectral data, which motivates intuitively our study of Lt.

The rest of the paper is organized as follows. In Section 2, after defining our notion of topological
pressure P∗(t, g) that we will connect to the measure-theoretic pressure P (t, g), we state our strong
variational principle and prove the preliminary result that P∗(t, g) ≥ P (t, g). In Section 3, we
carry out the main growth lemmas and estimates needed to prove the exact exponential growth
of the topological complexity Qn(t, g) (defined in Sect. 2.2). These estimates are uniform for
t ∈ [t0, t1] ⊂ (0, t∗). In Section 4, we define the Banach spaces on which our operators Lt act and
prove inequalities which furnish a spectral gap, again uniform for t ∈ [t0, t1]. Section 5 establishes
the main properties of the measure µt constructed from the maximal eigenvectors of Lt and (Lt)∗; in
particular, µt is the unique equilibrium state with pressure equal to P∗(t). Its existence provides the
strong version of the variational principle P∗(t) = P (t) and completes the proof of Theorem 1.1 (see
also the sketch provided after the statement of Theorem 1.1 above). Finally, Section 6 proves the
analyticity of the pressure function and conditions for its strict convexity as stated in Theorem 1.2.

7Our approach gives other limit theorems (large deviation estimates, invariance principles, see [DZ1, Sect. 6]).
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2. Topological Formulation P∗(t, g) for P (t, g). Variational Principle (Theorem 2.5)

2.1. Hyperbolicity and Distortion. Ws, Ŵs, Ws
H, Ŵs

H . Families Mn
−k, M

n,H
−k . For n > 0,

following [BD], defineMn
0 to be the set of maximal connected components of M \ Sn, andM0

−n to
be the maximal connected components of M \ S−n. SetMn

−k =M0
−k
∨
Mn

0 . Note that if A ∈Mn
0 ,

then T kA ∈Mn−k
−k for each 0 ≤ k ≤ n, and T kA is a union of elements ofM0

−k for each k > n.
To control distortion, we introduce homogeneity strips whose spacing depends on t0 ∈ (0, 1) if

t ≥ t0. Choose8 q = q(t0) > 1 such that qt0 ≥ 2. For fixed k0 ∈ N define

(2.1) Hk = {(r, ϕ) ∈M : (k + 1)−q ≤ π

2 − ϕ < k−q} , for k ≥ k0,

and similarly H−k is defined approaching ϕ = −π/2. A connected component of Hk, for some
|k| ≥ k0, or of the set H0 = {(r, ϕ) : k−q0 ≤ min{π2 −ϕ,

π
2 +ϕ}} is called a homogeneity strip. We let

H denote the partition of M into homogeneity strips. Let SH0 = S0 ∪ (∪|k|≥k0∂Hk) and, for n ∈ Z,
let SHn = ∪−ni=0T

iSH0 denote the extended singularity set for Tn.
Fix9 δ0 ∈ (0, 1). Let Ws denote the set of all nontrivial connected subsets W of local stable

manifolds of T of length at most δ0. Such curves have curvature bounded above by a fixed constant
[CM, Prop 4.29], and T−nWs = Ws for all n ≥ 1, up to subdivision of curves according to the
length scale δ0. Let Ws

H ⊂ Ws denote the set of nontrivial connected subsets W of elements of Ws

with the property that TnW belongs to a single homogeneity strip for each n ≥ 0. Such curves are
called10 homogeneous stable manifolds.

We call a C2 curve W ⊂ M (cone) stable if at each point x in W , the tangent vector TxW to
W lies in Cs. We denote by Ŵs the set of (cone) stable curves with second derivative bounded by
a constant chosen sufficiently large ([CM, Prop 4.29]) so that T−nŴs ⊂ Ŵs for all n ≥ 1, up to
subdivision of curves according to δ0. Finally, Ŵs

H ⊂ Ŵs is the set of elements of Ŵs contained in
a single homogeneity strip, while Ws

H is the set of elements of Ws that are contained in a single
homogeneity strip. Such curves are called weakly homogeneous (cone) stable curves and stable
manifolds, respectively. Obviously, Ws

H ⊂ Ws
H ⊂ Ws ⊂ Ŵs and Ws

H ⊂ Ŵs
H .

For every W ∈ Ŵs, let C1(W ) denote the space of C1 functions on W , and for every η ∈ (0, 1)
let Cη(W ) denote the closure11 of C1(W ) for the η-Hölder norm defined by

(2.2) |ψ|Cη(W ) = sup
W
|ψ|+Hη

W (ψ) , Hη
W (ψ) = sup

x,y∈W
x 6=y

|ψ(x)− ψ(y)|
d(x, y)η .

The following lemma extends standard distortion bounds for homogeneous curves to all exponents
t > 0. (See Lemma 6.2 for a further generalisation.)

Lemma 2.1. There exists δ̄0 > 0 and Cd > 0, depending on k0 and q, such that for all δ0 < δ̄0, all
n ≥ 0, and any W ∈ T−nŴs such that T iW ∈ Ŵs

H for each i = 0, . . . , n− 1, we have∣∣∣∣1− |JWTn(x)|t

|JWTn(y)|t

∣∣∣∣ ≤ 2tCdd(x, y)1/(q+1) , ∀x, y ∈W , ∀t > 0 ,

where JWTn(x) = |det(DTnx |TxW )| denotes the Jacobian of Tn alongW , and d(·, ·) denotes distance
in M .

8The standard choice for t = 1 is q = 2.
9The index k0 = k0(t0, t1) and the length scale δ0 = δ0(t0, t1) < 1 will be chosen in Definition 3.2.
10In [CM], these curves are called H-manifolds. This strong notion of homogeneity is needed to prove Hölder

continuity of the conditional densities of the SRB measure decomposed along stable manifolds – needed to get valid
test functions for our spaces — using the asymptotic limit of the ratio of stable Jacobians, forward iterates must be
contained in a single homogeneity strip (so that the ratio remains bounded).

11Using the closure of C1 will give injectivity of the inclusion of the strong space in the weak one in Proposition 4.2.
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Proof. There exists Cd <∞, independent of δ0, but depending on k0 and q such that

(2.3)
∣∣∣∣1− JWT

n(x)
JWTn(y)

∣∣∣∣ ≤ Cdd(x, y)1/(q+1) , ∀x, y ∈W , ∀W as in the lemma.

(For q = 2, see e.g. [CM, Lemma 5.27] or [DZ1, App. A]. The proofs there give (2.3) for all q > 1.)
For t ≤ 1, the estimate is an immediate consequence of (2.3), since for all A > 0, we have

|1−At| ≤ |1−A|. Now choose δ̄0 such that Cdδ̄
1/(q+1)
0 ≤ 3/4. Then, for t > 1, we set A = JWTn(x)

JWTn(y) .
By (2.3), this implies that 1/4 ≤ A ≤ 2 if δ0 < δ̄0. For A in this range, we have, again using (2.3),
that |1−At| ≤ 2t|1−A| ≤ 2tCdd(x, y)1/(q+1). �

Next, recalling that SHk = ∪−ki=0T
iSH0 , define for n ≥ 1,

Mn,H
0 = maximal connected components of M \

(
T−nS0 ∪ SHn−1

)
,

M0,H
−n = maximal connected components of M \

(
S0 ∪ T (SH−(n−1))

)
,

Mn,H
−k =M0,H

−k
∨
Mn,H

0 , k ≥ 1 .

(2.4)

We comment on the use of SH0 in (2.4). First notice (just like for the sets Mn
−k defined in the

beginning of this subsection) that if A ∈Mn,H
0 , then T kA ∈Mn−k,H

−k for each 0 ≤ k ≤ n, and T kA
is a union of elements ofM0,H

−k for each k > n. Next, if W ∈ Ŵs
H is such that V = T−1W is a single

curve, then JWT−1(x) ≈ 1/ cosϕ(T−1x) while JV T (y) ≈ cosϕ(y). Thus by (2.3), the definitions in
(2.4) guarantee that for any W ∈ Ŵs

H such that W ⊂ A ∈M0,H
−n , the Jacobian JWT−n has bounded

distortion on W , while JT−nWTn has bounded distortion on T−nW (which is contained in a single
element ofMn,H

0 ).
We shall also need the following distortion bound.

Lemma 2.2 (Distortion Relative to M0,H
−n ). There exists C > 0 such that for all n ≥ 1, for all

U, V ∈ Ŵs
H such that U, V ⊂ A ∈M0,H

−n , and all12 u ∈ Ū \ S−n, v ∈ V̄ \ S−n,∣∣∣∣∣log JUT
−n(u)

JV T−n(v)

∣∣∣∣∣ ≤ C .
The bound above is more general (and weaker) than the usual distortion bound along stable

curves given by (2.3) or between stable curves given by [CM, Theorem 5.42] (or more generally
[DZ1, Appendix A]) since we do not assume that the points u, v in Ā, with A ∈ M0,H

−n , lie on the
same stable or unstable curve.

Proof. Let n ≥ 1, u ∈ Ū , v ∈ V̄ , be as in the statement of the lemma. Define ui = T−iu, vi = T−iv

for i = 0, . . . , n, and notice that ui, vi belong to the closure of the same element of Mi,H
−n+i. By

the uniform hyperbolicity of T , for i = 0, . . . , n, if A ∈ Mi,H
−n+i, then diamu(Ā) ≤ CΛ−i and

diams(Ā) ≤ CΛ−n+i, where diamu(B) is the maximum length of an unstable curve in B, and
diams(B) is the maximum length of a stable curve in B. Thus, due to the uniform transversality
of Cs and Cu, we have
(2.5) d(ui, vi) ≤ C̄ max{Λ−i,Λ−n+i} .

By the time reversal of [CM, eq. (5.24)], we have that

(2.6) log JUiT−1(ui) = log cosϕ(ui) + τ(ui+1)(K(ui)− V(ui))
cosϕ(ui+1) + log

√
1 + V(ui+1)2√
1 + V(ui)2 ,

12Ū denotes the closure of U in M . The distortion bounds on U and V extend trivially to the boundaries of
homogeneity strips, but not to real singularity lines, hence Ū \ S−n.
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where V(ui) = dϕ
dr (ui) < 0 is the slope of the tangent line to Ui at ui. Summing over i, the last term

above telescopes and the sum is uniformly bounded away from 0 and ∞, giving,

(2.7)
∣∣∣∣∣log JUT

−n(u)
JV T−n(v)

∣∣∣∣∣ ≤ C +
n−1∑
i=0

∣∣∣∣log cosϕ(vi+1)
cosϕ(ui+1)

∣∣∣∣+ ∣∣∣∣log cosϕ(ui) + τ(ui+1)(K(ui)− V(ui))
cosϕ(vi) + τ(vi+1)(K(vi)− V(vi))

∣∣∣∣
Since ui+1, vi+1 lie in the same homogeneity strip for each i, using (2.1) we have

(2.8)
∣∣∣∣log cosϕ(vi+1)

cosϕ(ui+1)

∣∣∣∣ ≤ C |ϕ(ui+1)− ϕ(vi+1)|
cosϕ(ui+1) ≤ Cd(ui+1, vi+1)1/(q+1) .

Next, the terms in the second set on the right-hand side of (2.7) are bounded and the denominator
in the expression is at least τminKmin > 0. Moreover, K is differentiable while τ is 1/2-Hölder
continuous.13 Thus following [CM, eq. (5.26)], we have

n−1∑
i=0

∣∣∣∣log cosϕ(ui) + τ(ui+1)(K(ui)− V(ui))
cosϕ(vi) + τ(vi+1)(K(vi)− V(vi))

∣∣∣∣ ≤ C n−1∑
i=0

d(ui+1, vi+1)1/2 + d(ui, vi) + |∆Vi| ,

where ∆Vi = V(ui) − V(vi). By (2.5), the sums over all terms in (2.7) involving d(ui, vi) are
uniformly bounded in n. It remains to estimate

∑n−1
i=0 |∆Vi|. By [CM, eq. (5.29)] and (2.5), we

bound |∆Vi| by

C
(
|∆V0|Λ−i +

i∑
j=0

Λ−jd(ui−j , vi−j)1/2
)
≤ C

(
|∆V0|Λ−i +

i∑
j=0

Λ−j(Λ(−i+j)/2 + Λ(−n+i−j)/2)
)

≤ C ′
(
|∆V0|Λ−i + Λ−i/2 + Λ(−n+i)/2).

Summing over i completes the proof of the lemma. �

Remark 2.3 (About
∫
M log JuT dµ). We note for further use a consequence of the proof above: It

is clear from (2.6) that for any T -invariant probability measure µ with µ(M \M ′) = 0,∫
M

log JsT dµ = −∞ ⇐⇒
∫
M

log cosϕdµ = −∞ ,

since all other terms in (2.6) are bounded away from zero and infinity. Similarly, the time reversal
of (2.6) (see [CM, eq. (5.24)]) implies∫

M
log JuT dµ =∞ ⇐⇒

∫
M

log cosϕ ◦ T dµ = −∞ .

Thus, applying (1.5), for any T -invariant probability measure µ on M ,

(2.9) if µ(M \M ′) = 0 then
∫
M

log JuT dµ = −
∫
M

log JsT dµ ,

where equality holds also when both sides are infinite.

2.2. Topological Formulation P∗(t, g) of the Pressure P (t, g). Theorem 2.5. In view of our
proof of uniqueness in §5.5 (which uses differentiability of the pressure), for a C1 function g : M → R
and n ≥ 1, we set Sng =

∑n−1
i=0 g◦T i. The hyperbolicity of T implies the following distortion bounds:

There exists C∗ <∞ such that for all n ≥ 1 and all W ∈ Ŵs such that T iW ∈ Ŵs , ∀ 0 ≤ i ≤ n,
(2.10) |eSng(x)−Sng(y) − 1| ≤ C∗|∇g|C0 d(x, y) , ∀x, y ∈W .

Recalling (1.4), we define (aside from §5.5 we only need g ≡ 0),

(2.11) Qn(t, g) =
∑

A∈Mn,H
0

sup
x∈A∩M ′

|JsTn(x)|teSng(x) , Qn(t) = Qn(t, 0) , n ≥ 1 ,

13We cannot take advantage of the smoother bounds on τ given by [CM, eq. (5.28)] since our points ui and vi
may lie on different stable or unstable manifolds.
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and

(2.12) P∗(t, g) = lim sup
n→∞

1
n

logQn(t, g) , P∗(t) := P∗(t, 0).

We will show the following result in Section 2.3:

Proposition 2.4 (Topological Pressure). For all t > 0 and g ∈ C1, we have14 P (t, g) ≤ P∗(t, g).

For t∗ > 1 given by (1.8), the analysis carried out in Sections 3–5 will yield:

Theorem 2.5 ((Strong15) Variational Principle). If t ∈ (0, t∗), then P∗(t) = P (t) and the supremum
is attained at the unique invariant measure µt from Theorem 1.1.

Proof. This follows from Proposition 2.4, Theorem 4.1, Corollary 5.3, and Proposition 5.7. �

Theorem 5.8 will give the generalisation of the above strong form of the variational principle to
P (t, g) = P∗(t, g) for suitable g.

We first establish basic properties of P∗(t, g):

Proposition 2.6. For each t > 0 and g ∈ C1 the limsup (2.12) defining P∗(t, g) is a limit in
(−∞,∞). The function t 7→ P∗(t, g) is convex and strictly decreasing on (0,∞).

Remark 2.7. It is not hard to show, using Lemma 2.2, that for each t > 0, there exists CD > 0
such that Qn(t) ≤ CtD

∑
A∈Mn,H

0
infx∈A∩M ′ |JsTn(x)|t for all n ≥ 1, so that replacing the supremum

by an infimum in the definition of Qn(t) does not change the value of P∗(t).

Proof of Proposition 2.6. We first set g = 0. The partitionM1
0 is finite, and each element ofM1

0
is subdivided by curves in SH0 to comprise a union of elements ofM1,H

0 , according to (2.4). Thus,

Q1(t) =
∑

A∈M1,H
0

sup
x∈A∩M ′

|JsT (x)|t ≤ C
∑

E∈M1
0

∑
k

sup
x∈Hk

| cosϕ(x)|t ≤ C#M1
0
∑
k

k−qt ,

where the sum over k includes k = 0 and |k| ≥ k0; the sum converges since qt ≥ 2 > 1.
We next show that Qn(t) is submultiplicative:

Qn+k(t) =
∑

A∈Mn,H
0

∑
B∈Mn+k,H

0
B⊂A

sup
x∈B∩M ′

|JsTn+k(x)|t

≤
∑

A∈Mn,H
0

sup
y∈A∩M ′

|JsTn(y)|t
∑

B∈Mn+k,H
0

B⊂A

sup
x∈B∩M ′

|JsT k(Tnx)|t , ∀k, n ≥ 1 .(2.13)

Notice that if B,B′ ⊂ A ∈ Mn,H
0 are distinct elements of Mn+k,H

0 , then TnB, TnB′ ∈ Mk,H
−n =

M0,H
−n
∨
Mk,H

0 are both contained in TnA ∈ M0,H
−n and so must lie in distinct elements of Mk,H

0 .
Thus the inner sum in (2.13) is bounded by Qk(t) for each A, and the outer sum is bounded by Qn(t),
proving submultiplicativity. If g 6= 0, it is easy to see that we also have Qn+k(t, g) ≤ Qn(t, g)Qk(t, g).
Therefore, since Q1(t, g) <∞, the sequence in (2.12) converges to a limit in [−∞,∞).

To see that P∗(t, g) > −∞, let xp be a periodic point of period p with no tangential collisions,16

and let χ−p denote the negative Lyapunov exponent of xp. Then, Qnp(t, g) ≥ |JsTnp(xp)|teSnpg(xp) =
enptχ

−
p enSpg(xp), and so P∗(t, g) ≥ tχ−p + 1

pSpg(xp) > −∞.

14Recall our convention that
∫
M

log JuT dµ =∞ if µ(M \M ′) > 0.
15By "strong" we mean that the supremum is a maximum, and it is attained at a unique measure.
16Such a periodic point always exists. For example, since two adjacent scatterers are in convex opposition, there

is a period 2 orbit whose trajectory is normal to both scatteres.
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To prove convexity, pick t, t′ > 0 and α ∈ [0, 1]. Then using the Hölder inequality,

Qn(αt+ (1− α)t′, g) =
∑

A∈Mn,H
0

sup
x∈A∩M ′

|JsTn|αt+(1−α)t′eαSng(x)e(1−α)Sng(x)

≤
( ∑
A∈Mn,H

0

sup
x∈A∩M ′

|JsTn|teSng(x))α( ∑
A∈Mn,H

0

sup
x∈A∩M ′

|JsTn|t′eSng(x))1−α = Qn(t, g)αQn(t′, g)1−α .

Taking logarithms, dividing by n, and letting n→∞ proves convexity.
Next, fixing t > 0 and applying (1.2), we find for s > 0,

Qn(t+ s, g) =
∑

A∈Mn,H
0

sup
x∈A∩M ′

|JsTn|t+seSng(x) ≤ C−s1 Λ−nsQn(t, g) ,

so that P∗(t+ s, g) ≤ P∗(t, g)− s log Λ, that is, P∗(t, g) is strictly decreasing in t. �

2.3. Proof that P∗(t, g) ≥ P (t, g) (Proposition 2.4). If Q is a partition of M we let IntQ
denote the set of interiors of elements of Q. In [BD], we worked with P, the (finite) partition of
M into maximal connected sets on which T and T−1 are continuous, noticing that the set IntP
coincides withM1

−1, while the refinements Pn−k =
∨n
i=−k T

−iP may also contain isolated points if
three or more scatterers have a common tangential trajectory (see [BD, Fig.1]). (Note that P is
a set-theoretical partition: zero measure sets do not need to be ignored.) We also observed that
P is a generator for any T -invariant Borel probability measure µ, since

∨∞
i=−∞ T

−iP separates17

points in the compact metric space M : if x 6= y there exists k ∈ Z such that T k(x) and T k(z) lie
in different elements of P. Let P̄ be the partition of M into maximal connected sets on which T
is continuous. Then P = P̄

∨
T (P̄), so P̄ is also a generator for T . We have Int P̄ = M1

0. More
generally, Int (

∨n−1
k=0 T

−kP̄) =Mn
0 for n ≥ 1.

Proof of Proposition 2.4. If a T -invariant probability measure µ gives positive weight to M \M ′
or, more generally, if

∫
M log JuT dµ =∞, then Pµ(t, g) = −∞, so Pµ(t, g) < P∗(t, g). We can thus

assume without loss of generality that µ is a T -invariant probability measure with
∫
M log JuT dµ <

∞, in particular µ(Sn) = 0 for each n ∈ Z. Then

(2.14) Hµ

(
n−1∨
k=0

T−kP̄
)

= Hµ(Mn
0 ) ,

since the boundary of any element of
∨n−1
k=0 T

−kP̄ is contained in Sn.
Since P̄ is a generator, we have hµ(T ) = hµ(T, P̄) for any T -invariant probability measure µ on

M (see e.g. [W, Theorem 4.17]). Then, using (2.9), we find, adapting the classical argument (see
e.g. [W, Prop 9.10]), that

hµ(T, P̄)− t
∫
M

log JuT dµ = lim
n→∞

1
n
Hµ

(
n−1∨
k=0

T−kP̄
)

+ lim
n→∞

1
n

∫
M
t
n−1∑
k=0

log JsT ◦ T k dµ

≤ lim
n→∞

1
n

( ∑
A∈Mn

0

µ(A)
[
− logµ(A) + sup

A∩M ′
t log JsTn

])

≤ lim
n→∞

1
n

∑
A∈Mn

0

µ(A) log supA∩M ′ |JsTn|t

µ(A) ≤ lim
n→∞

1
n

log
∑

A∈Mn
0

sup
A∩M ′

|JsTn|t ,

17In fact, all points x 6= y may be separated while the definition of a generator in [Pa] allows a zero measure set of
pathological pairs.
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where we used (2.14) in the third line, and the convexity of the logarithm in the fifth line. Finally,
notice that each element ofMn

0 is a union of elements ofMn,H
0 , modulo the boundaries of homo-

geneity strips. But since the distortion bound Lemma 2.2 extends to the boundaries of homogeneity
strips, we have

sup
A∩M ′

|JsTn|t = sup
B∈Mn,H

0
B⊂A

sup
B∩M ′

|JsTn|t ≤
∑

B∈Mn,H
0

B⊂A

sup
B∩M ′

|JsTn|t ,

for each A ∈Mn
0 . Using this bound in the previous estimate and applying Proposition 2.6 implies

hµ(T )− t
∫
M log JuT dµ ≤ P∗(t) for every T -invariant probability measure µ.

If g 6= 0, we may write

hµ(T, P̄) +
∫

(t log JsT + g) dµ = lim
n→∞

1
n
Hµ

(
n−1∨
k=0

T−kP̄
)

+ lim
n→∞

1
n

∫
Sn(t log JsT + g) dµ

≤ lim
n→∞

1
n

log
∑

A∈Mn
0

sup
A∩M ′

|JsTn|teSng ,

and this last expression is bounded by P∗(t, g) by the same reasoning as above, using that the
analogue of Lemma 2.2 holds for eSng: Recalling (2.10), for all n > 0, all A ∈Mn,H

0 , and x, y ∈ A,
since the diameter of T iA is bounded by (2.5),

(2.15) eSng(x)−Sng(y) ≤ 1 + C̄ C∗ · |∇g|C0 .

�

3. Growth Lemmas

In this section, after preliminaries in §3.1, introducing in particular the contraction rate θ and
sets Gn(W ) appearing when iterating the transfer operator Lt, we prove a series of growth and
complexity lemmas which will allow us to control the sums over Gn(W ) forW ∈ Ŵs. This culminates
in the lower bound of Proposition 3.14, which implies exact exponential growth (Proposition 3.15)
of Qn(t, g). (This exact exponential growth is essential to control the peripheral spectrum of Lt.)

Since JsT is not bounded away from zero, we shall use different strategies for t ∈ (0, 1] and t > 1.
Several important growth lemmas are proved for t ∈ (0, 1] in Sections 3.3 and 3.5. We then use the
results for t ≤ 1 to bootstrap an analogous set of lemmas for t > 1 in Sections 3.4, 3.5, and 3.6.

3.1. One-Step Expansion: θ(t1). Choice of q(t0), k0(t0, t1), δ0(t0, t1). Gn(W ), In(W ). We
begin by proving an adaptation of the one-step expansion (see e.g. [CM, Lemma 5.56]) for our
choice of potential and homogeneity strips. Using the notation from (2.6), recall t∗ > 1 from (1.8),
and the adapted metric from [CM, Section 5.10]:

‖dx‖∗ = K + |V|√
1 + V2

‖dx‖ .

Lemma 3.1 (One-Step Expansion). For t1 ∈ (1, t∗), fix18 θ ∈ (Λ−1,Λ−1/2) such that θt1 < eP∗(t1).
Then for each t̄0 ∈ (0, 1) and q > 2/t̄0, there exist k̄0 = k̄0(t̄0, t1, q) ≥ 1 and δ̄0 = δ̄0(t̄0, t1, q) > 0
such that

(3.1)
∑
i

|JViT |tC0(Vi),∗ < θt , ∀W ∈ Ŵs with |W | < δ̄0 , ∀t ≥ t̄0 ,

18This is possible by definition of t∗ and Proposition 2.4. It implies θt < eP∗(t) for t ≤ t1 since P∗(t) is decreasing.
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where the Vi range over the maximal connected weakly (q, k̄0)-homogeneous19 components of T−1W ,
and |JViT |C0(Vi),∗ denotes the maximum on Vi of the Jacobian of T along Vi for the metric ‖ · ‖∗.

Proof. Note that |JViT |C0(Vi),∗ ≤ Λ−1 and, if Vi ⊂ Hk, then |JViT |C0(Vi),∗ ≤ Ck−q for some C > 0
[CM, eq. (5.36)]. There exists δ̄ > 0 such that if W ∈ Ŵs with |W | ≤ δ̄, then T−1W has at most
τmax
τmin

+ 1 connected components, and all but at most one component experience nearly tangential
collisions (see [CM, Sect. 5.10]).

For t̄0 ∈ (0, 1) and q > 2/t̄0, choose k̄0 = k̄0(t̄0, t1, q) such that

(3.2) Λ−t̄0 + τmax
τmin

∑
|k|≥k̄0

C t̄0k−qt̄0 ≤ Λ−t̄0 + τmax
τmin

C t̄0 k̄−1
0 < θt̄0 .

For all W ∈ Ŵs, we have |T−1W | ≤ C ′|W |1/2 [CM, Exercise 4.50] for some C ′ > 0 independent of
W . Next, choose δ̄0(t̄0, t1) so small that C ′δ̄1/2

0 ≤ k̄−q0 , so that if |W | ≤ |δ̄0|, then each component
of T−1W making a nearly tangential collision lies in a union of homogeneity strips Hk for k ≥ k̄0.

Then if |W | ≤ δ̄0, the quantity
∑
i |JViT |

t̄0
C0(Vi),∗ is bounded by the left-hand side of (3.2), proving

(3.1) for t = t̄0. Finally, for all t ≥ t̄0,

(3.3) sup
W∈Ŵs

|W |≤δ̄0

∑
i

|JViT |tC0(Vi),∗ ≤ Λ−t+t̄0 sup
W∈Ŵs

|W |≤δ̄0

∑
i

|JViT |
t̄0
C0(Vi),∗ ≤ Λ−t+t̄0θt̄0 ≤ θt .

�

We now choose the parameters defining Ŵs, Ŵs
H andWs,Ws

H depending on t0 ∈ (0, 1), t1 ∈ (1, t∗):

Definition 3.2. Given t0 ∈ (0, 1), t1 ∈ (1, t∗), we fix q(t0) > 1 such that qt0/2 ≥ 2, and fix
θ = θ(t1), k0 = k0(t0, t1, q) := k̄0( t02 , t1, q), δ0 = δ0(t0, t1, q) := δ̄0( t02 , t1, q) as in Lemma 3.1. Reduce

δ0 if needed so that Cdδ
1
q+1
0 ≤ 3/4, with Cd from (2.3). This choice of (t0, t1), θ, q, δ0, and k0

determines the set of stable curves Ŵs, Ŵs
H and stable manifolds Ws, Ws

H.

