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ABSTRACT 
The fault diagnosis of bearing in machinery system plays a 

vital role in ensuring the normal operating performance of 
system. Machine learning-based fault diagnosis using vibration 
measurement recently has become a prevailing approach, which 
aims at identifying the fault through exploring the correlation 
between the measurement and respective fault. Nevertheless, 
such correlation will become very complex for the practical 
scenario where the system is operated under time-varying 
conditions. To fulfill the reliable bearing fault diagnosis under 
time-varying condition, this study presents a tailored deep 
learning model, so called deep long short-term memory (LSTM) 
network. By fully exploiting the strength of this model in 
characterizing the temporal dependence of time-series vibration 
measurement, the negative consequence of time-varying 
conditions can be minimized, thereby improving the diagnosis 
performance. The published bearing dataset with various time-
varying operating speeds is utilized in case illustrations to 
validate the effectiveness of proposed methodology.  

Keywords: bearing fault diagnosis, time-varying conditions, 
time-series vibration measurement, deep long short-term 
memory (LSTM) neural network.  

1. INTRODUCTION
Rolling bearing, as one key functional element in the

rotating machinery has been extensively utilized. Due to the 
harsh and long-time operating conditions, bearing is prone to be 
failure. To maintain the bearing health and thus ensure the 
normal system function, fault diagnosis and prognosis of bearing 
recently have become a critically important subject. It is well 
known that the vibration signals directly measured from the 
machinery system are commonly used to facilitate the fault 
diagnosis owing to their notable advantages over other types of 
signals [1–3]. By further taking advantage of signal processing 
analysis, the fault-related features in the vibration measurement 

will be extracted [4–6]. While those features appear to be the 
effective indicator of faults, discriminating features manually to 
pinpoint the faults in many scenarios is difficult and unreliable.  

With the advancement of the computational intelligence 
technology, the machine learning methods have been 
substantially applied in fault diagnosis because of its capability 
in characterizing the inherent correlation between the 
measurement and faults [7–9]. Deep learning, as one 
representative class of machine learning methods has become a 
prevailing approach. A large-scale neural network with large 
number of layers and nodes oftentimes is established to fulfill the 
deep learning analysis. To improve the feature extraction ability 
and efficiency, the convolutional layers are integrated into the 
neural network to form so called convolutional neural network 
(CNN), which has been employed in a wide range of studies. 
Chen et al [10] proposed the combination of CNN and cyclic 
spectral coherence (CSCoh) to improve the performance of 
bearing fault diagnosis. Zhu et al [11] developed a new CNN 
built upon the capsule network to address the lack of positional 
relationship between fault features in traditional CNN, thereby 
enhancing the generalization ability. Hoang and Kang [12] 
achieved the automatic fault diagnosis directly upon the raw 
vibration signals by utilizing the deep structure of CNN.  

It is worth mentioning that, despite the success of deep 
learning-based fault diagnosis, the challenges still exist in actual 
practice. Recently, the extensive effort has been made to address 
the challenges and build gap between the academic research and 
industrial applications. For example, Ma et al [13] proposed 
transfer learning together with the time-frequency domain signal 
processing to improve the fault diagnosis reliability under small-
sized dataset. Zhou and Tang [14] developed a new fault 
diagnosis framework built upon the fuzzy inference system to 
tackle the issue of limited fault labels which cannot represent all 
unseen fault scenarios in practical implementations. The 
objective of this research is to deal with another notable 
challenge caused by the time-varying conditions. Considering 
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the fact that the bearings often operate under time-varying 
rotational speed conditions, the vibration signals measured are 
non-stationary, which poses the difficulty in fault pattern 
recognition using deep learning analysis. In this research, built 
upon the CNN architecture, long short-term memory (LSTM) 
features are further integrated to establish a deep long short-term 
memory (DLSTM) network, which aims at alleviating the non-
stationary issue through characterizing the temporal correlation 
of time-series vibration signals. 

The rest of the paper is organized as follows. Section 2 
outlines the DLSTM network where its particular features to 
handle the correlation among time sequences are highlighted. 
Section 3 implements the fault diagnosis practice on a public 
dataset using the proposed methodology. Concluding remarks 
are given in Section 4. 

