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RESEARCH ARTICLE 

Microbial community response to a decade of 
simulated global changes depends on the plant 
community 
Sarai S. Finks1·*,Claudia Weihe1, Sarah Kimball2, Steven D. Allison1, 
Adam C. Martiny1·3, Kathleen K.Treseder1, and Jennifer B. H. Martiny1 

Global changes suchas increased drought andatmospheric nitrogen depositionperturbboththe microbial and 
plant communities that mediate terrestrial ecosystem f1.11ctioning. However. few studies consider how 
microbial responses to global changes may be influenced by interactions with plant communities. To begin 
to address the role of microbial-plant interactions, we tested the hypothesis that  the response of microbial 
communities to global change depends on the plant community. We characterized bacterial and fungal 
communities from 395plant litter samples taken from the Loma Ridge Global Change Experiment, 
a decade-long global change experiment in Southern California that manipulates rainfall and nitrogen levels 
across two adjacent ecosystems, a grassland and a coastal sage scrubland. The differences in bacterial and 
fungal composition between ecosystems paralleled distinctions in plant comm1.11ity composition. In addition to 
the direct main effects, the global change treatments altered microbial composition in an ecosystem 
dependent manner, in support of our hypothesis. The interaction between the drought treatment and 
ecosystem explained nearly 5% of the variation in bacterial community composition. similar to the 
variation explained by the ecosystem-independent effects of drought. Unexpectedly, we found that the 
main effect of drought was approximately four times as strong on bacterial composition as that of 
nitrogen addition, which did not alter fungal or plant composition. Overall, the findings underscore the 
importarce of considering plant-microbe interactions when considering the transferability of the results 
of global changeexperiments across ecosystems. 
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Introduction 
Ongoing human-driven global changesareal ring species 
distributions and int.erspecific interactions (Parmesan, 
2006: Rosenzweig et al., 2008). Many field e,q>erimems 
have considtred the responses of plant and/or microbial 
communities LO simulated global changes (Stylinslci and 
Allen, 1999; Vila et al., 2003: Allison et al., 2013; Martiny 
et al, 2017). These studies aim to predict how global 
changessuch asaltered precipi1aIion, nitrogen availability, 
CO2 concentration, and temperature affect community 
composition and ecosystem processes (Stylinski and Allro, 
1999; Cione et al., 2002; Vila et al., 2003; Allison and 
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Martiny, 2008: Cruz-Martinez et al., 2009; Gaertner 
et al, 2009; Castro et al, 2010; Gutknecht et al, 2012). 
However, fewer studies consider how the impan of 
a global change treatment on microbial oomposition is 
innuenced by interactions with the plant community 
(Classen et al, 2015; Sayer et al., 2017 Such interactions 
will influence the transferability of the results of global 
change experiments as plant community composition, 
among other factors, varies across ecosystems. 

Here, we fO(lJSon one half of plant-microbe interac 
tions-specifically, the ways in which plants mayinfluence 
miaoorganisms. One way in which plants influenr.e mi 
croorganisms is through decomposition. Bacteria and 
fungiare the primary decomposers of dead plant biomass, 
and this process regulates the amount of soil carbon 
exchanged with the atmosphere (Swift ct al, 1979; Adair 
et al., 2008; Schimel and Schaeffer, 2012). More broadly, 
plantcon1munitiescan intlucnce microorganisms I,hrough 
plant species and Iissue composition (influencing nutri 
ents and secondary compounds), changes in the abiotic 
en..;ronment (plant architecture influencing canopy and 
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moisture of the soil), and relationships with other organ 
isms such as endophyies and herbivores (Wardle el al., 
2006; Tintjer and Rudgers, 2006: Kara et al., 2008: Komi 
noski et al. 2009; Rodriguez et al. 2009; Chapman and 
Newman, 2010; Santonja el al., 2017; Graff et al. 2020). 
Through such associations, lhe impae1or a global change 
treatment on plant-litter microbial communities may 
depend on the plant community in at least three ways. 
Firs initial differences in plant communities across eco• 
systems will select for diffenmt microl:ial communities. 
Thus, the microbial response to global change may be 
driven by r.axa that are uniquely prominent in an ecosys• 
tern. Second, some microbial taxa may be more sensitive 
to global change depending on the plant resources avail 
able to them in an ecosystem (Wood et al. 2018; Malik et 
al. 2020a).Specifically, liuersubstrate quality may impaa 
the al:ility of liner microbes to respond to stressful con 
ditions (Malik et al, 2020b). Finally, the extent to which 
the plant liuer substrates and resources are altered by 
global change. and thereby indirectly influence liner 
microbial communities, will depend on the plant commu 
nity(Aerts,1997; Rouifed etal. 2010; Fernandez-Alonso et 
al, 2018). For instance. drought typicallyreduces the ger 
mination of aMual plants, ground cover, and primary 
productivity ofaridgrasslands,whereas plants with deeper 
root systems are less impaaed (Le Houerou, 1996; Shino 
da et al, 2010; Kinugasaet al., 2012). 

