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ABSTRACT

The fault diagnosis of bearing in machinery system plays a
vital role in ensuring the normal operating performance of
system. Machine learning-based fault diagnosis using vibration
measurement recently has become a prevailing approach, which
aims at identifying the fault through exploring the correlation
between the measurement and respective fault. Nevertheless,
such correlation will become very complex for the practical
scenario where the system is operated under time-varying
conditions. To fulfill the reliable bearing fault diagnosis under
time-varying condition, this study presents a tailored deep
learning model, so called deep long short-term memory (LSTM)
network. By fully exploiting the strength of this model in
characterizing the temporal dependence of time-series vibration
measurement, the negative consequence of time-varying
conditions can be minimized, thereby improving the diagnosis
performance. The published bearing dataset with various time-
varying operating speeds is utilized in case illustrations to
validate the effectiveness of proposed methodology.

Keywords: bearing fault diagnosis, time-varying conditions,
time-series vibration measurement, deep long short-term
memory (LSTM) neural network.

1. INTRODUCTION

Rolling bearing, as one key functional element in the
rotating machinery has been extensively utilized. Due to the
harsh and long-time operating conditions, bearing is prone to be
failure. To maintain the bearing health and thus ensure the
normal system function, fault diagnosis and prognosis of bearing
recently have become a critically important subject. It is well
known that the vibration signals directly measured from the
machinery system are commonly used to facilitate the fault
diagnosis owing to their notable advantages over other types of
signals [1-3]. By further taking advantage of signal processing
analysis, the fault-related features in the vibration measurement

will be extracted [4-6]. While those features appear to be the
effective indicator of faults, discriminating features manually to
pinpoint the faults in many scenarios is difficult and unreliable.

With the advancement of the computational intelligence
technology, the machine learning methods have been
substantially applied in fault diagnosis because of its capability
in characterizing the inherent correlation between the
measurement and faults [7-9]. Deep learning, as one
representative class of machine learning methods has become a
prevailing approach. A large-scale neural network with large
number of layers and nodes oftentimes is established to fulfill the
deep learning analysis. To improve the feature extraction ability
and efficiency, the convolutional layers are integrated into the
neural network to form so called convolutional neural network
(CNN), which has been employed in a wide range of studies.
Chen et al [10] proposed the combination of CNN and cyclic
spectral coherence (CSCoh) to improve the performance of
bearing fault diagnosis. Zhu et al [11] developed a new CNN
built upon the capsule network to address the lack of positional
relationship between fault features in traditional CNN, thereby
enhancing the generalization ability. Hoang and Kang [12]
achieved the automatic fault diagnosis directly upon the raw
vibration signals by utilizing the deep structure of CNN.

It is worth mentioning that, despite the success of deep
learning-based fault diagnosis, the challenges still exist in actual
practice. Recently, the extensive effort has been made to address
the challenges and build gap between the academic research and
industrial applications. For example, Ma et al [13] proposed
transfer learning together with the time-frequency domain signal
processing to improve the fault diagnosis reliability under small-
sized dataset. Zhou and Tang [14] developed a new fault
diagnosis framework built upon the fuzzy inference system to
tackle the issue of limited fault labels which cannot represent all
unseen fault scenarios in practical implementations. The
objective of this research is to deal with another notable
challenge caused by the time-varying conditions. Considering

Copyright © 2022 by ASME



the fact that the bearings often operate under time-varying
rotational speed conditions, the vibration signals measured are
non-stationary, which poses the difficulty in fault pattern
recognition using deep learning analysis. In this research, built
upon the CNN architecture, long short-term memory (LSTM)
features are further integrated to establish a deep long short-term
memory (DLSTM) network, which aims at alleviating the non-
stationary issue through characterizing the temporal correlation
of time-series vibration signals.

