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Abstract—In the power distribution systems, optimal power
flow (D-OPF) is formulated as a non-convex and non-linear
programming (NLP) problem. Convex relaxation and linear
approximation models have been increasingly adopted to achieve
computational efficiency for D-OPF. Despite the benefits of
scalability and global optimality, each method is based on certain
assumptions, performs differently, and may lead to solutions
that are physically not meaningful. In this context, this work
numerically evaluates the relative performance of second-order
cone programming (SOCP), semi-definite programming (SDP),
and linear programming (LP) formulations of D-OPF in terms
of their feasibility, optimality, and scalability with respect to
NLP-based formulations. We also compare the bus injection (in
bus voltage and current variables) and branch flow (in active
and reactive power flow variables) based on NLP formulations.
The performance is evaluated using small (123-node), medium
(730-node), and large (2522-node) sized distribution feeders. Case
studies, which are backed up by visualization of the analytical
models for the solution space to the extent possible, show that
(1) the feasibility and exactness of relaxed D-OPF formulations
depend upon the problem type, (2) some NLP formulations are
computationally more tractable than others, (3) different NLP
formulations can converge to different local solutions, and (4) the
approximate linear model may underestimate or overestimate the
cost function (depending upon the problem type) and may lead
to AC-infeasible solutions.

Index Terms—Optimal power flow, power distribution systems,
convex relaxation, linear approximation, visualization.

NOMENCLATURE
Sets and Indices
g Directed graph for distribution system.
f(x)  General problem objective function.
& Set of all edges (branches) in G.

N Set of all buses (nodes) in G.

Ne Set of nodes with capacitor banks.
Npg  Set of nodes with inverter-connected DGs.
1eN i=1{0,1,2,...n} is the node index where node 0 is

the substation bus.
(i,4) € € Branch index, also denoted as ¢ — j.
Parameters
pr,i +Jjqr; Complex power demand at node <.

Geap,i Reactive power supplied by the capacitor connected
to the i*" node.
35%?? Rated apparent power capacity for DG connected to

node i € Npg.
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Sr.i = Pr,; + jqr,; is the complex power demand
at node ¢ where py,; and gy, ; are the corresponding
active and reactive power demand, respectively.

Vinin/Vimaz Minimum/Maximum permissive values of node

SL,i

voltage.

Vset/vser Magnitude/Magnitude-square of the voltage set-
point.

Y;s Y, = Gij +jB;; is the (ij)"" element of network
admittance matrix.

Zij Z;j = T35 + jxs; is the impedance of line ¢ — j.

Variables

Av; Awv; = |v; —vset| is the deviation between the voltage

at node 7 and a setpoint.

I;; I;; = 1;;£0;; is the complex line current correspond-
ing to branch (i, j) where, I,; is magnitude and J;; is
corresponding phase angle. In rectangular form, it is
written as I;; = I7¢ + jI;7".

I; I; = Ir® + jI!™ is the complex current injected at
node ¢ in rectangular form.
lij Magnitude-square of the current flowing through

branch segment (7, 7).

ppc.i Active power generated by it DG.

Pa,o  Active power generated by the substation bus.

g¢pa,: Reactive power from it DG.

ga,o  Reactive power generated by the substation bus.

Sij Si; = P;; +jQi; is the sending-end complex power

flow in branch (7,j), where, P;; and ();; are corre-
sponding active and reactive components, respectively.

Vi V; = V;£0; is the complex voltage at node ¢ in polar
form, and V; = V"¢ + jV/™ is complex voltage at
node ¢ in rectangular form.

V; Magnitude-square of the voltage at node :.

w W = VVH is hermitian matrix.

T General problem variables for objective function
f(z).

I. INTRODUCTION

ITH the advancement in smart grid technology and in-

creasing penetrations of distributed generators (DGs),
the electric power distribution system is rapidly transform-
ing into an active and bidirectional network. In a centrally
managed distribution system, an optimal power flow (OPF) is
used for multiple applications related to managing the grid’s
resources, including, but not limited to, loss minimization,
Volt-VAr optimization, and effective management of DGs [1],
[2]. The literature on OPF formulations from the bulk power
grid/transmission systems is not directly applicable to the
distribution systems because of radial feeders, high R/X ratio,
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and large variations in bus voltage magnitudes. Consequently,
several researchers have proposed distribution OPF (D-OPF)
formulations [3]-[11]. D-OPF models have been based mainly
on two power flow formulations: the bus injection model
(BIM) and the branch flow model (BFM). Although the bus
injection model applies to general radial/mesh feeders, the
branch flow model is more suitable for modeling radial distri-
bution feeders. Both BIM and BFM-based D-OPF models in
the original form are non-convex and non-linear programming
problems (NLP); they are therefore difficult to solve [4].

To address this concern, several relaxed models have been
proposed in the literature that tackles the problem of non-
convexity either using convex relaxation techniques [5] or us-
ing linear approximation methods [12]. For example, a BIM D-
OPF formulation is relaxed as a semi-definite program (SDP)
by dropping the rank-1 constraint in [6]. Similarly, a BFM D-
OPF model can be relaxed by dropping the rank-1 constraint
and formulated as an SDP problem. Further, a BFM D-OPF
model is relaxed as a second-order cone program (SOCP) by
relaxing the quadratic equality constraints in [7]. The SDP
and SOCP relaxations proposed in [6], [7] result in convex
problems, thus reducing the complexity of the non-linear D-
OPF model; however, the conditions for the exactness of the
solution obtained from the relaxed models warrant further
analysis. Consequently, several researchers have attempted
to prove the exactness of relaxed D-OPF models. Sufficient
conditions were provided under which the relaxed SOCP and
SDP models are exact [8]—[11].

While there has been extensive work on D-OPF, the existing
literature lacks a numerical evaluation of the performance of
these formulations with different choices of objective functions
and network sizes. This is important as the exactness of re-
laxed models is contingent upon several factors, including the
nature of the objective function, physics-based mathematical
modeling of the power system, and the solution framework.
For example, it has been proved in the existing literature
that the SOCP relaxation is exact for the radial distribution
feeders under certain conditions [10]. However, the exactness
of the SOCP relaxation (for radial feeders) is contingent
upon the choice of the objective function. Specifically, SOCP
relaxation yields inexact solutions for problem objectives that
are not monotonically increasing in power flow variables [13].
Although most D-OPF problems relate to minimizing a cost
function of power flow variables, pushing the optimal solution
towards the lower bounds of current and voltage variables,
there are relevant cases when the optimal solution will require
the system variables to operate at their upper bounds. One such
case is identifying the maximum photovoltaic (PV) penetration
limits for the distribution feeder, also known as PV hosting
capacity. Solving this optimization problem using the relaxed
D-OPF model (SDP or SOCP) yields AC-infeasible solutions.
The resulting solutions from the SOCP model for the PV
hosting maximization problem lie inside the second-order cone
and not at its boundary [13]. Likewise, for SDP, the solutions
are AC-infeasible if the rank-1 constraint is not satisfied [9],
[11], [14]. This motivates the evaluation of the existing formu-
lations for AC feasibility using standard distribution feeders
for different objective functions and operational scenarios.
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Furthermore, given that the original formulation is non-linear,

the choice of power flow model in D-OPF may lead to different

local optimal solutions. This motivates the need to evaluate D-

OPF formulations for solution quality.

The systematic evaluation of the scalability of existing D-
OPF formulations at the distribution level is also limited
in the literature. This is important because while convex
optimization formulations are computationally efficient, not
all convex formulations are similar in terms of scalability. For
example, SDP relaxation for the BIM is known to not scale
well for larger distribution feeders [12], [15]. Similarly, NLP
D-OPF models based on specific power flow formulations are
found to be more scalable compared to other formulations
[16]. Although some recent articles compare D-OPF models,
[17]-[19], they are primarily evaluated for small feeders (~
150 buses) and a simplified problem objective (minimum fuel
cost), do not include the visualization for the observations, and
do not evaluate the effect of problem type on the exactness of
the relaxed and approximate models. Thus, there is a need for
a thorough evaluation of the existing D-OPF formulations.