Our proofs use sets Gn(W ), In(W ) associated with δ0 and k0, and, for δ < δ0, also Gδn(W ), Iδn(W ):
For W ∈ Ŵs, we let G1(W ) denote the maximal, weakly homogeneous, connected components of

T−1W , with long pieces subdivided to have length between δ0/2 and δ0. Inductively, we define20

Gn(W ) = ∪Wi∈Gn−1(W )G1(Wi). Thus Gn(W ) is the countable collection of subcurves of T−nW
subdivided according to the extended singularity set SH−n, and T j(V ) is weakly homogeneous for all
0 ≤ j ≤ n− 1 and all V ∈ Gn(W ), in particular Gn(W ) ⊂ Ŵs

H. For each n ≥ 1, let Ln(W ) denote
the elements of Gn(W ) whose length is at least δ0/3. Let In(W ) denote those elements Wi ∈ Gn(W )
such that T kWi is never contained in an element of Ln−k(W ) for all k = 0, . . . , n− 1.

Finally, for δ < δ0, define Gδn(W ) like Gn(W ), but subdividing long pieces into pieces of length
between δ/2 and δ. Similarly, denote by Lδk(W ) those elements of Gδk(W ) having length at least
δ/3, and by Iδn(W ) those elements Wi ∈ Gδn(W ) such that T kWi has never been contained in an
element of Lδn−k(W ) for all k = 0, . . . , n− 1.

3.2. Initial Lemmas for all t > 0. We start with two easy lemmas. (In the present paper, the
parameter ς appearing in Lemmas 3.3 and 3.4 will be zero or 1/p, for p > q + 1 chosen in (4.1).)

19By weakly (q, k̄0)-homogeneous, we mean weakly homogeneous as defined in Sect. 2.1 using the parameters q
and k̄0 for the homogeneity strips. Note that W is not necessarily weakly homogeneous, but each Vi is.

20This definition of Gn(W ) is as in [DZ1, DZ2], but different from [BD] where homogeneity was not required.
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Lemma 3.3. Fix t0 ∈ (0, 1). There exists C0 = C0(t0) > 0 such that for all g ∈ C0, every t ≥ t0,
all t1 ∈ (1, t∗), and all 0 ≤ ς < min{t, 1, 2t−t0

2−t0 }, we have

(3.4)
∑

Wi∈In(W )

|Wi|ς

|W |ς
|JWiT

n|tC0(Wi)|e
Sng|C0(Wi) ≤ C0θ

n(t−ς)en|g|C0 , ∀W ∈ Ŵs , ∀n ≥ 1 .

Proof. The case ς = 0, g = 0 can be proved by induction on n using (3.1), since elements of In(W )
have been short at each intermediate step. This is the same as in [DZ1, Lemma 3.1] (the exponent
t changes nothing), and the21 constant C [ς=0]

0 comes from switching from the metric induced by the
adapted norm ‖ · ‖∗ to the standard Euclidean norm at the last step.

For ς > 0, g = 0, we use a Hölder inequality,∑
Wi∈In(W )

|Wi|ς

|W |ς
|JWiT

n|tC0(Wi) ≤
( ∑
Wi∈In(W )

|Wi|
|W |
|JWiT

n|C0(Wi)

)ς( ∑
Wi∈In(W )

|JWiT
n|

t−ς
1−ς
C0(Wi)

)1−ς
.

Since |JWiT
n|C0(Wi) ≤ e

Cd |T
nWi|
|Wi| by (2.3), the first sum is bounded by eCdς . Then, since t−ς

1−ς ≥
t0
2 ,

Definition 3.2 and Lemma 3.1 for t̄0 = t0/2, together with the case ς = 0, imply the second sum
is bounded by

(
C

[ς=0]
0

)1−ς
θn(t−ς). This completes the proof of the lemma in the case g = 0. For

nonzero g, use |eSng|C0(Wi) ≤ e
n|g|C0 for all Wi to bootstrap from the bound for g = 0. �

Lemma 3.4. Fix t0 ∈ (0, 1) and t1 ∈ (1, t∗). Let t̃1 > t0. There exists C2 = C2(t0, t1, t̃1) > 0 such
that, for all g ∈ C0 and all ς ∈ [0, 1], we have

(3.5)
∑

Wi∈Gn(W )

|Wi|ς

|W |ς
|JWiT

n|t+ςC0(Wi)|e
Sng|C0(Wi) ≤ C2Qn(t, g) , ∀W ∈ Ŵs , ∀n ≥ 1 , ∀t ∈ [t0, t̃1] .

Proof. The case ς = 0 and g = 0 is trivial since by definition each Wi ∈ Gn(W ) is contained in
a single element of Mn,H

0 . Since there can be at most 2/δ0 elements of Gn(W ) in one element of
Mn,H

0 (with δ0 = δ0(t0, t1, q) from Definition 3.2), the lemma holds with C2[0] = 2δ−1
0 et̃1C , where

C is from Lemma 2.2 (recall also footnote (21)). Next, for ς > 0 and g = 0, notice that by (2.3),

|Wi||JWiT
n|C0(Wi) ≤ e

Cdδ
1/(q+1)
0 |TnWi| ≤ eCdδ

1/(q+1)
0 |W | ,

so that the sum for ς > 0 is bounded by the sum for ς = 0 times eςCdδ
1/(q+1)
0 . If g 6= 0, then again

using Lemma 2.2 on each Wi, we have

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≤ e
tC sup

Wi∩M ′
||JsTn|teSng| ,

and the required bound follows with C2 = C2[0]eςCdδ
1/(q+1)
0 . �

3.3. Growth Lemmas for t ∈ (0, 1]. In this section, we prove two growth and complexity lemmas
for t ∈ (0, 1]. The first one shows that we can make the contribution from the sum over short pieces
small compared to the sum over all pieces in Gn(W ) by choosing a small length scale. Recall the
constant C∗ from (2.10).

Lemma 3.5. Let t0 ∈ (0, 1) and t1 ∈ (1, t∗). For any ε > 0, there exist δ1 > 0 and n1 ≥ 1 such
that for all W ∈ Ŵs with |W | ≥ δ1/3, all n ≥ n1, and all g ∈ C1 with22

(3.6) 2|g|C0 < −t0 log θ , i.e. e|g|C0θt0/2 < 1 , and |∇g| ≤ (C∗δ0)−1 ,

21 The sets Ŵs and In(W ) become smaller if t1 is larger; while θ increases if t1 is larger, this does not affect C0.
22The bound on |∇g| bounds the distortion constant of g by 2, so that δ1 and n1 may be chosen uniformly in g.
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we have∑
Wi∈G

δ1
n (W )

|Wi|<δ1/3

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≤ ε
∑

Wi∈G
δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) , ∀t ∈ [t0, 1] .

In particular, taking ε = 1/4 gives δ1 < δ0 and n1 ≥ 1 such that for all n ≥ n1, for all g ∈ C0

satisfying (3.6), for all W ∈ Ŵs with |W | ≥ δ1/3, we have

(3.7)
∑

Wi∈L
δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≥
3
4

∑
Wi∈G

δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) , ∀t ∈ [t0, 1] .

Proof. First assume g = 0. Let ε > 0 and choose ε̄ > 0 so that 6C−1
1 ε̄/(1− ε̄) < ε (where C1 ∈ (0, 1]

is from (1.2)). Next, choose n1 such that C0θ
tn1Λ−n1(1−t) < ε̄ (where C0 is from Lemma 3.3 for

ς = 0). Recalling again that |T−1U | ≤ C|U |1/2 for any U ∈ Ŵs, we may choose δ1 > 0 such that,
if |U | < δ1, then each homogeneous connected component of T−nU has length shorter than δ0 for
each n ≤ 2n1. Then using Lemma 3.3 with ς = 0, if U ∈ Ŵs with |U | ≤ δ1,

(3.8)
∑

Wi∈Gn(U)
|JWiT

n|tC0(Wi) ≤ C0θ
tn, for all n ≤ 2n1.

Now for n ≥ n1, write n = kn1 + `, for some 0 ≤ ` < n1. Let W ∈ Ŵs with |W | ≥ δ1/3. Looking
only at times mn1, m = 0, . . . , k − 1, we group elements Wi ∈ Gn(W ) with |Wi| < δ1/3 according
to the largest m such that T (k−m)n1+`Wi ⊂ Vj ∈ Lδ1mn1(W ). This is similar to using23 the most
recent long ancestor, except that we only look at times that are multiples of n1. We denote by
Īδ(k−m)n1+`(Vj) the set of Wi ∈ Gn(W ) identified with Vj ∈ Lδ1mk(W ) in this way. Since |W | ≥ δ1/3,
every element of Gδ1n (W ) must have a long ancestor.

Note that since T (k−m′)n1+`Wi is contained in an element of Gm′k(W ) that is shorter than δ1/3
for m′ < m, we may apply (3.8) inductively k −m times. Thus,

∑
Wi∈G

δ1
n (W )

|Wi|<δ1/3

|JWiT
n|tC0(Wi) ≤

k−1∑
m=0

∑
Vj∈L

δ1
mn1 (W )

|JVjTmn1 |tC0(Vj)
∑

Wi∈Ī
δ1
(k−m)n1+`(Vj)

|JWiT
(k−m)n1+`|tC0(Wi)

≤
k−1∑
m=0

∑
Vj∈L

δ1
mn1 (W )

|JVjTmn1 |tC0(Vj)C0θ
tn1(k−m) .

Next, notice that for t ∈ (0, 1], V ∈ Ŵs and each k ≥ 1, using |V | =
∑
Wi∈G

δ1
k

(V ) |T
k(Wi)|,∑

Wi∈G
δ1
k

(V )

|JWiT
k|tC0(Wi) =

∑
Wi∈G

δ1
k

(V )

|JWiT
k|C0(Wi)|JWiT

k|t−1
C0(Wi)(3.9)

≥ C1Λk(1−t) ∑
Wi∈G

δ1
k

(V )

|T kWi|
|Wi|

≥ C1Λk(1−t)|V |δ−1
1 .

Also note that by the proof of Lemma 2.1, we have

(3.10)
supx∈Wi

|JWiT
n(x)|t

infy∈Wi |JWiT
n(y)|t ≤ 1 + Cdδ

1/(q+1)
0 ≤ 2 ,

23The most recent long ancestor for Wi ∈ Gn(W ) corresponds to the maximal m ≤ n such that Tn−mWi ⊂ Vj and
Vj ∈ Lm(W ), not to be confused with the first long ancestor, see (4.15).
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since t ≤ 1. Putting these estimates together, we obtain,∑
Wi∈G

δ1
n (W )

|Wi|<δ1/3

|JWiT
n|tC0(Wi)

∑
Wi∈G

δ1
n (W )

|JWiT
n|tC0(Wi)

≤
k−1∑
m=0

2
∑

Vj∈L
δ1
mn1 (W )

|JVjTmn1 |tC0(Vj)C0θ
tn1(k−m)

∑
Vj∈L

δ1
mn1 (W )

|JVjTmn1 |tC0(Vj)
∑

Wi∈G
δ1
(k−m)n1+`(Vj)

|JWiT
(k−m)n1+`|tC0(Wi)

≤
k−1∑
m=0

2
∑

Vj∈L
δ1
mn1 (W )

|JVjTmn1 |tC0(Vj)C0θ
tn1(k−m)

∑
Vj∈L

δ1
mn1 (W )

|JVjTmn1 |tC0(Vj)C1Λ(k−m)n1(1−t)|Vj |δ−1
1

≤ 6C−1
1

k−1∑
m=0

ε̄k−m ≤ 6C−1
1

ε̄

1− ε̄ ,(3.11)

where in the second inequality we used (3.9) on each Vj ∈ Lδ1mn1(W ). This ends the case g = 0.
If g 6= 0, note that by (2.10) and using (3.6),

supx∈Wi
eSkg(x)

infy∈Wi e
Skg(y) ≤ 1 + C∗|∇g|d(x, y) ≤ 2 ,

for all Wi ∈ Gδ0k (W ) and any k > 0. Letting ε > 0, choose ε̄ > 0 such that 12C−1
1 ε̄/(1 − ε̄) < ε.

Then we take n1 such that C0θ
tn1e2n1|g|C0 Λ−n1(1−t) < ε̄, and we choose δ1 > 0 such that, if U ∈ Ŵs

satisfies |U | < δ1, then

(3.12)
∑

Wi∈Gn(U)
|JWiT

n|tC0(Wi)|e
Sng|C0(Wi) ≤ C0θ

tnen|g|C0 , for all n ≤ 2n1,

which is the analogue of (3.8). (For fixed t0, note that n1 and δ1 depend only on ε, uniformly in
g satisfying (3.6).) The proof above can then be followed line by line, inserting eSng. Thus (3.9)
becomes,

(3.13)
∑

Wi∈G
δ1
k

(V )

|JWiT
k|tC0(Wi)|e

Skg|C0(Wi) ≥ C1Λk(1−t)e−k|g|C0 |V |δ−1
1 .

Inserting this lower bound in (3.11) and applying Lemma 3.3 with ς = 0 yields,

∑
Wi∈G

δ1
n (W )

|Wi|<δ1/3

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi)

∑
Wi∈G

δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi)

(3.14)
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≤
k−1∑
m=0

4
∑

Vj∈L
δ1
mn1 (W )

|JVjTmn1 |tC0(Vj)|e
Smn1g|C0(Vj)C0θ

tn1(k−m)en1(k−m)|g|C0

∑
Vj∈L

δ1
mn1 (W )

|JVjTmn1 |tC0(Vj)|e
Smn1g|C0(Vj)C1Λ(k−m)n1(1−t)e−n1(k−m)|g|C0 |Vj |δ1

−1

≤ 12C−1
1

k−1∑
m=0

ε̄k−m ≤ 12C−1
1

ε̄

1− ε̄ < ε ,

where the extra factor of 2 comes from the distortion constant of g. �

The second lemma proves the analogue of Lemma 3.5 for elements of Mn,H
0 , in anticipation

of Proposition 3.14. For A ∈ Mn,H
0 , let Bn−1(A) denote the element of M0,H

−n+1
∨
H containing

Tn−1A ∈M1,H
−n+1, recalling that H is the partition of M into homogeneity strips Hk. We introduce

this additional intersection withH (omitted from the definition ofM0,H
−n+1) since it will be convenient

to work with homogeneous partition elements in what follows. For δ > 0, define

(3.15) An(δ) = {A ∈Mn,H
0 : diamu(Bn−1(A)) ≥ δ/3} .

The following result shows that most of the weights contributing to Qn(t, g) come from elements of
An(δ) if δ is chosen small enough.

Lemma 3.6. Let t0 > 0. For any υ ≥ 0, there exist δ2 > 0 and c0 = c0(υ) > 0 with c0(υ′) ≥ c0(υ)
if υ′ ∈ [0, υ], such that for any g ∈ C1 satisfying (3.6) with |∇g|C0 ≤ υ,∑

A∈An(δ2)
sup

x∈A∩M ′
|JsTn(x)|teSng(x) ≥ c0Qn(t, g) , ∀n ∈ N , ∀t ∈ [t0, 1] .

Proof. Assume first g = 0. We begin by relating JsTn on A ∈ Mn,H
0 with JuT−n+1 on Tn−1A.

Recalling the definition of E(y) in (1.5), if x ∈ A and y = Tnx, we have

JsTn(x) = (E cosϕ) ◦ T−n(y)
(E cosϕ)(y) JuT−n(y) .

Here, JuT−n = det(DT−n|Eu), where Eu is the unstable direction for T (not T−1), so that JuT−n
is a contraction. Next, since24 JuT−1(y) = C±1 cosϕ(y), and the function E is uniformly bounded
away from 0, we conclude,

(3.16) JsTn(x) = C±1 cosϕ(T−ny)JuT−n+1(T−1y) .

For brevity, for any set A ⊂M , we will denote

(3.17) |JsTn|tA := sup
x∈A∩M ′

|JsTn(x)|t and similarly, |JuT−n|tA := sup
x∈A∩M ′

|JuT−n(x)|t .

Next, we consider the evolution of elements ofM0,H
−k under iteration by T j for j ≥ 1. If B ∈M0,H

−k ,
then we subdivide T jB according to singularity curves and homogeneity strips at each iterate, much
as we would consider the evolution of an unstable curve U under T j . We write T jB = ∪B′∈Gj(B)B

′,
where Gj(B) is the maximal decomposition of T jB into elements of M0,H

−k−j
∨
H, recalling that

H denotes the partition of M according to homogeneity strips. This last intersection with H is
necessary since we will work with homogeneous elements B′ ⊂ T jB (to maintain bounded distortion
for JuT−j on B′). Let Lδj(B) denote those elements B′ ∈ Gj(B) with diamu(B′) ≥ δ/3.

24We use the notation A = C±1B to denote C−1B ≤ A ≤ CB.
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Now by Definition 3.2 and applying the time reversal of the proof of Lemma 3.3 (with ς = 0),
there exists δ2 > 0 such that if max{diamu(B), diams(B)} ≤ δ2, then

(3.18)
∑

B′∈Gj(B)
|JuT−j |tB′ ≤ C0θ

tj , for all j ≤ n1,

where n1 = n1(1/4) is from (3.7) in Lemma 3.5. For convenience, we choose δ2 ≤ δ1(1/4). Also, if
B ∈ M0,H

−k , then diams(B) ≤ CΛ−k for some uniform constant C > 0. We choose n2 ≥ n1 so that
diams(B) ≤ δ2 if B ∈M0,H

−k for k ≥ n2.
We fix n ≥ n2 + 1 and prove the lemma for such n. For B ∈ M0,H

−n+1
∨
H, let B−j denote the

element of M0,H
−n+1+j

∨
H containing T−jB. We call B−j the most recent u-long ancestor of B if

j is the minimal integer k ≤ n − n2 such that diamu(B−k) ≥ δ2. If no such j exists, we say that
B has been u-short since time n2. (It follows from the definition of n2, that diams(B−j) ≤ δ2 for
all j ≤ n− n2 − 1.) Let Lδ2−n+1+j denote those elements ofM0,H

−n+1+j
∨
H which are u-long, and let

Sδ2−n+1+j denote those elements which are u-short (in the length scale δ2). Similarly, let Iδ2j (B−j)
denote the collection of B ∈ M0,H

−n+1
∨
H whose most recent u-long ancestor is B−j . Note that

Iδ2j (B−j) ⊂ Gj(B−j).
Thus if k ≥ n2 and B′ ∈M0,H

−k , then estimating inductively as in the proof of Lemma 3.3,

(3.19)
∑

B∈Iδ2j (B′)

|JuT−j |tB ≤ C0δ
−1
2 θtj for all j ≥ 0,

where the factor δ−1
2 is due to the fact that B′ itself may be u-long, in which case it would be

artificially subdivided into ∼ δ−1
2 pieces of u-diameter less than δ2 before being iterated.

Let Acn(δ2) =Mn,H
0 \ An(δ2). By (3.16),∑
A∈Acn(δ2)

|JsTn|tA = C±1 ∑
A∈Acn(δ2)

| cosϕ|tA|JuT−n+1|tTn−1A .

Note that if B ∈ M0,H
−n+1

∨
H with diamu(B) < δ2/3, then any A ∈ Mn,H

0 for which B = Bn−1(A)
belongs to Acn(δ2). Also,

Tn−1A ∈M1,H
−n+1 =M0,H

−n+1
∨
H
∨
M1

0

so that for fixed B, the number of A such that Bn−1(A) = B is at most #M1
0. Moreover,

since all such A are by definition contained in T−n+1(Bn−1(A)) = T−n+1B, and T−n+1B ∈
Mn−1,H

0
∨
T−n+1H, all A corresponding to one B are contained in the same homogeneity strip,

so that | cosϕ|A is comparable on all such A. In addition, sinceM0,H
−n+1

∨
H is the partition into

connected components of M \ ∪ni=0T
iSH0 , it follows that T−k is smooth on B, and T−kB belongs to

a single homogeneity strip for each 0 ≤ k ≤ n− 1. Then, applying the time reversal of Lemma 2.2
to unstable curves, we conclude that |JuT−n+1|Tn−1A is comparable to |JuT−n+1|B for each A such
that Bn−1(A) = B. Thus,

(3.20)
∑

A∈Acn(δ2)
|JsTn|tA = C±1 ∑

B∈Sδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB ,

and similarly,

(3.21)
∑

A∈An(δ2)
|JsTn|tA = C±1 ∑

B∈Lδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB .

Next, we group elements of Sδ2−n+1 by most recent u-long ancestor inM0,H
−n+1+j , as described above.

By (3.18), there is no need to consider long ancestors for j < n1. Note that if B′ ∈M0,H
−n+1+j

∨
H
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and B ∈ Iδ2j (B′), then T−n+1B lies in the same homogeneity strip as T−n+1+jB′, so that cosϕ is
comparable on each of these sets. Thus, by (3.18)–(3.19),∑

B∈Sδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB(3.22)

=
n−n2−1∑
j=n1

∑
B′∈Lδ2−n+1+j

∑
B∈Iδ2j (B′)

| cosϕ|tT−n+1B|J
uT−j |tB|JuT−n+1+j |tB′

+
∑

B′∈Sδ2−n2

∑
B∈Iδ2n−n2

(B′)

| cosϕ|tT−n+1B|J
uT−j |tB|JuT−n+1+j |tB′

≤
n−n2−1∑
j=n1

∑
B′∈Lδ2−n+1+j

Cδ−1
2 θtj | cosϕ|tT−n+1+jB′ |J

uT−n+1+j |tB′

+
∑

B′∈Sδ2−n2

Cθt(n−n2−1)| cosϕ|tT−n2B′ |J
uT−n2 |tB′ ,

where the final sum over B′ ∈ Sδ2−n2 represents those B ∈ Sδ2−n+1 which have had no u-long ancestor
since before time n2.

To proceed, we will need the following sublemma, linking the contribution from Lδ2−n+1+j to the
contribution from Lδ2−n+1.

Sublemma 3.7. Let t0 ∈ (0, 1). There exists C > 0 such that for all t ∈ [t0, 1], each n1 ≤ j ≤
n− n2 − 1, and all B′ ∈ Lδ2−n+1+j,

| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′ ≤ Cδ−1

2 Λj(t−1) ∑
B∈Lj(B′)

| cosϕ|tT−n+1B|J
uT−n+1|tB ,

where Lj(B′) denotes the collection of elements B ∈ Gj(B′) with diamu(B) ≥ δ2/3.

Proof. Since B′ ∈ Lδ2−n+1+j , there exists an unstable curve U ⊂ B′ with |U | ≥ δ2/3. Let G′j(B′)
denote those elements B ∈ Gj(B′) such that T jU∩B 6= ∅. Letting Gδ2j (U) denote the jth generation
of homogeneous elements of T jU , using the time reversed definition of Gδ2j (W ) for stable curves
from Section 3.1. If Ui ∈ Gδ2j (U) has |U | ≥ δ2/3, and B ∩ U 6= ∅ for some B ∈ G′j(B′), then
necessarily, diamu(B) ≥ δ2/3. Let L′j(B′) ⊂ Lj(B′) denote this collection of long elements. Then
letting Lδ2j (U) ⊂ Gδ2j (U) denote those elements of Gδ2j (U) with length at least δ2/3, we estimate,∑

B∈Lj(B′)
| cosϕ|tT−n+1B|J

uT−n+1|tB(3.23)

≥ C| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′

∑
B∈L′j(B′)

|JuT−j |tB

≥ C ′| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′δ2

∑
Ui∈L

δ2
j (U)

|JUiT−j |tC0(Ui)

≥ C ′δ2| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′ 34

∑
Ui∈G

δ2
j (U)

|JUiT−j |tC0(Ui)

≥ C ′′δ2| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′Λj(1−t)

∑
Ui∈G

δ2
j (U)

|JUiT−j |C0(Ui)
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≥ C ′′δ2| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′Λj(1−t)

|U |
δ2

,

where in the first inequality we have used the fact that cosϕ is comparable on T−n+1B and
T−n+1+jB′, in the second inequality we have applied the time reversal of Lemma 2.2 and the factor
δ2 appears since there may be up to ∼ δ−1

2 elements of Lδ2j (U) in each element B ∈ L′j(B′) (due to
artificial subdivisions in the definition of Gδ2j (U)), and in the third inequality we have applied the
time reversal of Lemma 3.5 and (3.7) from Lemma 3.5 since δ2 ≤ δ1 and j ≥ n1. Since |U | ≥ δ2/3,
this completes the proof of the sublemma. �

Using the sublemma, we now estimate the right hand side of (3.22), summing over B′ ∈ Lδ2−n+1+j
and noting that if B ∈ Lj(B′), then B ∈ Lδ2−n+1 and each such B is associated with a unique B′:∑

B∈Sδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB ≤

∑
B′∈Sδ2−n2

Cθt(n−n2−1)| cosϕ|tT−n2B′ |J
uT−n2 |tB′

+
n−n2−1∑
j=n1

Cδ−2
2 θtjΛj(t−1) ∑

B∈Lδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB

≤ Cn2(t0)θtn + Cδ−2
2

∑
B∈Lδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB ,

for some constant Cn2(t0) > 0 depending only on n2 and t0. To see the estimate on the first term,
note that by (3.16), since elements of Sδ2−n2 are connected components of M \ ∪n2+1

i=0 T iSH0 , we have∑
B′∈Sδ2−n2

| cosϕ|tT−n2B′ |J
uT−n2 |tB′ ≤ C

∑
A∈Mn2+1,H

0

|JsTn2+1|tA ≤ CQn2+1(t) ≤ CQn2+1(t0) .

Next, note that the sum over Lδ2−n+1 grows at a rate of at least CΛn(1−t) by the proof of the
sublemma. Thus we may choose n3 ≥ n2 large enough that Cn2(t0)θtn ≤ CΛn(1−t) for all n ≥ n3,
which implies,∑

B∈Sδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB ≤ Cδ−2

2
∑

B∈Lδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB .

Using this estimate with (3.20), (3.21) and the fact that An(δ2) ∪ Acn(δ2) =Mn,H
0 yields,

Qn(t) =
∑

A∈Acn(δ2)
|JsTn|tA +

∑
A∈An(δ2)

|JsTn|tA

≤ C(δ−2
2 + 1)

∑
B∈Lδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB ≤ C(δ−2

2 + 1)
∑

A∈An(δ2)
|JsTn|tA ,

completing the proof of the lemma for n ≥ n3 and g = 0. The statement for general n (and g = 0)
follows, possibly reducing the constant c0, since there are only finitely many n to correct for.

If g 6= 0, the proof remains as is until (3.18) with the same choices of n2 and δ2 (these choices are
independent of g), so that (3.18) holds with |eSjg|T−jB′ inserted in the left-hand side and ej|g|C0 in
the right. The analogous modification is made to (3.19). Then (3.20) becomes

(3.24)
∑

A∈Acn(δ2)
|JsTn|tA|eSng|A = C±1 ∑

B∈Sδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB|eSn−1g|T−n+1B ,
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where C depends on |∇g|C0 via (2.15), with the analogous modification to (3.21). Then (3.22) is
modified in the obvious way for n ≥ n2 + 1,∑

B∈Sδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB|eSn−1g|T−n+1B(3.25)

≤
n−n2−1∑
j=n1

∑
B′∈Lδ2−n+1+j

Cδ−1
1 θtjej|g|C0 | cosϕ|tT−n+1+jB′ |J

uT−n+1+j |tB′ |eSn−1−jg|T−n+1+jB′

+
∑

B′∈Sδ2−n2

Cθt(n−n2−1)e(n−n2−1)|g|C0 | cosϕ|tT−n2B′ |J
uT−n2 |tB′ |eSn2g|T−n2B′ .

A suitable analogue of Sublemma 3.7 yields C > 0 such that for each n1 ≤ j ≤ n − n2 − 1 and
B′ ∈ Lδ2−n+1+j ,

| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′ |eSn−1−jg|T−n+1+jB′

≤ Cδ−1
2 Λj(t−1)ej|g|C0

∑
B∈Lj(B′)

| cosϕ|tT−n+1B|J
uT−n+1|tB|eSn−1g|T−n+1B ,

where we have used the lower bound (3.13) rather than (3.9) in (3.23). This provides the contraction
required to complete the proof of Lemma 3.6 since θte|g|C0 < 1 by (3.6). �

3.4. Defining s1 > 1. Growth Lemmas for t ∈ (1, s1). In this section, we bootstrap from our
results for t ≤ 1 to conclude a parallel set of results for t ∈ (1, s1), for s1 > 1 from Definition 3.9
below. To do this, we will apply Propositions 3.14 and 3.15 from Section 3.5 for t ≤ 1 whose proofs
rely only on the lemmas in Section 3.3. In Section 3.6, we show how to extend this to all t < t∗.

The easy lemma below will be crucial to define s1:

Lemma 3.8. We have P∗(1) = 0. Moreover, the limit χ1 := lim
s→1−

P∗(s)
1− s exists and χ1 ≥ log Λ > 0.

In fact, χ1 =
∫
M log JuT dµSRB, which follows from Theorems 1.2 and 2.5.