The rest of the paper is organized as follows. Section 2
outlines the DLSTM network where its particular features to
handle the correlation among time sequences are highlighted.
Section 3 implements the fault diagnosis practice on a public
dataset using the proposed methodology. Concluding remarks
are given in Section 4.

2. METHODOLOGY

The tremendous progresses on the deep learning neural
network development have been achieved over the last decade.
Different network architectures and learning strategies have been
established to realize various purposes. Amongst them, LSTM
network is particularly employed in this research. The unique
advantage of LSTM network is its ability in elucidating the
correlation between the fault and features by taking the temporal
dependence of features into account, which is tailored for
tackling the non-stationary issue induced by the time-varying
conditions. For this reason, LSTM network has been adopted in
a broad of engineering applications [15-17].

LSTM network essentially is a special variant of recurrent
neural network (RNN). The unique component embedded in the
LSTM network is the memory cell, which can memorize the
temporal state by 3 different controlling gates including input,
forget and output gates as shown in Figure 1a. The underlying
principle of collaboration among those gates can be
mathematically formulated as

fi=cWyx, +W,m_ +W.c, +b,) (1a)

i =cW,x, +W,m_ +W.c,_ +b) (1b)
o,=cW, x, +W m_+W c +b)) (1c)

¢, =£0C_ +iOgW x, +W m _ +b) (1d)
m, =0, Qh(C,) (le)

where f,,i,, and o, denote the forget, input and output gates,
respectively. ¢, andm, denote the cell state and cell output,

respectively. W and b are the weight matrices and bias vectors to
be optimized through network training. © denotes the scalar
product. x, represents z-time sequence in one sample. o is the

sigmoid activation function, and g and / denote the hyperbolic
tangent activation functions. The output of the cell is expressed
as

v, =W,m +b, 2)

ym" "

Multiple memory cells are combined to form a layer (Figure
1b), which is referred to as LSTM layer. It is able to characterize
the temporal correlation of time-series signals. Since the time-
series vibration signals are lengthy especially when they are

measured from the real-time in-service machinery system, the
convolutional layers are necessarily integrated into the LSTM
network to realize the effective feature extraction. To reduce the
network complexity and thus improve the training efficiency,
maxpooling layers oftentimes are placed after the convolutional
layers for downsampling. Usually, the convolutional layers
together with maxpooling layers that are placed at the beginning
of network are intended for low-level feature extraction, whereas
the fully connected layers after LSTM layer are responsible for
building the mapping between the fault conditions and high-level
features obtained. For each layer, specific activation function is
adopted to incorporate the data nonlinearity.

With all necessary layers integrated, a deep LSTM
(DLSTM) network will be established. Once it is adequately
trained through backpropagation optimization, it can be readily
appliable for bearing fault diagnosis in this research.
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FIGURE 1. KEY ELEMENT IN DLSTM (A) MEMORY
CELL; (B) LSTM LAYER.

3. CASE ILLURSTRATION
In this section we implement the methodology presented
earlier to conduct comprehensive illustrations.

3.1 Experimental setup and problem formulation

To facilitate the methodology validation, a dataset that was
reported in [18] is utilized in this research. The experimental
testbed is shown in Figure 2. The experimental data acquisition
was performed on a SpectraQuest machinery fault simulator. The
experimental bearing placed at the right side of testbed is subject
to three fault conditions, i.e., healthy condition, inner race fault
and outer race fault. An encoder and an accelerometer were used
to measure the shaft rotational speed and vibration signals,
respectively. The shaft rotational speed was controlled to
generate the multiple scenarios on purpose. The details of
operating set-up are given in Table 4. Specifically, four speed
varying tendencies were considered, each of which contains
three different scenarios. Considering three fault conditions
mentioned above, totally 36 (i.e.,3x3x4) groups were created.
The sampling frequency used was 20,0000 Hz, and the time
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duration for data acquisition was 10 s. With such set-up, the size 25.3,then  14.8, then