This paper is the first to comprehensively evaluate D-OPF
formulations for large feeders with different problem types,
along with an intuitive understanding of the observations.
Although several theoretical contributions have been made
to compare different D-OPF models in the existing literature
[8], [20], they derive a limited set of theoretical conditions
that do not provide sufficient insights into the implementation
details of different D-OPF models. Some questions that are
of interest from an implementation point of view include: (1)
How scalable are different D-OPF formulations for different
D-OPF problems, and how is the scalability affected by the
number of decision variables? (2) What are the implications
of relaxation and approximation techniques on the solution
quality for different problem types, and when is it acceptable
to use these techniques? (3) Can we intuitively explain why
different D-OPF formulations result in different solutions?
To this end, our work complements the existing body of
literature through extensive numerical simulations to answer
these crucial questions and presents new visualizations of
the solution space, when possible, to develop an intuitive
understanding of the observations. All D-OPF models are
compared for three network-level optimization problems: loss
minimization, PV hosting maximization, and voltage deviation
minimization. Briefly, the main contributions of this work are
listed below.

o A comprehensive numerical evaluation of the relative per-
formance of SOCP, SDP, and linear formulations of D-OPF
in terms of their feasibility, optimality, and scalability with
respect to NLP-based formulations.

o A novel visualization using a simple two-bus test system
that intuitively explains the reason for infeasible solutions
from relaxed and approximate D-OPF models for specific
problem types. We also visualize problem non-convexity and
the possibility of multiple solutions using a notional four-bus
radial distribution feeder. These visualizations help explain
the crucial observations from the numerical study.

o A comparison of alternate NLP formulations, using branch
flow (in active and reactive power flow variables) and bus
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injection (in bus voltage and current variables) models for

their scalability for a large practical-sized feeder.

Recently, D-OPF models have been extended to solve for
discrete and continuous decision variables resulting in mixed-
integer nonlinear programming problems (MINLP) [3], [21].
The convex version of the underlying grid model has also
been leveraged along with the discrete control of legacy
devices, resulting in mixed-integer SOCP (MISOCP) [22]-
[24] or mixed-integer SDP (MISDP) [25] versions of D-OPF.
Furthermore, multi-period constraints have been managed by
solving a multi-period version of the D-OPF problem [26].
These additional considerations add to the complexity of the
original nonlinear D-OPF problem. The scope of this work is
limited to evaluating the impacts of the nonlinearities resulting
from the power flow model on the D-OPF formulations. Thus,
the presented analysis mainly considers a deterministic, contin-
uous, single-period D-OPF formulation for the benchmarking
study. For thoroughness, we further investigate the effects of
integer decision variables on the complexity of the mixed-
integer counterparts of the continuous D-OPF formulations.

II. MODELING

We introduce different D-OPF formulations that are used in
this benchmarking study. Although there are several versions
of D-OPF formulations in the existing literature, we have se-
lected the following formulations for the study: (1) NLP-BIM
in Rectangular Coordinate; (2) NLP-BFM in Polar Coordinate;
(3) Relaxed SDP-BIM; (4) Relaxed SDP-BFM; (5) Relaxed
SOCP-BFM; (6) Linearized BFM (LinDistFlow). These mod-
els are selected based on prior evidence of scalability for larger
radial distribution feeders [9].

A. Network and Device Models

The distribution system is represented as a connected graph,
G = (N, &), where N and £ denote the set of nodes and edges
respectively. The edges connect the ordered pair of nodes
(i,7), V i,7 € N. Distributed generation (DG) penetration
level is defined as the percentage of load nodes that have DGs
connected to them. For example, 50% DG penetration implies
INpa| = 0.5|Np|, where | . | is the cardinality of a discrete
set, Npe and N7, denote the set of DG and load nodes,
respectively. Also, (-)* represents the complex-conjugate, (-)7
denotes matrix transpose, and j = v/—1.

The distribution lines and transformers are modeled as
two-terminal devices with fixed impedance. For each branch,
(,7) € €, we model the complex impedance as z;; = r;; +
Jxi;, where, r;; and x;; represent resistance and reactance,
respectively. Yi; = Gj; + jB;; denotes the ij'" element of
the bus admittance matrix. The shunt capacitance of the lines
can be included using the II-model, where shunt capacitance
is added on either side of the branch impedance. The loads
are modeled as constant power devices. The DGs are modeled
as negative loads.

B. Distribution Optimal Power Flow (D-OPF) Formulations

D-OPF problems are formulated as constrained optimization
problems consisting of an objective function and a set of grid
and operational constraints.
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1) Problem objectives: Let us assume the problem variables
are defined as x. The problem objective is the minimization
or maximization of a convex function, f(z). Three different
problem objectives are formulated and evaluated in this paper.

o Minimize the total power loss: min f(x), where,
f(z) = Z(ij)eg lijrij = pao + Xien (PDG — PL)-
o Maximize the PV hosting capacity: max f(x), where,
f(z) = Z(i)e/\/’DG PDG,i-
o Minimize the voltage deviations with respect to the setpoint
voltage: min f(z), where, f(z) = cpr [Vi — Uset|-
This is a non-convex function and is reformulated into a
convex function as f(x) = Y .\ Av;, with the inclusion
of the following additional constraints,
Vi — Vger < Avg, and vgep — v; < Ay
2) Operating constraints: The problem formulation also
includes a set of operating constraints as detailed below.

o Node voltage limit: The node voltages need to be maintained
with the pre-specified upper and lower limits, V,,;, and
Vinaz, where Vi, = 0.95 p.u. and V0, = 1.05 p.u.

e DG operating limits: The operating points for DG, both
ppa,; and ¢pg,j, need to be constrained depending upon
the problem formulation. For loss minimization and voltage
deviation minimization, we constrain reactive power gener-
ation based on the apparent power rating of the DG, sglgf?,
and measured/forecasted value of active power generation,
Ppa,;- For the PV hosting maximization problem, we as-
sume the DGs are operating at unity power factor and we
constrain individual DGs power by their maximum active

: mazr
power generation, pDG,j‘

3) D-OPF Models: 1t is necessary to model the physics
of the network. Depending upon the power flow model, we
obtain and describe different versions of D-OPF formulations
as follows.

e Non-Linear Programming Bus Injection Model (NLP-
BIM): The current-voltage (IV) D-OPF [16] expresses
the power flow equations in terms of the current-
voltage relationship. Linear network flows are obtained
through the current injection method and bilinear terms
(Vreqre Vimpim yimre yire[imy relate the non-convex
constraints. Note that the IV D-OPF formulation has the
non-linearities isolated to the bilinear terms which couple
variables of a single bus; this makes it scale better compared
to other power flow formulations that have non-linearities
that couple variables associated with different buses (see
Section V). The D-OPF formulation is detailed as follows:

min / max f(z) (D

Subject to:
Current injection constraints:

I;re — Z ‘/J'TGGij _ ‘/szBU (2)
j:ijeE
"= Z ViBij + V" Gy; 3)
j:ijeE
Power flow constraints: o
pei = ViL*+Vi"L™ +pr:—ppac. 4)
4qG,i Vi = VL™ 4 qui — 4pG.i (5)

Operating constraints:

plore. Restrictions apply.
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Viin < (V7)? + (Vi™)? < Vinao ©)
() + (T < (Tpet)® )
where
L} = =Gi Vi + By Vi™ + Gig V]’ = By V™ (8)
I = =Gy Vi™ + Bi;Vi® + Bi; Vi + G Vi™ (9)