The Loma Ridge Global Change E.xperiment (LRGCE) 
simulates the increased frequency or drought and the 
increased availability of nitrogen. Drought is an extreme 
climatic event that occurs in most climatic zones, and its 
frequency and severity are projected to increase, along 
withatmospheric nitrogen deposition (Mishra and Singh, 
2010; Dai, 2011; Intergovemm,ntal Panel on Climat, 
Change, 2014). A uniqu, feature of the LRCCE is that 
treatments areapplied to two adjacent ecosystems (Figure 
S1A), a grassland and a coastalsagescrubland (CSS Much 
is known about the plant and litttr microl:ial communi 
ties at the LRGCE. Within the first 5 years or the experi 
ment, both the grassland and CSS plant communities 
respond,d to drought and nitrogen addition (Potts et al., 
2012; Kimball et al. 2014; Kimball et al., 2016). In the 
grassland, drought reduced non-nativeannual grass CCNer, 
while nitrogen addition reduced native grass,s and 
increased non-native annual grasses (Kimball et al., 
2014; Kimball et al. 2016). In the CSS, drought reduced 
shrub coverand increased grass cover, and added nitrogen 
further reduced shrub coverand native grasses(Kimball et 
al, 2014 Baaerial and fungal community composition 
on surface plant litter also responded IO these 1rea1menIS 
in th, grassland (Allison ,1 al., 2013; 8'rlemont et al., 
2014i Moreover, reciprocal transplant experimen1Swithin 
LRCCE revealed shif1S in microbial community composi• 
tion due to dirtct, al:iotic effects of the global chang, 
treatmen1S,and asindirecteffeClS or droughton the grass 
land plant liuer (Martiny CL al., 2017). However, the 
response or 1he microbial communi1ies within the CSS 
ueatm,nt plOtsat the Loma Ridge research site have not 
yet been investigated. Additionally, drought and added 
ni11ogen treatments have been ongoing for more than 

 
a decade; thus, it is important to assess the long-term 
effeclS of simulated drought and added nitrogen. 

Here, we tested the hypothesis that the response of 
microbial communities to global change depends on the 
plant community using a decade-long global change 
experiment in Southern California.Toaddressour hypoth 
esis, we aslc Does the response of microbial communities 
to global change depend on the e,:osystem (grassland vs. 
CSS)? The two ecosystems are immediately adjacent to 
each other at our study site, without major differences 
in slope, aspect, soil type, or dimate, and subtle bulk soil 
differencesseem unlikely to affect the plant litter micro• 
organisms on the soil surface.Thus, we presume !hat any 
differences in the treatment responses across ecosystems 
are likely due LO differences in the pl.lnt communities, 
rather than other abiotic faaors. As observed in the grass 
land within the first 5 years of treatments, we expect 
a treatment response would occur in both ecosystems, 
resulting in a significant main effeCl or the treatments. 
However, we also predict that the microbial community 
response will result in ecosystem-specific compositional 
shifts, as reflee1ed in significant ireatment•by-ecosystem 
effects. Given that the surrounding abiotic conditions are 
similar in these adjacent ecosystems, such interactive ef 
feru prll'lide evidence that microbial responsesaredepen• 
dent on the plant communiiy. 

 
Materials and methods 
Field site, sample collection, and experimental 
design 
The LRCCE was established in February 2007 and is 
located 5 km north of Irvine, CA, USA (117.704°W, 
33.742°N: 365 m elevation on a sloping (<10%) deep 
coUuvial deposit from layers of sedimentary rock and soil 
mapped asMyford Sandy Loam (Potts et al, 2012; Kimball 
et al. 2014 The grassland plots are dominated by the 
native perennial grassStipa puldua; the annualgrass gen 
era A\t'na, Bromus, and Festuca; and the aMual forb gen 
era Erodium and Lupinus. The CSS plotsare dominated b'f 
Artemisia coliforniai, Salvia mellifera, Eriogonum fascicula­ 
tum, and Aanispon g/aber (Kimball et al., 2014). The cli 
mate is Mediterranean with anannual precipitation of 30 
cm.The "wet"season is typically from November to April, 
while the "dry"season is from May to October (Figure $2). 
Air ttmperatures are moderate in th, w,t season with an 
average high and low of 21.l°C and 7.1°C. respectively, 
and increase in the dry season wilh an average high and 
lowof27.6°Cand 14.4°C, respectively (Tustin Irvine Ranch 
weather 1981-2010; Western Regional Climate Center, 
https://wrcc.dri.edu/). 