of entire dataset can be represented as 36 x 2, 000, 000 . to 21.0 to 20.6
Generally, the time-series signals in all groups can be (b). From (b). From (b). From  (b). From
segmented into many samples to accommodate the subsequent 14.1 to 25.7 to 14.4 to 24.6 to 14,
deep learning analysis. In this research, each sample consists of 29.0 11.6 24.0, then then to
0.1 s time series with 20,000 data points. As such, 100 samples to 18.7 20.6
are generated for each group and totally 3,600 samples are (c). From (c). From (c¢). From  (c). From
involved in the entire dataset. It is worth nothing that, to 15.2 to 28.6 to 15.4 to 26 to 16.9,
highlight the advantage of the proposed methodology, the time- 26.7 13.9 24.8, then then to
varying speed conditions of samples for testing are intended to to 19.1 23.2
be beyond that of samples for training. Considering that (a). From (a). From (a). From  (a). From
scenarios (a), (b) and (c¢) in each speed varying tendency (shown Inner 12.5to 24.3 to 15.1 to 253 to
in Table 1) have certain level of similarity, only the data from race 27.8 9.9 24.4,then  14.8, then
scenario (c¢) are kept, which facilitates the fault diagnosis fault to 18.7 to 19.4
analysis under unseen/unexpected time-varying conditions. (b). From (b). From (b). From  (b). From
Hence, the original 3,600 samples are reduced to 1,200 samples 13.0 to 25.1to 14.1 to 253 to
for following analysis. The overview of the new reduced-sized 25.7 13.1 23.5,then  15.1, then
dataset is given in Table 2. To thoroughly examine the fault to 18.0 to 19.8
diagnosis performance, four testing cases are formulated, where (c). From (c¢). From (c). From  (c). From
in each case the 200 samples collected upon certain speeds for 13.5to 25.8 to 14.8 to 23.1to
both healthy and outer race fault are used for testing and the rest, 28.5 12.0 21.7,then  15.7, then
i.e., 1,000 samples are used for training. We don’t involve the to 13.6 to 23.6
inner race fault samples for testing because their vibration (a). From (a). From (a). From  (a). From
amplitudes generally are more significant than that of other fault 14.8 to 24.9 to 14.0 to 26.0 to
types, as shown in Figure 3. In other words, the effect of time- Outer 27.1 9.8 21.7,then  18.9, then
varying speed may become negligible in differentiating the inner race to 14.5 to 24.5
race faut from other faults, which is not beneficial for fault (b). From (b). From (b). From  (b). From
methodology validation. 12.9 to 24.7 to 14.0 to 25.2to

23.0 10.2 24.5,then  14.9, then
to 19.8 to 19.5

(c). From (c). From (c¢). From  (c). From
13.3 to 254 to 14.2 to 25.5to0

26.3 10.3 23.4,then  15.0, then
to 17.6 to 19.6

Motor

Table 2. DATA OVERVIEW (DATA SIZE) AND CASE

FORMULATION
Speed first  Speed first
Speed Speed  increasing, decreasing,
increasing deceasing then then
\ : = decreasing increasing
3 o | T o Healthy 100 100 100 100
FIGURE 2. EXPERIMENTAL TESTBED [18] (Class  (Casel) (Case2)  (Case3) (Case 4)
)
Inner
Table 1. EXPERIMENTAL OPERATING SETUP [18] race 100 100 100 100
Operating Rotational Speed (Hz) fault
Speed first  Speed first (Class
Speed Speed  increasing, decreasing, 2)
increasing  deceasing then then Outer 100 100 100 100
decreasing  increasing race (Case 1) (Case 2) (Case 3) (Case 4)
(a). From (a). From (a). From  (a). From fault
Healthy 14.1to 28.9 to 14.7 to 24.2 to (Class
23.8 13.7 3)
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FIGURE 3. TIME-SERIES SAMPLES (A) HEALTHY
CONDITION; (B) INNER RACE FAULT; (C) OUTER RACE
FAULT.