The reactive power support from DG depends upon the
rating of the inverter. For the loss minimization problem, the
available reactive power, ¢pg,; from the inverter is modelled
as a box constraint (10),

\/ Sglée? PDG 3)2 <gpa,; < \/ mmd)

Operating constraints specific to PV hosting maximization:

0 S PDaG,; S PDG,mazx and 4dDG,; = 0 (11)

o Non-Linear Programming Branch Flow Model (NLP-BFM):
The NLP-BFM [9] formulation for D-OPF problem is
detailed below, where power flow constraints are modeled
using non-linear branch flow model (BFM). P;; and Q);; are
active and reactive power flows in branch (i, j), respectively.

min / max f(z) (12)
Subject to: Power flow constraints:

P = Z Pji + rijli; + pr,j — ppa,; 13)
k:j—ok

Qij = Y Qu+ailiy+ar;—qpe, (14)
k:j—ok

vj = v —2(rij Py + 2i;Qij) + (rlj + 23l (15)

viliy = Pi+Qj (16)
Operating Constraints:

Vi <vi < V24, (17)

li; < (Iirjated>2 (18)

Operating constraints specific to loss/voltage deviation:
(10). Operating constraints specific to PV maximization:
(11).

o Semi-Definite Programming Bus Injection Model (SDP-
BIM): D-OPF can be formulated for the power systems
represented in bus injection model utilizing the semi-definite
programming (SDP) [9]. In this formulation, a matrix vari-
able is defined as W = VV#, where W is a hermitian
matrix. This replacement introduces two new constraints
W = 0 and rank(W) = 1, denoting respectively that W is
a positive semi-definite matrix and the rank of W should be
1. The second constraint (rank(WW) = 1) is a non-convex
one and by relaxing (i.e., removing) this constraint, the SDP-
BIM model is formulated.

The formulation is as follows

min / max f(x) (19)
Subject to: Power flow constraints:

PG = Z Re{(Wii — Wi;)yi;} + pLs — ppa,: (20)
it ij

gc,i = Z Im{(Wis — Wi;)yi;} + qrs — qpa,i (21)
it ij

W > 0 22)
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— (ppa,j)? (10)

4
Operating Constraints:

Vinin < Wi < Vinga (23)

|(Wis — Wig)yis|? < (Simi®)? (24)

Here, the off-diagonal element, W;;, indicates the product
of voltages of bus ¢ and bus j i.e. ViVjH , that are connected
by the branch, (ij).
Operating constraints specific to loss/voltage deviation: (10)
. Operating constraints specific to PV maximization: (11).
Semi-Definite Programming Branch Flow Model (SDP-
BFM): The SDP model of D-OPF based on the branch
power flow is formulated by utilizing the convexification
(28), by relaxing the equality constraint into inequality. Note
that S;; = P;; + jQ; is sending-end complex power flow
in branch (i, 7). The resulting SDP-BFM [9] formulation is
as follows:

min / max f(x) 25)

Subject to: Power flow constraints:

Z (Si; — zijli;) = Z Sjk +sL,j —spa,; (26)
i:i—3 k: j—k

vi—v; = 2(Sijzi; + Sijzii) — zijlijzi; 27)

vilij > Si;S5 (28)

Expressing in terms of a positive semi-definite (PSD)
matrix, (28) takes the form as follows. Here, upon imple-
menting the SDP relaxation, the rank-1 constraint is then
relaxed.

Uy SZ 1
[5;; li;] >0 29)
Uy S
rank [S:} I ] 1 (30)

Operating constraints: (17)-(18). Operating constraints spe-
cific to loss/voltage deviation: (10) and PV maximization:
(11).

Second-order Cone Programming (SOCP): The SOCP
model [9] for D-OPF is obtained upon relaxing the NLP-
BFM model for distribution power flow. Specifically, (16)
is first relaxed as an inequality and then expressed as a
second-order cone constraint. The resulting relaxed D-OPF
formulation is detailed below.

min / max f(x) @31

Subject to: Power flow constraints: (13)-(15) and
2Qi5 || < lij + v (32)

Operating constraints: (17)-(18). Operating constraints are
specific to loss/voltage deviation: (10). Operating constraints
specific to PV maximization: (11).

Linear Programming (LP) - LinDistFlow: The LP model for
D-OPF is obtained using LinDistFlow power flow model [9].
The resulting D-OPF formulation is detailed below.

min / max f(x) (33)
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Fig. 1. NLP-BFM vs. SOCP: (a) Loss Minimization; (b) PV Hosting Maximization, and (c) Voltage Deviation Minimization. The feasible space for the NLP
problem lies at the boundary of the [;; = Pfj + Q?j curve, while for the SOCP the feasible space is the shaded area right of the curve.

Subject to: Power flow constraints:

P = Z Pji +pr,j —PDG,j (34
k: j—k

Qi = Y, Qi+tar;—aoc,; (35)
k: j—k

vj = v = 2(ri; Py + 25Qi5) (36)

Operating constraints: (17). Operating constraints specific to
loss/voltage deviation: (10), and PV maximization: (11).

Discussion (PV Hosting Capacity Maximization): It should be
noted that the aforementioned PV hosting capacity problem is
a simplified formulation for a complex real-world problem that
requires (1) modeling several operation constraints, includ-
ing constraints on reverse power flow, harmonics, protection,
reactive power support, etc., (2) possible non-unity power-
factor operation for PVs, and (3) unknown PV locations [27],
[28]. A detailed PV hosting problem based on additional
criteria can be formulated by adding additional constraints
and decision variables to the different D-OPF problem for-
mulations. However, to keep the focus on the computational
complexity, feasibility, and optimality of the D-OPF problems,
we only considered the PV active power as a control variable.
We observed that with the addition of control variables and
constraints, the performance of the algorithm follows the
same pattern as the base model. This is also corroborated by
numerical simulations in Section V.B.

III. VISUALIZATION OF THE SOLUTION SPACE

It has been observed that while convex relaxations are exact
for certain problem objectives such as loss minimization and
active power minimization, the relaxed model may lead to
AC-infeasible' solutions for other problem objectives. Our
simulation results indicate the same for the following two
objectives: (1) PV hosting maximization and (2) voltage
deviation minimization. In this section, we attempt to visualize
the reason for these results with the help of a simple two-bus
system. In the visualization presented, we plot the feasible
power flow space specified by the power flow constraints for

ID-OPF solution is AC-infeasible if it does not satisfy the nonlinear AC
power flow constraints.
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different D-OPF models and the level sets for the problem
objective to illustrate the implications of different problem
objectives on their ability to reach the optimal and AC-
feasible power flow solutions. To this end, we also refer
the readers to the existing literature that presents important
geometric illustrations for D-OPF models [29]-[31]. Our work
corroborates the findings of the existing literature. It extends
it to visualize: (1) the nonlinear and relaxed D-OPF model
with constraints, (2) the nonlinear and relaxed D-OPF for
different problem types, (3) the nonlinear and approximate
linear D-OPF (LinDistFlow) for different problem types, and
(4) multiple possible solutions in NLP models.

A. Non-linear (BFM/BIM) vs. Relaxed (SOCP/SDP)

This section compares the feasible space for the non-linear
and relaxed D-OPF formulations. Our visualization includes
constructing the feasible space of the problem defined by
the current and voltage constraints and the level sets of the
problem objective. Specifically, we compare NLP-BFM and
SOCP-BFM formulations for all three problem objectives. We
have also validated that the two NLP formulations, NLP-
BFM and NLP-BIM, are equivalent. Likewise, SDP-BFM
and SOCP-BFM are also validated to be equivalent. Due
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Fig. 3. NLP-BFM (solid lines) vs. LinDistFlow (dashed lines): (a) Loss Minimization, (b) PV Hosting Maximization, and (c) Voltage Deviation Minimization.

to space constraints, the corresponding visualizations are not
included. This observation implies that the findings from the
visualization in this section also apply to the solutions obtained
from NLP-BIM and SDP-BFM models.