Surface litter samples were colleaed at stven time 
points (approximately every 3 months) from August 
2016 to March 2018, and from four replicate plots rer.civ 
ing four different treatmentS: control, droughl, added 
nitrogen, and drought plus addtd nitrogen. Thus. up to 
16 samplesin each ecosysrem were collected at each time 
point in the lower half of the LRGCE plots:however, a er 
quality checks, som, samples were excluded for a total of 
108 grassland and 111 CSS samples. The LRGCF.imple 
ments a randomized split-plot design in both grassland 

https://wrcc.dri.edu/
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(12.2 x 6.1 m) and CSS (18.3 x 12.2 m) sites, where the 
nitrogen treatment is nested within drought treatment 
plots. Drought control plots received ambient rainfall, 
while drought plots were exposed to approximately 
a 50% reduction in rainfall, and either ambient or added 
nitrogen. Drought was simulated bycovering rain shelters 
with manually retractable. dear, 6-mil polyethylene roofs 
before predicted rain events and removed promptly 
afterwards (Figure S1B and C). Added nitrogen was 
applied at 60 kg N ha-• yea,-•as last release calcium 
nitrate. CaN01, and in two amounts per year, 20 kg prior 
to thefirst rains of thewet season and 40 kg in December 
coinciding with the start of the plant growing season 
(Potts et al, 2012; Kimball et al.,2014). 

 
DNA isolation, PCR, and microbial community 
sequencing 
DNA was extracted from approximately 0.05 g of senes 
cent leaf material from treatment plolS in grassland and 
CSS sites using Zymolliomics DNA isolations kits (Zymo 
Research, Irvine, CA, USA)and processed for5 minof bead 
beating at maximum speed (6.0 m/s, FastPrep-24 High 
Speed Homogenizer, MP Biomedicals, Irvine. CA, USA). 
To avoid batch effects, the plant litter samples were ran 
domized prior to DNA extraction. 

To characterire bacterial composition of the leaf litter 
communities, PCR amplifiration of the V4 and partial VS 
region of the bacte.rial 16S rONA(appro.ximately 411 bp) 
wa.s rarried out following the Earth Mia-obiome proLOCOI 
(Lane et al., 1985: Capo,aso et al., 2012; Parada et al., 
2016 The barcoded forward primers contain the 5' lllu 
mina adapter (MTGATACGGCGACCACCGAGATCTA· 
CACGCT), a unique 12-base error correcting Golay 
barcode, a pad (TATC.CTAAJT), a linker sequence (G11. and 
the 51Sfb primtr (GTGYCAGCMGCCGCGGTM), and 
reverse primers that contain the re rse complement of 
the 3' lllumina adapter {CAAC.CAGAAGACGC.CATACGA· 
GAT), a pad (AGTCAGCCAq a linker sequence (GG), and 
the 926r primer (CCGTCMTTCCTTTRAGTTT). 

Each 16S PCR reaction contained: 9.5 µL PCR grade 
water (Fisher Scientific, Hampton, NH, USA), 12.S µLof 
2x concentrated Aa:uSlart II PCR ToughMix (Quanta bio, 
Beverly, MA, USA) fora final lx concentration,0.5 µLof10 
µM 926r primer (final concentration of02 µM). l µLof 10 
mg/ml bovine serum albumin (final concentration of l 
µg/ml; New England Biol.ab.s, Ipswich, MA. USA 0.5 µI. 
of 10 µM barcoded 51Sf primers (final concentra1fon of 
02 µM), and l µL of genomic DNA. Reactions were held at 
94 •c for 3 min to denature DNA, with amplification 
proceeding for 30 cydes at 94 •c for 45 s,55 •c for 30 
s,and 72 •c for l min,followed by a final extension for 10 
min at 72 •c to ensure complcte amplifiration. 

To determine fungal community composition, and 
improved accuracy of amplicon clus1er de1ec1ion and res• 
elution during sequencing, a staggered primerdesign was 
used toamplify theinternal transcribed spacer(ITS) region 
(approximately 340 bp) of the 5.8S rRNA gene. The ITS 
primers used are as follows: ITS9f primer (AATCATACC 
GCGACCACCGAGAlCTACAOC111CCCTACACGACGCTCTT 
CCGATCTNNNNNGAACGCAGCRAAIIGYG), along with 

 
a barcoded reveise ITS4 primer (CMGCAGAAGACGGCA 
TACGAGATAGTCAGTCAGCCTCCTCCGffiATTGATATGC), 
whichcontained the reverse complement of the3' illumina 
adapter,a unique 12-basebarcode,and a pad with a linker 
sequence (Tremblayetal., 2015:Loobyet al., 2016). 