2. METHODOLOGY
The tremendous progresses on the deep learning neural 

network development have been achieved over the last decade. 
Different network architectures and learning strategies have been 
established to realize various purposes. Amongst them, LSTM 
network is particularly employed in this research. The unique 
advantage of LSTM network is its ability in elucidating the 
correlation between the fault and features by taking the temporal 
dependence of features into account, which is tailored for 
tackling the non-stationary issue induced by the time-varying 
conditions.  For this reason, LSTM network has been adopted in 
a broad of engineering applications [15–17].  

LSTM network essentially is a special variant of recurrent 
neural network (RNN). The unique component embedded in the 
LSTM network is the memory cell, which can memorize the 
temporal state by 3 different controlling gates including input, 
forget and output gates as shown in Figure 1a. The underlying 
principle of collaboration among those gates can be 
mathematically formulated as 

1 1( )t fx t fm t fc t ff W x W m W c b − −= + + +                     (1a) 

1 1( )t ix t im t ic t ii W x W m W c b − −= + + +                      (1b) 

1( )t ox t om t oc t oo W x W m W c b −= + + +                       (1c)               

1 1( )t t t t cx t cm t cc f C i g W x W m b− −= + + +                  (1d)                                           
( )t t tm o h C=      (1e) 

where , ,t tf i and to denote the forget, input and output gates,
respectively. tc and tm denote the cell state and cell output, 
respectively. W and b are the weight matrices and bias vectors to 
be optimized through network training. denotes the scalar 
product. tx represents t-time sequence in one sample.  is the 
sigmoid activation function, and g and h denote the hyperbolic 
tangent activation functions. The output of the cell is expressed 
as 

t ym t yy W m b= +          (2) 
Multiple memory cells are combined to form a layer (Figure 

1b), which is referred to as LSTM layer. It is able to characterize 
the temporal correlation of time-series signals. Since the time-
series vibration signals are lengthy especially when they are 

measured from the real-time in-service machinery system, the 
convolutional layers are necessarily integrated into the LSTM 
network to realize the effective feature extraction. To reduce the 
network complexity and thus improve the training efficiency, 
maxpooling layers oftentimes are placed after the convolutional 
layers for downsampling. Usually, the convolutional layers 
together with maxpooling layers that are placed at the beginning 
of network are intended for low-level feature extraction, whereas 
the fully connected layers after LSTM layer are responsible for 
building the mapping between the fault conditions and high-level 
features obtained. For each layer, specific activation function is 
adopted to incorporate the data nonlinearity. 

With all necessary layers integrated, a deep LSTM 
(DLSTM) network will be established. Once it is adequately 
trained through backpropagation optimization, it can be readily 
appliable for bearing fault diagnosis in this research. 

(A) 

(B) 
FIGURE 1. KEY ELEMENT IN DLSTM (A) MEMORY 

CELL; (B) LSTM LAYER. 

3. CASE ILLURSTRATION
In this section we implement the methodology presented 

earlier to conduct comprehensive illustrations. 

3.1 Experimental setup and problem formulation 
To facilitate the methodology validation, a dataset that was 

reported in [18] is utilized in this research. The experimental 
testbed is shown in Figure 2. The experimental data acquisition 
was performed on a SpectraQuest machinery fault simulator. The 
experimental bearing placed at the right side of testbed is subject 
to three fault conditions, i.e., healthy condition, inner race fault 
and outer race fault. An encoder and an accelerometer were used 
to measure the shaft rotational speed and vibration signals, 
respectively. The shaft rotational speed was controlled to 
generate the multiple scenarios on purpose. The details of 
operating set-up are given in Table 4. Specifically, four speed 
varying tendencies were considered, each of which contains 
three different scenarios. Considering three fault conditions 
mentioned above, totally 36 (i.e., 3 3 4  ) groups were created. 
The sampling frequency used was 20,0000 Hz, and the time 
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duration for data acquisition was 10 s. With such set-up, the size 
of entire dataset can be represented as 36 2,000,000 .  