For the loss minimization problem, in Fig. 1 (a), we plot the
three constraints (to identify the feasible space) and the level
sets for the problem objective on ¢pg ;-l;; 2-D plane; gpg,; is
the decision variable for the loss minimization problem. As it
can be observed, while the feasible power flow space increases
for the relaxed SOCP model, the level sets of the problem
objective are such that the relaxed SOCP formulation likely
results in the same optimal solution as the NLP model. This
observation corroborates with the existing literature [9], [10]
and the simulation results presented in this paper.

The same analysis is repeated for the PV hosting maxi-
mization problem, as shown in Fig. 1 (b). Here, the DG is
assumed to operate at a unity power factor, such that ppg ; is
the decision variable, while gpg ; is assumed to be not con-
trollable and set to zero. The problem objective is to maximize
the active power injection at bus j, i.e.,, max : ppg,. The
level sets for the problem objective are parallel to ppg,;. For
this case, while the NLP-BFM model results in the optimal
solution at the boundary (of the power flow constraints),
the SOCP solution lies in the relaxed problem space. Thus,
the relaxed model’s solution is inexact for the PV hosting
maximization problem. For both models, the upper voltage
limits are binding. This is corroborated by [32] where it is
proposed that a convex relaxation is guaranteed to be exact
for applications with little reverse power flow. It is known,
however, that such a condition of slight reverse power flow
will typically not be satisfied in a PV hosting maximization
problem.

We repeat the analysis for the voltage deviation minimiza-
tion problem, as shown in Fig. 1 (c). In this case, the problem
objective is to minimize |(Viet)? — v, where, Vier = V; = 1.
The The control variable is the reactive power dispatch from
the inverter, gpg, ;. We plot the level sets for the objective
function and power flow constraints on gpg,; and l;; 2-D
space. As observed, the level sets are parallel to the lines repre-
senting voltage constraints. In the case of a relaxed model, the
optimal solution can lie anywhere along with the level set on
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the line to the right of the current constraint boundary resulting
in the possibility of multiple optimal solutions. Thus, for this
objective, as well, the results from the relaxed SOCP model
may not be AC-feasible. This is corroborated by [20] where
it is stated that AC-feasibility cannot be guaranteed for an
objective function that is not monotonic over the feasible set,
such as in a voltage deviation minimization problem. However,
a weighted problem objective of voltage deviation and loss
minimization problem leads to level sets that result in ac-
feasible power flow solutions for the relaxed SOCP model (see
Fig. 2). Note that the loss minimization objective results in a
particular orientation of the level sets (see Fig. 2) that is non-
parallel to the voltage constraint lines. Thus, even with a very
small weight, the weighted objective function is non-parallel
to voltage constraint lines and uniquely intersects them. This
results in optimal solutions for the weighted problem for both
NLP and SOCP models to lie at the boundary leading to ac-
feasible solutions. This is corroborated by [22] where a multi-
objective minimization of losses and voltage deviations yielded
a tight solution.

These visualization use cases highlight the effect of the
objective function on the feasibility of the relaxed SOCP
model. Specifically, the level sets of an objective function
affect the feasibility of solutions obtained from solving the
relaxed OPF problem.

B. Linear vs. Non-linear D-OPF

This section compares the non-linear branch flow D-OPF
model against the linear D-OPF model based on LinDistFlow
formulation using a two-bus visualization. In Fig.3, we com-
pare the feasible space for all three problem objectives for both
linear (LinDistFlow) and non-linear (NLP-BFM) models; the
solid and the dashed lines represent the NLP-BFM and the
LinDistFlow models, respectively.

First, we observe the current constraint. In the LinDistFlow
model, the line losses are ignored in the power balance
equations (13)-(14), as well as in the voltage drop equation
(15) to obtain the model in (34)-(36). Thus, current equations
also do not include the effect of line losses. As a result, the
LinDistFlow model underapproximates or overapproximates
the current depending upon the region of interest (see Fig.
3). Unlike convex relaxations, which either give a global
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solution or at least a lower bound on the optimal solution,
approximations can yield solutions that are lower or higher
than the global solution [30].

Next, we observe the voltage constraints. The linear model
poorly approximates voltage constraints, especially as the
branch current increases. Moreover, the linear model under-
approximates both overvoltage and undervoltage constraints.
Thus, if undervoltage constraints are binding for a given
problem, the linear solutions will lead to a violation of
feeder voltage limits and undervoltage concerns (see Fig. 3a).
Conversely, if the overvoltage constraints are binding, the
linear solution will lead to lower voltages than the allowable
upper limit at the cost of suboptimal solutions (see Fig. 3a).

It is also necessary to analyze the effects of linearization
on the problem objectives. For visualization, the level sets in
Fig. 3 are from the non-linear formulation.

For the loss minimization problem shown in Fig. 3a, the lin-
ear model could either underapproximate or overapproximate
the losses depending upon where the optimal solution lies on
the plot. The linear model underapproximates the current and
the losses in the lower region. Thus, if the optimal solution lies
in the lower region, the actual feeder losses are higher than
those estimated by the linear model. While in the upper region,
the linear model overapproximates the current and the losses
(see Fig. 3a). Thus, if the optimal solution lies in the upper
region, the actual feeder losses are lower than those estimated
by the linear model. In this particular example, the optimal
solution lies in the lower region (Fig. 3a). Thus, the actual
feeder losses obtained via the linear model will be higher than
those estimated by the linear model. Moreover, the optimal
decision variables for the linear problem will differ from the
NLP model and lead to higher power losses compared to NLP
optimal decisions and possible violations of undervoltage con-
straints. The linear model underestimates the hosting capacity
for the PV hosting maximization problem. Recall that the PV
hosting maximization problem is bounded by the upper limit
of the voltage. Since the linear model underestimates the upper
voltage limit, it results in a conservative estimate of the PV
hosting capacity compared to the NLP model (see Fig. 3b).
As for the voltage deviation problem, for a voltage reference
of 1 p.u., both linear and non-linear models lead to the same
optimal solutions as the level sets fall in the region where
the linear and non-linear models overlap (see Fig. 3c). This is
because the linear model amounts to the least approximation
error when the bus voltages are close to 1 p.u. The linear model
may lead to different solutions for other voltage setpoints (as
observed in our simulation case studies).

C. Non-Convexity and Multiple Solutions

We further visualize the feasible solution space for a four-
bus distribution feeder with two DGs in active power control
mode. The feasible space admits the power flow solutions
that result in bus voltages between 0.95 and 1.05 p.u. (i.e.,
those satisfying the voltage constraints). Fig. 4 shows the
feasible solution space for the example test feeder for NLP,
SOCP, and LinDistFlow formulations plotted in the space of
decision variables. As observed from Fig. 4a, the feasible
space for the NLP-BFM problem is non-convex and can admit
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TABLE I
TEST SYSTEM DESCRIPTION
Small-sized Test Feeder - 123-node Test System

% nodes| total vari- | decision number of constraints

DG ables variables

0 128 509 0 3829, 509% 1, 3829, 512°
10 128 | 517 8 3829, 509*1, 3829, 512°
30 128 534 25 3829, 509*1 ,3820, 512°
50 128 552 43 3829, 509*1, 38290, 512°

Medium-sized Test Feeder - 730-node Test System

0 732 2925 0 21949,2925%1,21949, 2928°
10 732 2968 43 21949,2925%1, 21949, 2928°
30 732 3072 147 21949,2925% 1, 21949, 2928°
50 732 3143 218 21949 ,2925% 1, 21949, 2928°
Large-sized Test Feeder - 2522-node Test System
0 2522 | 10085 0 75649,10085* T,75649, 10088°
10 2522 | 10198 113 75649,10085% T, 75642, 10088°
30 2522 | 10424 339 7564°,10085% 1, 75642, 10088°
50 2522 | 10650 565 75649,10085*: 1, 75642, 10088°

© LinDistFlow, * NLP-BFM, T SOCP-BFM,? SDP-BFM,® NLP-BIM
multiple possible local optimum solutions. We observe this
in our simulation test cases (in Section V-B) for the PV
hosting maximization problem. Specifically, for PV hosting
maximization, NLP-BIM and NLP-BFM models converge to
different local optimum solutions (see Section V-B). We also
plot the feasible space for the relaxed SOCP problem for the
same four-node test feeder. As shown in Fig. 4b, the SOCP
formulation leads to a feasible convex space (without any
holes). However, these solutions may be AC-infeasible. The
LinDistFlow model leads to a feasible convex space but cuts
off the NLP feasible space (see Fig. 4c).