Each ITS PCR reaction contained: 9 µLPCR grade water 
(Fisher Scientific, Hampton, N, USA), 12.5 µLof 2x con 
centrated AccuStart II PCR ToughMix(Quanta bio, Beverly, 
MA, USA) for a final lx concentration, 0.75 µLof 10 µM 
rJS9f primer (final concentration of 0.3 µM), 1 µL of 10 
mg/ml bo\line serum albumin (final concentration of l 
µg/mL;New England Biol.abs, Ipswich, MA, USA), 0.75 µL 
of 10 µM barcoded llS4 primers (final concentration of 
0.3 µM1and l µL of genomicDNA. Reactions were heldat 
94 •c for 5 min to denature DNA, with amplification 
proceeding for 34 cydes at 95 •c for 45 s, so•c for 1 
min, and 72 •c for l min 30 s, followed by a final exten 
sion for 10 min at 72•c. 

Sequencing libraries were prepared with pooled 16Sor 
ns amplicons from each sample after purification using 
Speed Bead Magnetic Carboxylate (GE Healthcare UK Lim 
ited, Buckinghamshire, UK) to remo primers.A compos• 
itelibrarywith equimolar ratios of the purified pooled 16S 
and nsampliconswas prepared.and DNAsizeand qualiiy 
for sequencing was determined by Qubit and Bioanalyzer 
(450 ng/ml and average amplicon size of 532 bp, respec• 
Lively Cus10msequencing primersfor16Sand ITS Iibraries 
were used asdescribed in Caporaso et al, 2012 and Looby 
etal., 2016.The libraries were sequenced by the UO Geno• 
mies HighThroughputSequencing Facility usingan illumi 
na MiSeq platform with paired end readsat 300 bp. 

 
Analysis of 16S and ITS sequencing 
The forward reads of amplioon sequences were demulti 
plexed using QIIM£2 version 2018.11 toolkit (Caporaso et 
al. 2010; Bolyen eta I, 2018 Five samples were excluded 
from the bacterial analysis because of poor sequencing 
quality, and five samples were removed from the fungal 
analysis because of duplicated barcodes(Table S1 and S2). 
Demultiplexed sequences were denoized using DADA2, 
with operational taxonomic units, OTUs, picked at 100% 
identity level (amplicon sequence variants) using UCLUST 
within lhe QIIME2 pipeline (Caporaso et al., 2010; Edgar, 
2010;Callahan et al. 2016; Bolyen et al., 2018). Resulting 
OTU tables were rarefied via randomized sampling of se 
quences without replacement over 300 iterations at 
a depth of 1.090 and 1,064 sequences per sample ror 
bacteria and fungi, respectively, and using the "Eco!Utils" 
package in R version 3.6.3 (R Core Team, 2018; So1la1.ar, 
2020). Taxonomy was assigned to 011.Js using bacterial 
representative sequences and the q2-feature-classifier. 
dassify-skleam naive Bayes taxonomy dassifier against the 
Greengenes 13_8 99% OTUs rererence sequences (McDo• 
nald et al., 2012; Bokulich et al., 2018). Taxonomy ror 
fungal representative sequences were assigned using 
a dynamic threshold {97o/o,-99% idcntily 10 reference), 
which is based on 1he most accura1e assignment for 
a given lineage, and determined manually by expcrlS in 
the field from the UNITE v7.2 database, release date 
December 1, 2017 (Nilsson et al.. 2018: UNITE 
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Community, 2019). Unassigned arus at the Kingdom 
level, or assigned as chloroplasts, mitochondria, and 
Archaea were excluded from analysis. 

 
Plant community 
Species composition and fractional cover was det.ennined 
in all plots by point intercept during mid-April of 2015, 
coinciding with late flowering and maximum seed set. 
Briefly, two 160 x 60 cm2 polyvinyl chloride frames with 
lOon intervalgrids were positioned within each plot. A 
wire was dropped from each grid point, and the first 
intercepted species was recorded.The point was recorded 
as plant litter or bare soil if live plant material was not 
encountered. The number of interceptions for each plant 
species was summed within a plot to calculate fractional 
CCNer. Fractional cover data of all species observed (32 in 
tOl:31) were used to generate a Bray-Curtis dissimilarity 
matrix. Fractional cCNer data for all species were further 
tal.elll)rized into five functional groups induding nal.ive 
grasses. non-nal.ive grasses, native faro. non-native forb, 
and natr.<eshrub(KimbaUet al, 2014;Matulichet al. 2015). 