Proof. Proposition 3.14 for t = 1 together with [DZ1, Lemma 3.2] prove that Qn(1) is uniformly
bounded for all n, so that P∗(1) ≤ 0. Since Proposition 2.4 gives P∗(1) ≥ P (1) = 0, we have
established that P∗(1) = 0. Next, the convexity of P∗(t) (Proposition 2.6) on (0,∞) implies that
left (and right) derivatives exist at every t > 0. Thus, since P∗(1) = 0, the limit below exists

(3.26) lim
s→1−

P∗(s)
1− s = lim

s→1−
P∗(s)− P∗(1)

1− s .

The proof that P (t) is strictly decreasing in Proposition 2.6 implies χ1 ≥ log Λ > 0. �

Definition 3.9. Recalling θ(t1) ∈ (Λ−1,Λ−1/2) from Definition 3.2, we define s1 := χ1
χ1 + log θ > 1.

Note that s1 is just the intersection point between the tangent line to P∗(t) at t = 1 (which is
the largest t where we have established the lower bound (3.9) on the sum over Gn(W )) and the line
y = t log θ. If t < s1 then θt < eP∗(t), which can be viewed as a pressure gap condition. Note finally
that establishing Theorem 2.5. in a neighbourhood of t = 1 will give s1 ≤ t∗.

A key to many results for 0 < t ≤ 1 is the lower bound on the rate of growth given by (3.9) in
the proof of Lemma 3.5. Our next lemma obtains this lower bound for t ≥ 1, interpolating via a
Hölder inequality.
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Lemma 3.10. Let t0 ∈ (0, 1) and t1 ∈ (1, t∗). Let t̄1 ≥ 1. For any κ > 0, there exist Cκ > 0,
ηκ > 0 such that for all g ∈ C0 and δ > 0, and all W ∈ Ŵs with |W | ≥ δ/3,

(3.27)
∑

Wi∈Gδn(W )
|JWiT

n|tC0(Wi)|e
Sng|C0(Wi) ≥ Cκδ

1
ηκ
−1
e−n(χ1+κ)(t−1)−n|g|C0 , ∀n ≥ 1 , ∀t ∈ [1, t̄1] .

Moreover, if |W | ≥ δ0/3, then∑
Wi∈Gδn(W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≥ Cκδ
−1e−n(χ1+κ)(t−1)−n|g|C0 , ∀n ≥ 1 , ∀t ∈ [1, t̄1] .

Proof. Assume first g = 0. For t ≥ 1, we have for any s ∈ (0, 1), taking η(s) ∈ (0, 1] such that
ηt+ (1− η)s = 1, that

∑
i ai =

∑
i a
ηt+(1−η)s
i ≤

(∑
i a
t
i

)η(∑
i a
s
i

)1−η for any positive numbers ai. It
follows that for any W ∈ Ŵs with |W | ≥ δ/3 and all n ≥ 1,

(3.28)
∑

Wi∈Gδn(W )
|JWiT

n|t ≥

(∑
Wi∈Gδn(W ) |JWiT

n|
)1/η

(∑
Wi∈Gδn(W ) |JWiT

n|s
)(1−η)/η ≥

(
C1
3

)1/η (
C2[0] δ0δ

2
c2
enP∗(s)

)(η−1)/η
,

where we have used (3.9) for the lower bound in the numerator, and Lemma 3.4 with ς = 0 and
t̃1 = 1 combined with Proposition 3.15 for the upper bound in the denominator. The factor δ0/δ
comes from the fact that here we use Gδn(W ), while Lemma 3.4 uses Gδ0n (W ). Since η = (1−s)/(t−s),
enP∗(s)(η−1)/η = e−n(t−1)P∗(s)/(1−s). For fixed κ > 0, Lemma 3.8 allows us to choose s = s(κ) ∈ (0, 1)
(and hence ηκ = η(s) > 0) such that P∗(s)/(1− s) ≤ χ1 + κ, completing the proof for g = 0 since
η(s) > (1− s)/t̄1. For g 6= 0, (3.27) follows since |eSng|C0(Wi) ≥ e

−n|g|C0 for each Wi.
For the second inequality of the lemma when |W | ≥ δ0/3, notice that (3.9) gives a lower bound

of C1δ0
3δ in this case. The rest of the estimate is the same (up to Cκ changing by a power of δ0). �

By definition, θteχ1(t−1) < 1 if t < s1. Thus for t̄1 ∈ (1, s1) there exists κ1 = κ(t̄1) > 0 such that

(3.29) θt̄1e(χ1+κ1)(t̄1−1) < 1 , and thus θte(χ1+κ1)(t−1) < 1 , ∀t ≤ t̄1 .
Our next lemma is the analogue of Lemma 3.5 for t > 1.

Lemma 3.11. Let t0 ∈ (0, 1), t1 ∈ (1, t∗) and t̄1 ∈ (1, s1). Let κ1 = κ(t̄1) satisfy (3.29). Then for
any ε > 0 there exist δ1 > 0 and n1 ≥ 1, such that25 for all W ∈ Ŵs with |W | ≥ δ1/3,∑
Wi∈G

δ1
n (W )

|Wi|<δ1/3

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≤ ε
∑

Wi∈G
δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) , ∀t ∈ [1, t̄1] , ∀n ≥ n1 ,

for all g ∈ C1 satisfying (3.6) and such that, in addition,

(3.30) 2|g|C0 < −t̄1 log θ − (χ1 + κ1)(t̄1 − 1) , i.e. θt̄1e(χ1+κ1)(t̄1−1)+2|g|C0 < 1 .

Let [t0, t̄1] ⊂ (0, s1). For all g ∈ C1 satisfying (3.6) and (3.30), Lemma 3.5 and Lemma 3.11 for
ε = 1/4 give n1 ≥ 1 and δ1 > 0 such that for all n ≥ n1 and all W ∈ Ŵs with |W | ≥ δ1/3,

(3.31)
∑

Wi∈L
δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≥
3
4

∑
Wi∈G

δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) , ∀t ∈ [t0, t̄1] .

Proof of Lemma 3.11. Assume first that g = 0. Define ρ = θt̄1e(χ1+κ1)(t̄1−1) < 1 (with κ1(t0, t1, t̄1)
from (3.29)). For ε > 0, choose ε̄ > 0 such that 6δ0C2

0
Cκ1 (1−ρ)

ε̄
1−ε̄ <

ε
2 and choose m1 such that ρm1 ≤ ε̄.

Next, choose δ1 > 0 such that (3.8) holds for all n ≤ 2m1.

25We take δ1 < δ1(ε) and n1 ≥ n1(ε) with δ1(ε) and n1(ε) from Lemma 3.5.
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For W ∈ Ŵs with |W | ≥ δ1/3, let Sδ1n (W ) denote the elements Wi ∈ Gδ1n (W ) such that |Wi| <
δ1/3, and let Lδ1n (W ) = Gδ1n (W ) \Sδ1n (W ). For n ≥ m1, write n = `m1 + r for some 0 ≤ r < m1. As
in the proof of Lemma 3.5, we group elements Wi ∈ Sδ1n (W ) according to the largest k such that
T (`−k)m1+rWi ⊂ Vj ∈ Lδ1km1

(W ). Such a k ∈ [0, `−1] must exist since |W | ≥ δ1/3 while |Wi| < δ1/3.
By choice of δ1 and m1, we may apply (3.8) for (`− k)m1 + r iterates to obtain

∑
Wi∈S

δ1
n (W )

|JWiT
n|tC0(Wi) ≤

`−1∑
k=0

∑
Vj∈L

δ1
km1

(W )

|JVjT km1 |tC0(Vj)C0θ
t((`−k)m1+r) .

Next, for each k, we consider each Vj ∈ Lδ1km1
(W ) as being contained in an element Ui ∈ Gδ0km1

(W ).
Since |Vj | ≥ δ1/3, there are at most 3δ0/δ1 Vj corresponding to each such Ui. Then we group each
Ui ∈ Gδ0km1

(W ) according to its most recent long ancestor Wa ∈ Lδ0j (W ) for some j ∈ [0, km1]. Note
that j = 0 is possible if |W | ≥ δ0/3. However, if |W | < δ0/3 and no such time j exists for Ui,
then we associate such Ui with index j = 0 in any case. In either case, Ui ∈ Iδ0km1

(W ), where
Iδ0km1

(W ) = Ikm1(W ) as defined in Lemma 3.3. With these groupings, we estimate,

∑
Vj∈L

δ1
km1

(W )

|JVjT km1 |tC0(Wi) ≤
3δ0
δ1

 ∑
Ui∈I

δ0
km1

(W )

|JUiT km1 |tC0(Ui)

+
km1∑
j=1

∑
Wa∈L

δ0
j (W )

|JWaT
j |t

∑
Ui∈I

δ0
km1−j

(Wa)

|JUiT km1−j |tC0(Ui)



≤ 3δ0
δ1

C0θ
tkm1 +

km1∑
j=1

∑
Wa∈L

δ0
j (W )

|JWaT
j |tC0θ

t(km1−j)

 ,

where we have applied Lemma 3.3 to each collection Iδ0km1−j(W ). Collecting these estimates yields,

∑
Wi∈S

δ1
n (W )

|JWiT
n|tC0(Wi) ≤

3δ0
δ1

C2
0
n

m1
θtn +

`−1∑
k=1

km1∑
j=1

C2
0θ
t(n−j) ∑

Wa∈L
δ0
j (W )

|JWaT
j |tC0(Wa)

 .

For fixed k > 0 and each j for which Lδ0j (W ) is not empty, we group elements Wi ∈ Gδ1n (W )
according to which Wa ∈ Gδ0j (W ) they descend from. Then we use Lemma 3.10 and the distortion
bound (3.10) to estimate a lower bound,

∑
Wi∈G

δ1
n (W )

|JWiT
n|tC0(Wi) ≥

∑
Wa∈L

δ0
j (W )

1
2 |JWaT

j |tC0(Wa)
∑

Wi∈G
δ1
n−j(Wa)

|JWiT
n−j |tC0(Wi)

≥ Cκ1

2δ1
e−(n−j)(χ1+κ1)(t−1) ∑

Wa∈L
δ0
j (W )

|JWaT
j |tC0(Wa) .
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Combining upper and lower bounds yields (using (3.27) for the term26 corresponding to j = 0),∑
Wi∈S

δ1
n (W ) |JWiT

n|tC0(Wi)∑
Wi∈G

δ1
n (W ) |JWiT

n|tC0(Wi)
≤

3δ0n
δ1m1

C2
0θ
tn

Cκ1δ
1
ηκ1
−1

1 e−n(χ1+κ1)(t−1)

+
`−1∑
k=1

km1∑
j=1

3δ0
δ1
C2

0θ
t(n−j)∑

Wa∈L
δ0
j (W ) |JWaT

j |tC0(Wa)
Cκ1
2δ1 e

−(n−j)(χ1+κ1)(t−1)∑
Wa∈L

δ0
j (W ) |JWaT

j |tC0(Wa)

≤ 3δ0nC
2
0

Cκ1m1
δ
− 1
ηκ1

1 ρn +
`−1∑
k=1

km1∑
j=1

6δ0C
2
0

Cκ1
ρn−j

≤ 3δ0nC
2
0

Cκ1m1
δ
− 1
ηκ1

1 ρn + 6δ0C
2
0

Cκ1(1− ρ)

`−1∑
i=1

ε̄i ≤ 3δ0nC
2
0

Cκ1m1
δ
− 1
ηκ1

1 ρn + ε

2 ,

by choice of ε̄, where we have used the fact that
∑`−1
k=1

∑km1
j=1 ρ

n−j ≤
∑`−1
k=1

ρn−km1
1−ρ ≤

∑`−1
i=1

ε̄i

1−ρ .
Finally, we choose n1 ≥ m1 sufficiently large that the first term is less than ε

2 for all n ≥ n1,
completing the proof in the case g = 0.

If g 6= 0, define ρg = θt̄1e(χ1+κ1)(t̄1−1)+2|g|C0 < 1. For ε > 0, pick ε̄ > 0 such that 12δ0C2
0

Cκ1 (1−ρg)
ε̄

1−ε̄ <
ε
2 .

Then choose m1 and δ1 as in the case g = 0, but with ρg in place of ρ. (The choices m1 and δ1 are
uniform for g satisfying (3.6) and (3.30).) The argument then follows precisely as above with the
inclusion of g as in (3.14) in the proof of Lemma 3.5. The fact that the distortion constant for g is
at most 2 is used for the lower bound for each Wa ∈ Lδ0j (W ) appearing in the denominator:∑

Wi∈G
δ1
n−j(Wa)

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi)

≥ 1
4 |JWaT

j |tC0(Wa)|e
Sjg|C0(Wa)

∑
Wi∈G

δ1
n−j(Wa)

|JWiT
n−j |tC0(Wi)|e

Sn−jg|C0(Wi)

≥ 1
4 |JWaT

j |tC0(Wa)|e
Sjg|C0(Wa)Cκ1δ

−1
1 e−(n−j)(χ1+κ1)(t−1)−(n−j)|g|C0 .

�

Our final lemma of this section is the analogue of Lemma 3.6 for t > 1. Define An(δ) as in (3.15).

Lemma 3.12. Let t0 ∈ (0, 1), t1 ∈ (1, t∗) and t̄1 ∈ (1, s1). Let δ2 > 0 be as in Lemma 3.6. There
exists a decreasing function c0 : [0,∞) → R+ such that for any υ ≥ 0 and any g ∈ C1 satisfying
(3.6), (3.30), and |∇g|C0 ≤ υ, we have∑

A∈An(δ2)
sup

x∈A∩M ′
|JsTn(x)|teSng(x) ≥ c0(υ)Qn(t, g) , ∀n ∈ N , ∀t ∈ [1, t̄1] .

Proof. The calculations in the proof of Lemma 3.6 for g = 0 are valid for all t > 0 up through
(3.22). To proceed, we replace Sublemma 3.7 by the following.

Sublemma 3.13. Let t0 ∈ (0, 1), t1 ∈ (1, t∗) and t̄1 ∈ (1, s1). There exists C > 0 such that for all
t ∈ [1, t̄1], each n1 ≤ j ≤ n− n2 − 1 and all B′ ∈ Lδ2−n+1+j,

| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′ ≤ Cδ

−1/ηκ1
2 ej(χ1+κ1)(t−1) ∑

B∈Lj(B′)
| cosϕ|tT−n+1B|J

uT−n+1|tB ,

where Lj(B′) denotes the collection of elements B ∈ Gj(B′) with diamu(B) ≥ δ2/3.
26A better estimate is possible in the case |W | ≥ δ0/3, but we will not need this.
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Proof. The proof of this sublemma only requires one adjustment to the estimate in (3.23). Using
the same notation as in Sublemma 3.7, we have∑

B∈Lj(B′)
| cosϕ|tT−n+1B|J

uT−n+1|tB ≥ C| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′

∑
B∈L′j(B′)

|JuT−j |tB

≥ C ′| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′δ2

∑
Ui∈L

δ2
j (U)

|JUiT−j |tC0(Ui)

≥ C ′δ2| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′ 34

∑
Ui∈G

δ2
j (U)

|JUiT−j |tC0(Ui)

≥ C ′′δ1/ηκ1
2 | cosϕ|tT−n+1+jB′ |J

uT−n+1+j |tB′Cκ1e
−j(χ1+κ1)(t−1) ,

where the only new justifications are that we use the time reversal of (3.31) in the third inequality
since δ2 ≤ δ1 and |U | ≥ δ2/3, and in the fourth inequality, we apply the time reversal of Lemma 3.10
since j ≥ n1 with κ1 from (3.29) . �

Using Sublemma 3.13, we estimate the right hand side of (3.22) as in the proof of Lemma 3.6,
summing over B′ ∈ Lδ2−n+1+j and recalling that if B ∈ Lj(B′), then B ∈ Lδ2−n+1 and each such B is
associated with a unique B′:∑

B∈Sδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB ≤

∑
B′∈Sδ2−n2

Cθt(n−n2−1)| cosϕ|tT−n2B′ |J
uT−n2 |tB′(3.32)

+
n−n2−1∑
j=n1

Cδ
−1−1/ηκ1
2 θtjej(χ1+κ1)(t−1) ∑

B∈Lδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB

≤ Cn2θ
tn + Cδ

−1−1/ηκ1
2

∑
B∈Lδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB ,

for some constant Cn2 > 0 depending only on n2, where we have used the fact that θte(χ1+κ1)(t−1) < 1
to sum over j.

The sum over B ∈ Lδ2−n+1 shrinks at a rate bounded below by Cδ1/ηκ1
2 e−n(χ1+κ1)(1−t) by the proof

of Sublemma 3.13. Thus we may choose n3 ≥ n2 large enough that Cn2θ
tn ≤ Cδ−1

2 e−n(χ1+κ1)(t−1)

for all n ≥ n3, which implies,∑
B∈Sδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB ≤ Cδ

−1−1/ηκ1
2

∑
B∈Lδ2−n+1

| cosϕ|tT−n+1B|J
uT−n+1|tB .

The proof of the Lemma 3.6 proceeds without further changes from this point, ending the proof of
Lemma 3.12 if g = 0.

If g 6= 0, choosing δ2 as in the proof of Lemma 3.6 implies that (3.24) and (3.25) remain as
written. The only change required in the proof is to use the lower bound (3.27) with κ = κ1 to
prove the analogue of Sublemma 3.7: There exists C > 0 such that for all n1 ≤ j ≤ n− n2 − 1 and
B′ ∈ Lδ2−n+1+j ,

| cosϕ|tT−n+1+jB′ |J
uT−n+1+j |tB′ |eSn−1−jg|T−n+1+jB′

≤ Cδ−1/ηκ1
2 ej(χ1+κ1)(t−1)ej|g|C0

∑
B∈Lj(B′)

| cosϕ|tT−n+1B|J
uT−n+1|tB|eSn−1g|T−n+1B .

We then proceed as in (3.32) using the contraction provided by (3.30) to sum over j. �
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3.5. Lower Bounds on Complexity. Exact Exponential Growth of Qn(t, g). In order to
conclude that the spectral radius of Lt on B is eP∗(t) and to control the peripheral spectrum of Lt,
we shall establish the exact exponential growth of Qn(t).

The lower bound on the spectral radius of Lt is a consequence of the following lemma, guaranteeing
that the weighted complexity of long elements of Ŵs grows at the rate Qn(t, g).

Proposition 3.14. Let t0 ∈ (0, 1), t1 ∈ (1, t∗) and t̄1 ∈ (1, s1). There exists a decreasing function
c1 : [0,∞)→ R+ such that for any υ ≥ 0 and any W ∈ Ŵs with |W | ≥ δ1/3,

(3.33)
∑

Wi∈Gn(W )
|JWiT

n|tC0(Wi)|e
Sng|C0(Wi) ≥ c1(υ)Qn(t, g) , ∀n ≥ 1 , ∀t ∈ [t0, t̄1] ,

for any g ∈ C1 with |∇g|C0 ≤ υ and such that (3.6) and (3.30) hold.

Proof. As usual we first consider g = 0. The main idea of the proof is to show that for each curve
W ∈ Ws with |W | ≥ δ1/3, the image T−nW intersects a positive fraction of elements of M0,H

n ,
weighted by |JsTn|t, for n large enough. The mixing property of µSRB is instrumental here.

To do this, we recall the construction of locally maximal homogeneous Cantor rectangles from
[CM, Section 7.12] (and similar to those used in [BD, Section 5.3] where we worked27 with Ws

instead of Ws
H). We call D ⊂M a solid rectangle if D is a closed, simply connected region whose

boundary consists of two homogeneous unstable and two stable manifolds. Given such a rectangle
D, the maximal Cantor rectangle R(D) in D is the union of all points in D whose homogeneous
stable and unstable manifolds completely cross D. Note that R(D) is closed and contains the
boundary of D [CM, Section 7.11], but is not simply connected due to the effect of the singularities,
which create, for any ε > 0, a dense set of points with stable and unstable manifolds shorter than ε.

In what follows, we restrict to Cantor rectangles with sufficiently high density, i.e.,

(3.34) inf
x∈R

mWu(W u(x) ∩R)
mWu(W u(x) ∩D(R)) ≥ 0.99 ,

where mWu denotes arclength measure along an unstable manifold. We say that a homogeneous
stable curve W ∈ Ŵs

H properly crosses a maximal homogeneous Cantor rectangle R = R(D)
satisfying (3.34) if W crosses both unstable sides of D, and, in addition, for every x ∈ R, the point
W ∩W u(x) divides the curve W u(x) ∩D(R) in a ratio between 0.1 and 0.9, and on either side of
W ∩W u(x), the density of R in W u(x) ∩D(R) is at least 0.9. Reversing the roles of stable and
unstable manifolds, we obtain the analogous definition of an unstable curve properly crossing a
Cantor rectangle.

By [CM, Lemma 7.87], we choose a finite number of locally maximal homogeneous Cantor
rectangles R(δ2) = {R1, . . . , Rk} satisfying (3.34) and its analogue along stable manifolds, with the
property that any homogeneous stable or unstable curve of length at least δ2/3 properly crosses at
least one of them. Let δ′2 be the minimum diameter of the rectangles in R(δ2) and note that δ′2 is a
function only of δ2.

Now fix n ≥ 1 and let Ain ⊂ An(δ2) denote those elements A ∈ An(δ2) such that Bn−1(A)
contains an homogeneous unstable curve of length at least δ2/3 that properly crosses Ri. Due to
Lemma 3.6 for t ≤ 1 and Lemma 3.12 for t > 1, there exists i∗ such that

(3.35)
∑

A∈Ai∗n

sup
x∈A∩M ′

|JsTn(x)|t ≥ c0
k
Qn(t) .

Fix an arbitrary homogeneous W ∈ Ŵs with |W | ≥ δ1/3, and let Rj ∈ R(δ2) denote the Cantor
rectangle that is properly crossed by W (recalling that δ2 ≤ δ1). By the mixing property of
µSRB and [CM, Lemma 7.90], there exists N1 = N1(δ2) ≥ 1 such that T−N1Ri has a homogeneous

27The construction in [CM, Section 7.12] uses Ws
H, but since each V in Ws are unions of manifolds Wi in Ws

H, if
the Wi cross properly, so does V .
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connected component that properly crosses Ri∗ , for all i = 1, . . . , k. In particular, T−N1Rj properly
crosses Ri∗ , so an element of GN1(W ) properly crosses Ri∗ .

Let W1 ∈ GN1(W ) denote the component of T−N1W that properly crosses Ri∗ and note that
W1 crosses Bn−1(A) for all A ∈ Ai∗n . Since W1 is homogeneous and N1 ≥ 1, W1 cannot cross a
singularity line in T−1S0 (since then the curve would have been subdivided at time N1− 1), and so
for each such A, W1 crosses an element B′A ∈M

1,H
−n+1, B′A ⊂ Bn−1(A). Let V ′A = W1 ∩B′A and let

VA = T−n+1V ′A. Then VA is a homogeneous component belonging to an element of Gn−1+N1(W ).
By Lemma 2.2, recalling the notation |JsT k|tA′ = supx∈A′∩M ′ |JsT k(x)|t from (3.17),

|JVAT
n−1|tC0(VA) = e±tC |JsTn−1|tT−n+1Bn−1(A) ,

since T−n+1Bn−1(A) ∈Mn−1,H
0

∨
T−n+1H. By definition, T−n+1Bn−1(A) contains A. Thus,

(3.36) |JsTn−1|tA ≤ etC |JVAT
n−1|tC0(VA) .

Next, we wish to compare JsT on Tn−1A with JV ′AT . Since V
′
A ⊂ W1 ⊂ T−N1W , we have that

TV ′A is a stable curve, and so is TW1, so that JV ′AT = e±CdJW1T = e±Cdk−q, where k is the index
of the homogeneity strip containing W1. But since |W1| ≥ δ′2 (since W1 properly crosses Ri∗), we
have k ≤ (δ′2)−1/(q+1) and so JW1T ≥ C(δ′2)q/(q+1). Since JsT ≤ eCd , we have, using (3.36), that
|JsTn|tA ≤ C(δ′2)−tq/(q+1)|JVATn|tC0(VA). Then summing over A ∈ Ai∗n , we obtain,

(3.37)
∑

A∈Ai∗n

|JsTn|tA ≤ C(δ′2)−tq/(q+1) ∑
Vi∈Gn(TW1)

|JViTn|tC0(Vi) .

Next, we express the sum over Gn+N1−1(W ) in two ways. On the one hand, by Lemma 3.4,∑
Vj∈Gn+N1−1(W )

|JVjTn+N1−1|tC0(Vj) ≤
∑

Wi∈Gn(W )
|JWiT

n|tC0(Wi)
∑

Vj∈GN1−1(Wi)
|JVjTN1−1|tC0(Vj)

≤ C2[0]QN1−1(t)
∑

Wi∈Gn(W )
|JWiT

n|tC0(Wi) .
(3.38)

On the other hand, letting W ′1 be the element of GN1−1(W ) containing TW1,∑
Vj∈Gn+N1−1(W )

|JVjTn+N1−1|tC0(Vj) ≥ e
−tCd |JW ′1T

N1−1|tC0(W ′1)
∑

Vi∈Gn(W ′1)
|JViTn|tC0(Vi)

≥ e−tCdC ′(δ′2)t
(

2q+1
q+1

)N1−1 ∑
Vi∈Gn(W ′1)

|JViTn|tC0(Vi) ,
(3.39)

where the lower bound on |JW ′1T
N1−1|tC0(W ′1) comes from the fact that |W ′1| ≥ δ′2 and for a stable

curve V such that V and T−1V are both homogeneous, |T−1V | ≤ C|V |
q+1
2q+1 , and this bound can

be iterated N1 − 1 times as in [BD, eq. (5.3)].
Combining (3.37), (3.38) and (3.39), and recalling (3.35) yields,∑

Wi∈Gn(W )
|JWiT

n|tC0(Wi) ≥ (C2[0])−1QN1−1(t)−1C ′′(δ′2)t
(

2q+1
q+1

)N1 c0
k
Qn(t) ,

which completes the proof of the proposition if g = 0.
If g 6= 0, starting as above, we choose the finite family of Cantor rectangles R(δ2) in the same

way, and find an index i∗ such that the analogue of (3.35)∑
A∈Ai∗n

sup
x∈A∩M ′

|JsTn(x)|teSng(x) ≥ c0
k
Qn(t, g) ,
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holds, using Lemma 3.6 if t ≤ 1 and Lemma 3.12 if t > 1. Fixing W ∈ Ws, choosing N1 as above,
and using the same notation introduced there, we obtain the modification of (3.36),

||JsTn−1|teSn−1g|A ≤ etC(1 + C̄C∗|∇g|C0)||JVAT
n−1|teSn−1g|C0(VA) ,

applying (2.15). Next, (3.37) needs only the multiplication by eSng to each term on both sides, up
to replacing the constant C by C(1+ C̄ C∗ · |∇g|C0). The upper bound (3.38) requires only a change
of constant to C2[0]QN1−1(t, g), using Lemma 3.4 with ς = 0, while the lower bound (3.39) requires
the added factor e−(N1−1)|g|C0 on the right hand side. Since N1 is fixed (depending only on R(δ2)),
these bounds are combined as in the case g = 0 to complete the proof of the proposition. �

The following important consequence of Proposition 3.14 will be used to characterize the periph-
eral spectrum of Lt.

Proposition 3.15 (Exact Exponential Growth of Qn(t, g)). Let t0 ∈ (0, 1), t1 ∈ (1, t∗) and
t̄1 ∈ (1, s1). There exists a decreasing function c2 : [0,∞)→ R+ such that for any υ ≥ 0 and any
g ∈ C1 with |∇g|C0 ≤ υ and such that (3.6) and (3.30) hold, we have

(3.40) enP∗(t,g) ≤ Qn(t, g) ≤ 2
c2(υ)e

nP∗(t,g) , ∀t ∈ [t0, t̄1] , ∀n ≥ 1 .

Proof. The lower bound follows immediately from submultiplicativity of Qn(t, g) (obtained in the
proof of Proposition 2.6 for any t > 0 and g ∈ C1) since then P∗(t, g) = infn 1

n logQn(t, g).
To obtain the upper bound for g = 0, we first prove the following supermultiplicative property:

There exists c2 > 0 such that for all t ∈ [t0, t̄1] and for any j, n ≥ 1,
(3.41) Qn+j(t) ≥ c2Qn(t)Qj(t) .

Let W ∈ Ŵs with |W | ≥ δ1/3. For n, j ≥ 1, by Lemma 3.4 with ς = 0,∑
Wi∈G

δ1
n+j(W )

|JWiT
n+j |tC0(Wi) ≤ C2[0]Qn+j(t) .