This visualization indicates that the non-convexity of the
NLP formulation can lead to multiple possible local optimum
solutions, as corroborated in [33]. Also, while relaxed and
linearized models avoid non-convexity and multiple possible
solutions, they may lead to AC-infeasible solutions (in the
case of the relaxed model) or cutoff the NLP optimal solution
from the feasible solution space (in the case of the approximate
model).

IV. TEST SYSTEM DESCRIPTION

For numerical comparison and benchmarking purposes, the
D-OPF formulations detailed in Section II are compared using
three example test feeders based on different distribution
test feeder models: (1) small-sized feeder: 123-node [34],
(2) medium-sized feeder: 730-node [35], and (3) large-sized
feeder: 2522-node [34]. The small test feeder, 123-node, is
shown in Fig. 5a and is the positive-sequence model for the
IEEE 123-bus test system. The 730-node system, shown in Fig.
5b, is generated using the famous 33-node test feeder in [36]
with secondary network extensions [35]. Finally, the 2522-
node large test feeder, shown in Fig. Sc, is obtained using the
IEEE 8500-node test system upon converting it to a positive
sequence model and moving the loads to the MV side of the
feeder. The feeder characteristics, including the total number
of nodes, the total number of variables, the number of decision
variables, and the number of constraints (box constraints are
excluded), are summarized in Table 1.

V. SIMULATION RESULTS

The D-OPF formulations described in Section II are im-
plemented on the test feeders to solve the following three
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Fig. 5. Test feeders: (a) Small-sized feeder (123 nodes) [34], (b) Medium-sized feeder (730 nodes) [35], (c) Large-sized feeder (2522 nodes) [34].

problem objectives: loss minimization, PV hosting capacity
maximization, and voltage deviation minimization. We com-
pare the previously discussed D-OPF formulations: NLP-BIM,
NLP-BFM, SDP-BFM, SOCP-BFM, and LinDistFlow. Notice
that we do not include the results for SDP-BIM in our case
studies as SDP-BIM poses scalability issues and fails to solve
even for a small test feeder [12], [15]. The largest network
we could solve using the SDP-BIM approach was a 70-node
network extracted from the 123-node system shown in Fig. 6a.
To validate the results of the SDP-BIM formulation, we also
compared and solved the same network using the SDP-BFM,
and MATPOWER [37] (which follows an NLP approach).
All three approaches yielded the same optimal solution as
seen from the voltage profile comparison in Fig. 6b. The
computational time for the SDP-BIM was 0.7716s, and the
rank of the PSD matrix was 1, which validates the result to
be the optimal global solution. When the network size was
increased, the solver failed to yield a tight solution using the
SDP-BIM approach and instead converged to an optimal point
with a rank higher than 1.

The D-OPF formulations are compared for their ability to
reach an optimal solution, the feasibility of the relaxed D-OPF
models, as well as their solve time and scalability with the
increase in the problem size. For both SOCP-BFM and SDP-
BFM formulations, the feasibility gap indicates the maximum
deviation from achieving equality for the relaxed power flow
constraints. We also include OpenDSS [38] validation of
the obtained results. Specifically, we measure the substation
power flow for each test case upon implementing the decision
variable obtained from D-OPF to the OpenDSS models. The
D-OPF models are solved using standard computers with up to
16 GB of RAM and 3.41 GHz processors. Depending on the
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nature of the D-OPF problems, various solvers (IPOPT, Knitro,
Gurobi, CVX, MOSEK, and CPLEX) are used in different
modeling languages and toolboxes (e.g., JuMP, MATLAB,
YALMIP). The strictest tolerance set in the solvers was 1e™8.

A. Loss Minimization

The results for loss minimization for the small, medium,
and large test feeders are shown in Tables II, III, and IV upon
solving the D-OPF problem using four models: NLP-BFM,
SOCP-BFM, SDP-BFM, and NLP-BIM.

TABLE II
IEEE 123-BUS SYSTEM, LOSS MINIMIZATION - WITH CAPACITOR ON
AND VOLTAGE REGULATORS (TAPS = 0,0,0,0)

Total Feeder Losses (kW)

% DG W/O Opti- | NLP- SOCP- SDP- NLP-
mization BFM BFM BFM BIM
10 17.8 16.03 16.03 16.06 16.07
30 12.7 10.09 10.08 10.08 10.10
50 7.7 5.19 5.19 5.19 5.20
Compute Time (sec)
10 NA 21 0.05 0.33 0.29
30 NA 55 0.05 0.33 0.21
50 NA 61 0.03 0.34 0.19
Feasibility Gap (p.u. of MVAXMVA) MVA base = 1
10 NA NA 3.97e-6 5.35e-7 NA
30 NA NA 1.31e-6 2.59e-7 NA
50 NA NA 3.02e-6 6.52e-7 NA
OpenDSS Validation - Substation Power Flow (kW)
10 NA 921.00 921.00 921.05 921.06
30 NA 728.50 728.50 728.40 728.43
50 NA 518.62 518.62 518.52 518.53

As it can be observed from Table II, for the small feeder,
all four methods converge to the approximately same solution.
Both relaxed models, SOCP-BFM and SDP-BFM, solved
relatively fast and resulted in a very small feasibility gap,
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(using MATPOWER).

TABLE III
730-NODE SYSTEM, LOSS MINIMIZATION - WITH CAPACITOR ON AND
VOLTAGE REGULATORS (TAPS = 0,0)

Total Feeder Losses (kW)

% DG W/O Opti- NLP- SOCP- SDP- NLP-
mization BFM BFM BFM BIM
10 283.09 273.60 273.60 273.62 273.81
30 163.98 131.0 131.42 131.45 131.50
50 112.6 75.20 75.22 75.24 75.27
Compute Time (sec)
10 NA 207 0.08 0.55 1.02
30 NA 2485 0.07 0.56 1.42
50 NA 8334 0.10 0.56 1.20
Feasibility Gap (p.u. of MVAXMVA) MVA base = 1
10 NA NA 3.52e-6 9.7e-7 NA
30 NA NA 5.17e-5 5.75e-6 NA
50 NA NA 6.51e-8 2.65e-6 NA
OpenDSS Validation - Substation Power Flow (MW)
10 NA 3.62 3.62 3.62 3.62
30 NA 2.59 2.59 2.59 2.59
50 NA 1.93 1.93 1.93 1.93
TABLE IV

2522-NODE SYSTEM, LOSS MINIMIZATION - WITH CAPACITOR ON AND

VOLTAGE REGULATORS (TAPS = 0,0,0,0)

Total Feeder Losses (kW)