Generally, the time-series signals in all groups can be 
segmented into many samples to accommodate the subsequent 
deep learning analysis. In this research, each sample consists of 
0.1 s time series with 20,000 data points. As such, 100 samples 
are generated for each group and totally 3,600 samples are 
involved in the entire dataset. It is worth nothing that, to 
highlight the advantage of the proposed methodology, the time-
varying speed conditions of samples for testing are intended to 
be beyond that of samples for training. Considering that 
scenarios (a), (b) and (c) in each speed varying tendency (shown 
in Table 1) have certain level of similarity, only the data from 
scenario (c) are kept, which facilitates the fault diagnosis 
analysis under unseen/unexpected time-varying conditions. 
Hence, the original 3,600 samples are reduced to 1,200 samples 
for following analysis. The overview of the new reduced-sized 
dataset is given in Table 2. To thoroughly examine the fault 
diagnosis performance, four testing cases are formulated, where 
in each case the 200 samples collected upon certain speeds for 
both healthy and outer race fault are used for testing and the rest, 
i.e., 1,000 samples are used for training.  We don’t involve the 
inner race fault samples for testing because their vibration 
amplitudes generally are more significant than that of other fault 
types, as shown in Figure 3. In other words, the effect of time-
varying speed may become negligible in differentiating the inner 
race faut from other faults, which is not beneficial for 
methodology validation.  

FIGURE 2. EXPERIMENTAL TESTBED [18] 

Table 1. EXPERIMENTAL OPERATING SETUP [18] 
Operating Rotational Speed (Hz) 

Speed 
increasing 

Speed 
deceasing 

Speed first 
increasing, 

then 
decreasing 

Speed first 
decreasing, 

then 
increasing 

Healthy 
(a). From 

14.1 to 
23.8 

(a). From 
28.9 to 

13.7 

(a). From 
14.7 to 

(a). From 
24.2 to 

25.3, then 
to 21.0 

14.8, then 
to 20.6 

(b). From 
14.1 to 

29.0 

(b). From 
25.7 to 

11.6 

(b). From 
14.4 to 

24.0, then 
to 18.7 

(b). From 
24.6 to 14, 

then to 
20.6 

(c). From 
15.2 to 

26.7 

(c). From 
28.6 to 

13.9 

(c). From 
15.4 to 

24.8, then 
to 19.1 

(c). From 
26 to 16.9, 

then to 
23.2 

Inner 
race 
fault 

(a). From 
12.5 to 

27.8 

(a). From 
24.3 to 

9.9 

(a). From 
15.1 to 

24.4, then 
to 18.7 

(a). From 
25.3 to 

14.8, then 
to 19.4 

(b). From 
13.0 to 

25.7 

(b). From 
25.1 to 

13.1 

(b). From 
14.1 to 

23.5, then 
to 18.0 

(b). From 
25.3 to 

15.1, then 
to 19.8 

(c). From 
13.5 to 

28.5 

(c). From 
25.8 to 

12.0 

(c). From 
14.8 to 

21.7, then 
to 13.6 

(c). From 
23.1 to 

15.7, then 
to 23.6 

Outer 
race 
fault 

(a). From 
14.8 to 

27.1 

(a). From 
24.9 to 

9.8 

(a). From 
14.0 to 

21.7, then 
to 14.5 

(a). From 
26.0 to 

18.9, then 
to 24.5 

(b). From 
12.9 to 

23.0 

(b). From 
24.7 to 

10.2 

(b). From 
14.0 to 

24.5, then 
to 19.8 

(b). From 
25.2 to 

14.9, then 
to 19.5 

(c). From 
13.3 to 

26.3 

(c). From 
25.4 to 

10.3 

(c). From 
14.2 to 

23.4, then 
to 17.6 

(c). From 
25.5 to 

15.0, then 
to 19.6 

Table 2. DATA OVERVIEW (DATA SIZE) AND CASE 
FORMULATION  

Speed 
increasing 

Speed 
deceasing 

Speed first 
increasing, 

then 
decreasing 

Speed first 
decreasing, 

then 
increasing 

Healthy 
(Class 

1) 

100 
(Case 1) 

100 
(Case 2) 

100 
(Case 3) 

100 
(Case 4) 

Inner 
race 
fault 

(Class 
2) 

100 100 100 100 

Outer 
race 
fault 

(Class 
3) 

100 
(Case 1) 

100 
(Case 2) 

100 
(Case 3) 

100 
(Case 4) 
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(A) 

(B) 

(C) 
FIGURE 3. TIME-SERIES SAMPLES (A) HEALTHY 

CONDITION; (B) INNER RACE FAULT; (C) OUTER RACE 
FAULT. 