On the other hand, if n ≥ n1, then using Lemma 2.1,∑
Wi∈G

δ1
n+j(W )

|JWiT
n+j |tC0(Wi) ≥ C

∑
Vk∈G

δ1
n (W )

|JVkT
n|tC0(Vk)

∑
Wi∈G

δ1
j (Vk)

|JWiT
j |tC0(Wi)

≥ C
∑

Vk∈L
δ1
n (W )

|JVkT
n|tC0(Vk)

∑
Wi∈G

δ1
j (Vk)

|JWiT
j |tC0(Wi)

≥ C
∑

Vk∈L
δ1
n (W )

|JVkT
n|tC0(Vk)c1Qj(t)

≥ Cc1Qj(t)3
4

∑
Vk∈G

δ1
n (W )

|JVkT
n|tC0(Vk) ≥ C ′c2

1Qj(t)Qn(t) ,

where in the third and fifth inequalities, we have used Proposition 3.14 and in the fourth inequality
we have applied (3.31). This proves (3.41) for n ≥ n1, and the case n ≤ n1 follows by adjusting the
constant c2. (Note that c2 is uniform in t.) The proof of the upper bound on Qn(t) then proceeds
precisely as in the proof of [BD, Proposition 4.6]. The case of nonzero g is identical. �

3.6. Growth Lemmas and Exact Exponential Growth for t ∈ (s1, t∗). The main result of
this section is Proposition 3.18 which extends Propositions 3.14 and 3.15 to all t < t∗. The constant
t∗ > 1 is defined by (1.8), while s1 > 1 is introduced in Definition 3.9. What we have proved up
to now suffices to establish all the results of Sections 4–6 for t ∈ (0, s1). In particular Theorem 2.5
holds in a neighbourhood of t = 1, so we know that s1 ≤ t∗.
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Recall that t1 ∈ (1, t∗) is fixed in Definition 3.2, determining θ ∈ (Λ−1,Λ−1/2) and our main
statements are for t ∈ [t0, t1]. If s1 ≥ t1, there is nothing to do. Otherwise, θs1 < eP (s1) ≤ eP∗(s1) by
Proposition 2.4. Since P∗(t) is convex and decreasing, the left-hand slopes are lower semi-continuous,
so we may choose t̄1 ∈ (1, s1) so that the intersection point s2(t̄1) between the tangent line to P∗(t)
(from the left) at t = t̄1 and the line t log θ satisfies s2 > s1. Indeed, we have

(3.42) s2 = s2(t̄1) := P∗(t̄1) + χ2t̄1
χ2 + log θ , where χ2 = χ2(t̄1) := lim

s→t̄−1

P∗(s)− P∗(t̄1)
t̄1 − s

≥ log Λ ,

where (by convexity of P∗(t)) the limit defining χ2 exists and P∗(t) lies above its tangents, so that
θt < eP∗(t) for all t < s2.

Our next lemma is an analogue of Lemma 3.10, interpolating now from t̄1 to s2.

Lemma 3.16. Fix t0 ∈ (0, 1) and t1 ∈ (1, t∗), and let t̄1 ∈ (1, s1) and s2(t̄1) > s1 be as above. For
any t̄2 ∈ (s1, s2) and any κ > 0, there exist Cκ > 0, ηκ > 0 such that for all g ∈ C0, all δ > 0, all
W ∈ Ŵs with |W | ≥ δ/3, and all n ≥ 1,

(3.43)
∑

Wi∈Gδn(W )
|JWiT

n|tC0(Wi)|e
Sng|C0(Wi) ≥ Cκδ

1
ηκ
−1
e−n(χ2+κ)(t−t̄1)+nP∗(t̄1)−n|g|C0 , ∀t ∈ [t̄1, t̄2] .

Moreover, if |W | ≥ δ0/3, then∑
Wi∈Gδn(W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≥ Cκδ
−1e−n(χ2+κ)(t−1)−n|g|C0 , ∀n ≥ 1 , ∀t ∈ [t̄1, t̄2] .

Proof. We adapt the proof of Lemma 3.10. First assume g = 0. For t ≥ s1, let s ∈ (1, t̄1), and
η(s) ∈ (0, 1] such that ηt+ (1− η)s = t̄1. Then again using the Hölder inequality, for any W ∈ Ŵs

with |W | ≥ δ/3 and all n ≥ 1,

(3.44)
∑

Wi∈Gδn(W )
|JWiT

n|t ≥

(∑
Wi∈Gδn(W ) |JWiT

n|t̄1
)1/η

(∑
Wi∈Gδn(W ) |JWiT

n|s
)(1−η)/η ≥

(
c1e

nP∗(t̄1))1/η(
C2[0] δ0δ

2
c2
enP∗(s)

)(1−η)/η ,

where we have used Propositions 3.14 and 3.15 for the lower bound in the numerator, and Lemma 3.4
with ς = 0 and Proposition 3.15 for the upper bound in the denominator. Since η = (t̄1− s)/(t− s),

e−n(P∗(s)−P∗(t̄1))/ηenP∗(s) = e
−n(t−s)P∗(s)−P∗(t̄1)

t̄1−s enP∗(s) .

For fixed κ > 0, by (3.42), we may choose s = s(κ) ∈ (1, t̄1) and ηκ > 0 such that (t−s)P∗(s)−P∗(t̄1)
t̄1−s ≤

(t− t̄1)(χ2 + κ), completing the proof for g = 0 since P∗(s) ≥ P∗(t̄1). For g 6= 0, the lemma follows,
again using the bound |eSng|C0(Wi) ≥ e

−n|g|C0 . �

By definition, θteχ2(t−t̄1)−P∗(t̄1) < 1 if t < s2. Thus for t̄2 ∈ (s1, s2), there exists κ2 = κ(t̄2) > 0
such that

(3.45) θt̄2e(χ2+κ2)(t̄2−t̄1)−P∗(t̄1) < 1 , and thus θte(χ2+κ2)(t−t̄1)−P∗(t̄1) < 1 , ∀t ≤ t̄2 .

Our next lemma extends Lemma 3.11 for t ∈ [t̄1, t̄2].

Lemma 3.17. Let t0 ∈ (0, 1) and t1 ∈ (1, t∗). Let t̄2 ∈ (s1, s2), and let κ2 = κ(t̄2) satisfy (3.45).
Then for any ε > 0 there exist δ1 > 0 and n1 ≥ 1, such that for all W ∈ Ŵs with |W | ≥ δ1/3, and
for all n ≥ n1,∑

Wi∈G
δ1
n (W )

|Wi|<δ1/3

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≤ ε
∑

Wi∈G
δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) , ∀t ∈ [1, t̄2] ,
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for all g ∈ C1 satisfying (3.6), (3.30) and such that, in addition,

(3.46) 2|g|C0 < −t̄2 log θ − (χ2 + κ2)(t̄2 − t̄1) + P∗(t̄1) , i.e. θt̄2e(χ2+κ2)(t̄2−t̄1)−P∗(t̄1)+2|g|C0 < 1 .

Proof. The proof of Lemma 3.17 proceeds with the analogous modifications used in the proof of
Lemma 3.11, using the lower bound (3.43) in place of (3.27). The proof goes through due to the
contraction provided by (3.45) and (3.46). �

Let [t0, t̄2] ⊂ (0, s2). For all g ∈ C1 satisfying (3.6), (3.30), (3.46), Lemmas 3.5, 3.11 and 3.17 for
ε = 1/4 give n1 ≥ 1 and δ1 > 0 such that for all n ≥ n1 and all W ∈ Ŵs with |W | ≥ δ1/3,

(3.47)
∑

Wi∈L
δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≥
3
4

∑
Wi∈G

δ1
n (W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) , ∀t ∈ [t0, t̄2] .

At this point it is clear that Lemma 3.12 (with the same constant δ2 > 0, but possibly smaller
c0 > 0), and Propositions 3.14 and 3.15 (with possibly smaller constants c1, c2 > 0) hold with t̄1
replaced by t̄2 ∈ (s1, s2).

The interpolation can now be continued inductively. Suppose we have created a sequence
1 < t̄1 < s1 < t̄2 < s2 < . . . < t̄n < sn < t1 < t∗ so that Propositions 3.14 and 3.15 hold with t̄1
replaced by t̄n. Then since sn < t1, we have θsn < eP∗(sn) and we may define

χn+1 = lim
s→t̄−n

P∗(s)− P∗(t̄n)
t̄n − s

≥ log Λ, and sn+1 = P∗(t̄n) + χnt̄n
χn + log θ > sn ,

where sn+1 > sn by choice of t̄n. Following the proof of Lemma 3.16 with t̄1, t̄2, χ2 replaced by
t̄n, t̄n+1, χn+1, it follows that the conclusion of the lemma holds for all t ∈ [t̄n, t̄n+1]. Analogous
modifications to Lemma 3.17 imply that Lemma 3.12 and the propositions of Section 3.5 hold with
t̄1 replaced by t̄n+1 ∈ (sn, sn+1).

Finally, the sequence (sn) cannot accumulate on any s∞ ≤ t1. For if it does, then by definition
of θ, it follows that θs∞ < eP∗(s∞), so we may repeat the construction above, finding a point of
intersection s′ > s∞ between t log θ and the left hand tangent to P∗(t) at some t̄n < s∞. It follows
that this sequence of interpolations can be chosen so that t1 < t̄n < t∗ for some n ≥ 1. At this
point we stop, and since we have made only finitely many choices of the required constants, we
have extended the analogues of Propositions 3.14 and 3.15 to all t1 < t∗:

Proposition 3.18. Let t0 ∈ (0, 1) and t1 ∈ (1, t∗). There exist decreasing functions ci : [0,∞)→
R+, i = 1, 2, such that for any υ ≥ 0 and any g ∈ C1 with |∇g|C0 ≤ υ and such that |g|C0 is
sufficiently small (depending on the number of interpolations required to reach t1),

a) for any W ∈ Ŵs with |W | ≥ δ1/3,∑
Wi∈Gn(W )

|JWiT
n|tC0(Wi)|e

Sng|C0(Wi) ≥ c1(υ)Qn(t, g) , ∀n ≥ 1 , ∀t ∈ [t0, t1] ;

b) for all n ≥ 1, we have enP∗(t,g) ≤ Qn(t, g) ≤ 2
c2(υ)e

nP∗(t,g) , ∀t ∈ [t0, t1] .

4. Spectral Properties of Lt (Theorem 4.1)

4.1. Definition of Norms and Spaces B and Bw. For fixed t0 > 0 and t1 ∈ (max{t0, 1}, t∗),
we choose θ(t1) ∈ (Λ−1,Λ−1/2) satisfying θt1 < eP∗(t1), q > min{1, 2/t0}, k0 = k0(t0, t1) (for
the homogeneity strips (2.1)), and δ0 = δ0(t0, t1) from Definition 3.2. These choices affect the
definitions of Ws and Ws

H, as well as conditions (4.1) and (4.2) below on the parameters α, β, γ, p,
ε0, determining spaces B = B(t0, t1) and Bw = Bw(t0, t1) on which Lt will be bounded for all t ≥ t0.
An additional condition on the parameter p depending on t1 < t∗ will be needed to obtain the
Lasota–Yorke bound (4.8) (see Lemma 4.7) and thus the spectral gap of Lt on B for all t ∈ [t0, t1].
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First we define notions of distance28 between stable curves and test functions as follows.
Since the slopes of stable curves are uniformly bounded away from the vertical, we view each

W ∈ Ŵs as the graph of a function of the r-coordinate over an interval IW ,

W = {GW (r) : r ∈ IW } = {(r, ϕW (r)) : r ∈ IW } .

By the uniform bound on the curvature of W ∈ Ŵs, we have B := sup
W∈Ŵs |ϕ′′W | <∞.

Next, given W1,W2 ∈ Ŵs with functions ϕW1 , ϕW2 , we define

dWs(W1,W2) = |IW1 4 IW2 |+ |ϕW1 − ϕW2 |C1(IW1∩IW2 ) ,

if W1 and W2 lie in the same homogeneity strip, and dWs(W1,W2) = 3B + 1 otherwise.
Finally, if dWs(W1,W2) < 3B + 1, then for ψ1 ∈ C0(W1), ψ2 ∈ C0(W2), define

d(ψ1, ψ2) = |ψ1 ◦GW1 − ψ2 ◦GW2 |C0(IW1∩IW2 ) ,

while if dWs(W1,W2) ≥ 3B + 1 and ψ1 ∈ C0(W1), ψ2 ∈ C0(W2), we set d(ψ1, ψ2) =∞.

We next define the norms, introducing parameters α, β, γ, p, and ε0. Choose29

(4.1) α ∈
(
0, 1
q + 1

]
, p > q + 1, β ∈

(1
p
, α
)
, γ ∈

(
0,min

{1
p
, α− β, 1

6q + 7
})

.

(This implies α ≤ 1/3, γ < 1/p, and min(β, t) > 1
p .) Finally for Cvert < ∞ to be determined in

(4.21), let ε0 satisfy

(4.2) 0 < Cvert ε
1/(q+1)
0 ≤ 3

4 .

For f ∈ C1(M), recalling Cη(W ) and Ws
H from Section 2.1, define the weak norm of f by30

|f |w = sup
W∈Ws

H

sup
|ψ|Cα(W )≤1

∫
W
f ψ dmW ,

define the stable norm of f by31

(4.3) ‖f‖s = sup
W∈Ws

H

sup
|ψ|

Cβ(W )≤|W |
−1/p

∫
W
f ψ dmW ,

and the unstable norm of f by

‖f‖u = sup
ε≤ε0

sup
W1,W2∈Ws

H
dWs (W1,W2)≤ε

sup
|ψi|Cα(Wi)≤1
d(ψ1,ψ2)=0

ε−γ
∣∣∣∣∫
W1

f ψ1 dmW1 −
∫
W2

f ψ2 dmW2

∣∣∣∣ .
Finally, define the strong norm of f to be

‖f‖B = ‖f‖s + cu‖f‖u
for a constant cu = cu(β, γ, p) > 0 (so that cu depends on [t0, t1]) to be chosen in (4.9). Define B
to be the completion of C1(M) in the ‖ · ‖B norm, and Bw to be the completion of C1(M) in the
| · |w norm.

28The triangle inequality is not satisfied, but this is of no consequence for our purposes.
29The condition γ ≤ 1

6q+7 is used in Lemma 4.3.
30Using weakly homogeneous curves implies that Lebesgue measure belongs to B, see Remark 4.5.
31The weight |W |−1/p in (4.3) is used both in the proof of compactness (Proposition 4.2) and to control the

estimate over unmatched pieces in the Lasota-Yorke inequality (Section 4.3.3).
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4.2. Statement of the Spectral Result. Embeddings. The equilibrium measure in Theo-
rem 1.1 and its properties will be obtained by letting the transfer operator Lt act on B.

Theorem 4.1 (Spectrum of Lt on B). For each t0 ∈ (0, 1) and t1 ∈ (1, t∗) there exists a Banach
space B = B(t0, t1) such that for each t ∈ [t0, t1], the operator Lt is bounded on B with spectral
radius equal to eP∗(t) and, recalling θ(t1) from Lemma 3.1, essential spectral radius not larger than

max{Λ(−β+1/p), θ(t−1/p)e−P∗(t),Λ−γ}eP∗(t) < eP∗(t) .

Moreover Lt has a spectral gap: the only eigenvalue of modulus eP∗(t) is eP∗(t) and it is simple.
Let νt denote the unique element of B with νt(1) = 1 satisfying Ltνt = eP∗(t)νt, and let ν̃t

denote the maximal eigenvector for the dual, L∗t ν̃t = eP∗(t)ν̃t. Then the distribution µt defined by
µt(ψ) = ν̃t(ψνt)

ν̃t(νt) is in fact a T -invariant probability measure. This measure is mixing, correlations
for Cα observables decay exponentially with rate υ for any

(4.4) υ > υ0(t) := sup{|λ| | λ ∈ sp(e−P∗(t)Lt) \ {1}} ,

and correlations for Hölder observables of arbitrary exponent decay exponentially.

Recall that θ < 1/
√

Λ < 1. Note that since qt0 > 1 while β < 1/(q + 1) and γ ≤ min{1/(q +
1), 1/(q + 1)− β}, our bound on the essential spectral radius tends to eP∗(t0) as t0 → 0. Similarly,
as t1 → t∗ we need to let p→∞ to ensure θt1−1/p < eP∗(t1) (see Lemma 4.7) and our bound on the
essential spectral radius tends to eP∗(t∗) as t1 → t∗.

As usual, Hennion’s theorem is the key to proving the above theorem. It requires two ingredients:
the compact embedding proposition below and the Lasota–Yorke estimates in Proposition 4.6.

Proposition 4.2 (Embeddings). For any t0 ∈ (0, 1) and t1 ∈ (1, t∗), the continuous inclusions

C1(M) ⊂ B ⊂ Bw ⊂ (C1(M))∗

hold, so that C1(M) ⊂ (Bw)∗ ⊂ B∗ ⊂ (C1(M))∗. In addition, the inclusions C1(M) ⊂ B and
B ⊂ Bw are injective, and the embedding of the unit ball of B in Bw is compact.

The embedding Bw ⊂ (C1(M))∗ is understood in the following sense: For f ∈ C1(M), we
identify f with the measure fdµSRB ∈ (C1(M))∗. Then, for f ∈ Bw there exists Cf < ∞ such
that, letting fn ∈ C1(M) be a sequence converging to f in the Bw norm, for every ψ ∈ C1(M) the
limit f(ψ) := limn→∞

∫
fnψ dµSRB exists and satisfies |f(ψ)| ≤ Cf |ψ|C1(M). See Lemma 4.14 for a

strengthening of this embedding.

Proof of Proposition 4.2. The proof of the claims in the first sentence is the same as the proof of
[BD, Prop. 4.2, Lemma 4.4]. The injectivity of the first inclusion is obvious, while the injectivity
of the second follows from our definition of Cβ(W ): if |f |w = 0 then ‖f‖u = 0 since the class of
test functions is the same, but also ‖f‖s = 0 since C1(W ) is dense in Cβ(W ), proving injectivity.
The proof of the compact embedding follows exactly the lines of that of [BD, Prop. 6.1], using
Ŵs. The only differences are that, in the unstable norm, |ψ|Cβ(W ) ≤ | log |W ||γ̃ there is replaced
by |ψ|Cβ(W ) ≤ |W |−1/p, while the logarithmic modulus of continuity | log ε|−ζ there is replaced by
a Hölder modulus of continuity εγ . �

To show that the transfer operator Lt is bounded on B, we require the following lemma.

Lemma 4.3. For any f ∈ C1(M) and any t ≥ t0, the image Ltf belongs to the closure of C1(M)
in the strong norm ‖ · ‖B, for B = B(t0, t1).

We prove Lemma 4.3 in Section 4.4.
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Remark 4.4 (Lemma 4.9 in [BD]). We remark that the proof of [BD, Lemma 4.9], which is
the analogue of the present Lemma 4.3, was omitted there. The reference given there to [DZ1,
Lemma 3.8] is not correct since JsT is not piecewise Hölder. However, its statement is correct as
the proof in Section 4.4 and Remark 4.11 demonstrate.

Remark 4.5 (Lebesgue measure belongs to B). Since we identify f ∈ C1(M) with the measure
fdµSRB, Lebesgue measure is identified with the function f = 1/ cosϕ, which is not in C1(M).
However, it follows from [DZ2, Lemma 3.5], that 1/ cosϕ can be approximated by C1 functions in
the B norm, so that Lebesgue measure belongs to B. (The proof requires that our norms integrate
on weakly homogeneous stable manifolds, rather than on all W ∈ Ws as was done in [BD].)

4.3. Lasota–Yorke Inequalities. Using the exact bounds for Qn(t) from Proposition 3.15, we
prove the following proposition (under more general conditions than Theorem 4.1).

Proposition 4.6. Fix t0 ∈ (0, 1) and t1 ∈ (1, t∗) and let B = B(t0, t1), θ = θ(t1). Fix t2 ∈
(t0,∞). For any t ∈ [t0, t2], the operator Lt extends continuously to Bw and B, and setting Cn =
max1≤j≤nQj(t), there exists C = C(t0, t2) <∞ such that for every n ≥ 0,

|Lnt f |w ≤ CQn(t)|f |w , ∀f ∈ Bw ,(4.5)

‖Lnt f‖s ≤ CQn(t)
[
(Λ(−β+1/p)n + θ(t−1/p)nQn(t)−1)

]
‖f‖s + CCn|f |w , ∀ f ∈ B ,(4.6)

‖Lnt f‖u ≤ CQn(t)
[
nΛ−γn‖f‖u +Qn(t− 1/p)Qn(t)−1‖f‖s

]
, ∀f ∈ B .(4.7)

Moreover, if t2 = t1, then, up to taking p large enough, for any

σ ∈ (max{Λ−β+1/p,Λ−γ , θt−1/pe−P∗(t)}, 1) ,
there exists cu = cu(t0, t1) > 0, and C̄n > 0, such that, for all f ∈ B,

(4.8) ‖Lnt f‖B ≤ CeP∗(t)n
[
σn‖f‖B + C̄n|f |w

]
, ∀n ≥ 1 .

Proving (4.8) will use the following lemma:

Lemma 4.7. For any t1 ∈ (1, t∗) there exists p > 1 such that θt−1/p < eP∗(t) for all t ∈ (1/p, t1].

Proof. If t ∈ (0, 1] then P∗(t) ≥ 0 so that θt−1/p < 1 ≤ eP∗(t) for all θ < 1, all p > 1 and
all t ∈ (1/p, 1]. For t ∈ (1, t1], since the slopes of P∗(t) are at most − log Λ by the proof of
Proposition 2.6, we have P∗(t1)−P∗(t)

t1−t < − log Λ < log θ, so that θte−P∗(t) < θt1e−P∗(t1). The choice
of θ = θ(t1) in Definition 3.2 gives θt1e−P∗(t1) < 1. Choosing p > 1 such that θt1−1/pe−P∗(t1) < 1
ends the proof. �

Proof of Proposition 4.6. We first show that (4.5), (4.6), and (4.7) imply that if t2 = t1 < t∗ and
p is large enough, then Lt satisfies the Lasota–Yorke inequality (4.8) for f ∈ B(t0, t1): Choosing p
according to Lemma 4.7, observe that θt−1/pe−P∗(t) < 1 implies θt−1/pQn(t)−1 ≤ θ(t−1/p)ne−P∗(t)n <
1 for all n ≥ 1, since Qn(t) ≥ eP∗(t)n by Proposition 3.15. Next, recalling that P∗(t) is convex and
strictly decreasing by Proposition 2.6, and fixing

ε1 := P∗(t− 1/p)− P∗(t) ∈ (0, P∗(t0 − 1/p)− P∗(t0)) ,
we find, using both the lower and upper bounds from Proposition 3.18(b),

Qn(t− 1/p)Qn(t)−1 ≤ 2
c2
eP∗(t−1/p)ne−P∗(t)n ≤ 2

c2
eε1n , ∀n ≥ 1 .

Next, fix 1 > σ > max{Λ−β+1/p,Λ−γ , θt−1/pe−P∗(t)} and choose N ≥ 1 such that
2C
c2

max{NΛ−γN , 2
(
Λ−(β−1/p)N + θ(t−1/p)Ne−P∗(t)N

)
} ≤ σN .
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Choosing cu > 0 to satisfy

(4.9) cu ≤
c2

2σ
N

8Ce2(P∗(t0−1/p)−P∗(t0))N ,

we estimate, using once more the upper bound for Qn(t) from Proposition 3.18(b),

‖LNt f‖B = ‖LNt f‖s + cu‖LNt f‖u

≤ eP∗(t)N
[
σN

2 ‖f‖s + cuσ
N‖f‖u + 4cu

c2
2
eε1N‖f‖s

]
+ CCN |f |w

≤ eP∗(t)N
[
σN‖f‖B + e−P∗(t)NCCN |f |w

]
.

Iterating this equation and using the first claim of (4.5) (recalling one more time the upper bound
for Qn(t) from Proposition 3.18(b)) yields (4.8) for n = `N , with ` ≥ 1. The general case follows
since (4.6) and (4.7) imply ‖Lkt f‖B ≤ C̄‖f‖B for k ≤ N .

By Lemma 4.3, it suffices to prove the bounds (4.5), (4.6), and (4.7) for f ∈ C1(M), and they
also imply that Lt extends to a bounded operator on B and Bw. This is similar to the proof of
[DZ1, Proposition 2.3] and is the content of Sections 4.3.1–4.3.3. �

4.3.1. Proof of Weak Norm Bound (4.5). Let f ∈ C1(M), W ∈ Ws and ψ ∈ Cα(W ) such that
|ψ|Cα(W ) ≤ 1. Then for n ≥ 0, we have∫

W
Lnt f ψ dmW =

∑
Wi∈Gn(W )

∫
Wi

fψ ◦ Tn|JsTn|t dmWi

≤
∑

Wi∈Gn(W )
|f |w|ψ ◦ Tn|Cα(W )||JsTn|t|Cα(W ) .

(4.10)

The contraction along stable manifolds implies for x, y ∈Wi ∈ Gn(W ), recalling (2.2),

(4.11) |ψ(Tnx)− ψ(Tny)| ≤ Hα
W (ψ)d(Tnx, Tny)α ≤ Hα

W (ψ)|JsTn|αC0(Wi)d(x, y)α .

This implies Hα
Wi

(ψ ◦ Tn) ≤ |JsTn|αC0(Wi)H
α
W (ψ) and |ψ ◦ Tn|Cα(Wi) ≤ C

−1
1 |ψ|Cα(W ), with C1 from

(1.2).
Moreover, since α ≤ 1/(q + 1), the distortion bound of Lemma 2.1 implies

(4.12) ||JsTn|t|Cα(Wi) ≤ (1 + 2tCd)|JsTn|tC0(Wi) , ∀Wi ∈ Gn(W ) .

Using (4.11) and (4.12) in (4.10), we obtain,∫
W
Lnt f ψ dmW ≤

∑
Wi∈Gn(W )

|f |wC−1
1 (1 + 2tCd)|JsTn|tC0(Wi) ≤ C|f |wQn(t) ,

where in the last inequality, we have used Lemma 3.4 with ς = 0. Taking the suprema over
ψ ∈ Cα(W ) with |ψ|Cα(W ) ≤ 1 and W ∈ Ws yields (4.5).

4.3.2. Proof of Stable Norm Bound (4.6). Let f ∈ C1(M), W ∈ Ws, and ψ ∈ Cβ(W ) be such that
|ψ|Cβ(W ) ≤ |W |−1/p. For n ≥ 0 andWi ∈ Gn(W ), we define the average ψi = |Wi|−1 ∫

Wi
ψ◦Tn dmWi .

Then as in (4.10), we write,∫
W
Lnt f ψ dmW =

∑
Wi∈Gn(W )

∫
Wi

f (ψ ◦ Tn − ψi)|JsTn|t dmWi(4.13)

+
∑

Wi∈Gn(W )
ψi

∫
Wi

f |JsTn|t dmWi .
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Note that by (4.11),

|ψ ◦ Tn − ψi|Cβ(Wi) ≤ 2|JsTn|βC0(Wi)|ψ|Cβ(W ) ≤ 2|JsTn|βC0(Wi)|W |
−1/p .

Therefore, replacing α by β in (4.12), the definition of the strong stable norm gives∑
Wi∈Gn(W )

∫
Wi

f (ψ ◦ Tn − ψi)|JsTn|t dmWi

≤
∑

Wi∈Gn(W )
2(1 + 2tCd)‖f‖s

|Wi|1/p

|W |1/p
|JsTn|t+βC0(Wi)

≤ 2(1 + 2tCd)C−1
1 Λ−n(β−1/p)‖f‖sC2[0]Qn(t) ,

(4.14)

where in the second inequality we have used Lemma 3.4 with ς = 1/p (recall β > 1/p).
For the second sum in (4.13), note that |ψi| ≤ |W |−1/p. If |W | ≥ δ0/3, then we simply estimate∑
Wi∈Gn(W )

ψi

∫
Wi

f |JsTn|t dmWi ≤
3
δ

1/p
0
|f |w(1 + 2tCd)

∑
Wi∈Gn(W )

|JsTn|tC0(Wi) ≤ C|f |wQn(t) ,

by Lemma 3.4 with ς = 0.
If |W | < δ0/3, we handle the estimate differently, splitting the sum into two parts as follows.

We decompose the elements of Gn(W ) by first long ancestor as follows: Recalling the sets In(W )
defined in §3.1, we call Vj ∈ Gk(W ) the first long ancestor of Wi ∈ Gn(W ) if

(4.15) Tn−kWi ⊂ Vj , |Vj | ≥ δ0/3 , and TVj is contained in an element of Ik−1(W ) .
We denote by Pk(W ) the set of such Vj ∈ Gk(W ) that are long for the first time at time k. Note
that Wi has no long ancestor if and only if Wi ∈ In(W ).