DG W/O Op- | NLP-BFM SOCP- SDP- NLP-
timization BFM BFM BIM

10 2359 not solved 224.78 224.76 224.53

30 128.1 not solved 111.47 11147 111.24

50 63.36 not solved 51.44 51.44 51.22

Compute Time (sec)

10 NA NA 0.49 2.12 10.73

30 NA NA 0.53 243 13.89

50 NA NA 0.64 2.13 21.87
Feasibility Gap (p.u. of MVAXMVA) MVA base = 1

10 NA NA 6.19¢-4 7.48e-4 NA

30 NA NA 1.06e-5 1.049e-4 | NA

50 NA NA 3.32e-5 2.71e-4 NA
OpenDSS Validation - Substation Power Flow (MW)

10 NA NA 3.15 3.15 3.15

30 NA NA 2.28 2.28 2.28

50 NA NA 1.57 1.57 1.57

thus indicating that the relaxed solutions are AC-feasible. The
OpenDSS validation of decision variables obtained from all
formulations leads to the same substation power flows. All
D-OPF models converge within a reasonable time for the
small test feeder. Likewise, Table III shows the results for loss
minimization for the medium-sized feeder. All four methods
approximately converge to the same solution for loss mini-
mization. Both relaxed models, SOCP-BFM and SDP-BFM,
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result in a very small feasibility gap, thus implying that the
relaxed D-OPF solutions are exact with respect to the original
D-OPF problem. Table IV details the results for the loss
minimization problem for the large test feeder. For this case,
the NLP-BFM model did not converge and posed scalability
issues. The rest of the models, including NLP-BIM, converged
within a reasonable time (less than a minute) for all cases.
Also, both relaxed models reached an optimal and feasible
solution with a relatively small feasibility gap. In general,
the feasibility gap increases upon increasing the system size.
Additional results on voltage profiles and comparison of the
other system variables are omitted due to space constraints.
The obtained results also corroborate the observations made
in Section III via visualization. Specifically, the relaxed SDP
and SOCP models are exact and result in an AC-feasible power
flow solution for the loss minimization problem (see Fig. 1a).
Also, both NLP-BIM and NLP-BFM converge to the same
solution. Although multiple locally convergent solutions may
exist for the large feeder, the results may be attributed to the
same initialization conditions.

The computing time is highest for the NLP-BFM method
and increases with the number of decision variables and the
feeder size. The time taken by both relaxed models is not
significantly affected by the increase in DG penetration levels.
However, the solve time slightly increases with the increase
in feeder size. The relaxed models converged fastest to the
optimal solution. Compared to the NLP-BFM, the NLP-BIM
model is much faster and scales well for larger feeders. This
result highlights the importance of power flow modeling in
scaling the D-OPF models. Note that NLP-BIM uses V-I
formulation while NLP-BFM uses P-Q-V variables.

B. PV Hosting Maximization for DG Operating at Unity
Power Factor

The results for the PV hosting maximization are discussed
next. In the simulation setup, the reactive power dispatch from
DGs is assumed to be zero, and net active power dispatch from
DGs is maximized to obtain the PV hosting capacity. The DG
size is limited to 100 kW each to simulate a realistic case, and
the locations are pre-specified. For PV Hosting maximization
problem, we compare five D-OPF formulations, including the
LinDistFlow model. Recall that the LinDistFlow model is
an approximate AC power flow model for radial distribution
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TABLE V
IEEE 123-BUS, PV HOSTING, WITH CAPACITOR ON AND VOLTAGE
REGULATORS (TAPS = 0,0,0,0) AND MAXIMUM PV RATING 100 KW.

Total PV Hosting Capacity (MW)

% DG LinDistFlow | NLP- SOCP- SDP- NLP-
BFM BFM BFM BIM
10 0.80 0.80 0.80 0.80 0.80
30 1.16 1.17 2.50 2.50 1.17
50 1.16 1.18 4.30 4.30 1.18
Compute Time (sec)
10 0.04 18 0.08 0.26 0.15
30 0.05 155 0.08 0.32 2.3
50 0.06 145 0.06 0.29 3.05
Feasibility Gap (p.u. of MVAXMVA) MVA base = 1
10 NA NA 44.09 0.275 NA
30 NA NA 18.46 1.976 NA
50 NA NA 57.45 6.169 NA
OpenDSS Validation - Substation Power Flow (kW)
10 369.41 369.41 369.41 369.37 369.77
30 8.40 0.10 -1229.6 -1229.6 0.01
50 18.35 0.10 -2918.4 -2918.4 0.01
TABLE VI

730-NODE, PV HOSTING - WITH CAPACITOR ON AND VOLTAGE
REGULATORS (TAPS = 0,0) AND MAXIMUM PV RATING 100 KW

Total PV Hosting Capacity (MW)

% DG LinDistFlow | NLP- SOCP- SDP- NLP-
BFM BFM BFM BIM
10 3.40 3.52 4.30 4.30 3.52
30 3.71 2.52 14.7 14.7 3.83
50 3.71 3.84 21.8 21.8 3.84
Compute Time (sec)
10 0.07 62.39 0.11 0.52 1.59
30 0.08 136.98 0.11 0.57 4.74
50 0.08 201.36 0.11 0.58 3.95
Feasibility Gap (p.u. of MVAXMVA) MVA base = 1
10 NA NA 427 2.56 NA
30 NA NA 19.34 1.86 NA
50 NA NA 20.10 2.32 NA
OpenDSS Validation - Substation Power Flow (MW)
10 0.31 0.34 -0.42 -0.42 0.34
30 0.10 1.40 -11.74 -11.74 0.01
50 0.10 0 -20.84 -20.84 0.01

feeders that do not include the effects of line losses on the
power flow and voltage drop equations.

Table V shows the results for the 123-node test feeder for
cases with 10%, 30%, and 50% DG penetration scenarios.
The NLP-BFM and NLP-BIM converge to almost the same
solutions for all PV penetration cases. The NLP solutions are
also close to the ones obtained using the LinDistFlow model.
However, the LinDistFlow model results in a conservative esti-
mate of the PV hosting capacity compared to the NLP model.
This observation also corroborates with the visualization in
Section III-B (see Fig. 3b). As expected, the solutions obtained
using both relaxed models (SOCP and SDP) do not match
with the NLP models and admit a large feasibility gap. This
result also corroborates with the observations from Section III
for the two-bus visualization case, see Fig. 1b. As previously
discussed, the solution for the relaxed D-OPF problem does
not lie on the boundary, resulting in an AC-infeasible power
flow solution. As for the compute time, NLP-BFM takes the
longest to converge; the computation time for the NLP-BFM
model also increases with the number of decision variables
upon increasing the PV penetration percentage. Other D-OPF
models converge relatively fast for all the cases.

Table VI repeats the study for the 730-node medium-sized
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TABLE VII
IEEE 123-BUS, PV HOSTING,WITH CAPACITOR ON AND VOLTAGE
REGULATORS (TAPS = 0,0,0,0) AND MAXIMUM PV RATING 100 KW AND
REACTIVE POWER CONTROL.

Total PV Hosting Capacity (MW)

% DG | NLP-BFM NLP-BIM
10 0.80 0.80
30 infeasible infeasible
50 infeasible infeasible

Compute Time (sec)
10 6.81 0.829
30 - -
50 - -
OpenDSS Validation - Substation Power Flow (kW)
10 368.33 376.99
30 - -
50 - -

feeder. Compared to the IEEE 123-bus test system, there are
two main observations. The first observation is that NLP-BFM
takes a very long time to converge to the optimal solution.
Secondly, NLP-BFM and NLP-BIM converge to different local
solutions for the 30% PV penetration case, indicating that the
NLP models can converge to different local optimal solutions.
The visualization presented in Section III.C (Fig. 4) explains
this observation. Note that both NLP solutions are feasible
and locally optimal. Additionally, for this specific case, the
PV hosting capacity obtained using the LinDistFlow model
lies in between the values obtained using NLP-BIM and NLP-
BFM models. Thus, LinDistFlow ends up underestimating the
highest of the local optima (or global optimum, if it can be
found). As for the relaxed D-OPF models, both SOCP and
SDP models result in a high feasibility gap indicating that
the resulting solutions are not tight for the original D-OPF
problem, as also discussed in Section III (Figs. 1b and 4b).