3.2 DLSTM network establishment and fault diagnosis 
performance investigation 

Recall the capability of LSTM in constructing the temporal 
correlation of fault with respect to its pivot features over time 
and the powerful feature extraction of CNN. We establish a 
DLSTM network by fully harnessing the collective advantages. 
For validation purpose, we also establish a CNN which is a 
subpart of DLSTM network (i.e., without the LSTM layer) as 
can be observed in Figure 4. The fault diagnosis analysis will be 
implemented using both models and the respective diagnosis 
accuracy will be investigated and compared. Following the 
general guideline for deep learning neural network design, the 
architecture of DLSTM network is configured empirically. This 
network mainly consists of three convolutional layer stacks 
(CLS), one LSTM layer and other layers. The layer configuration 

details are shown in Table 3. One may notice that the input size 
is inconsistent with the size of single sample, i.e., 20,000. The 
reason is that the input layer here takes each time sequence of the 
sample. In this research, we particularly divide 20,000 data 
points in the sample into 20 time sequences, and each time 
sequence thus has 1,000 data points. This requires the input layer 
to have the size as 1 1,000 1  . It is worth pointing out that, the 
selection of sequence size plays a role in dictating the diagnosis 
performance, which can be considered as another 
hyperparameter subject to tuning.  To ensure the stable training, 
the batch normalization is applied on each convolutional layer. 
Additionally, ReLU activation function is adopted to map the 
input-output nonlinearity. A multi-class classification problem is 
investigated in this research because the output can be each of 
three fault classes to be identified. 

(A) 

(B) 
FIGURE 4. MODEL ARCHITECTURE (A) BASELINE CNN 

MODEL; (B) PROPOSED DLSTM MODEL. 

Table 3. LAYER CONFIGURATION 
Layer 

ID 
Layer Type Property Output Size 

1 Sequence Input N/A 1 1,000 1   

2 Convolutional 

20 filters 
with size 
1 5 1  , 

same 
padding 

1 1,000 20   

3 Maxpooling 
Max 

pooling 
1 3 , no 
padding 

 1 333 20   
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4 Convolutional 
20 filters 
with size 
1 5 1  , 

no 
padding 

1 329 20   

5 Maxpooling 
Max 

pooling 
1 3 , no 
padding 

1 109 20   

6 Convolutional 
20 filters 
with size 
1 5 1  , 

no 
padding 

1 105 20   

7 Maxpooling 
Max 

pooling 
1 3 , no 
padding 

1 35 20   

8 Flatten N/A 700 

9 LSTM 
200 

hidden 
units 

200 

10 Fully connected 3 nodes 3 
11 Softmax 3 nodes 3 
12 Output/classification 1 node 1 

Note: the number of total learnable parameters is 723,623. 

The hyperparameter tuning is performed according to the 
network training and validation performance, resulting in the 
finalized simulation parameters given in Table 4. Such 
simulation parameters can avoid both underfitting and 
overfitting. With the well-configured DLSTM network, the 
emulations corresponding to previously formulated cases are 
carried out. Because of the randomness in model training and 
data split [19,20], we specifically implement 10 emulation runs 
for each testing case and summarize the statistical results of all 
testing cases, including the classification accuracy and loss 
(Figures 5 and 6). Noteworthy, loss here is formulated as the 
categorical cross-entropy which is a common metric in 
classification analysis. To be precise, the loss shown in Figure 6 
is the mean of losses calculated upon 200 testing samples. Such 
statistical results allow one to comprehensively examine the 
overall performance and robustness of the proposed 
methodology. 