 
Statistical analysis 
To detennine the effects of ecosystem. drought, added 
nitrogen, sample collection date, and all interactions on 
microbial composition, PERMANOVAs using Bray-Cunis 
dissimilarity matrices generated with rarefied OT1J iables 
were performed using PRIMER-e version 6 (Oarlce and 
Gorley, 2006; Anderson et al, 2008). Microbial and plant 
mixed models induded plot treatment (ambient rainfall 
or nitrogen, drought, added nitrogen, and drought with 
added nitrogen1 eco.system, and sample collection date as 
fixed factors. The bloclcfactor was nested within ecosys 
temas a random effect toaccount for thesplit-plot design 
of the , riment The estimated percentage of variance 
explained was det.ennined by dividing tenns with signifi 
cant P.values by the sum of the estimates of components 
ofvariation giv,n asoutput from PRIMER-e. Post-hoc com 
parisons of PERMANOVAs fordroughtand collection dates 
given community dissimilarities were performed using 
PRIMER-e. Multivariat, homogeneity of varian"s for 
drought and nitrogen treatments by ecosystem were 
tested in R using the·beiadisper" function of the •vegan· 
package, calculating distance 10 group centroid and 
accounting for sampling bias (Anderson, 2006; Anderson 
et al. 2006; R Core Team, 2018; Oksanen et al., 2019 To 
determine which Laxa associated with OT1J idenliliers 
were key contributors to compositional differences in bac­ 
terial and fungal communities, SIMPER tests were con• 
ducted in PRIMER-e. To visualize factors influencing 
bacterial, fungal, and plant communities, ordinations of 
rarefied Bray.Curtis matrices were perfooned using non 
metric multidimensional scaling using the •vegan" and 
"ggploi2" packages in R (Wickham, 2009). 

Results 
We inves1iga1ed the response of microbial communities 
on plant litter to drought and nitrogen addition in 
a decade-long global change experiment canied out in 
adjacent grassland and CSS ecosystems. From samples 

taken over 3 years (beginning near the end of year nine 
of I.he 1.RGCE) and across 32 treatment plots, 2.48 million 
bacterial sequences were clustered into 1,197 OTUs 
(defined at JOO% sequence similarity; Table S1). The 
majority of bacterial arus were associated with four 
phyla: Proteobaaeria {40.2%). Bacteroidetes (29.6%  Ac· 
tinobaaeria (17.9% and Firmicutes {2.9% Correspond 
ingly, 5.69 million fungal sequences dustered into 4,190 
mus from IWO main phyla: Ascomycetes (71.4%) and Ba• 
sidiomycetes (28.2% 

 
Main effects of ecosystems and time 
The composition of both bacterial and fungal communi 
ties varied significantly between the grassland and CSS. 
EcOSystem, induding its interactive effects with collection 
date (encompassing annual and seasonal variation), ex• 
plained the largest amount of compositional variation, 
approximately 15%and 10% of thevariation for bacterial 
and fungal communities, respectively (Figure 1A and B; 
Table 1; PERMANOVA: P 5 0.001). These compositional 
differences were apparent at the genus level. Within bac 
Leria. Sphingomonas, Hymenobacwr, and Cu.rt.obacteri.um 
tended to be relatively more abundant in the grassland, 
whereas Janthinobactl'f'ium, Methylobacterium, and Agro­ 
bacterium were relatively more abundant in CSS (Figure 
2A). Within the fungi, Alternaria, and Vishniacozyma 
tended to be relatively more abundant in the grassland, 
whereas C)AindroseptoriaandColeoplwmaweremoreabun 
dantin CSS (Figure 2B The differences in microbialcom• 
position between ecosystems paralleled distinctions in 
plant community composition, with ecosystem accounting 
for 38% of the variation in plant composition (Figure IC 
and D;Table 1;P50.01).The grassland wasdominated by 
non-native grasses, whereas CSS was predominantly com 
prised of native grasses, shrubs, and forbs (Figure 2Q. 

Microbial compo1ition also varied temporally over the 
three sampling years, asexpected from previous studies in 
the grassland at LRGCE (Matulich and Martiny, 2015). 
After ecOSystem, collectjon date explained the moot vari• 
ation in both bacterial and fungal community composi 
tion, approximately 8% and 2%, respectively (P ::: 0.001; 
Table 1; Figure ID). Indeed, microbial communities from 
sample collection dates coinciding with the peak wet sea 
son (e.g.• January and March typically have the highest 
amounts of rainfall) differed in composition from that of 
collection dates in June and September months coinciding 
with the peak of the dry season (posr-hoc pairwise com 
parisons: P < 0.01; Figure S2 and S3). 