Note that NLP-BIM and NLP-BFM did not converge for
the large 2522-node test feeder. The non-convergence is due
to the inability of the commercial software to solve the
resulting large-scale NLP optimization problem, not due to the
divergence or the problem of fine-tuning the solver. While both
relaxed models, SOCP and SDP, did converge, they resulted
in a very high feasibility gap; thus, the case studies are not
further elaborated.

C. PV Hosting Maximization for DG Operating at Non-Unity
Power Factor

Further, PV hosting capacity problem is very broad, it varies
from a deterministic problem, where the optimal location, size,
and effect of voltage control devices are the factors that can
be taken into consideration, to a stochastic problem where the
uncertainty in the PV power production, load demand, etc are
taken into consideration. To show the effect of the addition
of control variables and constraints, here we incorporated
reactive power control in the NLP-BIM and NLP-BFM as
shown in (37). Please note that for simplicity, we have defined
this constraints with respect to PV variables which can be
generalized for any other DGs with reactive power control.
The addition of the reactive power control in the problem
formulation will lead to the addition of a nonlinear constraint
in the D-OPF as shown below.

Spy > Py + Qpy (37)
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TABLE VIII
2522-NODE, VOLTAGE DEVIATION MINIMIZATION, WITH CAPACITOR ON
AND VOLTAGE REGULATORS (TAPS = 0,0,0,0)

Cost Function

% DG LinDistFlow] NLP-BFM SOCP- SDP- NLP-
BFM BFM BIM
10 192.69 not solved 242.62 230.95 231.00
30 82.09 not solved 88.26 85.89 87.70
50 48.79 not solved 33.31 33.08 49.19
Compute Time (sec)
10 1.38 NA 1.48 2.59 36.88
30 1.59 NA 3.31 5.87 10.64
50 1.53 NA 2.02 6.28 23.34
Feasibility Gap (p.u. of MVAXMVA) MVA base = 1
10 NA NA 9.75e-04 0.036 NA
30 NA NA 34.81 315.15 NA
50 NA NA 104.71 36700 NA

Note that for the convex D-OPF formulations, i.e., SOCP,
SDP, and LinDistFlow, there is a need to approximate the
nonlinear constraint into linear constraint using Polyhedral
approximation [39]. It has been observed that the addition of
linear constraints will not significantly increase the computa-
tional complexity of the D-OPF formulation. Thus, we have
compared the NLP-BIM and NLP-BFM models for the IEEE
123-node system. Table VII shows the PV hosting comparison
of the two NLP models. With the introduction of the reactive
power control for the PV hosting problem, the NLP solves only
the 10% DG penetration case. It can be observed that despite
the introduction of reactive power control, the optimal hosting
capacity for the 10% case is 800kW. Further, while validating
the solution obtained from the NLP model in OpenDSS, it
can be observed that the substation power flow is different
for both models. This is because the reactive power support
obtained by solving two OPF problems is different for all
the PV nodes. Next, for the 30% and 50% test cases, both
NLP formulations cannot solve the problem, thus leading to
infeasible solutions. Note that for both NLP-BFM and NLP-
BIM models, the maximum iterations are set to 1000.

The above simulation results show that the proposed for-
mulation can be easily extended to include additional problem
complexities of the PV hosting problem. However, depending
upon the nature of the additional constraint, more simplifi-
cations or linearizations will be needed to develop scalable
optimization models. Developing a scalable model for all
constraints is beyond the scope of this work.

D. Voltage Deviation Minimization with Continuous Control
Variables

The D-OPF models are compared for the problem objective
of minimizing the voltage deviations with respect to a fixed
nominal voltage (Vse:). For all these test cases, we assume
the substation voltage, V5, = 1.05p.u. For both small and
medium-scale test feeders, both NLP models converge to the
same optimal solution. While the relaxed models solve fast,
they lead to solutions that are not AC-feasible. The magnitude
of the feasibility gap does not show any decipherable pattern.
Since there are multiple solutions that the relaxed models
can converge on, whether the final solution will be close to
the power flow boundary or further away from it can not
be determined with certainty (see Fig. 1c). The results for
the 2522-node feeder are shown in Table VIII. As it can
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be observed, the NLP-BFM model did not converge. NLP-
BIM model converged within a reasonable time. Similar to
other feeders, the feasibility gap for the relaxed models solved
on this large feeder is high for all test cases indicating AC-
infeasible solutions. Notice that SOCP and SDP have different
feasibility gaps even though they both yield the same solutions.
This aligns with our visualization (see Fig. 1c) where SOCP
and SDP can have solutions that lie on differing parts of the
green line, leading to different feasibility gaps.

For all three test systems, the LinDistFlow model leads to a
different cost function, albeit close to the NLP solutions. Note
that the visualization in Fig. 3c indicates that the linear and
non-linear models overlap in the minimum voltage deviation
region. However, this observation is specific to having a
substation voltage set to 1.0p.u. contrary to Vi, = 1.05p.u.
used here. The linear model ends up underestimating or
overestimating the NLP model solutions for different cases.
Specifically, for higher DG penetration cases, the linear model
ends up mostly overestimating the NLP solutions. We also
repeated the case studies with Vi, = 1.0 p.u. and Viep =
1.0 p.u. For these case studies, all five models converge to the
same optimal solution. Recall the two-bus visualization for
this problem objective supports multiple possible solutions for
the relaxed models (see Fig. 1c). Thus, relaxed models may
converge to AC-infeasible solutions. Simulation cases reveal
that while the feasibility gap (for all test cases) is negligible
for the Viup = 1.0p.u., setting Vs, = 1.05p.u. results in
significant feasibility gaps for the relaxed models.

E. Voltage Deviation Minimization with Discrete Control Vari-
ables

To show the effect of controlling discrete devices, we further
introduce integer variables and solve the voltage deviation
problem. To this end, we formulate the mixed-integer pro-
gramming counterparts of the LP, NLP-BFM, SOCP, SDP,
and NLP-BIM models to obtain MILP, MINLP-BFM, MIS-
OCP, MISDP, MINLP-BIM models respectively. The integer
variables represent the ON/OFF control of the capacitor bank
switches, where it is assumed that when the capacitor switch
is ON, the capacitor is providing its rated reactive power.
For comparison, both the substation voltage and the reference
voltage are set to 1 pu as shown in Table IX. At 10% DG
penetration level, all the mixed-integer counterparts, aside
from the MILP formulation, converge to the same optimal
solution. Next, for the 30% and 50% test cases, MISOCP,
MISDP, and MINLP-BIM converge to the same optimal point,
but MINLP-BFM converges to a different local optimal point.
It should be noted that for the MILP, as the voltage drop due
to losses are ignored, it converges at a conservative solution.
In terms of the solve time, MILP, MISOCP, and MINLP-
BIM do not show any significant difference compared to their
continuous counterparts. MINLP-BFM and MISDP, on the
other hand, have significant computation times compared to
their NLP-BFM and SDP counterparts respectively.

F. Discussions and Recommendations

Here, we detail the key observations from the above simula-
tion studies. A summary of these observations is also included
in Table X.
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TABLE IX
IEEE 123-BUS, VOLTAGE DEVIATION MINIMIZATION FOR THE
MIXED-INTEGER PROBLEM, V., = 1.0p.u. AND Vet = 1.0p.u.