Grouping the terms in the second sum in (4.13) by whether they belong to In(W ) or not, we
apply the weak norm to those elements that have a first long ancestor, and the strong stable norm
to those that do not. Thus,∑

Wi∈In(W )
ψi

∫
Wi

f |JsTn|t dmWi ≤
∑

Wi∈In(W )
|ψi|‖f‖s|Wi|1/p|JsTn|tCβ(Wi)

≤ (1 + 2tCd)‖f‖s
∑

Wi∈In(W )

|Wi|1/p

|W |1/p
|JsTn|tC0(Wi) ≤ (1 + 2tCd)‖f‖sC0θ

n(t−1/p) ,

(4.16)

where in the last estimate we applied Lemma 3.3 with ς = 1/p since32 1/p ≤ min{1/2, t/2}.
For the terms that have a first long ancestor in Pk(W ), we again apply Lemma 3.3 from time 0

(since |W | < δ0/3) to time k, setting G0(V ) = {V },
n∑
k=1

∑
Vj∈Pk(W )

∑
Wi∈Gn−k(Vj)

ψi

∫
Wi

f |JsTn|t dmWi

≤
n∑
k=1

∑
Vj∈Pk(W )

|f |w|Vj |−1/p(1 + 2tCd)
|Vj |1/p

|W |1/p
|JsT k|tC0(Vj)

∑
Wi∈Gn−k(Vj)

|JsTn−k|tC0(Wi)

≤
n∑
k=1

∑
Vj∈Pk(W )

|f |w3δ−1/p
0 (1 + 2tCd)

|Vj |1/p

|W |1/p
|JsT k|tC0(Vj)CC2[0]Qn−k(t)

≤
n∑
k=1
|f |w3δ−1/p

0 (1 + 2tCd)CC2[0]C0θ
k(t−1/p)Qn−k(t) ,

32This bound holds since p > q + 1 in the definition of the norms, yet q ≥ 2/t from (2.1).
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applying Lemma 3.4 for ς = 0 in the second inequality and Lemma 3.3 (for ς = 1/p) in the third.
Putting these estimates together with (4.14) in (4.13) yields33∫

W
Lnt f ψ dmW ≤ CQn(t)

(
Λ−n(β−1/p) + θn(t−1/p)Qn(t)−1)‖f‖s + C max

0≤j≤n
Qj(t)|f |w ,

and taking the appropriate suprema proves (4.6) (Cn depends on t only through [t0, t1]).

4.3.3. Proof of Unstable Norm Bound (4.7). Let ε < ε0 and letW 1,W 2 ∈ Ws with dWs(W 1,W 2) ≤
ε. For n ≥ 1 and ` = 1, 2, we partition T−nW ` into matched pieces U `j and unmatched pieces V `

i

like in [DZ1] as follows.
To each homogeneous connected component V of T−nW 1, we associate a family of vertical

segments {γx}x∈V of length at most C−1
1 Λ−nε such that if γx is not cut by an element of SHn , its

image Tnγx will have length Cε and will intersect W 2. According to [CM, Sect. 4.4], for such a
segment, T iγx will be an unstable curve for i = 1, . . . , n and so will remain uniformly transverse to
the stable cone and undergo the minimum expansion given by (1.2).

Repeating this procedure for each connected component of T−nW 1, we obtain a partition of
W 1 into subintervals for which Tnγx is not cut and intersects W 2 and subintervals for which this
is not the case. This also defines an analogous partition on W 2 and on the images T−nW 1 and
T−nW 2. We call two curves in T−nW 1 and T−nW 2 matched if they are connected by the foliation
γx and their images under Tn are connected by Tnγx. We further subdivide the matched pieces if
necessary to ensure that they have length ≤ δ0 and that they remain homogeneous stable curves.
Thus there are at most two matched pieces U `j corresponding to each element of Gn(W `). The rest
of the connected components of T−nW ` we call unmatched and denote them by V `

i . Once again,
there are at most two unmatched pieces V `

i corresponding to each element of Gn(W `).
Recalling the notation of Section 4.1, we have constructed a pairing on matched pieces U `j defined

over a common r-interval Ij such that for each j,

(4.17) U `j = GU`j
(Ij) = {(r, ϕU`j (r)) : r ∈ Ij} , ` = 1, 2.

Now let ψ` ∈ Cα(W `) with |ψ`|Cα(W `) ≤ 1 and d(ψ1, ψ2) = 0. Decomposing W 1 and W 2 into
matched and unmatched pieces as above, we write,∣∣∣∣∫

W 1
Lnt f ψ1 −

∫
W 2
Lnt f ψ2

∣∣∣∣ ≤∑
j

∣∣∣∣∣
∫
U1
j

f ψ1 ◦ Tn |JsTn|t −
∫
U2
j

f ψ2 ◦ Tn |JsTn|t
∣∣∣∣∣(4.18)

+
∑
`,i

∣∣∣∣∣
∫
V `i

f ψ` ◦ Tn |JsTn|t
∣∣∣∣∣ .

We estimate the unmatched pieces first. For this we use the fact that unmatched pieces V `
i occur

either because TnV `
i is near the endpoints of W ` or because a vertical segment Tnγx intersects

SH−n. In either case, due to the uniform transversality of the stable and unstable cones, we have
|TnV `

i | ≤ Cε for some uniform constant C > 0, independent of n and W `, since dWs(W 1,W 2) ≤ ε.
Thus, we estimate the sum over unmatched pieces using the strong stable norm,∑

`,i

∣∣∣∣∣
∫
V `i

f ψ` ◦ Tn |JsTn|t
∣∣∣∣∣ ≤∑

`,i

‖f‖s|V `
i |1/p|ψ` ◦ Tn|Cβ(V `i )(1 + 2tCd)|JsTn|tC0(V `)i

≤ ‖f‖sC−1
1 (1 + 2tCd)

∑
`,i

|TnV `
i |1/p|JsTn|

t−1/p
C0(V `)i

≤ 4C2[0]C−1
1 (1 + 2tCd)‖f‖sε1/pQn(t− 1/p) ,

(4.19)

33It is in fact possible to show max0≤j≤nQj(t) ≤ max{Qn(t), Qn(1)}, but we shall not use this.
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where C1 is from (1.2) and we have used (4.12) in the first inequality, (4.11) in the second, and
Lemma 3.4 (for ς = 0) in the third since there are at most two unmatched pieces corresponding to
each element of Gn(W `).

To perform the estimate over matched pieces in (4.18), we will change variables to define the
relevant test functions on the same curve. To this end, recalling (4.17), define on each U1

j ,

ψ̃2 = ψ2 ◦ Tn ◦GU2
j
◦G−1

U1
j
, and J̃sTn = JsTn ◦GU2

j
◦G−1

U1
j
.

Sublemma 4.8. There exists C > 0, independent of t, n, W 1, and W 2 such that
a) dWs(U1

j , U
2
j ) ≤ CnΛ−nε =: ε1, for all j;

b) |ψ1 ◦ Tn|JsTn|t − ψ̃2|J̃sTn|t|Cβ(U1
j ) ≤ C2t|JsTn|tC0(U1

j )ε
α−β, for all j.

Proof. Part (a) of the sublemma is [DZ1, Lemma 4.2]. To prove part (b), note that due to the
uniform bound on slopes of stable curves, it follows

(4.20) 1 ≤ JGW (r) :=
√

1 + (ϕ′W (r))2 ≤
√

1 + (Kmax + τ−1
min)2 =: Cg <∞ .

Therefore 1 ≤ |JGU`j |C0(Ij) ≤ Cg, and we have

|ψ1 ◦ Tn|JsTn|t − ψ̃2|J̃sTn|t|Cβ(U1
j )

≤ Cg|(ψ1 ◦ Tn|JsTn|t) ◦GU1
j
− (ψ2|J̃sTn|t) ◦GU2

j
|Cβ(Ij)

≤ Cg|ψ2 ◦ Tn|Cβ(U2
j )||JsTn|t ◦GU1

j
− |JsTn|t ◦GU2

j
|Cβ(Ij)

+ Cg||JsTn|t|Cβ(U1
j )|ψ1 ◦ Tn ◦GU1

j
− ψ2 ◦ Tn ◦GU2

j
|Cβ(Ij)

≤ CgC−1
1 ||J

sTn|t ◦GU1
j
− |JsTn|t ◦GU2

j
|Cβ(Ij)

+ Cg(1 + 2tCd)||JsTn|t|C0(U1
j )|ψ1 ◦ Tn ◦GU1

j
− ψ2 ◦ Tn ◦GU2

j
|Cβ(Ij) ,

where we have used (4.11) and (4.12) for the final inequality. We first observe that

|ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
|Cβ(Ij) ≤ Cε

α−β ,

by [DZ1, Lemma 4.4]. For brevity, set J` = JsTn ◦GU`j . By
34 [DZ1, eq. (4.16)], we have

(4.21)
∣∣∣∣1− J1(r)

J2(r)

∣∣∣∣ ≤ Cvert ε1/(q+1) , ∀r ∈ Ij ,

for some constant Cvert > 0 depending only on the uniform angle between the vertical direction
and the stable and unstable cones. Thus, since ε0 > 0 satisfies (4.2) and ε ≤ ε0, this implies that
1
4 ≤

J1(r)
J2(r) ≤

7
4 . Then, estimating as in Lemma 2.1, we have

|J t1(r)− J t2(r)| ≤ 2t|J t1|C0(Ij)Cvert ε
1/(q+1) .

Following [DZ1, eq. (4.17) and (4.18)], yields,

Hβ(J t1 − J t2) ≤ C2t|J t1|C0(Ij) sup
r,s∈Ij

min{ε1/(q+1)|r − s|−β, |r − s|1/(q+1)−β} ,

whereHβ(·) is the Hölder constant with exponent β on Ij . This bound is maximized when ε = |r−s|,
which yields Hβ(J t1 − J t2) ≤ C2t|J t1|C0(Ij)ε

1/(q+1)−β. Putting these estimates together yields,

||JsTn|t ◦GU1
j
− |JsTn|t ◦GU2

j
|Cβ(Ij) ≤ C2t|JsTn|tC0(U1

j )ε
1/(q+1)−β .

34The case q = 2 is treated there, the general case is similar.
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Together with the previous estimate on ψ`, this completes the proof of the sublemma since α ≤
1/(q + 1). �

Returning to (4.18), we split the estimate over matched pieces as follows.

∣∣∣∣∣
∫
U1
j

f ψ1 ◦ Tn |JsTn|t −
∫
U2
j

f ψ2 ◦ Tn |JsTn|t
∣∣∣∣∣ ≤

∣∣∣∣∣
∫
U1
j

f (ψ1 ◦ Tn |JsTn|t − ψ̃2|J̃sTn|t)
∣∣∣∣∣

+
∣∣∣∣∣
∫
U1
j

f ψ̃2|J̃sTn|t −
∫
U2
j

f ψ2 ◦ Tn |JsTn|t
∣∣∣∣∣ .(4.22)

We estimate the first term on the right side using the strong stable norm and Lemma 4.8(b),∣∣∣∣∣
∫
U1
j

f (ψ1 ◦ Tn |JsTn|t − ψ̃2|J̃sTn|t)
∣∣∣∣∣ ≤ ‖f‖sδ1/p

0 C2t|JsTn|tC0(U1
j )ε

α−β .

Then, noting that d(ψ1 ◦ Tn |JsTn|t, ψ̃2|J̃sTn|t) = 0 by definition, and the Cα norm of each test
function is bounded by C2t|JsTn|tC0(Ij), using (4.11) and (4.12), we estimate the second term on
the right side of (4.22) using the strong unstable norm:∣∣∣∣∣

∫
U1
j

f ψ̃2|J̃sTn|t −
∫
U2
j

f ψ2 ◦ Tn|JsTn|t
∣∣∣∣∣ ≤ ‖f‖udWs(U1

j , U
2
j )γC2t|JsTn|tC0(U1

j )

≤ C ′‖f‖unγΛ−nγεγ |JsTn|tC0(U1
j ) ,

(4.23)

where we used Lemma 4.8(a) in the second inequality. Putting these estimates into (4.22), then
combining with (4.19) in (4.18), and summing over j (since there are at most two matched pieces
corresponding to each element of Gn(W 1)), yields,∣∣∣∣∫

W 1
Lnt f ψ1 −

∫
W 2
Lnt f ψ2

∣∣∣∣
≤ C

(
‖f‖unγΛ−nγεγQn(t) + ‖f‖s(ε1/pQn(t− 1/p) + εα−βQn(t))

)
.

(4.24)

Dividing through by εγ and taking the appropriate suprema over W ` and ψ` proves (4.7) since
γ ≤ min{1/p, α− β}.

4.4. Proof of Lemma 4.3. (Lt(C1) ⊂ B). We assume 0 ≤ t < 1. The proof for t ≥ 1 is similar,
but simpler, since Ltf is bounded when t ≥ 1. Without loss of generality, we also assume that
t0 ≤ 1/2, so that, by Definition 3.2, q ≥ 8 and p > 9.

We introduce a mollification in order to approximate Ltf by functions in C1(M): Let ρ : R2 → R
be a C∞ nonnegative, rotationally symmetric function supported on the unit disk with

∫
R2 ρ d2z = 1

and |ρ|C1 ≤ 2. For f ∈ C1(M) and η > 0, define

gη(x) =
∫
Bη(x)

η−2ρ

(
d(x, z)
η

)
Ltf(z)d2z ,

where Bη(x) is the ball of radius η centered at x. Viewing M as a subset of R2, we set Ltf ≡ 0
outside M so that the integral is well-defined even when Bη(x) 6⊂M . We first develop bounds on
|gη|C0(M) and |gη|C1(M), for any t ≥ 0.

Since t < 1, the operator Ltf is unbounded in neighborhoods of TS0, so the bounds on gη will be
greatest in such neighborhoods. Suppose x and η are such that Bη(x)∩TS0 6= ∅ and note that there
can be at most τmax/τmin + 1 connected components of Bη(x) \ TS0. Fix one such component with
boundary S ∈ TS0 such that S is the accumulation of the sequence of sets, Bη(x) ∩ THk, k ≥ k0.
On each such set, |JsT |1−t = C±1k−q(1−t). Also, due to the uniform transversality of TSH0 with the
stable cone, we have diams(Bη(x) ∩ THk) ≤ Ck−2q−1, and diamu(Bη(x) ∩ THk) ≤ Cη. Moreover,
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since the boundary of THk has distance approximately k−2q from S, we have Bη(x) ∩ THk = ∅
unless k ≥ Cη−1/(2q). Assembling these facts, we estimate,

|gη| ≤ C
∑

k≥Cη−1/(2q)

∫
Bη(x)∩TS0

η−2Ltf d2z ≤ C|f |∞
∑

k≥Cη−1/(2q)

η−1k−q−1−qt .

We conclude that, for any 0 ≤ t < 1,35

(4.25) |gη|C0(M) ≤ C|f |∞η
t
2−

1
2 , and similarly, |gη|C1(M) ≤ C|f |∞η

t
2−

3
2 .

To prove Lemma 4.3, we must control gη − Ltf integrated along stable manifolds. To this end,
we will need the following two lemmas. (The first one is classical and the second uses bounds on
the auxiliary foliation constructed in [BDL, Section 6].)
Lemma 4.9. Let W ∈ Ws be weakly homogeneous and for η > 0 let Wu(η) ⊂ W denote the
set of points in W whose unstable manifold extends at least length η on both sides of W . Then
mW (W \Wu(η)) ≤ Cη for some constant C > 0 independent of W and η.
Proof. This is precisely [CM, Theorem 5.66]. See also the corrected proof in [BDT]. �

Lemma 4.10. There exist constants C,Cs > 0 such that for any weakly homogeneous unstable
curve U and any % > 0, there exists a set U ′ ⊂ U with mU (U \ U ′) ≤ C% such that∣∣∣∣JsT (x)

JsT (y) − 1
∣∣∣∣ ≤ Cs (%− q

q+1k−qU d(x, y) + d(x, y)1/(q+1)
)
, ∀x, y ∈ U ′ ,

where kU is the index of the homogeneity strip containing U .
Proof. Fixing a length % < k−q−1

U , we define a foliation of stable curves transverse to U , following the
procedure36 in [BDL, Sections 6.1, 6.2]: Choose n ∈ N arbitrarily large and define a smooth “seeding”
foliation of homogeneous stable curves transverse to connected components of TnU ; elements of
the seeding foliation are then pulled back under T−n and those that are not cut form a foliation
of homogeneous stable curves of length at least % and transverse to U . Letting U ′n ⊂ U denote the
set covered by this surviving foliation, we have mU (U \ U ′n) ≤ C%, for some C > 0 independent of
n [BDL, Section 6.1]. Moreover, expressing the foliation in local coordinates (s, u) adapted to the
stable and unstable directions defines a function G(s, u) such that each stable curve can be expressed
as {(s,G(s, u))}s∈[−%,%], and G(0, u) = u, so that the unstable manifold U corresponds to the vertical
segment {(0, u)}u∈[0,|U |]. It follows that the slope V(u) of the tangent vector to the foliation at (0, u)
is just ∂sG(0, u). By [BDL, Lemma 6.5], ∂u∂sG ∈ C0 with |∂u∂sG|∞ ≤ C%−q/(q+1)k−qU (where we
have adapted the exponent according to the spacing of our homogeneity strips).

Note that the foliation of stable curves constructed in this way has tangent vectors in DT−nCs.
Since the bounds on mU (U \ U ′n) and |∂u∂sG|∞ are independent of n, we conclude there exists a
set U ′ ⊂ U with mU (U \ U ′) ≤ C% such that the stable manifolds passing through U ′ have length
at least % and satisfy |∂u∂sG|∞ ≤ C%−q/(q+1)k−qU (see also [BDL, Remark 1.1]).

Finally, for u, v ∈ U ′ we estimate as in (2.7) (with n = 1), using (2.8) for log cosϕ(u)
cosϕ(v) and

|V(u) − V(v)| ≤ C%−q/(q+1)k−qU d(u, v) from the construction in [BDL]. Putting these estimates
together proves the lemma. �

We record for future use that for any measurable set V ⊆W ∈ Ws,∫
V
Ltf ψ dmV =

∫
T−1V

f |JsT |tψ ◦ T dmT−1V

≤ |f |∞|ψ|∞|T−1V |1−t|V |t ≤ C|f |∞|ψ|∞|V |(1+t)/2 ,

(4.26)

35For t = 0, any choice of q > 1 gives the same bound.
36[BDL] constructs this as a foliation of unstable curves transverse to a stable curve. By the time reversal property

of the billiard, the same construction holds with stable and unstable directions exchanged.



THERMODYNAMIC FORMALISM FOR DISPERSING BILLIARDS 39

where |V | denotes the arc length measure of V , and we have used the Hölder inequality for the first
inequality and the bound |T−1V | ≤ C|V |1/2 in the second.

Approximating the strong stable norm. Fix η > 0, and let W ∈ Ws and ψ ∈ Cβ(W ) with
|ψ|Cβ(W ) ≤ |W |−1/p. If |W | ≤ η, then using (4.25) and (4.26), we write, simply, using p > 9,

(4.27)
∫
W

(Ltf − gη)ψ dmW ≤ C|f |∞|W |−1/p(|W | 1+t
2 + |W |η

t
2−

1
2
)
≤ C|f |∞η

t
2 + 1

3 .

In what follows, we assume |W | > η. Let W−η denote the curve W minus the η-neighborhood of its
boundary. Treating the integral over the two components of W \W−η in the same way as (4.27), we
estimate, using that mW (W \W−η ) ≤ 2η,

(4.28)
∫
W\W−η

(Ltf − gη)ψ dmW ≤ C|f |∞η
t
2 + 1

3 .

Next, sinceW intersects at most N = τmax/τmin+1 elements of TS0, the setW ∩
(
∪k≥η−1/(2q+1)THk

)
comprises at most N intervals of length Cη2q/(2q+1). We estimate as in (4.27) using V = W ∩(
∪k≥η−1/(2q+1) THk

)
in (4.26), and that p > q + 1 ≥ 9

(4.29)
∫
W∩
(
∪
k≥η−1/(2q+1)THk

)(Ltf − gη)ψ dmW ≤ C|f |∞η
t
2 + 3

10 .

Finally, we estimate Ltf − gη on those portions of W−η that intersect THk for k ≤ η−1/(2q+1). Let
x be such a point in W−η . Due to the restriction on k, the ball Bη(x) lies in a bounded number of
homogeneity strips, so we may use bounded distortion in conjunction with Lemma 4.10 to bound
the difference in each such interval. Let Sη = W \Wu(η) denote the exceptional set of points in
Lemma 4.9. We write Aη(x) for the subset of Bη(x) foliated by unstable manifolds of length at
least 2η, and let Eη(x) = Bη(x) \Aη(x). Then,

Ltf(x)− gη(x) =
∫
Bη(x)

η−2ρ(d(x,z)
η )(Ltf(x)− Ltf(z))d2z(4.30)

=
∫
Aη(x)

η−2ρ(d(x,z)
η )(Ltf(x)− Ltf(z))d2z

+
∫
Eη(x)

η−2ρ(d(x,z)
η )(Ltf(x)− Ltf(z))d2z .

We first estimate the integral over Eη(x) using the bound Ltf(z) ≤ CLtf(x) for z ∈ Bη(x), since
Bη(x) lies in a bounded number of homogeneity strips. Then, using the fact that the unstable
foliation is absolutely continuous, we disintegrate as follows,

(4.31)
∫
Eη(x)

η−2ρ(d(x,z)
η )(Ltf(x)− Ltf(z))d2z ≤ CLtf(x)η−1|Sη ∩Bη(x)| .

Next, we estimate the integral over Aη(x). Since each point y ∈ Aη(x) ∩W−η has an unstable
manifold Uy extending a length at least η on either side of W , we set % = η

1+ 1
2q and denote by

A′η(x) those points contained in sets U ′y ⊂ Uy satisfying Lemma 4.10. It follows from that lemma
and the absolute continuity of the unstable foliation that

(4.32)
∫
Aη(x)\A′η(x)

η−2ρ(d(x,z)
η )(Ltf(x)− Ltf(z))d2z ≤ CLtf(x)η

1
2q ,

where we have again used the bound Ltf(z) ≤ CLtf(x) on Bη(x).
For z ∈ A′η(x), we bound the difference Ltf(x) − Ltf(z) as follows. Let y = [x, z] denote the

point of intersection between the stable manifold of x (which is W ) and the unstable manifold of z,
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which is Uy. By definition, z ∈ U ′y and it is always the case that y ∈ U ′y since the stable manifold
of y, W , has length at least η > %. Thus,

|Ltf(x)− Ltf(z)|

≤
∣∣∣∣∣ f(T−1x)
|JsT |1−t(T−1x) −

f(T−1y)
|JsT |1−t(T−1y)

∣∣∣∣∣+
∣∣∣∣∣ f(T−1y)
|JsT |1−t(T−1y) −

f(T−1z)
|JsT |1−t(T−1z)

∣∣∣∣∣
≤ Lt1(x)[|f |C1d(T−1x, T−1y) + |f |C0Cd(T−1x, T−1y)1/(q+1)

+ |f |C1d(T−1y, T−1z) + |f |C0Cs(η−
2q+1
2q+2d(T−1y, T−1z) + d(T−1y, T−1z)1/(q+1))] ,

where we have used Lemma 2.1 along W and Lemma 4.10 along Uy with % = η
2q+1

2q . Next,
d(T−1y, T−1z) ≤ Cd(y, z) ≤ Cη, while for x ∈ THk,

d(T−1x, T−1y) ≤ Ckqd(x, y) ≤ Cη
q+1
2q+1

since k ≤ η−1/(2q+1). Putting these estimates together we obtain,

|Ltf(x)− Ltf(z)| ≤ |f |C1Lt1(x)Cη
1

2q+2 for z ∈ A′η(x),

and combining this with (4.31) and (4.32) in (4.30) yields,

(4.33) |Ltf(x)− gη(x)| ≤ C|f |C1Lt1(x)η
1

2q+2 + C|f |C0Lt1(x)η−1|Sη ∩Bη(x)| .

We must integrate this bound over W−η ∩ (∪k≤η−1/(2q+1)THk). We estimate the integral of the
first term in (4.33) simply using (4.26),

(4.34) C|f |C1η
1

2q+2

∫
W−η ∩(∪

k≤η−1/(2q+1)THk)
Lt1ψ dmW ≤ C|f |C1η

1
2q+2 .

Finally, to bound the second term in (4.33), we write Iη(x) = Bη(x) ∩W and

|Sη ∩Bη(x)| =
∫
Iη(x)

1Sη(z)dmW (z) =
∫ η

−η
1Sη(x+GW (x; r))JGW (x; r)dr ,

where GW (x; r) denotes the (local) graph of the function defining W in a neighborhood of x, as in
(4.17), and we have centered the local r-interval at r = 0. Then,∫

W−η ∩(∪
k≤η−1/(2q+1)THk)

Ltf(x)ψ(x)
η

∫ η

−η
1Sη(x+GW (x; r))JGW (x; r) dr dmW (x)

≤ |f |C0
|W |−1/p

η

∫ η

−η

∫
W−η

Lt1(x)1Sη(x+GW (x; r))JGW (x; r) dmW (x) dr

≤ C|f |C0
|W |−1/p

η

∫ η

−η
|Sη|(1+t)/2dr ≤ C|f |C0η

1
3 + t

2 ,(4.35)

where we have used (4.20) and the fact that translations of W−η up to length η are subsets of W
in order to apply (4.26) for the second inequality, and Lemma 4.9, with |W | ≥ η and p > 9 for the
final inequality.

Finally, using (4.34) and (4.35) in (4.33), and adding the contributions from (4.28) and (4.29) in
addition to (4.27) yields,

(4.36)
∫
W

(Ltf − gη)ψ dmW ≤ C|f |C1η
1

2q+2 ,

for some C > 0 independent ofW , since min{ t2 + 3
10 ,

1
2q+2} = 1

2q+2 whenever q > 1 and t > 0. Taking

the appropriate suprema over ψ and W yields the required estimate ‖Ltf − gη‖s ≤ C|f |C1η
1

2q+2 .
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Approximating the unstable norm. Let ε ≤ ε0 and W1,W2 ∈ Ws with dWs(W1,W2) ≤ ε. Let
ψi ∈ Cα(Wi) with |ψi|Cα(Wi) ≤ 1, i = 1, 2, and d(ψ1, ψ2) = 0. We must estimate,∫

W1
(Ltf − gη)ψ1 dmW1 −

∫
W2

(Ltf − gη)ψ2 dmW2 .

We consider two cases.
Case 1: η

1
2q+2 < ε2γ. We apply (4.36) to each term separately and obtain

ε−γ
∣∣∣∣∫
W1

(Ltf − gη)ψ1 dmW1 −
∫
W2

(Ltf − gη)ψ2 dmW2

∣∣∣∣ ≤ C|f |C1η
1

4q+4 .

Case 2: η
1

2q+2 ≥ ε2γ. In this case, we write∫
W1

(Ltf − gη)ψ1 dmW1 −
∫
W2

(Ltf − gη)ψ2 dmW2

=
∫
W1
Ltf ψ1 dmW1 −

∫
W2
Ltf ψ2 dmW2 +

∫
W2

gη ψ2 dmW2 −
∫
W1

gη ψ1 dmW1 .
(4.37)

We estimate the difference involving Ltf using the estimates in Section 4.3.3, but using the fact
that f ∈ C1(M) to obtain stronger bounds. In particular, the integral over unmatched pieces from
(4.19) is bounded by C|f |C0ε. The bound on the first term of (4.22) remains the same, but the
bound on the second term from (4.23) is improved to C|f |C1ε. Putting these estimates together as
in (4.24) and dividing37 by εγ implies,

(4.38) ε−γ
∣∣∣∣∫
W1
Ltf ψ1 dmW1 −

∫
W2
Ltf ψ2 dmW2

∣∣∣∣ ≤ C|f |C1εα−β−γ ≤ C|f |C1η
α−β−γ
4γ(q+1) .

Next, we turn to the second difference in (4.37). Using the notation of Section 4.3.3, we split the
integrals up into one integral over the common r-interval I1 ∩ I2 and at most two integrals over
I1 4 I2. The (at most two) curves V `

i ⊂ W` corresponding to intervals in I1 4 I2 have length
bounded by Cε by definition of dWs(W1,W2). Thus using (4.25), we have

(4.39)
∫
V `i

gη ψi dmW`
≤ C|f |C0η

t
2−

1
2 ε ≤ C|f |C0η

t
2−

1
2 + 1−γ

4γ(q+1) εγ .