 
Main effects of drought and added nitrogen 
Drought significantly altered both bacterial and fungal 
communities (Figure 1A and B; Table 1; main effects; 
P $ 0.01), whereas nitrogen only altered the bacterial 
community. The main effect of drought, including its 
interactive effects with collection date, explain,d 5.6% 
and 3.6% of 10tal variation in bacterial and fungal com 
munity composition, respectively (Figure ID). In contrast, 
added nitrogen accounted for less than 1% of the varia• 
lion in bacterial composition. Main effects ofdrought also 
explained 20% of variation in plant community 
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Figure 1. Microbial and plant communities vary by drought and ea:,system. Non-metric multidimensional scaling 
(NMDSJ ordination depicting (A) bacterial (BJ fungal (q plant community composition. Symbols are defined in the 
legend in Panel C. Nitrogen treatment and collection date are not plo11ed here because their effects were not 
significant or applicable ror all communities (see Table 1 and Figure S3). (DJ The percentage or variance explained 
for significant (P < 0.05; Table lJfactors in a mixed ffects P£RMANOVA for bacterial, fungal, and plant community 
composition. DOI: hnps://doi.org/10.1525/elementa.2021.00124.fl 

 

composition across boc.h ecosys1ems (Figure IC and DJ. 
Overall, the main effects ordrought were apparent across 
bacterial fungal, and plant communities,while the nitro 
gen treatment only seemed to effect bac.terial 
communities. 

 
Ecosystem-depend<>nt rl!Sponses to drought and 
nitrogen addition 
In addi1jon 10 the main effects, 1he global change treat• 
ment altered microbial composition in an ecosystem 
dependent manner, in suppon or our hypothesis. The 
interaajon beiween the drought1rea1ment andecos)'Stem 
explained nearly 5% of the variation in bacterial commu 
nity composition, similar Lo thevariation explained by the 
ecosystem-independent effects or drought (main effea 
plus drough1-by-collee1;on date effect - 5.54%; P - 
0.001; Table lJ.This interactive e ct was apparent at the 
genus level; for instance, Curtobaacrium decreased in 
abundance under drought conditions in the grassland, 
whereas it increased under drought in CSS (Figure 2A). 
Similarly, at the OTU level, a number or relatively abun• 
dam taxa contributed differentially to compositional 

shifts under the treatments. responding in opposite direc 
tions (positivelyor negatively) depending on whetherthey 
were in the grassland or CSS. Funher, some bacterial OTIJs 
were observed exdusively in one ecosystem, where they 
contributed a large effect to the global change response. 
For example, OTIJs belonging to Xanthomonadaceae and 
Nesterenkonia were only detected in grassland plots and 
increased in response to drought (SIMPERanalysis; Tuble 
S3 These trends illustrate the WiI'fSin which bacterial 
responses to drought can contribute to a significant 
drought-by-ecosyslem inleraction. 

The response of fungal communities to drought also 
depended on the ecosystem (drought-by-ecosyslem effect: 
P - 0.04; Table 1 Like for lhe bacteria, this ecosystem• 
dependent response was apparent at the OTIJ levelamong 
the ta,ca that most contributed to the drought response; 
for instance, five fungal Alternaria OTIJs responded to 
drought in opposite directions for grassland comp.ired 
10 CSS (Table S3). Notably, it is unclear whether these 
OTIJs also varied significantly among ecosystems (Beta• 
dispersion anal)'Sis: P < 0.001; Warton et al., 2012). How• 
ever,1he fungal response to drought appeared to be less 
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Figure 2. Microbial 1axonomy and plant function groupsdiffer across ecosy.stern and drought rre.itment. Proportional 
abundancesofbaaerial (Al and fungal (Bl genera and fractional ca;er of plant functional groups(Cl in grassland and 
CSS ambient rainfall and drought plots (nitrogtn not shown because of the minor effects; see text Microbial 
raxonomy assigned in QIIME2 using the Greengenes and UNITE databases for bacterial and fungal representative 
sequences, respectively. Allgenera under 1% relative abundanceor unidentified at the genus level were categorized as 
"Other Genera." DOI: htt1>5=//doi.org/10.1525/elementa.2021.00124.f2 

 

dependent on the ecosystem than the baaerial response; 
the interactive effect only e,cplained 1% of variation in 
fungal composition. lower than the variation explained 
by the ecosystem-independent effeas of drought (main 
effect plus drought-by-collection date effect = 3.58%; 
Table 1i 