Cost Function

% DG | MILP | MINLP-BFM | MISOCP | MISDP | MINLP-BIM
10 5.41 5.65 5.65 5.65 5.65
30 3.39 3.62 3.56 3.56 3.56
50 1.21 1.67 1.30 1.30 1.29

Compute Time (sec)
10 0.16 66.68 0.12 0.43 0.28
30 0.18 611.7 0.12 5.47 0.30
50 0.19 1884.98 0.12 4.84 0.33
Feasibility Gap (pu)
10 NA NA 1.33¢e=9 | 2.85¢8 NA
30 NA NA 1.63e=8 | 2.15¢~? NA
50 NA NA 1.53e~7 | 3.17e~? NA
Solver
- [ Cplex | Knitro | Gurobi | CutSDP [  Juniper

o For the loss minimization problem, both SOCP-BFM and
SDP-BFM relaxations are exact. Both relaxed models reach
to same optimal solutions as obtained via NLP models if the
original NLP D-OPF problem is feasible. The visualization
in Fig. 1a of Section III supports this observation.

o For the loss minimization problem, NLP-BIM, SOCP-BFM,
and SDP-BFM models scale well for larger feeders. The
solution is obtained within seconds even for the large test
feeder with more than 10,000 variables. The NLP-BFM
model does not scale well for large problem sizes and does
not converge for the large feeder (Tables III and IV).

o For the maximization problem (in this case PV hosting
capacity maximization), both SOCP-BFM and SDP-BFM
are not exact. That is, there is a significant feasibility gap
indicating that the relaxed models do not correspond to a
feasible power flow solution. The visualization in Section
III, Fig. 1b supports this observation.

o For the maximization problem, we observe that the NLP
models, NLP-BIM and NLP-BFM, may lead to different
local solutions which are both feasible with respect to the
original power flow problem (see Tables V and VI). Visu-
alization in Section III.C Fig. 1b supports this observation.

o Although NLP-BIM shows better scalability with lower
computes time, for PV hosting maximization, it runs into
convergence issues for the large feeder test case. NLP-BFM
does not scale well and does not converge for any of the
cases for the large test feeder.

o For the voltage deviation minimization problem, both re-
laxed D-OPF models, SOCP and SDP, may lead to AC-
infeasible power flow solutions. This can also be observed
in Fig. lc. The relaxed models for this problem objective
lead to multiple possible solutions. The solution the relaxed
model will converge to cannot be determined with certainty
and can result in possible AC-infeasible solutions.

o The linear approximation of power flow using LinDistFlow
formulation affects the solution quality. It provides a con-
servative estimate of PV hosting capacity and the violation
of operating constraints such as voltage limits. Visualization
presented in Section III.B Fig. 3.

o The exactness of the relaxed D-OPF model depends upon
the type of the objective function. As noted in the visualiza-
tion, the slope of the level sets dictates whether the relaxed
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model results in a power flow feasible solution. This point
is further elaborated in Section III (see Fig. 2).

G. State-of-the-art on Unbalanced D-OPF for Multi-phase
Power Distribution Systems

Finally, recognizing that the distribution systems admit
three-phase unbalanced operation, we briefly summarize the
primary observations for unbalanced D-OPF models based on
the existing literature. Due to the mutual coupling among
phases and unbalanced loading conditions, the observations
based on single-phase D-OPF models do not directly gen-
eralize to unbalanced D-OPF models. Primarily, three-phase
(unbalanced) D-OPF models admit even stricter conditions
on feasibility and are even more challenging to scale. NLP
models for unbalanced D-OPF often converge to infeasible or
sub-optimal operating points, especially for the large or mid-
sized feeder. Recent research in this domain actively looks
into scalable algorithms for unbalanced D-OPF that result in a
feasible and optimal solution. To this end, there is extensive lit-
erature on relaxation and approximation techniques applied to
unbalanced D-OPF problem [12], [40]-[44]. Similar to single-
phase D-OPF, approximate models can lead to errors [44],
[45]. Likewise, the relaxed models have been examined for
ac-feasibility. Unfortunately, theoretical results on optimality
and feasibility for relaxed models are limited, and there are
no theoretical guarantees for exactness on unbalanced D-OPF
models. For example, the authors in [12] validated that the
relaxed three-phase D-OPF is not exact irrespective of the
objective function. Similarly, in [46], authors showed that with
the addition of DGs, the BFM-SDP (for loss minimization
problem) could not be solved for all test feeders. In [40], it is
observed that the SDP relaxation is inexact where the problem
objective was to minimize the total electricity cost. As most
of the relaxed problems for unbalanced D-OPF were found
to be ac-infeasible, several iterative algorithms have also been
proposed to obtain ac-feasible solutions [43], [45], [47], [48].
Since unbalanced D-OPF models significantly differ from their
balanced counterparts, a separate comparative study is needed
to understand the behavior of these models fully.

VI. CONCLUSION

This paper extensively evaluates the performance of a
suite of non-linear models, linear approximations, and convex
relaxations of the D-OPF formulation regarding feasibility,
optimality, and scalability. The main observations are: (1) the
feasibility of relaxed D-OPF formulations depends upon the
problem type, (2) some NLP formulations are computationally
more tractable than others, (3) different NLP formulations
can converge to different local solutions, and (4) LinDistFlow
model may underestimate or overestimate the cost function
(depending upon the problem type) and may lead to AC-
infeasible solutions. We provide the readers with a com-
prehensive implementation-centric understanding of different
D-OPF models, including the limitations of each approach
for common classes of D-OPF problems. Case studies are
also backed up by visualization to better understand the
observations. This work attempts to fill the lacuna in the
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TABLE X
SUMMARY OF OBSERVATIONS

Loss Minimization

D-OPF Model | Feasibility Optimality Accuracy Scalability Usability | Comments
LinDistFlow NA NA NA NA NA None
NLP-BFM May not be feasible | Global/Local optimal Very accurate Does not scale Medium | Slow but accurate
NLP-BIM Feasible Global/Local optimal Very accurate Scalable High Fast and accurate
SOCP-BFM Feasible Global optimal Very accurate | Scalable High Very Fast and accurate
SDP-BFM Feasible Global optimal Very accurate 2 Scalable High Very Fast and accurate
PV Hosting Maximization

D-OPF Model Feasibility Optimality Accuracy Scalability Usability | Comments
LinDistFlow Feasible Local optimal Not accurate but close Scalable Medium Fast, Not accurate but close
NLP-BFM May not be feasible | Global/Local optimal Very accurate Does not scale Medium | Slow but accurate
NLP-BIM May not be feasible | Global/Local optimal Very accurate Does not scale Medium | Fast if converges
SOCP-BFM Feasible Global optimal Not accurate Scalable Low Fast, not accurate
SDP-BFM Feasible Global optimal Not accurate Scalable Low Fast, not accurate

Voltage Deviation Minimization
D-OPF Model Feasibility Optimality Accuracy Scalability Usability | Comments
LinDistFlow Feasible Local optimal Not accurate but close Scalable Medium Fast, Not accurate but close
NLP-BFM May not be feasible | Global/Local optimal Very Accurate Does not scale Medium | Slow but accurate
NLP-BIM Feasible Global/Local optimal Very Accurate Scalable High Fast and accurate
SOCP-BFM Feasible Global optimal May not be accurate Scalable Low Fast, May not be accurate
SDP-BFM Feasible Global/Local optimal May not be accurate Scalable Low Fast, May not be accurate

Feasibility indicates implementation capabilities. Optimality is with respect to original problem’s global optimum. Accuracy indicates AC-feasibility.
Usability Score: High = feasibile, fast and accurate, Medium =- may not be fast or accurate, Low =- infeasible
NA: Not Applicable, 1,2: certain network conditions need to hold.
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