3.2 DLSTM network establishment and fault diagnosis
performance investigation

Recall the capability of LSTM in constructing the temporal
correlation of fault with respect to its pivot features over time
and the powerful feature extraction of CNN. We establish a
DLSTM network by fully harnessing the collective advantages.
For validation purpose, we also establish a CNN which is a
subpart of DLSTM network (i.e., without the LSTM layer) as
can be observed in Figure 4. The fault diagnosis analysis will be
implemented using both models and the respective diagnosis
accuracy will be investigated and compared. Following the
general guideline for deep learning neural network design, the
architecture of DLSTM network is configured empirically. This
network mainly consists of three convolutional layer stacks
(CLS), one LSTM layer and other layers. The layer configuration

details are shown in Table 3. One may notice that the input size
is inconsistent with the size of single sample, i.e., 20,000. The
reason is that the input layer here takes each time sequence of the
sample. In this research, we particularly divide 20,000 data
points in the sample into 20 time sequences, and each time
sequence thus has 1,000 data points. This requires the input layer
to have the size as 1x1,000x]1 . It is worth pointing out that, the
selection of sequence size plays a role in dictating the diagnosis
performance, which can be considered as another
hyperparameter subject to tuning. To ensure the stable training,
the batch normalization is applied on each convolutional layer.
Additionally, ReLU activation function is adopted to map the
input-output nonlinearity. A multi-class classification problem is
investigated in this research because the output can be each of
three fault classes to be identified.
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FIGURE 4. MODEL ARCHITECTURE (A) BASELINE CNN
MODEL; (B) PROPOSED DLSTM MODEL.

Table 3. LAYER CONFIGURATION

Layer Layer Type Property  Output Size
ID
1 Sequence Input N/A 1x1,000x1
20 filters
with size
2 Convolutional Ix5x1, 1x1,000x20
same
padding
Max
3 Maxpooling pooling 1x333x20
1x3,no
padding
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20 filters
with size
1x5x%x1,
no
padding
Max
pooling
1x3,no
padding
20 filters
with size
1x5x%x1,
no
padding
Max

pooling
1x3,no
padding

8 Flatten N/A 700

200
9 LSTM hidden 200
units

10 Fully connected 3 nodes 3

11 Softmax 3 nodes 3

12 Output/classification 1 node 1
Note: the number of total learnable parameters is 723,623.

4 Convolutional 1x329%x20

5 Maxpooling 1x109 %20

6 Convolutional 1x105%20

7 Maxpooling 1x35x%20

The hyperparameter tuning is performed according to the
network training and validation performance, resulting in the
finalized simulation parameters given in Table 4. Such
simulation parameters can avoid both underfitting and
overfitting. With the well-configured DLSTM network, the
emulations corresponding to previously formulated cases are
carried out. Because of the randomness in model training and
data split [19,20], we specifically implement 10 emulation runs
for each testing case and summarize the statistical results of all
testing cases, including the classification accuracy and loss
(Figures 5 and 6). Noteworthy, loss here is formulated as the
categorical cross-entropy which is a common metric in
classification analysis. To be precise, the loss shown in Figure 6
is the mean of losses calculated upon 200 testing samples. Such
statistical results allow one to comprehensively examine the
overall performance and robustness of the proposed
methodology.

Table 4. SIMULATION PARAMETERS
Optimizer Batch size Epoch size  Learning rate
Adam 5 10 0.0001

As can be seen, DLSTM notably outperforms CNN in terms
of both accuracy and loss. Specifically, nearly all emulations of
DLSTM can yield 100% accuracy in all testing cases. In
comparison, the inferior accuracy of CNN is observed. The
wider distributions of accuracy also indicate the unrobust
diagnosis performance. The accuracy improvement of DLSTM
especially is more significant in Cases 1 and 4 than that in Cases

2 and 3. This may be because that the temporal dependency of
features accounting for the effect of the time-varying conditions
in Cases 1 and 4 is much stronger. Loss information provides the
consistent observation as accuracy. The statistical results in
Figures 5 and 6 clearly illustrate the feasibility of the proposed
methodology in identifying the bearing fault under time-varying
conditions.