On the curves U1, U2, which are the graphs of the functions ϕU1 , ϕU2 over I1 ∩ I2, we have,

(4.40)
∫
U1
gη ψ1 dmW1 −

∫
U2
gη ψ2 dmW2 ≤ |JGU1(gηψ1) ◦GU1 − JGU2(gηψ2) ◦GU2 |C0(I1∩I2) ,

where GU`(r) = (r, ϕU1(r)). Then estimating as in the proof of Sublemma 4.8, we have

(4.41) |JGU1(gηψ1) ◦GU1 − JGU2(gηψ2) ◦GU2 |C0(I1∩I2) ≤ C|gη|C1(M)ε ≤ C|f |∞η
t
2−

3
2 + 1−γ

4γ(q+1) εγ ,

where we have used the fact that d(ψ1, ψ2) = 0 and |ϕ′U1
− ϕ′U2

| ≤ ε. Putting these estimates
together with (4.38) in (4.37) yields,

ε−γ
∣∣∣∣∫
W1

(Ltf − gη)ψ1 dmW1 −
∫
W2

(Ltf − gη)ψ2 dmW2

∣∣∣∣(4.42)

≤ C|f |C1η
α−β−γ
4γ(q+1) + C|f |C0η

t
2−

3
2 + 1−γ

4γ(q+1) ,

and we use γ ≤ 1
6q+7 from (4.1) to deduce that −3

2 + 1−γ
4γ(q+1) ≥ 0. This completes Case 2, which,

together with Case 1, implies the required bound ‖Ltf − gη‖u ≤ |f |C1(M)η
δ, for some δ > 0, ending

the proof of Lemma 4.3.

37We use here the strict inequality γ < α− β.
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Remark 4.11 (Adapting the proof of Lemma 4.3 to the case t = 0). Homogeneity strips are not
used in [BD], so one requires a nonhomogeneous version of Lemma 4.9, but it is not hard to show
directly that there exists C > 0 such that mW (W \Wu(η)) ≤ C√η for any W ∈ Ws and η > 0, and
this weaker bound suffices (see discussion of (4.35) below). Lemma 4.10 can be kept unchanged as
it is only needed on unstable manifolds contained in a single homogeneity strip.

We show how to adapt the proof of Lemma 4.3 to the norm from [BD, §4.1] with q = 2, and
parameters β, γ, and ς: Eq (4.27) and (4.28) get better since the test function satisfies |ψ| ≤
| log |W ||γ, so we find η1/2| log η|γ. Similarly, (4.29) has the bound η3/10| log η|γ. Eq (4.30)–(4.34)
remain as written. Eq (4.35) proceeds as above until the last line, at which point we use |Sη| ≤ C

√
η,

so that the final bound becomes C|f |∞η1/4| log η|γ. Thus we arrive at (4.36) with a bound C|f |C1η1/6.
The factor | log η|γ can be absorbed by the various exponents, all being greater than 1/6. So there is
no extra restriction the parameter γ from [BD] from the stable norm estimate.

For the unstable norm estimate, one distinguishes between the case η1/6 < | log ε|−2ς , which
yields a bound with η1/12, and the case η1/6 ≥ | log ε|−2ς , which implies that ε ≤ exp(−η−

α−β
12ς ),

which is superexponentially small in η, so that (4.37) remains the same, while (4.38) is bounded
by εα−β| log ε|ς ≤ exp(−η−

α−β
24ς ). Similarly, (4.39) is bounded by | log ε|−ς times a factor superex-

ponentially small in η. (We have a power of ε which is factored into | log ε|−ς times ε1−δ, for
any δ.) The same is true of (4.40)–(4.41). Finally, in (4.42), we end up with exp(−η−

α−β
24ς ) plus

η−3/2 exp(−η−
1

24ς ), and this goes to 0 as η goes to 0, for any ς > 0 (in particular, there is no extra
condition on ς from this estimate).

4.5. Spectral Gap for Lt. Constructing µt (Proof of Theorem 4.1). We harvest the results
from the previous subsections to show Theorem 4.1 at the end of this section. Our first result
follows from Proposition 4.6 and the exact growth for Qn(t) (Propositions 3.15 and 3.18).

Proposition 4.12 (Quasi-compactness). Let t0 ∈ (0, 1) and t1 ∈ (1, t∗). Then we can choose
parameters for B such that for any t ∈ [t0, t1], the operator Lt acting on B is quasi-compact: its
spectral radius is eP∗(t) and its essential spectral radius is at most σeP∗(t), where

σ := max{Λ−β+1/p, θt−1/pe−P∗(t),Λ−γ} < 1 .
Moreover, the peripheral spectrum of Lt contains no Jordan blocks.

Proof. Since t0 > 0 and t1 < t∗, we can choose p > 1 such that p > 2/t0 ≥ 2/t and (by Lemma 4.7)
θ(t−1/p)e−P∗(t) < 1 for any t ∈ [t0, t1]. Then (4.5) and Proposition 3.18(b) imply that the spectral
radius of Lt on Bw is at most eP∗(t). Combining (4.8) from Proposition 4.6 with Hennion’s theorem
and compactness of the unit ball of B in Bw from Proposition 4.2, the essential spectral radius of
Lt on B is at most σeP∗(t) < eP∗(t). Hence the spectral radius of Lt on B is at most eP∗(t).

Next, notice that by Lemma 2.1 and our choice of δ1 in (3.47), we have for W ∈ Ws with
|W | ≥ δ1/3, ∫

W
Lnt 1 dmW =

∑
Wi∈G

δ1
n (W )

∫
Wi

|JsTn|t dmWi ≥
∑

Wi∈L
δ1
n (W )

1
3δ12−t|JsTn|tC0(Wi)

≥ 1
4δ12−t

∑
Wi∈G

δ1
n (W )

|JsTn|tC0(Wi) ≥
1
4δ12−tc1Qn(t) ,

(4.43)

where for the final inequality we have applied Proposition 3.18(b). Then, since Qn(t) ≥ enP∗(t) by
the lower bound in Proposition 3.18(b), we conclude

‖Lnt ‖B ≥ ‖Lnt 1‖B(‖1‖B)−1 ≥ (‖1‖B)−1Cδ1e
P∗(t)n =⇒ lim

n→∞
‖Lnt ‖

1/n
B ≥ eP∗(t) .

Thus the spectral radius of Lt on B is in fact eP∗(t) and Lt is quasi-compact on B.
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Finally, to prove there are no Jordan blocks in the peripheral spectrum, assume to the contrary
that there exist f0, f1 ∈ B, f0 6= 0, and λ ∈ C, |λ| = eP∗(t), such that Ltf0 = λf0 and Ltf1 = λf1+f0.
Then Lnt f1 = λnf1 + nλn−1f0, so that

n|f0|w ≤ eP∗(t)|f1|w + e−(n−1)P∗(t)|Lnt f1|w ,

and dividing by n, letting n→∞ and applying (4.5) and Proposition 3.18(b) yields |f0|w = 0. The
injectivity of Bw into B given by Proposition 4.2 implies f0 = 0 in B, a contradiction. �

For$ ∈ [0, 1), let V$ denote the eigenspace of Lt on B corresponding to the eigenvalue eP∗(t)e2πi$.
Due to Proposition 4.12, we have the following decomposition of Lt on B,

(4.44) Lt =
∑
$

eP∗(t)+2πi$Π$ +Rt ,

where the sum is over finitely many $ due to the quasi-compactness of Lt, and Π2
$ = Π$, Π$Π$′ =

RtΠ$ = Π$Rt = 0 for $ 6= $′ (mod 2π), and the spectral radius of Rt is strictly less than eP∗(t).

Lemma 4.13. Define νt = lim
n→∞

1
n

n−1∑
k=0

e−P∗(t)kLkt 1.

a) Then νt 6= 0 is a nonnegative Radon measure, and eP∗(t) is in the spectrum of Lt.
b) All elements of V = ⊕$V$ are complex measures, absolutely continuous with respect to νt.

Lemma 4.13 is standard, adapting what has been done in the SRB case. We give a proof for
completeness.

Proof. (b) The lack of Jordan blocks enables us to define spectral projectors by

(4.45) Π$ : B → V$ , Π$f = lim
n→∞

1
n

n−1∑
k=0

e−P∗(t)k−2πi$kLkt f ,

where convergence in the B norm is guaranteed by Propositions 4.6 and 3.18(b). Moreover, since
C1(M) is dense in B and V$ is finite-dimensional, for each ν ∈ V$, there exists f̄ν ∈ C1(M) such
that Π$f̄ν = ν.

Taking ν ∈ V$ and ψ ∈ Cα(M), using (4.45) and recalling our identification of f̄ν ∈ C1 with the
measure f̄νdµSRB, we have

|ν(ψ)| ≤ lim
n→∞

1
n

n−1∑
k=0

e−P∗(t)k|Lkt f̄ν(ψ)| ≤ |f̄ν |∞Π01(|ψ|) ≤ |f̄ν |∞|ψ|∞Π01(1) .

The last two inequalities show respectively that ν is a complex Radon measure, and is absolutely
continuous with respect to νt, with density fν ∈ L∞(νt). It may be that fν 6= f̄ν .

(a) Item (b) implies also that νt is a nonnegative Radon measure since f̄νt = 1 and Π0 is nonnegative.
Also, if νt = 0, then all elements of V$ are 0, contradicting the fact that the spectral radius of Lt
is eP∗(t). Thus νt 6= 0 and eP∗(t) is in the spectrum of Lt since Ltνt = eP∗(t)νt. �

The dual operator L∗t acting on B∗ has the same spectrum as Lt on B. Define

(4.46) ν̃t := lim
n→∞

1
n

n−1∑
k=0

e−P∗(t)k(L∗t )kdµSRB ,

which converges in the dual norm due to the absence of Jordan blocks. By the analogous arguments
to item (b) of Lemma 4.13, the distribution ν̃t 6= 0 is a nonnegative Radon measure, and every other
eigenvector corresponding to the peripheral spectrum is a Radon measure, absolutely continuous
with respect to ν̃t, with bounded density.
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With ν̃t, we will define our candidate µt for the equilibrium state in Proposition 4.16. For this
(and in (6.23)), we shall use the following lemma (proved exactly as in [BD, Lemma 4.4]) which
gives more precise information about the inclusion Bw ⊂ (C1(M))∗ in Proposition 4.2. Recalling
(2.2), let Hα

Ws
H
(ψ) = supW∈Ws

H
Hα
W (ψ).

Lemma 4.14. There exists C > 0 such that for all f ∈ Bw and ψ ∈ Cα(Ws
H),

|f(ψ)| ≤ C|f |w
(
|ψ|∞ +Hα

Ws
H
(ψ)

)
.

In addition, we shall use the following extension of the above lemma, which uses that µSRB has
smooth conditional measures on stable manifolds.

Lemma 4.15. There exists C > 0 such that for all f ∈ Bw, ψ ∈ Cα(Ws
H), and n ≥ 0,

|Lnt (fψ)(1)| ≤ CQn(t)|f |w|ψ|Cα(Ws
H) .

Proof. We proceed similarly to the proof of [BD, Lemma 4.4]. By density of C1 in Bw, it suffices
to prove the inequality for f ∈ C1. Then according to our convention, for ψ ∈ Cα(Ws

H),

Lnt (fψ)(1) =
∫
M
Lnt (fψ) dµSRB .

To estimate the integral, we disintegrate µSRB into a family of conditional probability measures on
stable manifolds as follows. Fix a foliation of F = {Wξ}ξ∈Ξ ⊂ Ws

H of maximal, homogeneous local
stable manifolds belonging to Ws

H. The conditional measures are defined by µξSRB = |Wξ|−1ρξdmWξ
,

where ρξ satisfies [CM, Cor 5.30],

(4.47) 0 < cρ ≤ inf
ξ∈Ξ

inf
Wξ

ρξ ≤ sup
ξ∈Ξ
|ρξ|Cα(Wξ) ≤ Cρ <∞ .

We denote the factor measure on the index set Ξ by µ̂SRB. Then,∣∣∣∣∫
M
Lnt (fψ) dµSRB

∣∣∣∣ =
∣∣∣∣∣
∫

Ξ

∫
Wξ

Lnt (fψ) ρξ dmWξ
|Wξ|−1dµ̂SRB(ξ)

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

Ξ

∑
W ξ
i ∈Gn(Wξ)

∫
Wi

fψ ρξ ◦ Tn |JsTn|t dmW ξ
i
|Wξ|−1dµ̂SRB(ξ)

∣∣∣∣∣∣∣
≤ CCρ|f |w|ψ|Cα(Ws

H)

∣∣∣∣∣∣∣
∫

Ξ

∑
W ξ
i ∈Gn(Wξ)

|JsTn|t
C0(W ξ

i )|Wξ|−1dµ̂SRB(ξ)

∣∣∣∣∣∣∣
≤ CCρC2Qn(t)|f |w|ψ|Cα(Ws

H)

∫
Ξ
|Wξ|−1dµ̂SRB(ξ) ,

where in the last line we have used Lemma 3.4 with ς = 0. The remaining integral is finite by [CM,
Exercise 7.22] since the family (Wξ, dµ

ξ
SRB, µ̂SRB)ξ∈Ξ is a standard family. �

Proposition 4.16 (Constructing µt). For ν ∈ B and ν̃ ∈ B∗ we set 〈ν, ν̃〉 := ν̃(ν).
a) The measure ν̃t ∈ B∗ is in fact an element of B∗w.
b) We have 〈νt, ν̃t〉 6= 0, and the distribution µt defined for ψ ∈ Cα(Ws

H) by

µt(ψ) := 〈ψνt, ν̃t〉
〈νt, ν̃t〉

is a T -invariant probability measure.
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Proof. a) Let gn = n−1∑n−1
k=0 e

−P∗(t)k(L∗t )kdµSRB. By definition, ‖gn − ν̃t‖B∗ → 0 as n→∞. Thus
for f ∈ B, we have

|〈f, ν̃t〉| ≤ |〈f, ν̃t − gn〉|+ |〈f, gn〉| ≤ |〈f, ν̃t − gn〉|+ C|f |w ,
where for the last inequality, we used the bound,

|〈f, (Lkt )∗dµSRB〉| = |〈Lkt f, dµSRB〉| ≤ C|Lkt f |w ≤ C ′eP∗(t)k|f |w ,
by Lemma 4.14 and Proposition 4.6. Taking n→∞ yields the bound |〈f, ν̃t〉| ≤ C|f |w for all f ∈ B
and since B is dense in Bw, the distribution ν̃t extends to a bounded linear operator on Bw, as
required.
b) First we show the expression 〈ψνt, ν̃t〉 is well-defined for ψ ∈ Cα(Ws

H). According to our
convention, for f ∈ C1(M), we define for n ≥ 0,

〈f, ψ(Lnt )∗dµSRB〉 =
∫
Lnt (fψ) dµSRB ≤ CQn(t)|f |w|ψ|Cα(Ws

H) ,

by Lemma 4.15. Thus ψ(Lnt )∗dµSRB extends to a bounded linear functional on Bw. Applying
Proposition 3.18(b) and (4.46), we obtain
(4.48) ψν̃t ∈ B∗w with |〈f, ψν̃t〉| ≤ C ′|f |w|ψ|Cα(Ws

H), ∀f ∈ Bw .

(We do not claim or need that ψf ∈ Bw, i.e. that ψf can be approached by a sequence of C1

functions in the weak norm.) Thus 〈ψνt, ν̃t〉 := 〈νt, ψν̃t〉 is well-defined. Remark that the above
argument also shows that µt(fψ) = 〈fνt, ψν̃t〉 for all f ∈ C1(M), ψ ∈ Cα(Ws

H).
Next, suppose 〈νt, ν̃t〉 = 0. Then for any f ∈ C1(M), and n ≥ 1, using (4.45),

〈f, ν̃t〉 = 1
n

n−1∑
k=0

e−P∗(t)k〈f, (L∗t )kν̃t〉 = 1
n

n−1∑
k=0

e−P∗(t)k〈Lkt f, ν̃t〉

−−−→
n→∞

〈Π0(f), ν̃t〉 = ct(f)〈νt, ν̃t〉 = 0 .
(4.49)

By density of C1(M) in B, this implies that ν̃t = 0 as an element of B∗, a contradiction. Thus
〈νt, ν̃t〉 6= 0, and indeed ct(f) = 〈f,ν̃t〉

〈νt,ν̃t〉 , so that µt is a well-defined element of B∗ ⊂ (C1(M))∗. It is
then easy to see that µt is a nonnegative distribution and thus a Radon measure. The fact that µt
is T -invariant is an exercise, using that νt and ν̃t are eigenvectors of Lt and L∗t . �

Following [BD, Definition 7.5], we remark that elements of B and Bw can be viewed both as
distributions on M , as well as families of leafwise distributions on stable manifolds. In particular,
for f ∈ C1(M), W ∈ Ws, the map defined by

DW,f (ψ) :=
∫
W
f ψ dmW , ψ ∈ Cα(W ) ,

can be viewed as a distribution of order α on W . Since |DW,f (ψ)| ≤ |f |w|ψ|Cα(W ), the map DW,·
can be extended to all f ∈ Bw. We will use the notation

∫
W ψ f for this extension and call the

associated family of distributions the leafwise distributions (f,W )W∈Ws corresponding to f . If f
satisfies

∫
ψ f ≥ 0 for all ψ ≥ 0, then the leafwise distribution is a leafwise measure.

Recalling the disintegration of the measure µSRB from the proof of Lemma 4.15, we state an
analogue of [BD, Lemma 7.7]:

Lemma 4.17 (νt as a leafwise measure). Let νξt and ν̂t denote the conditional measure on Wξ

and the factor measure on Ξ, respectively, obtained by disintegrating νt on the foliation of stable
manifolds F . For all ψ ∈ Cα(M),∫

Wξ

ψ dνξt =
∫
Wξ

ψ ρξ νt∫
Wξ

ρξ νt
∀ξ ∈ Ξ, and dν̂t(ξ) = |Wξ|−1

(∫
Wξ

ρξ νt

)
dµ̂SRB(ξ) .
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Moreover, viewed as a leafwise measure, νt(W ) > 0 for all W ∈ Ws
H.

Proof. We begin by showing that νt(W ) > 0 for all W ∈ Ws
H. If |W | ≥ δ1/3 (recalling that our

choice of δ1 in (3.31) is uniform for t ∈ [t0, t1]), then the positivity follows immediately from the
uniform lower bound (4.43). So assume W ∈ Ws

H with |W | < δ1/3.
First, we claim that there exists nW = O(log |W |) such that at least one element of Gδ1nW (W ) has

length at least δ1/3. For any n ≥ 1, if no elements Wi ∈ Gδ1n (W ) have length at least δ1/3, then
Gδ1n (W ) = Iδ1n (W ) so that by Lemma 3.3 with ς = 0,

∑
Wi∈G

δ1
n (W ) |J

sTn|C0(Wi) ≤ C0θ
n, while by

(3.9),
∑
Wi∈G

δ1
n (W ) |J

sTn|C0(Wi) ≥ C1|W |δ−1
1 . This can continue only so long as

C1|W |δ−1
1 ≤ C0θ

n =⇒ n ≤
log

(C1|W |
C0δ1

)
log θ =: nW .

Next, letting V ∈ Gδ1nW (W ) be such that |V | ≥ δ1/3, we estimate as in (3.39), using the fact that

since V and TnW V are both homogeneous, |V | ≤ C|TnW V |
(
q+1
2q+1

)nW
for some C ≥ 1, so that

|JsTnW |tC0(V ) ≥ e
−tCd |T

nW V |t

|V |t
≥ e−tCd(δ1/(3C))t

(
2q+1
q+1

)nW
.

Finally, recalling our choice of n1 from (3.47), and using the fact that |V | ≥ δ1/3, we estimate,38

1
n

n−1∑
k=0

e−P∗(t)k
∫
W
Lkt 1 dmW ≥ e−P∗(t)nW

1
n

n−1∑
k=n1+nW

e−P∗(t)(k−nW )
∫
V
Lk−nWt 1 |JsTnW |t dmV

≥ e−P∗(t)nW e−tCd
( δ1

3C
)t( 2q+1

q+1

)nW 1
n

n−1∑
k=n1+nW

e−P∗(t)(k−nW )
∫
V
Lk−nWt 1 dmV

≥ e−P∗(t)nW e−tCd
( δ1

3C
)t( 2q+1

q+1

)nW
n−1−n1−nW

n
1
4δ12−tc1 ,

(4.50)

where in the last line we have applied (4.43) and Proposition 3.18(b).
These lower bounds depend only on |W | and carry over to νt(W ) since they are uniform in n.
With the lower bounds established, the remainder of the proof follows precisely as in [BD,

Lemma 7.7], disintegrating the measure
(

1
n

∑n−1
k=0 e

−kP∗(t)Lkt 1
)
dµSRB on the foliation of stable

manifolds F from (4.47), using that convergence in B to νt implies convergence of the integral on

each Wξ ∈ F . The lower bounds on νt(W ) imply that the ratio
∫
Wξ

ψ ρξ νt∫
Wξ

ρξ νt
is well-defined for each

Wξ ∈ F . �

In view of (4.52) in the proof of Lemma 4.18 below (and also (6.25)), it is convenient to define
Lt acting explicitly on distributions. For any point x ∈M that has a stable manifold of zero length,
we define W s(x) = {x}, and extend Ws to a larger collection W̃s including these singletons. For
α ≤ 1, let

Cα(W̃s) := {ψ bounded and measurable | |ψ|
Cα(W̃s) := sup

W∈W̃s

|ψ|Cα(W ) <∞} .

Let Cαcos(W̃s) denote the set of measurable functions ψ such that ψ cosϕ ∈ Cα(W̃s). It follows from
the uniform hyperbolicity of T that if ψ ∈ Cα(W̃s), then ψ ◦ T ∈ Cα(W̃s) (see (4.11)). Also, as in
the proof of Lemma 2.2, by [CM, eq. (5.14)], we have JsT (x) ≈ cosϕ(x) for x ∈M ′. We extend JsT
to all x ∈M by defining it to be 1 onM \M ′. Then using (2.3), we have ψ ◦T/|JsT |1−t ∈ Cαcos(W̃s)

38In fact, estimating more carefully for t ≤ 1, one can obtain the more precise lower bound C′δ1−t
1 |W |C

′′P∗(t)|W |t
for some C′, C′′ > 0, but we will not need this here.
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whenever ψ ∈ Cα(W̃s) and α ≤ 1/(q + 1). Using these facts, for a distribution µ ∈ (Cαcos(W̃s))∗,
define Lt : (Cαcos(W̃s))∗ → (Cα(W̃s))∗ by

(4.51) Ltµ(ψ) = µ

(
ψ ◦ T
|JsT |1−t

)
, for all ψ ∈ Cα(W̃s).

To reconcile this definition with (1.10), for f ∈ Cα(Ws), we identify f with the measure fdµSRB.
Such a measure belongs to (Cαcos(W̃s))∗ since 1/ cosϕ ∈ L1(µSRB). With this convention, the
measure Ltf has density with respect to µSRB given by (1.10). Finally, note that B ⊂ (Cαcos(W̃s))∗,
due to Lemma 4.14 and Remark 4.5.

We are finally ready to prove that Lt enjoys a spectral gap, using Lemma 4.17 (which exploited
that µSRB has smooth stable conditional densities, a very nongeneric property in the setting of
hyperbolic dynamics).

Lemma 4.18 (Spectral Gap). Lt has a spectral gap on B, i.e., eP∗(t) is a simple eigenvalue and
all other eigenvalues of Lt have modulus strictly less than eP∗(t).

Proof. Step 1: the spectrum of e−P∗(t)Lt consists of finitely many cyclic groups; in particular,
each $ in (4.44) is rational. To prove this, suppose ν ∈ V$, ν 6= 0, and ψ ∈ Cα(M). Then by
Lemma 4.13(b) and viewing ν as a distribution in the sense of (4.51)∫

M
ψ fν dνt = ν(ψ) = e−P∗(t)−2πi$Ltν(ψ) = e−P∗(t)−2πi$ν

(
ψ ◦ T
|JsT |1−t

)
= e−P∗(t)−2πi$νt

(
fν

ψ ◦ T
|JsT |1−t

)
= e−P∗(t)−2πi$Ltνt

(
ψ fν ◦ T−1

)
= e−2πi$νt

(
ψ fν ◦ T−1

)
,

(4.52)

so that fν ◦ T−1 = e2πi$fν , νt-almost everywhere.
Defining νk,t = (fν)kνt, for k ∈ N, we claim that eP∗(t)+2πi$k belongs to the spectrum of Lt and

νk,t ∈ V$k. The claim completes the proof of Step 1 since the peripheral spectrum is finite, forcing
$k = 0 (mod 1) for some k ≥ 1, so that $ must be rational.

To prove the claim, set fν = 0 outside the support of νt, and define the measure 〈fννt, · ν̃t〉 =
〈ν, · ν̃t〉. We claim that this measure is not identically zero. If it were, then for any ψ ∈ B∗, making
the dual argument to (4.49),

〈ν, ψ〉 = 〈Π$ν, ψ〉 = 〈ν,Π∗$ψ〉 = 〈ν, f̃$ν̃t〉c̃$(ψ) = 0 ,

where we have used that every eigenvector corresponding to the peripheral spectrum of L∗t is
absolutely continuous with respect to ν̃t, i.e. ν̃$ = f̃$ν̃t, as explained after (4.46). Thus ν = 0, a
contradiction.

Since 〈fννt, · ν̃t〉 is not identically zero, it follows that 〈(fν)kνt, · ν̃t〉 is not identically zero. Thus
there exists ψ ∈ Cα(M) such that 〈(fν)kνt, ψν̃t〉 6= 0.

For ε > 0, choose g ∈ C1(M) such that µt(|g − (fν)k|) < ε. Note that gνt ∈ B by [DZ2,
Lemma 5.3]. We will show that Π$k(gνt) 6= 0. For ψ ∈ Cα(M) and each j ≥ 0,

e−P∗(t)j−2πi$kj〈Ljt (gνt), ψν̃t〉 = e−P∗(t)j−2πi$kj〈gνt, ψ ◦ T j(L∗t )j ν̃t〉
= e−2πi$kj〈νt, ν̃t〉µt(g ψ ◦ T j) ,

where we have used (L∗t )j ν̃t = eP∗(t)j ν̃t. Also, due to the invariance of µt,

〈(fν)kνt, ψν̃t〉 = e−2πi$kj〈(fν)k ◦ T−j νt, ψν̃t〉 = e−2πi$kj〈νt, ν̃t〉µt((fν)k ψ ◦ T j) .
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Putting these two expressions together, we estimate,∣∣∣∣∣∣ lim
n→∞

1
n

n−1∑
j=0

e−P∗(t)j−2πi$kj〈Ljt (gνt), ψν̃t〉 − 〈(fν)kνt, ψν̃t〉

∣∣∣∣∣∣
≤ lim

n→∞
1
n

n−1∑
j=0
〈νt, ν̃t〉µt(|g − (fν)k|)|ψ|∞ ≤ ε〈νt, ν̃t〉|ψ|∞ .

Since 〈(fν)kνt, · ν̃t〉 6= 0 and ε > 0 was arbitrary, this estimate shows that (i) Π$k(gνt) 6= 0, so that
V$k is not empty, and (ii) νk,t = (fν)kνt can be approximated by elements of V$k, and so must
belong to V$k, as claimed.
Step 2: Lt has a spectral gap. It suffices to show that the ergodicity of (T, µSRB) implies that the
positive eigenvalue eP∗(t) is simple. For then applying Step 1, suppose ν ∈ V$ for $ = a/b. Then
both Lbtν = eP∗(t)bν and Lbtνt = eP∗(t)bνt, so that Lbt has eigenvalue eP∗(t)b of multiplicity 2, and this
is also its spectral radius, contradicting the fact that (T b, µSRB) is also ergodic.

Now, suppose ν ∈ V0. By Lemma 4.13(b), there exists fν ∈ L∞(νt) such that dν = fνdνt. We
will show that fν is νt-a.e. a constant.