Like drought,, nitrogen addition altered the bacterial 
community in an ecosystem-dependent manner. A 
nitrogen-by-ecosystem interaction explained a similar 
amount of bacterial compositional variation (1.1%1as the 

main nitrogen effect (0.9%1- In contrast, the fungal com 
munities did notrespond to added nitrogen, either overall 
or in an ecosystem-dependent manner (P > 0.05; Tobie I). 
Finally, parallel to the bacterial and fungal communi 

ties. plant community composition shined in uniquewirys 
in the grassland and CSS in response to drought For 
example. native and non,nativeforb OM!r under drought 
decreased relative to ambient conditions in grassland 

plots approximarely 13% and lo/a. respectively (Figure 
2().Whereas, native fo,b cover under drought in CSS plots 
increased byapproximately24% relative to ambient plots. 
Additionally,ground covered by plant liuer in CSS drought 
plots was nearly three times that of ambient CSS plots, 
a trend that was not observed in grassland plots (Figure 
2C).However, drought noticeablyincreased bare soiloover 
relative to ambient plots in both ecosystems. Finally, 
a drought-by-ecosystem interaction explained nearly 
16% of variation in plant community oomposition (P = 
0.001; Table 1), while therewas nosignificant nitrogen-by 
ecosys1erneffect (Table 1). 

Discussion 
Alier a decade of global change perturbations, microbial 
communities on decomposing plant litter responded to 
both drought and nitrogen addition in adjacent ecosys 
tems dominated by different plant communities. When 

-- 
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the microbial community responded ID the Jrealmcnts dependence is due to a oombination of the plant oommu- 
(except rungi to nitrogen addition), this response de- nity selecting for ini1ially divergent microbial communi- 
pended in large part on the ecosrstem (as indicated by Lies, microbial taXa responding diffcrendy when situated 
a signilic.int treatment-by-ecosystem interaction). This in different plant communi1ies. and microbial communi- 
result supports our hypothesis that such responses  Lies indirectly tracking the plant community responses. 
depend on the plantcommunity, assuming thatany other  After 10 years, extreme drought (imposed as an approx- 
differences among1he ecosys1ems do no1affec11he micro-  imaiely SO% reduction of annual rainfall) continues J.o 
bial communities in the plant liner. Although we cannot impact both microbial and plant communify composition 
separa1e their contributions here. we suspec1 that I.his  in the LRGCE, as was observed aft.er the first 5 years of 
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% Variance El<plained 

8acleria       

Diode 6 4.29 0.72 2.66 0.001 4.21 
Erosystem  5.53 5.53 7.98 0.001 11.97 
Erosystem x Colleaion Date 6 2.60 0.43 1.61 0.001 2.88 

Collection date 6 6.98 1.16 4.33 0.001 7.54 
Drought  1.91 1.91 7.11 0.001 3.99 
Drought X Ecosystem  1.26 1.26 4.70 0.001 4.88 
Drought x Collection Date 6 2.19 0.36 1.36 0.001 1.55 
Drought X N n  0.52 0.52 1.94 0.001 1.12 

Nitrogen  0.64 0.64 2.39 0.001 0.89 
Nitrogen x Ecosystem 1 0.49 0.49 1.83 0.001 1.11 
Nitrogen x Collection D.1te 6 1.67 0.28 1.04 0.346  

Fungi       

Blodc 6 1.80 0.30 1.32 0.029 1.02 
Erosystem  2.12 212 7.13 0.001 6.63 
Erosystem x Colleaion Date 6 2.26 0.38 1.65 0.002 3.74 
Collection date 6 2.41 0.40 1.76 0.001 2.17 
Drought  0.62 0.62 272 0.003 1.42 
Drought X Ecosystem  0.37 0.37 1.63 0.042 1.04 
Drought x Collection Date 6 1.88 0.31 1.38 0.015 2.16 
Drought X Ni n  0.36 0.36 1.57 0.067  

Nitrogen  0.22 0.22 0.95 0.472  

Nitrogen x Ero rn  0.22 0.22 0.97 0.4-04  

Nitrogen x Collection Date 6 1.39 0.23 1.01 0.411  

Plant 

Blodc 

 

7 

 

1.19 

 

0.17 

 

I.SO 

 

0.046 

 

3.74 
Erosystern  2.70 2.70 15.96 0.006 38.19 
Drought  1.31 1.31 11.56 0.001 19.90 
Df0t'8ht X Ecosystem  0.59 0.59 5.19 0.001 15.78 