Table 4. SIMULATION PARAMETERS  
Optimizer Batch size Epoch size Learning rate 

Adam 5 10 0.0001 

As can be seen, DLSTM notably outperforms CNN in terms 
of both accuracy and loss. Specifically, nearly all emulations of 
DLSTM can yield 100% accuracy in all testing cases. In 
comparison, the inferior accuracy of CNN is observed. The 
wider distributions of accuracy also indicate the unrobust 
diagnosis performance. The accuracy improvement of DLSTM 
especially is more significant in Cases 1 and 4 than that in Cases 

2 and 3. This may be because that the temporal dependency of 
features accounting for the effect of the time-varying conditions 
in Cases 1 and 4 is much stronger. Loss information provides the 
consistent observation as accuracy. The statistical results in 
Figures 5 and 6 clearly illustrate the feasibility of the proposed 
methodology in identifying the bearing fault under time-varying 
conditions. 

We also examine the emulation runs of CNN that yield the 
worst accuracy, from which the insight regarding the 
misclassification can be gained. Two emulation runs pointing to 
Cases 1 and 4 respectively are identified and the associated 
confusion matrix information is provided in Figure 7. They both 
indicate that the outer race fault will be easily misclassified into 
other fault types when the rotational speed varies over time. The 
fault-related features of outer race fault appear to resemble that 
of inner race fault in the case of increasing rotational speed (Case 
1) since the misclassification is dominated by the inner race fault.
The different observation however is captured in Case 4, in 
which both healthy condition and inner race fault are likely to be 
the misclassified fault labels. By incorporating LSTM layer into 
the network to account for the effect of time-varying conditions, 
the misclassification can be significantly alleviated.  

(A)  (B) 

(C)                                              (D) 
FIGURE 5. ACCURACY COMPARISON (A) CASE 1; (B) CASE 

2; (C) CASE 3; (D) CASE 4. 

(A)  (B) 
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©                                               (D) 
FIGURE 6. LOSS COMPARISON (A) CASE 1; (B) CASE 2; (C) 

CASE 3; (D) CASE 4. 

     (A)                                         (B) 
FIGURE 7. CONFUSION MATRIX INFORMATION (A) WORST 
EMULATION IN CASE 1; (B) WORST EMULATION IN CASE 4. 

(CLASS 1: HEALTHY CONDITION; CLASS 2: INNER RACE 
FAULT; 3: OUTER RACE FAULT) 

3.3 Discussion of future research endeavor 
It is evident through the case illustrations that the DLSTM 

can ensure the desired fault diagnosis performance (i.e., 100% 
classification accuracy) for this particular dataset because of the 
relatively small number of fault labels involved in the dataset. 
Nevertheless, in practical scenarios more fault types will be 
considered especially when some fault types exhibit the 
continuous severity. Their associated features hence will become 
difficult to be discriminated, which will be further compounded 
by the time-varying conditions. To tackle this issue, the multi-
sensor fusion appears to be a potential technique, where the 
rotational speed measured via encoder or tachometer is further 
incorporated. There exist two primary means to achieve such 
sensor fusion. The first one is to design the network architecture 
with appropriate input layers to feed both acceleration and speed 
information simultaneously, upon which the proper data fusion 
strategy will be proposed accordingly. The other one is to resort 
to the signal processing analysis by fully utilizing both the 
measured speed and acceleration information. Aiming at 
reducing the adverse impact of time-varying conditions, one of 
well-known approaches that is so called the synchronous 
averaging can be performed either in time domain or time-
frequency domain. For illustration, Figure 8 gives the time-
frequency synchronous averaging procedures based upon the 
multi-sensor fusion, which is subject to the future research.  

FIGURE 8. SIGNAL PROCESSING BEASED ON MULTI-
SENSOR FUSION. 

4. CONCLUSION
In this research, a deep long short-term memory (DLSTM) 

network is developed to conduct the bearing fault diagnosis 
under time-varying operational speed conditions. To illustrate its 
particular advantage in characterizing the intrinsic correlation 
between the bearing fault and features over time, a publicly 
accessible dataset that was acquired under various time-varying 
conditions is utilized. A counterpart of DLSTM network, i.e., 
CNN is constructed, and its performance is used as a baseline. 
Different testing cases are formulated, upon which the statistical 
validation procedures are executed to facilitate the thorough 
performance assessment. The results in case studies clearly 
indicate that the proposed DLSTM network outperforms the 
CNN in all testing cases in terms of classification accuracy, 
showing its effectiveness for fault diagnosis under time-varying 
conditions. Multi-sensor fusion is considered as one future 
research direction to further enhance the diagnosis performance. 
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