By (4.52) fν ◦ T = fν , νt-a.e. so that setting

Snfν =
n−1∑
j=0

fν ◦ T j ,

we see that 1
nSnfν = fν for all n ≥ 1. Thus fν is constant on stable manifolds. Next, since the

factor measure ν̂t is equivalent to µ̂SRB on the index set Ξ by Lemma 4.17, it follows that fν = fν ◦T
on µ̂SRB-a.e. Wξ ∈ F . So fν = fν ◦ T , µSRB-a.e. Since µSRB is ergodic, fν is constant µSRB-a.e. But
since fν is constant on each stable manifold Wξ ∈ F , it follows that there exists c > 0 such that
fν = c for µ̂SRB-a.e. ξ ∈ Ξ, and once again using the equivalence of µ̂SRB and ν̂t, we conclude that
fν is constant νt-a.e. �

Proof of Theorem 4.1. All claims except the last sentence of the theorem follow from Proposi-
tions 4.12 and 4.16, and Lemma 4.18. Exponential decay of correlations for Cα functions with rate
υ satisfying (4.4) follows from the classical spectral decomposition

Lkt f = ekP∗(t)[ct(f) · νt +Rkt (f)] , where ∃C <∞ s. t. ‖Rkt f‖ < Cυk‖f‖ , ∀k ≥ 0 , ∀f ∈ B ,

and ct(f) = 〈f,ν̃t〉
〈νt,ν̃t〉 . Indeed, by [DZ2, Lemma 5.3] for ψ ∈ Cα(M),

(4.53) ψ ◦ T−jf ∈ B and ‖ψ ◦ T−jf‖B ≤ Cj |ψ|Cα‖f‖B for all j ≥ 1 ,
we find for f1, f2 ∈ Cα(M) (using (4.53) with j = k),∫

(f1 ◦ T k)f2dµt = 〈(f1 · f2 ◦ T−kνt, ν̃t〉
〈νt, ν̃t〉

= e−kP∗(t)
〈f1Lkt (f2νt), ν̃t〉
〈νt, ν̃t〉

= ct(f2νt)
〈f1νt, ν̃t〉
〈νt, ν̃t〉

+ 〈f1Rkt (f2νt), ν̃t〉
〈νt, ν̃t〉

=
∫
f1dµt

∫
f2dµt + 〈f1Rkt (f2νt), ν̃t〉

〈νt, ν̃t〉
,

and we have, using again (4.53) (with j = 0),∣∣∣∣〈f1Rkt (f2νt), ν̃t〉
∣∣∣∣ ≤ |f1|Cα‖Rkt (f2νt)‖ ≤ C|f1|Cαυk‖f2νt‖ ≤ C|f1|Cα |f2|Cαυk .

Exponential mixing for Hölder functions of exponent smaller than α then follows from mollification
(a lower exponent may worsen the rate of mixing). Finally, mixing is obtained by a standard
argument: Since µ is a Borel probability measure and M is a compact metric space (and thus
a normal topological space), any f ∈ L2(µ) can be approximated by a sequence of continuous
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functions in the L2(µ) norm, using Urysohn functions. So, by Cauchy–Schwartz, we may reduce to
proving mixing for continuous test functions. Clearly, Lipschitz functions form a subalgebra of the
Banach algebra of continuous functions, the constant function ≡ 1 is Lipschitz, and for any x 6= y
in M there exists a Lipschitz function f̃ with f̃(x) 6= f̃(y). Since M is a compact metric space
the Stone–Weierstrass theorem implies that any continuous function on M can be approached in
the supremum norm by a sequence of Lipschitz functions on M . Since we have proved mixing for
Lipschitz functions, the proof is concluded. �

5. Final Properties of µt (Proof of Theorem 1.1 and Theorem 2.5)

In this section we show Proposition 5.1, Corollary 5.3, Proposition 5.5, Lemma 5.6, and Proposi-
tion 5.7, which, together with Theorem 4.1, give Theorem 1.1.

5.1. Measuring Neighbourhoods of Singularity Sets – µt is T -adapted. In this section, we
show Proposition 5.1, which gives in particular that µt is T -adapted. For any ε > 0 and any A ⊂M ,
we set Nε(A) = {x ∈M | d(x,A) < ε}. The proof will be based on controlling the measure of small
neighbourhoods of singularity sets.

Proposition 5.1. Let µt be given by Theorem 4.1 for t ∈ [t0, t1], with p > 2 the norm parameter.
a) For any C1 curve S uniformly transverse to the stable cone, there exists C > 0 such that

µt(Nε(S)) ≤ Cε1/p for all ε > 0.
b) The measure µt has no atoms. We have µt(Sn) = 0 for any n ∈ Z, and µt(W ) = 0 for any

local stable or unstable manifold W .
c) The measure µt is adapted, i.e.,

∫
| log d(x,S±1)| dµt <∞.

d) For any p′ > 2p, µt-almost every x and each n ∈ Z, there exists C > 0 such that

(5.1) d(T jx,Sn) ≥ Cj−p′ , ∀j ≥ 0 .

e) µt-almost every x ∈M has stable and unstable manifolds of positive lengths.

Proof. We proceed as in [BD, Corollary 7.4]. The key fact is that for any n ∈ N there exists Cn <∞
such that for all ε > 0

(5.2) µt(Nε(S−n)) < Cnε
1/p , µt(Nε(Sn)) < Cnε

1/(2p) .

Denoting by 1n,ε the indicator function of the set Nε(S−n), Proposition 4.16(a) implies

µt(Nε(S−n)) = 〈1n,ενt, ν̃t〉 ≤ C|1n,ενt|w ,

for n ≥ 0. The bound |1n,εf |w ≤ An‖f‖s|ε|1/p for all f ∈ B follows exactly as the proof of [BD,
Lemma 7.3], replacing the logarithmic modulus of continuity | log ε|−γ in the strong stable norm
there by our Hölder modulus of continuity ε1/p, and using the fact that S−n is uniformly transverse
to the stable cone. This proves the first inequality in (5.2). The second follows from the invariance
of µt, together with the fact that T (Nε(Sn)) ⊂ NCε1/2(S−n).

Claim a) of the proposition follows from the proof of (5.2), since the only property required of
S−n is that it comprises finitely many smooth curves uniformly transverse to the stable cone. The
bound (5.2) applied to arbitrary stable curves immediately implies that µt has no atoms, and that
µt(Sn) = 0 for any n ∈ Z. Next, if we had µt(W ) > 0 for a local stable manifold, then µt(TnW ) > 0
for all n > 0. Since µt is a probability measure and Tn is continuous on stable manifolds, ∪n≥0T

nW
must be the union of finitely many smooth curves (indeed, if ∪n≥0T

nW comprised infinitely many
smooth curves, then µt(M) =∞ by the invariance of µt). Since |TnW | → 0, there is a subsequence
(nj) such that ∩j≥0T

njW = {x}. Thus µt({x}) > 0, a contradiction. For an unstable manifold W ,
use the fact that T−n is continuous on W . So we have established b).
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To show c), choose p′ > 2p. Then by (5.2)∫
M\N1(S1)

| log d(x,S1)| dµt =
∑
j≥1

∫
N
j−p′

(S1)\N(j+1)−p′ (S1)
| log d(x,S1)| dµt

≤ p′
∑
j≥1

log(j + 1) · µt(Nj−p′ (S1)) ≤ p′C1
∑
j≥1

log(j + 1) · j−p′/(2p) <∞.

A similar estimate holds for
∫
| log d(x,S−1)| dµt.

Next, fix η > 0, p′ > 2p and n ∈ Z+. Since both sums

(5.3)
∑
j≥1

µt(Nηj−p′ (S−n)) ≤ C̃C−nη
1
p
∑
j≥1

j
− p
′
p ,

∑
j≥1

µt(Nηj−p′ (Sn)) ≤ C̃Cnη
1
2p
∑
j≥1

j
− p′

2p ,

are finite, the Borel–Cantelli Lemma implies that µt-almost every x ∈ M visits Nηj−p′ (Sn) only
finitely many times. This gives (5.1) and thus claim d). Finally, the existence of nontrivial stable
and unstable manifolds claimed in e) follows from the Borel–Cantelli estimate (5.3) by a standard
argument, choosing p′ > 2p and η ≥ 1 such that Λj > η−1jp

′ for all j (see [CM, Sect. 4.12]). �

5.2. µt is an Equilibrium State. Variational Principle for P∗(t). For ε > 0, x ∈ M , and
n ≥ 1 denote by Bn(x, ε) the dynamical (Bowen) ball for T−1:

(5.4) Bn(x, ε) = {y ∈M | d(T−j(y), T−j(x)) ≤ ε , ∀ 0 ≤ j ≤ n} .

Proposition 5.2 (Upper Bounds on the Measure of Dynamical Balls). Let t0 ∈ (0, 1) and t1 ∈
(1, t∗). There exists A < ∞ such that for all small enough ε > 0, all x ∈ M , and all n ≥ 1, the
measure µt constructed in Theorem 4.1 for t ∈ [t0, t1] satisfies

(5.5) µt(Bn(x, ε)) ≤ Ae−nP∗(t)+t
∑n

k=1 log JsT (T−k(x)) .

Corollary 5.3 (Equilibrium State for −t log Ju. Variational principle for P∗(t).). The measure µt
constructed in Theorem 4.1 for t ∈ (0, t∗) satisfies Pµt(−t log JuT ) = P∗(t) = P (t).

Proof of Corollary 5.3. By definition we have Pµt(−t log JuT ) ≤ P (t), and Proposition 2.4 gives
P (t) ≤ P∗(t), so it is enough to show Pµt(−t log JuT ) ≥ P∗(t). We follow [BD, Cor. 7.17]. Since∫
| log d(x,S±1)| dµt <∞ by Proposition 5.1, and µt is ergodic, we may apply [DWY, Prop. 3.1] (a

slight generalization of the Brin–Katok local theorem [BK], using [M, Lemma 2], continuity of the
map is not used) to T−1. This gives that for µt-almost every x ∈M ,

lim
ε→0

lim inf
n→∞

− 1
n logµt(Bn(x, ε)) = lim

ε→0
lim sup
n→∞

− 1
n logµt(Bn(x, ε)) = hµt(T−1) = hµt(T ) .

Using (5.5) it follows that for any ε sufficiently small,

lim sup
n→∞

− 1
n logµt(Bn(x, ε)) ≥ P∗(t)− lim

n→∞
t
n

n∑
k=1

log JsT (T−k(x)) ≥ P∗(t)− t
∫
M

log JsT dµt ,

for all µt-typical x. Thus applying (2.9), we get Pµt(−t log JuT ) ≥ P∗(t). �

Proof of Proposition 5.2. For x ∈ M and n ≥ 0, let 1Bn,ε denote the indicator function of Bn(x, ε).
Since νt is attained as the (averaged) limit of e−nP∗(t)Lnt 1 in the weak (and strong) norm and since
we have

∫
W (Lnt 1)ψdmW ≥ 0 whenever ψ ≥ 0, it follows that, viewing νt as a leafwise distribution,

(5.6)
∫
W
ψ νt ≥ 0, for all ψ ≥ 0.
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Then the inequality |
∫
W ψ νt| ≤

∫
W |ψ| νt implies that the supremum in the weak norm can be

obtained by restricting to ψ ≥ 0. In addition, for each n ≥ 0,∫
W
ψLnt νt = lim

k
e−kP∗(t)

∫
W
ψLnt (Lkt 1) dmW

= lim
k
e−kP∗(t)

∫
T−nW

ψ ◦ Tn Lkt 1 |JsTn|t dmT−nW =
∫
T−nW

ψ ◦ Tn |JsTn|t νt ,
(5.7)

for each W ∈ Ws and ψ ∈ Cβ(W ).
LetW ∈ Ws be a curve intersecting Bn(x, ε), and let ψ ∈ Cα(W ) satisfy ψ ≥ 0 and |ψ|Cα(W ) ≤ 1.

Then, since Ltνt = eP∗(t)νt, we have

(5.8)
∫
W
ψ 1Bn,ε νt =

∫
W
ψ 1Bn,ε e−nP∗(t)Lnt νt = e−nP∗(t)

∑
Wi∈Gn(W )

∫
Wi

(ψ ◦ Tn) (1Bn,ε ◦ Tn)|JsTn|t νt .

In the proof of [BD, Prop. 7.12] we showed that 1Bn,εf ∈ Bw (and B) for each f ∈ B and n ≥ 0.
In the proof of [BD, Lemma 3.4], we found (using our strong notion of finite horizon) ε̃ > 0 such
that there if x, y lie in different elements ofMn

0 , then max0≤i≤n d(T ix, T iy) ≥ ε̃. Since Bn(x, ε) is
defined with respect to T−1, we will use the time reversal counterpart of this property: If ε < ε̃,
we conclude that Bn(x, ε) is contained in a single component ofM0

−n, i.e., Bn(x, ε) ∩ S−n = ∅, so
that T−n is a diffeomorphism of Bn(x, ε) onto its image. Note that T−n(Bn(x, ε)) is contained in a
single component ofMn

0 , denoted An,ε. Thus, Wi ∩An,ε = Wi for each Wi ∈ Gn(W ). By (5.6),∫
Wi

(ψ ◦ Tn) 1T−n(Bn(x,ε))|JsTn|t νt ≤
∫
Wi

(ψ ◦ Tn)|JsTn|t νt .

In the proof of [BD, Prop. 7.12] we observed that there are at most two Wi ∈ Gn(W ) hav-
ing nonempty intersection with T−n(Bn(x, ε)). Using these facts together with (4.11) and (4.12)
(which implies ||JsTn|t|Cα(Wi) ≤ C||JsTn|t|C0(Wi)), we sum over W ′i ∈ Gn(W ) such that W ′i ∩
T−n(Bn(x, ε)) 6= 0, to obtain∫

W
ψ 1Bn,ε νt ≤ e−nP∗(t)

∑
i

∫
W ′i

(ψ ◦ Tn) |JsTn|t νt ≤ 2Ce−nP∗(t)+t
∑n−1

k=0 log JsT (Tk−n(x)))|νt|w ,

where we also used the distortion bounds from Lemma 2.2 to switch to JsTn(T−nx) since T−nx
may not belong to W ′i . This yields |1Bn,ενt|w ≤ 2Ce−nP∗(t)+t log JsTn(T−nx)|νt|w. Applying Proposi-
tion 4.16(a) gives (5.5). �

5.3. Definition of h∗. Sparse Recurrence. Proof that limt↓0 P (t) = h∗. In [BD, Lemma 3.3]
we showed that the limit below exists

h∗ := lim
n→∞

1
n

log #Mn
0 .

The number h∗ generalises topological entropy, in particular, P (0) ≤ h∗ [BD, Theorem 2.3].
Using h∗, we can state the sparse recurrence condition:

Definition 5.4 (Sparse Recurrence to Singularities). For ϕ < π/2 and n ∈ N, define s0(ϕ, n) ∈
(0, 1] to be the smallest number such that any orbit of length n has at most s0n collisions whose
angles with the normal are larger than ϕ in absolute value. We say that T satisfies the sparse
recurrence condition if there exist ϕ0 < π/2 and n0 ∈ N such that h∗ > s0(ϕ0, n0) log 2.

We refer to [BD, §2.4] for a discussion of the sparse recurrence condition. We proved in [BD]
that sparse recurrence implies P (0) = h∗. The following proposition connects h∗ to P∗(t) for t > 0,
despite the use of different partitions,Mn

0 andMn,H
0 .

Proposition 5.5. If T satisfies sparse recurrence then limt↓0 P∗(t) = limt↓0 P (t) = h∗, and
limt↓0 hµt = h∗.
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Assuming the sparse recurrence condition [BD, Theorem 2.4] we have P (0) = h∗. So in this case
the function P (t) is continuous on [0, t∗). In the general case, we cannot exclude P (0) < h∗ even if
we can show limt↓0 P (t) = P (0).

Proof. Recall that P (t) = P∗(t) for t ∈ (0, t∗) (using Proposition 2.4 and Corollary 5.3).
Showing39 limt↓0P (t) ≤ h∗ does not require the sparse recurrence condition: Any invariant

probability measure µ satisfies
∫
M log JuT dµ ≥ log Λ due to (1.2). Also, hµ(T ) ≤ h∗ by [BD,

Theorem 2.3]. Thus for t > 0, we have P (t) ≤ h∗ − t log Λ , so that, limt↓0P (t) ≤ h∗.
To prove the lower bound, assume the sparse recurrence condition, and let µ0 denote the measure

of maximal entropy for T constructed in [BD, Theorem 2.4] (called µ∗ in that paper). Since µ0 is T-
adapted [BD, Theorem 2.6], the Jacobian JuT is defined µ0-almost everywhere and

∫
log JuT dµ0 =

χ+
µ0 <∞. Thus for t > 0,

P (t) ≥ Pµ0(−t log JuT ) = hµ0 − t
∫
M

log JuT dµ0 = h∗ − tχ+
µ0 ,

and limt↓0P (t) ≥ h∗.
Finally, since P (t) ≤ hµt ≤ h∗, we must have limt↓0 hµt = h∗ as well. �

5.4. Full Support of µt. It follows from Lemma 4.17 that the measure νt is fully supported on M .
In this section, we will prove the analogous property for µt combining mixing of the SRB measure
and a direct use of Cantor rectangles, bypassing the absolute continuity argument which was used
in [BD, Section 7.3] to show full support of the measure of maximal entropy there. Recall the
definition of maximal Cantor rectangle R = R(D) comprising the intersection of all homogeneous
stable and unstable manifolds completely crossing a solid rectangle D as described in the proof
of Proposition 3.14. The boundary of the solid rectangle D comprises two stable and unstable
manifolds which also belong to R. Let ΞR ⊂ Ws denote the family of stable manifolds corresponding
to R (i.e. the set of homogeneous stable manifolds that completely cross D).
Lemma 5.6. For any maximal Cantor rectangle R, if µSRB(∪W∈ΞRW ) > 0 then we also have
µt(∪W∈ΞRW ) > 0. Consequently, for any nonempty open set O ⊂M , we have µt(O) > 0.
Proof. Let ψ ∈ C1(M) such that ψ ≥ 0 and ψ ≡ 1 on ∪W∈ΞRW . Due to the spectral decomposition
of L∗t , setting c = 〈νt, ν̃t〉−1, we have
(5.9) µt(ψ) = c lim

n→∞
e−nP∗(t)〈ψνt, (L∗t )ndµSRB〉 = c lim

n→∞
e−nP∗(t)〈Lnt (ψνt), dµSRB〉 .

Then, using the disintegration of µSRB, introduced before Lemma 4.17, into conditional measures
on a fixed foliation F = {Wξ}ξ∈Ξ of stable manifolds, and a transverse measure µ̂SRB on the index
set Ξ, and recalling (5.7), we estimate for n ≥ 0,

〈Lnt (ψνt), dµSRB〉 =
∫

Ξ
|Wξ|−1dµ̂SRB(ξ)

∫
Wξ

Lnt (ψνt) ρξ

=
∫

Ξ
|Wξ|−1dµ̂SRB(ξ)

∑
Wi∈Gn(Wξ)

∫
Wi

ψνt|JsTn|tρξ ◦ Tn

≥ C
∫

Ξ
|Wξ|−1dµ̂SRB(ξ)

∑
Wi∈Gn(Wξ)

|JsTn|tC0(Wi)

∫
Wi

ψνt ,

where in the last line we have used (4.47), bounded distortion for JsT and the positivity of νt. Next,
note that if Wi ∈ Gn(Wξ) properly crosses40 R, then using again the positivity of νt, we have

(5.10)
∫
Wi

ψ νt ≥ ζ(`R) ,

39Note that the limit exists since P (t) = P∗(t) is monotonic.
40See the proof of Proposition 3.14 for the definition of proper crossing.
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where `R is the minimum length of a stable manifold in ΞR and ζ is a function depending only on t
(uniform in [t0, t1]) and δ1(t0, t1) from (3.47) via (4.50). Thus letting GRn (Wξ) denote those elements
of Gn(W ) that properly cross R, we have

(5.11) 〈Lnt (ψνt), dµSRB〉 ≥ C ′ζ(`R)
∫

Ξ
|Wξ|−1dµ̂SRB(ξ)

∑
Wi∈GRn (Wξ)

|JsTn|tC0(Wi) .

As in the proof of Proposition 3.14, by [CM, Lemma 7.87], we choose a finite number of locally
maximal homogeneous Cantor rectanglesR(δ1) = {R1, . . . , Rk} such that there exists n∗ = n∗(δ1, R)
such that T−n∗(D(Ri)) contains a homogeneous connected component that properly crosses R for
all i = 1, . . . , k. Therefore, if V ∈ Ws has |V | ≥ δ1/3, then at least one element of Gn∗(V ) properly
crosses R. Thus, if |Wξ| ≥ δ1/3 and n − n∗ ≥ n1, then using (3.31), and letting δ′1 denote the
minimum length of a stable manifold belonging to any of the Ri,∑

Wi∈GRn (Wξ)
|JsTn|tC0(Wξ) ≥ e

−tCd
∑

Wj∈L
δ1
n−n∗ (Wξ)

|JsTn−n∗ |tC0(Wj)|J
sTn∗ |tC0(Wi)

≥ 3
4e
−tCdC(δ′1)t

(
2q+1
q+1

)n∗ ∑
Wj∈G

δ1
n−n∗ (Wξ)

|JsTn−n∗ |tC0(Wj)

≥ 3
4e
−tCdC(δ′1)t

(
2q+1
q+1

)n∗
c1e

(n−n∗)P∗(t) ,

(5.12)

where in the second line we have estimated JsTn∗ from below on Wi as in (3.39) using the fact that
|Wi| ≥ δ′1, and in the third line we have applied Propositions 3.14 and 3.15.

Substituting (5.12) into (5.11) and letting Ξδ1 denote those elements Wξ ∈ F with |Wξ| ≥ δ1/3,

e−nP∗(t)〈Lnt (ψνt), dµSRB〉 ≥ C ′′ζ(`R)δ−1
1 (δ′1)t

(
2q+1
q+1

)n∗
e−n∗P∗(t)µ̂SRB(Ξδ1) .

Since this lower bound is independent of n, by (5.9) we have µt(ψ) > 0, and since this holds for all
ψ ∈ C1(M) with ψ ≡ 1 on ∪W∈ΞRW , the first statement of the lemma is proved. Then the second
statement of the lemma follows from the fact that any nonempty open set O ⊂ M has a locally
maximal Cantor set R such that D(R) ⊂ O and µSRB(R) > 0. �

5.5. Uniqueness of Equilibrium State. (Strong) Variational Principle for P∗(t, g). In this
section, we prove the following uniqueness result:

Proposition 5.7. For any 0 < t < t∗, the measure µt from Theorem 4.1 is the unique equilibrium
state for −t log JuT .

The proof of the proposition will give a more general statement (shown at the end of this section):

Theorem 5.8 (Strong Variational Principle for P∗(t, g)). For any [t0, t1] ⊂ (0, t∗) there exists
υ0 > 0 such that for any C1 function g : M → R with |g|C1 ≤ υ0 we have

P∗(t, g) = P (t, g) = max{hµ +
∫

(−t log JuT + g) dµ : µ a T -invariant probability measure } ,

and the equilibrium state for −t log Ju + g is unique.

(We restrict to C1 functions g for simplicity. The result also holds Hölder g of suitable exponent.)
Fix 0 < t0 < t1 < t∗. For φ ∈ C1(M), t ∈ [t0, t1], and υ ∈ R, define the transfer operator

Lt,υ = Lt,υ,φ by

Lt,υf = f ◦ T−1

|JsT |1−t ◦ T−1 e
υφ◦T−1

, for all f ∈ C1(M).

Since Lt,υf = eυφ◦T
−1Ltf and the discontinuities of φ ◦ T−1 are uniformly transverse to the

stable cone, [DZ2, Lemma 5.3] implies that Lt,υf ∈ B (with B = B(t0, t1) the space for Lt)
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and ‖Lt,υf‖B ≤ C‖f‖B|eυφ|C1 , so that Lt,υ defines a bounded linear operator on B. By [DZ1,
Lemma 6.1] the map υ 7→ Lt,υ is analytic. Thus since Lt = Lt,0 has a spectral gap, so does Lt,υ
for |υ| sufficiently small, and the leading eigenvalue λt,υ varies analytically in υ [Ka, VII, Thm 1.8,
II.1.8]; moreover, λt,0 = eP (t) and, with µt from Theorem 4.1, we have [Ka, II.2.1, (2.1), (2.33)]

(5.13) d

dυ
λt,υ

∣∣∣∣
υ=0

= eP (t)
∫
φdµt , ∀t ∈ [t0, t1] .

Recalling the definition P (t, υφ) in (1.7), the following result will give Proposition 5.7:

Proposition 5.9. Fix 0 < t0 < t1 < t∗. For φ ∈ C1(M), t ∈ [t0, t1], and υ ∈ R, with |υ| sufficiently
small, the spectral radius of Lt,υ on B(t0, t1) is λt,υφ = eP (t,υφ).

Proof of Proposition 5.7. We use tangent measures, inspired by the proof of [Br, Theorem 16]:
If µ is an equilibrium state for −t log JuT then µ is a C1-tangent measure at t (see e.g.41 [W,
Theorem 9.14]) in the sense that,

(5.14) P (t, φ) ≥ P (t, 0) +
∫
φdµ for all φ ∈ C1(M).

Thus, Proposition 5.9 together with (5.13) imply that∫
φdµt = lim

υ↓0

P (t, υφ)− P (t, 0)
υ

≥
∫
φdµ and∫

φdµt = lim
υ↑0

P (t, υφ)− P (t, 0)
υ

≤
∫
φdµ .

Thus
∫
φdµt =

∫
φdµ for all φ ∈ C1(M). Since M is a compact metric space, C1(M) is dense in

C0(M) and so µ = µt showing the uniqueness claim in the proposition. �

Proof of Proposition 5.9. Let |υ| be small enough such that g := υφ satisfies (3.6), (3.30), (3.46)
and their analogues for the number of interpolations needed to reach t1 < t∗ in Section 3.6. The
constants n1, n2, δ1, δ2, C2, c0, c1, c2, and Cκ from Section 3 then hold for all g = υ′φ with
|υ′| < |υ| and all t ∈ [t0, t1]. In particular the constants c1(υ′) > 0 from Proposition 3.14 and
Proposition 3.18(a) and c2(υ′) > 0 in Proposition 3.15 and Proposition 3.18(b) are uniform in
|υ′| < |υ| and t ∈ [t0, t1].
Step 1. The Spectral Radius λt,υ of Lt,υ on B is eP∗(t,υφ). Possibly reducing |υ| further, Lt,υ has a
spectral gap on B, as observed above. The upper bound on λt,υ ≤ eP∗(t,υφ) can thus be proved as
in Proposition 4.12, once we know that the spectral radius of Lt,υ on Bw is at most eP∗(t,υφ). For
this, by the upper bound in Proposition 3.18(b), it suffices to find C <∞ such that
(5.15) |Lnt,υf |w ≤ CQn(t, υφ)|f |w , ∀f ∈ C1 .

To prove (5.15), note that due to (2.10), we have for W ∈ Ws and Wi ∈ Gn(W ),
(5.16) |eυSnφ|Cα(Wi) ≤ (1 + C∗|∇φ|C0 · δ1−α

0 )|eυSnφ|C0(Wi) ,

then, for W ∈ Ws and ψ ∈ Cα(W ) with |ψ|Cα(W ) ≤ 1, we follow (4.10) and apply (4.11), (4.12),
Lemma 3.4, and (5.16) to write,∫

W
Lnt,υf ψ dmW ≤

∑
Wi∈Gn(W )

|f |w|ψ ◦ Tn|Cα(W )||JsTn|teυSnφ|Cα(Wi)

≤ |f |wC−1
1 (1 + 2tCd)(1 + C∗|∇φ|C0)

∑
Wi∈Gn(W )

|JsTn|tC0(Wi)|e
υSnφ|C0(Wi) ≤ C|f |wQn(t, υφ) .

The lower bound λt,υ ≥ eP∗(t,υφ) on the spectral radius follows as in the proof of Proposition 4.12.

41The standard definitions use C0 rather than C1 in (5.14) For our purposes, C1 will suffice.
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Step 2. P∗(t, υφ) = P (−t log JuT + υφ). Denoting by νt,υ the eigenmeasure associated to eP∗(t,υφ)

and by ν̃t,υ the eigenmeasure of the dual operator L∗t,υ, defined as in Lemma 4.13 and (4.46), we
construct an invariant probability measure µt,υ as in Proposition 4.16.

We claim the following analogue of Proposition 5.2: There exists A < ∞ such that for all
sufficiently small |υ|, all ε > 0 sufficiently small, all x ∈M and n ≥ 1,

(5.17) µt,υ(Bn(x, ε)) ≤ Ae−nP∗(t,υφ)+t log JsTn(T−nx)+υSnφ(T−nx) ,

where Bn(x, ε) is the Bowen ball defined in (5.4). Using (5.17), the proof of Corollary 5.3 yields that
Pµt,υ(−t log JuT + υφ) ≥ P∗(t, υφ), and this, together with Proposition 2.4 yields P (−t log JuT +
υφ) = P∗(t, υφ). By Step 1, this ends the proof of Proposition 5.9. (In addition, we have established
that µt,υ is an equilibrium state for −t log JuT + υφ.)