Drought x Nitrogen  0.06 0.06 0.50 0.838  

Nitrogen  0.08 0.08 0.68 0.654  

Nitrogen x Erosystem  om 0.07 0.59 0.713  
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treatment (Pol!S et at. 2012; Allison et al, 2013; Kimball 
et al. 2014; Matulich et al., 2015; Kimball et al. 2016; 
Martiny et al. 20171and is consisleflt with drought ex 
periments from other locations (Gao et al, 2011; Sheik et 
al. 2011; Kinugasa et al., 2012;Schmidtet al., 2018; Grif 
fin-Nolan et al., 2019). Fewer studies consider how the 
plant communities might alter these drought impacts 
on microorganisms, but our study contributes to growing 
evidence suggesting that plant-microbe interactions 
might be common and play a larger role in microbial 
drought response than previously thought For example, 
the response of bacterial and fungal communities to 
drought depended on plants, where plant community 
structure varied by allowing for the "invasion" of grasses 
(lmperata. cylindrica) into a longleaf pine (Pinus palustris) 
common garden (Fahey et al., 2020). Evidence further 
suggests that bulk soil microorganisms influence plant 
growth under drought conditions. For instance, soil com 
munities selected under drought conditions altered the 
growth of Arabidopsis (Lau and Lennon, 2012), and 
plant-microbe interactions prior to drought modified the 
stress response of the grass Bouteloua gracilis during 
drought (Ulrich et al. 2019i 

Unexpectedly, we found that the main effect of 
drought was approximately four times as strong on bac­ 
terial composition as that of niu-ogen addition, which did 
not alter fungal or plant composition. Indeed. the differ 
ences in plant and microbial community composition in 
the control and added nitrogen plots appear LO be narrow• 
ingsince the first 5 )'!ars of the treatmenL In particular, 
after 5 yea15, plant communities in both the grassland and 
CSS responded LO nitrogen addition, albeit nocas strongly 
as drought; nitrogen addition reduced the cover of native 
grasses and shrubs and incr as d cover of non-native 
annual grasses (Kimball et al., 2014; Kimball et al., 
2016 Nowaftera decade, only the bacterial communities 
were sensitive to nitrogen and even then, the treatment 
explain d <1% of the compositional variation, as com 
pared to 2%for both bacteria and fungi at 5 years (Matu 
lich et al, 2015 However, it is important LO note some 
di rences in methodology from artier studies that pre 
dude more direct comparisons. For instance, previously 
we characterized fungal diversity using a more conserved 
g ne region, 28$ rONA The minimal effect of nitrogen 
fertilization is surprising as it often has large impacts on 
both plant and soil microbial communities (Elser et al., 
2007; Allison and Martiny, 2008; IJ!Bauer and Treseder, 
2008; Kinugasa et al.,2012; Legay et al., 2016).We su ct 
that the attenuated effects of added nitrogen are due LO 
much larger changes in1heambient conditions at the site. 
Plant composition at the LRGCE is not only shifting in 
response to the treatments but also in the ambient plolS 
over time. For instance, native grasses were not de1ected 
in any of the grassland plots and have become rare in the 
CSS plots regardless of their nitrogen siatus. Indeed, 
Southern California has been subject to a severe long• 
term drought from 2012 10 2015 (Griffin and Anchukailis, 
2014; Yoon et al., 2015; National Climate Prediction Cen• 
ter, http://www.cpc.ncep.noaa.p /produets/monitoring_ 
and_da1a/drough1.shtml). Hence, the rela1.ively minor 

 
effects of added nitrogen may be overshadowed by the 
larger impaclSimposed by prolonged regional drought 

 
Conclusion 
Global changes such as drought and increased atmo• 
spheric nitrogen deposition are likely to alter the compo• 
sition of both plant and microbial communities (Ciais 
et al. 2005; Kinugasa et al., 2012; Fuchslueger et al, 
2014; Preece et al., 2019; Zhao et al. 2019). A remaining 
uncertainiy, however.is whether microbial responses influ 
enced by changes in plant communities will affect plant 
community responses and the predictability of these re• 
sponses in the long term. Our results add LO growing evi 
dence thata microbial community's response to long-term 
global change such as drought is dependent on biotic fac. 
tors such as plant communities (Sayer et al. 2017 It is 
important LO note, although we focused here on changes 
in microbial composition, such changes are often associ 
ated with process rates such as decomposition (Strickland 
et al., 2009; Allison et al., 2013; Cleveland et al., 2014; 
Martinyet al., 2017;Glassman etal.,2018).Thus,ourability 
to predict how microbially driven terrestrial processes will 
change in the future will require an integrated undersiand 
ing of both microbial and plant communities (Ostle et al., 
2009; Berg et al, 2010; Fischer et al, 2014). 
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