We also examine the emulation runs of CNN that yield the
worst accuracy, from which the insight regarding the
misclassification can be gained. Two emulation runs pointing to
Cases 1 and 4 respectively are identified and the associated
confusion matrix information is provided in Figure 7. They both
indicate that the outer race fault will be easily misclassified into
other fault types when the rotational speed varies over time. The
fault-related features of outer race fault appear to resemble that
of inner race fault in the case of increasing rotational speed (Case
1) since the misclassification is dominated by the inner race fault.
The different observation however is captured in Case 4, in
which both healthy condition and inner race fault are likely to be
the misclassified fault labels. By incorporating LSTM layer into
the network to account for the effect of time-varying conditions,
the misclassification can be significantly alleviated.
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FIGURE 5. ACCURACY COMPARISON (A) CASE 1; (B) CASE
2; (C) CASE 3; (D) CASE 4.
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FIGURE 6. LOSS COMPARISON (A) CASE 1; (B) CASE 2; (C)
CASE 3; (D) CASE 4.
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FIGURE 7. CONFUSION MATRIX INFORMATION (A) WORST
EMULATION IN CASE 1; (B) WORST EMULATION IN CASE 4.
(CLASS 1: HEALTHY CONDITION; CLASS 2: INNER RACE
FAULT; 3: OUTER RACE FAULT)

3.3 Discussion of future research endeavor

It is evident through the case illustrations that the DLSTM
can ensure the desired fault diagnosis performance (i.e., 100%
classification accuracy) for this particular dataset because of the
relatively small number of fault labels involved in the dataset.
Nevertheless, in practical scenarios more fault types will be
considered especially when some fault types exhibit the
continuous severity. Their associated features hence will become
difficult to be discriminated, which will be further compounded
by the time-varying conditions. To tackle this issue, the multi-
sensor fusion appears to be a potential technique, where the
rotational speed measured via encoder or tachometer is further
incorporated. There exist two primary means to achieve such
sensor fusion. The first one is to design the network architecture
with appropriate input layers to feed both acceleration and speed
information simultaneously, upon which the proper data fusion
strategy will be proposed accordingly. The other one is to resort
to the signal processing analysis by fully utilizing both the
measured speed and acceleration information. Aiming at
reducing the adverse impact of time-varying conditions, one of
well-known approaches that is so called the synchronous
averaging can be performed either in time domain or time-
frequency domain. For illustration, Figure 8 gives the time-
frequency synchronous averaging procedures based upon the
multi-sensor fusion, which is subject to the future research.
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Angle (2 rad)

o

Angle-Frequency
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01-
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05 1
resampling Angle (21 rad)
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FIGURE 8. SIGNAL PROCESSING BEASED ON MULTI-
SENSOR FUSION.

4. CONCLUSION

In this research, a deep long short-term memory (DLSTM)
network is developed to conduct the bearing fault diagnosis
under time-varying operational speed conditions. To illustrate its
particular advantage in characterizing the intrinsic correlation
between the bearing fault and features over time, a publicly
accessible dataset that was acquired under various time-varying
conditions is utilized. A counterpart of DLSTM network, i.e.,
CNN is constructed, and its performance is used as a baseline.
Different testing cases are formulated, upon which the statistical
validation procedures are executed to facilitate the thorough
performance assessment. The results in case studies clearly
indicate that the proposed DLSTM network outperforms the
CNN in all testing cases in terms of classification accuracy,
showing its effectiveness for fault diagnosis under time-varying
conditions. Multi-sensor fusion is considered as one future
research direction to further enhance the diagnosis performance.
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