Finally, (5.17) follows easily from the proof of Proposition 5.2. The property in (5.6) extends
to νt,υ due to its definition as a limit of e−nP∗(t,υφ)Lnt,υ1. The analogue of (5.7) holds for the same
reason, so that the modification of (5.8) yields,∫

W
ψ 1Bnε νt,υ = e−nP∗(t,υφ) ∑

Wi∈Gn(W )

∫
Wi

(ψ ◦ Tn)(1Bn,ε ◦ Tn)|JsTn|teυSnφ νt,υ ,

where 1Bn,ε denotes the indicator function of Bn(x, ε). The subsequent estimates in the proof of
Proposition 5.2 go through with the obvious changes, so that

|1Bn,ενt,υ|w ≤ C ′e−nP∗(t,υφ)+t log JsTn(T−nx)+υSnφ(T−nx) ,

where the only additional factor needed is the distortion constant C∗|∇φ|C0 from (2.10). Applying
the analogue of Proposition 4.16(a) completes the proof of (5.17). �

Proof of Theorem 5.8. The upper bound P (t, g) ≤ P∗(t, g) is the content of Proposition 2.4. Taking
υφ = g, the equilibrium state for −t log Ju + g is µt,υ constructed in Step 2 of the proof of
Proposition 5.9. The proof of uniqueness can be obtained by a straightforward adaptation of the
argument proving uniqueness of the equilibrium state for −t log Ju, up to taking small enough
|g|C1 . �

6. Analyticity, Derivatives of P (t), and Strict Convexity (Proof of Theorem 1.2)

This section contains the proof of Theorem 1.2 and Corollaries 1.4, 1.5, and 1.6.
The maximal eigenvalue of Lnt is exp(nP (t)). Showing that nP (t) is analytic for some integer

n ≥ 1 is equivalent to showing that P (t) is analytic. Recall the one-step expansion factor θ−1 > 1
from Lemma 3.1. In the remainder of this section42:

Fix n0 ≥ 1 such that |JsTn0 | < C0θ
n0 ≤ 1

2 , and set T := Tn0 .

By standard results on analytic perturbations of simple isolated eigenvalues [Ka], analyticity of
P (t) = P∗(t) will be an immediate consequence of the following result:

Proposition 6.1 (Analyticity of t 7→ Ln0
t ). Fix 0 < t0 < t1 < t∗. Then the map t 7→ Ln0

t is analytic
from (t0, t1) to the space of bounded operators from B to B, with

(6.1) ∂jtL
n0
t (f)|t=w = Ln0

w

(
(log JsT )jf

)
, ∀j ≥ 1 , ∀w ∈ (t0, t1) , ∀f ∈ B .

Proof. We claim that it suffices to prove that, for any 0 < t0 < t1 < t∗, we have
there exists C <∞ such that ‖Ln0

w

(
(log JsT )jf

)
‖B ≤ j(Cj)j ‖f‖B , ∀f ∈ B ,(6.2)

for all w ∈ (t0, t1) and all j ≥ 0. (The bound (6.2) is the content of Proposition 6.3.)

42The value 1/2 below is for convenience, giving the number − log 2 in Lemma 6.2; what is important is C0θ
n < 1.
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Indeed, by the Stirling formula, (6.2) implies

(6.3) ‖Ln0
w (f(log JsT )j)‖B

j! ≤ jCjCjStirling‖f‖B .

Now, for w ∈ (t0, t1) and t ∈ C, first write

Ln0
t f = f ◦ T −1

|JsT |1−w ◦ T −1 e
(w−t) log JsT ◦T −1 = f ◦ T −1

|JsT |1−w ◦ T −1

∞∑
j=0

(w − t)j

j! (log JsT )j ◦ T −1

where (6.3), with w = 1 and f ≡ 1, gives that the series converges in norm for |w−t| < (CCStirling)−1.
Then note that

(6.4) f ◦ T −1

|JsT |1−w ◦ T −1

∞∑
j=0

(w − t)j

j! (log JsT )j ◦ T −1 =
∞∑
j=0

(w − t)j

j! Ln0
w (f(log JsT )j) ,

where the sum commutes with Ln0
w due to (6.3), with w and f , so that this series also converges in

norm for |w − t| < (CCStirling)−1. The radius of convergence is independent of w ∈ (t0, t1), giving
the claimed analyticity there. The power series representation (6.4) immediately implies (6.1). �

The key to the analyticity result in this section is the following elementary lemma which extends
the distortion estimate Lemma 2.1 to expressions of the type (log |JsT |)j |JsT |t:

Lemma 6.2 (Distortion for exp(Ψ)(Ψ)j). Fix I ⊂ R a compact interval and let Ψ : I → R−. Then,
for any υ > 0, there exists Cυ <∞ such that
(6.5) | exp(υΨ)|Ψ|j |C0(I) ≤ (Cυj)j , ∀j ≥ 1 .

In addition, if | sup Ψ| = inf |Ψ| ≥ log 2 and there exist α ∈ (0, 1) and CΨ <∞ such that43

(6.6) |Ψ(x)−Ψ(y)| ≤ CΨ|x− y|α , ∀x, y ∈ I ,
then
(6.7) | log |Ψ(x)| − log |Ψ(y)|| ≤ 4CΨ|x− y|α , ∀x, y ∈ I ,
and, for any t > 0,
(6.8) | exp(tΨ)|Ψ|j |Cα(I) ≤ (1 + eCΨ(4j + t))| exp(tΨ)|Ψ|j |C0(I) , ∀j ≥ 0 .

(The lemma will be applied to Ψ = log |JsT |, with α ≤ 1/(q + 1), and I an interval giving an arc
length parametrisation of a weakly homogeneous stable manifold.)

Proof. The proof of (6.5) is a straightforward exercise in calculus (with Cυ = (e · υ)−1): It suffices
to show that supX∈[0,1] | logX|jXυ ≤ ( j

e·υ )j .
Next, for any x, y ∈ I, the Mean Value Theorem applied to the logarithm yields, for some Z

between |Ψ(x)| and |Ψ(y)|,

(6.9) | log |Ψ(x)| − log |Ψ(y)|| ≤ 1
Z
|Ψ(x)−Ψ(y)| ≤ CΨ|x− y|α

log 2 ≤ 4CΨ|x− y|α .

From (6.9) we get (6.7) and also, for any x, y ∈ I,∣∣∣∣log exp(tΨ(x))|Ψ(x)|j

exp(tΨ(y))|Ψ(y)|j

∣∣∣∣ ≤ j| log |Ψ(x)| − log |Ψ(y)||+ t|Ψ(x)−Ψ(y)|

≤ (j4CΨ + tCΨ)|x− y|α .

43The bound (6.6) is equivalent to exp(−CΨ|x − y|α) ≤ exp(Ψ(x))/ exp(Ψ(y)) ≤ exp(CΨ|x − y|α) or, for small
enough |x− y|, to |1− exp(Ψ(x))/ exp(Ψ(y))| ≤ Cd,Ψ|x− y|α.
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This implies

(6.10) exp(−CΨ(4j + t)|x− y|α) ≤ exp(tΨ(x))|Ψ(x)|j

exp(tΨ(y))|Ψ(y)|j ≤ exp(CΨ(4j + t)|x− y|α) .

For |x− y|α < (4jCΨ + tCΨ)−1 (other pairs (x, y) are trivial to handle), (6.10) implies∣∣∣∣1− exp(tΨ(x))|Ψ(x)|j

exp(tΨ(y))|Ψ(y)|j

∣∣∣∣ ≤ eCΨ(4j + t)|x− y|α .

Multiplying both sides above by exp(tΨ(y))|Ψ(y)|j ≤ | exp(tΨ)|Ψ|j |C0(I), proves (6.8). �

Recalling that T = Tn0 for fixed n0, we define, for all integers j ≥ 0,

(6.11) M(j)
t f := Ln0

t

(
(log |JsT |)jf) ,

acting on measurable functions. We first prove (6.2):

Proposition 6.3. For any 0 < t0 < t1 < t∗, there exists C <∞ such that

(6.12) ‖M(j)
t f‖B ≤ Cj jj+1 ‖f‖B , ∀j ≥ 1 , ∀f ∈ B , ∀t ∈ [t0, t1] .

Remark 6.4. A modification of the proof of Lemma 4.3 shows that for any f ∈ C1(M), M(j)
t f

can be approximated by C1(M) functions in the B norm, using the fact that Lemma 4.10 holds
for the function (log |JsT |)j |JsT |t by Lemma 6.2. By density of C1(M) in B, this, together with
Proposition 6.3, impliesM(j)

t f ∈ B for all f ∈ B and j ≥ 0.

Proof of Proposition 6.3. It is enough to consider f ∈ C1(M). We first bound the stable norm. Fix
W ∈ Ws, and ψ ∈ Cβ(W ) such that |ψ|Cβ(W ) ≤ |W |−1/p. For t > 0, we have∫

W
M(j)

t f ψ dmW =
∑

Wi∈Gn0 (W )

∫
Wi

f(ψ ◦ T )|JsT |t(log |JsT |)j dmWi

≤
∑

Wi∈Gn0 (W )
‖f‖s|ψ ◦ T |Cβ(W )

|Wi|1/p

|W |1/p
||JsT |t(log |JsT |)j |Cβ(W ) .

(6.13)

On the one hand, we have seen in §4.3.1 that |ψ ◦ T |Cβ(Wi) ≤ C̃|ψ|Cβ(W ). On the other hand,
recalling that supW,Wi

|JsT |C0(Wi) < 1, and using (6.5) from Lemma 6.2, for any υ > 0, there exists
Cυ such that for any Wi ∈ Gn(W ), all t ∈ [t0, t1], and all j ≥ 1,

sup
Wi

(| log |JsT |j ||JsT |t) ≤ (jCυ)j sup
Wi

|JsT |t−υ .(6.14)

Therefore, since β < α, choosing44 υ < t0/2− 1/p and applying Lemma 6.2, we deduce from (6.13)
and (6.14) that for all j ≥ 1 and f ∈ C1, taking C ′d = 1+eCΨ(4 + t) from (6.8),∫

W
M(j)

t f ψ dmW ≤ Cjυjj jC ′d
∑

Wi∈Gn0 (W )
‖f‖s

|Wi|1/p

|W |1/p
|JsT |t−υC0(Wi)

≤ C ′dC2[0] j(jCυ)j‖f‖sQn0(t− υ−1/p) ,

where CΨ = Cd by (2.3), and we used Lemma 3.4 with ς = 1/p. Taking the suprema over ψ ∈ Cβ(W )
with |ψ|Cβ(W ) ≤ |W |−1/p and W ∈ Ws yields Cs <∞ such that

(6.15) ‖M(j)
t (f)‖s ≤ j

(jCs)j

2 ‖f‖s , ∀j ≥ 1 , ∀f ∈ C1 , ∀t ∈ [t0, t1] .

44This is always possible since p > q + 1 and t0q ≥ 4 from Definition 3.2.
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For the unstable norm, let ε < ε0 and let W 1,W 2 ∈ Ws with dWs(W 1,W 2) ≤ ε. For ` = 1, 2,
we partition T −1W ` into matched pieces U `k and unmatched pieces V `

i as in §4.3.3, and we find, for
any ψ` ∈ Cα(W `) with |ψ`|Cα(W `) ≤ 1 and d(ψ1, ψ2) = 0,∣∣∣∣∫

W 1
M(j)

t (f)ψ1 −
∫
W 2
M(j)

t (f)ψ2

∣∣∣∣(6.16)

≤
∑
k

∣∣∣∣∣
∫
U1
k

f (ψ1 ◦ T ) |JsT |t(log |JsT |)j −
∫
U2
k

f (ψ2 ◦ T ) |JsT |t(log |JsT |)j
∣∣∣∣∣

+
∑
`,i

∣∣∣∣∣
∫
V `i

f (ψ` ◦ T ) |JsT |t(log |JsT |)j
∣∣∣∣∣ .

For the unmatched pieces, adapting (4.19), by using Lemma 6.2 combined with Lemma 2.1 and
(6.14), we find, for ` = 1, 2 (choosing again υ < t0/2− 1/p so that t− υ − 1/p > t0/2),∑

`,i

∣∣∣∣∣
∫
V `i

f (ψ` ◦ T ) |JsT |t(log |JsT |)j
∣∣∣∣∣(6.17)

≤ ‖f‖sC−1
1 jC ′d(jCυ)j

∑
`,i

|T V `
i |1/p||JsT |t−υ−1/p|C0(V `i )

≤ ‖f‖s4C2[0]C−1
1 jC ′d(jCυ)jε1/pQn0(t− υ − 1/p) , ∀t ∈ [t0, t1] , ∀j ≥ 1 ,

using Lemma 3.4 with ς = 0. Next, we consider matched pieces. Recalling (4.17), we define

(l̃ogJsT )j(x) := (log JsT )j ◦GU2
k
◦G−1

U1
k
(x) , ∀x ∈ U1

k , ,∀j ≥ 1 .

Now, using ψ̃2 and J̃sT = J̃sTn0 as defined above (4.22), and injecting Lemma 6.2 in the proof of
Sublemma 4.8(b) gives, for υ as above,

|(ψ1 ◦ T )(log JsT )j |JsT |t−ψ̃2(l̃ogJsT )j J̃sT |t|Cβ(U1
k

)

≤ C(jCυ)jjC ′d2t|JsTn0 |t−υ
C0(U1

k
)ε
α−β , ∀k , ∀j , ∀t ∈ [t0, t1] .(6.18)

Then we split∣∣∣∣∣
∫
U1
k

f (ψ1 ◦ T ) (log JsT )j |JsT |t −
∫
U2
k

f (ψ2 ◦ T ) (log JsT )j |JsT |t
∣∣∣∣∣

≤
∣∣∣∣∣
∫
U1
k

f
(
(ψ1 ◦ T ) (log JsT )j |JsT |t − ψ̃2(l̃ogJsT )j |J̃sT |t

)∣∣∣∣∣(6.19)

+
∣∣∣∣∣
∫
U1
k

f ψ̃2(l̃ogJsT )j |J̃sT |t −
∫
U2
k

f (ψ2 ◦ T ) (log JsT )j |JsT |t
∣∣∣∣∣ .(6.20)

We estimate (6.19) for all t ∈ [t0, t1] and j ≥ 1 using (6.18),∣∣∣∣∣
∫
U1
k

f
(
(ψ1 ◦ T )(log JsT )j |JsT |t − ψ̃2(l̃ogJsT )j |J̃sT |t

)∣∣∣∣∣ ≤ ‖f‖sδ1/p
0 jC ′d(Cυj)j2t|JsT |t−υC0(Ik)ε

α−β .

Then, noting that d(ψ1 ◦T (log JsT )j |JsT |t, ψ̃2(l̃ogJsT )j |J̃sT |t) = 0 by definition, and that the Cα
norms of both test functions are bounded by C(jCυ)jjC ′d|JsT |

t−υ
C0(Ik), using Lemma 6.2, we estimate

(6.20) for all f ∈ C1 and t ∈ [t0, t1] as follows∣∣∣∣∣
∫
U1
k

f ((ψ2 ◦ T )(log JsT )j |JsT |t − ψ̃2(l̃ogJsT )j |J̃sT |t)
∣∣∣∣∣ ≤ ‖f‖udWs(U1

k , U
2
k )γjC ′d(jCυ)jC|JsT |t−υC0(Ik)

≤ C ′(jCυ)jjC ′d‖f‖un0
γΛ−n0γεγ |JsT |t−υC0(Ik) ,
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where we used Lemma 4.8(a) in the second inequality. Putting these estimates into (6.19), combining
with (6.17) in (6.16), and summing over k gives, for all t ∈ [t0, t1] and j ≥ 1,∣∣∣∣∫

W1
M(j)

t f ψ1 −
∫
W2
M(j)

t f ψ2

∣∣∣∣
≤ j(jC̄)j

(
‖f‖un0

γΛ−n0γεγQn0(t− υ) + ‖f‖s(ε1/pQn0(t− 1/p− υ) + εα−βQn0(t− υ))
)
.

Finally, since α− β ≤ γ and 1/p ≤ γ, while n0 is fixed, we have found Cu <∞ such that

‖M(j)
t f‖u ≤ j

(jCu)j

2 (‖f‖s + ‖f‖u) , ∀f ∈ C1 , ∀t ∈ [t0, t1] , ∀j ≥ 1 .

With (6.15), taking C = max{Cs, Cu}, this concludes the proof of Proposition 6.3. �

Proof of Theorem 1.2. Since exp(n0P (t)) > 0 is a simple isolated eigenvalue of Ln0
t , analyticity of

exp(n0P (t)) is an immediate consequence of Proposition 6.1 and [Ka, VII, Theorem 1.8, II.1.8].
Since inf [t0,t1] exp(n0P (t)) > 0, the function P (t) is also analytic. The formulas

n0P
′(t) exp(n0P (t)) , n0P

′′(t) exp(n0P (t)) + n0
2P ′(t)2 exp(n0P (t))

can be read off [Ka, II.2.2, (2.1), (2.33) p.79] (taking m = 1 there). It is then easy to extract the
claimed formula (1.11) for P ′(t). In order to45 establish (1.12) for P ′′(t), use (1.11), and note that,
recalling χt = P ′(t) =

∫
log JsT dµt,∑

k≥0

[∫
(log |JsT | ◦ T k) log |JsT | dµt − χ2

t

]

= 〈log |JsT |
(
1− e−P∗(t)Lt

)−1
(

(log |JsT | − χt)νt
)
, ν̃t〉 .

If there exists f ∈ L2(µt) such that log |JsT |−χt = f −f ◦T then it is easy to see that P ′′(t) = 0.
For the converse statement, we will use a martingale CLT result à la Gordin (see e.g. Viana [BDV,
Theorem E.11]) as in [DRZ]: Let A0 be the sigma-algebra generated by the (µt-mod 0) partition
of M into maximal connected, strongly homogeneous local stable manifolds for T (this partition is
measurable since it has a countable generator, see e.g. [CM, §5.1]). Then An = T−nA0, for n ∈ Z,
is a decreasing sequence of sigma algebras. Therefore, if P ′′(t) = 0, to obtain f ∈ L2(µt) such that
log |JsT | = χt + f − f ◦ T from Gordin’s Theorem ([BDV, Theorem E.11] or [DRZ, Theorem 5.1]),
we only need to check the following two conditions:

∞∑
n=0
‖ log |JsT | − E((log |JsT | − χt)|A−n)‖L2(µt) <∞ ,(6.21)

∞∑
n=0
‖E((log |JsT | − χt)|An)‖L2(µt) <∞ .(6.22)

We first discuss (6.21). If n ≥ 0, then the elements of A−n are of the form Tn(V s(x)) where
V s(x) is the maximal connected, strongly homogeneous stable manifold of (almost every) x. From
Lemma 6.2, the function log |JsT | is (Hölder) continuous on Tn(V s(x)) for any n ≥ 1, so, letting
A−n(x) be the element of A−n containing x, we have

E(log |JsT ||A−n)(x) = log |JsT |(y) ,
for some y ∈ A−n(x). Thus (see the proof of [DRZ, (5.3)]), (6.7) with α = 1/(q + 1) gives

‖ log |JsT | − E((log |JsT | − χt)|A−n)‖L2(µt)

≤ ‖ log |JsT | − E((log |JsT | − χt)|A−n)‖L∞(µt) ≤ CΛ−n/(q+1) , ∀n ≥ 1 , ∀t ∈ [t0, t1] .

45Formulas (1.11)–(1.12) are classical in smooth hyperbolic dynamics, see [Ru, Chap. 5, ex. 5b] for P ′′(t).
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(The length of any element Tn(V s(x)) in A−n is bounded by C0Λ−n.) This proves (6.21).
To establish (6.22), we also adapt the argument in [DRZ], starting from

∞∑
n=0
‖E((log |JsT | − χt)|An)‖L2(µt)

=
∞∑
n=0

sup
{∫

(log |JsT | − χt) · (ψ ◦ Tn) dµt | ψ ∈ L2(A0, µt) with ‖ψ‖L2(µt)=1
}
.

The key new ingredient is the fact that,46 since νt = e−n0P (t)Ln0
t (νt), with νt ∈ B, we get from

Proposition 6.3 and Remark 6.4 that

(6.23) (log |JsTn0 | ◦ T−n0)νt = e−n0P (t)M(1)
t (νt) ∈ B ⊂ Bw .

By definition, any A0-measurable function ψ is constant on each curve in A0. If in addition ψ is
bounded, then for any k ≥ 0, ψ ◦ T k ∈ Cα(Ws

H) and |ψ ◦ T k|Cα(Ws
H) = |ψ|C0(Ws

H) =: |ψ|∞. Thus by
Lemma 4.14 and (4.48),
(6.24) ψ ◦ T kν̃t ∈ B∗w and |〈f, ψ ◦ T kν̃t〉| ≤ C ′|f |w|ψ|∞ ,∀f ∈ Bw .
Then, recalling that µt(f) = 〈fνt, ν̃t〉/〈νt, ν̃t〉 for suitable f , following [DRZ], we write for n ≥ n0,
and any bounded A0-measurable function ψ,∫

(log |JsT | − χt) · (ψ ◦ Tn) dµt = 1
n0

∫
(log |JsTn0 | ◦ T−n0 − n0χt) · (ψ ◦ Tn−n0) dµt

= 1
n0
〈(log |JsTn0 | ◦ T−n0 − n0χt)νt , (ψ ◦ Tn−n0)ν̃t〉/〈νt, ν̃t〉

= 1
n0
〈e(n−n0)P (t)Ln−n0

t

(
(log |JsTn0 | ◦ T−n0 − n0χt)νt

)
, ψν̃t〉/〈νt, ν̃t〉 .(6.25)

(The expressions in the first line are well defined and coincide because (log |JsT | − χt) ∈ L1(dµt)
and ψ is bounded. The expression in the second line is well defined by (6.23) and (6.24). Therefore,
the second equality holds due to the definition of µt in Proposition 4.16(b). The last equality is
clear.) Clearly ν̃t

(
νt(log |JsTn0 | ◦ T−n0)

)
= n0χt, so that Corollary 1.5 and (6.23) give constants

ρ < 1 and C ′1, C ′2 <∞ such that for all n ≥ n0 and all t ∈ [t0, t1]
|e(n−n0)P (t)Ln−n0

t

(
νt(log |JsTn0 | ◦ T−n0 − n0χt)

)
|w

≤ ‖e(n−n0)P (t)Ln−n0
t

(
νt(log |JsTn0 | ◦ T−n0)− n0χt)

)
‖B

≤ C ′1ρn−n0‖νt(log |JsTn0 | ◦ T−n0)‖B ≤ C ′2ρn .(6.26)
Next, (6.25) together with the bounds (6.24) and (6.26), gives C <∞ such that, for any bounded
function ψ which is A0-measurable,

(6.27) |
∫

(log |JsT | − χt) · (ψ ◦ Tn) dµt| ≤ Cρn|ψ|L∞(M) , ∀n ≥ 1 , ∀t ∈ [t0, t1] .

Then the proof of Lemma 5.1(c) (the T -adapted property of µt) not only implies that log |JsT |(x) ≤
C log(d(x,S1)) is in L1(dµt) but also in L`(dµt) for all ` ≥ 1 (use that

∑
j≥1(log(j+1))`j−p′/(2p) <∞

for all ` if p′ > 2p). It follows that [DRZ, Lemma 5.2] holds for s̄ = (log |JsT |)− χt, bootstrapping
the L∞ bound (6.27) to the required L2 control (6.22). The only change required in the proof (since
the observable s̄ in [DRZ, Lemma 5.2] is bounded while ours is not), is to replace the second term
on the right-hand side of [DRZ, eq. (5.7)] by the Hölder bound (

∫
|s̄|3dµt)1/3(

∫
|ψ − ψL|3/2dµt)2/3

(where ψL(x) = ψ(x) if |ψ(x)| ≤ L and ψL(x) = 0 otherwise). Then using the fact that ψ ∈ L2(µt),∫
|ψ − ψL|3/2dµt =

∫
1|ψ|>L · |ψ|3/2 dµt ≤ L−1/2|ψ|2L2 ,

46Since f ≡ 1 ∈ B, Remark 6.4 also implies log |JsTn0 | ◦ T−n0 = log |JsT | ◦ T −1 =M(1)
1 (1) ∈ B.
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using the Markov bound µ(|ψ| > L) ≤ L−2|ψ|2L2 . Setting L = ρ−3n/4 instead of L = ρ−n/2 in [DRZ,
eq. (5.8)] completes the proof of [DRZ, Lemma 5.2] with modified rate ρn/4 for our observable s̄.
This verifies (6.22) and concludes the proof that log |JsT | is cohomologous in L2(µt) to the constant
χt < 0 if P ′′(t) = 0.

Finally, P ′′(t) ≥ 0 implies that P ′(t) is increasing so that
∫

log JuT dµt = −P ′(t) is decreasing,
while hµt = P (t)− tP ′(t) is decreasing since P (t) and −tP ′(t) are decreasing. �

Proof of Corollary 1.4. The bounds onM(j)
t from Proposition 6.3 apply also to the dual operator

(M(j)
t )∗ acting on B∗. Thus, by Proposition 6.1, (Ln0

t )∗ has the analogous representation as a power
series and is analytic. It follows that both νt and ν̃t are analytic for t ∈ (0, t∗).

By [DZ2, Lemma 5.3], if ψ ∈ Cα(M), then ψνt ∈ B and ‖ψνt‖B ≤ C̄‖νt‖B|ψ|Cα(M), for some
C̄ > 0 independent of ψ and νt. So for each ψ ∈ Cα(M), µt(ψ) is analytic on (0, t∗).

To prove continuity of µt on C0 functions, we shall use the following bound. Fix [t0, t1] ⊂ (0, t∗),
and define

Cν = sup
t∈[t0,t1]

max{‖νt‖B, ‖ν̃t‖B∗}, C ′ν = sup
t∈[t0,t1]

max{‖ν ′t‖B, ‖ν̃ ′t‖B∗} ,

where ν ′t and ν̃ ′t denote the derivatives of νt and ν̃t as operators on B and B∗, respectively. Then
for ψ ∈ Cα(M),

µt(ψ)− µs(ψ) = 〈ψνt, ν̃t − ν̃s〉+ 〈ψ(νt − νs), ν̃s〉
≤ C̄|ψ|Cα(M)‖νt‖B‖ν̃t − ν̃s‖B∗ + C̄|ψ|Cα(M)‖νt − νs‖B‖ν̃s‖B∗
≤ C?|t− s||ψ|Cα(M) ,

(6.28)

where C? = 2C̄CνC ′ν .
Next, let ρ : R2 → [0,∞) denote a C∞ bump function, supported on the unit disk and with∫
ρ dm = 1. For ε > 0, let ρε(z) = ε−2ρ(z/ε), and define M ε to be the extension of the phase space

M by a strip of width ε along each component of S0.
For ψ ∈ C0(M), extend ψ to M ε by making ψ constant on vertical lines outside M . Then

ψ ∈ C0(M ε). For x ∈M , define the convolution

ψε(x) =
∫
ρε(x− y)ψ(y)dm(y) .

Note that |ψε|Cα ≤ Cε−α. Since M ε is compact, ψ is uniformly continuous, so there exists a
decreasing function η : R+ → R+, limε→0 η(ε) = 0, such that for all ε > 0, |ψε − ψ|C0(M) ≤ η(ε).

Now fix t ∈ (t0, t1). For δ > 0, choose ε > 0 such that η(ε) < δ/3 and choose s0 ∈ (t0, t1) such
that C?|s0 − t|Cε−α ≤ δ/3. Then using (6.28), if |s− t| < |s0 − t|,

|µt(ψ)− µs(ψ)| ≤ |µt(ψ − ψε)|+ |µt(ψε)− µs(ψε)|+ |µs(ψε − ψ)| ≤ 2η(ε) + C?|s− t||ψε|Cα < δ .

Thus µs(ψ)→ µt(ψ) as s→ t. �

Proof of Corollary 1.5. For a compact subinterval I of (0, t∗) the bound σ(t) in Proposition 4.12
satisfies σI := supt∈I σ(t) < 1. If each Lt, for t ∈ I, has its spectrum on B contained in eP∗(t)∪{|z| <
σI · eP∗(t)}, the corollary follows. Otherwise, use Proposition 6.1 and continuity [Ka, §IV.3.5] of any
(finite) set of eigenvalues of finite multiplicities of bounded operators. �

Proof of Corollary 1.6. The corollary follows from (6.21) and (6.22), using Gordin’s Theorem ([BDV,
Theorem E.11] or [DRZ, Theorem 5.1]). �
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