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Abstract—The objective of OPF is to find an operating point
for a network minimizing certain cost functions such as line
losses or generation costs. In recent years, a significant rise
in distributed generation (DG) penetration in the distribution
network made the OPF problem a greater computational burden.
As a result, the centralized OPF formulation is facing more
challenges. In this paper a fully distributed approach has been
proposed that utilizes the convergence proper of alternating
direction method of multipliers (ADMM) and split the central
OPF problem into small problems of regions. All the regional
OPF problems are parallelizable and computationally cheaper
than the centralized approach. The non-linear, non-convex AC-
OPF problem in this approach uses SDP relaxation to convexify.
The proposed approach is tested on the modified IEEE 123 bus
system to prove it’s scalability.

Index Terms—OQOptimal Power Flow(OPF), Distribution System,
Convex Optimization, Alternating Direction Method of Multipli-
ers (ADMM), Semi-Definite Programming (SDP).

I. INTRODUCTION

HE objective of OPF is to minimize or maximize a

cost function such as minimizing the generation cost,
line losses, or maximizing voltage stability, DG generation.
Numerous economic operations of power systems such as
economic dispatch, unit commitment, demand response, volt-
var control are designed around OPF. Since the very first
approach to solve the OPF problem, proposed by J. Carpentier
in 1962 [1], a lot of approaches have been proposed by the
researchers to solve the problem. Detailed survey literature on
different formulations of OPF and evolution of the problem
formulation can be found in [2]-[11]. The original alternating
current optimal power flow (AC-OPF) problem is a non-
linear, non-convex optimization problem. Different relaxation
methods have been explored to handle the non-convexity of
the problem. Among them, semi-definite programming (SDP),
second-order cone programming (SOCP), and chordal relax-
ation are the most popular ones. Initially bus injection models
(BIM) of transmission network utilized both SDP relaxation
[12]-[14] and SOCP relaxation [15], [16] for OPF formulation.
Since these are the relaxed model of the original problem, the
formulation is said to be exact if the solution of the original
problem can be recovered from the relaxed model. However,
radial network modeling requires additional considerations for
exact modeling.
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Another aspect of the conventional OPF formulations is
that they are mostly centralized operations. This means, the
original network is formulated as one single problem and
solved as one model. However, as the distributed generation
is becoming more and more popular in today’s power system,
it increases the total number of variables in the formulation,
thus increases the difficulty level of the problem [17]. So, OPF
formulation of real-world distribution networks with thousands
of nodes and high DG penetration is extremely difficult to
solve with a centralized approach. Thus there is a real need
to solve distributed formulation of the OPF problem for the
future distribution grid. In that regard, various distributed
approaches have been proposed by different researchers. The
generalized approach is to break down the OPF problem into
subproblems that can be solved simultaneously. There are
distributed formulations based on the AC non-convex OPF
problem as in [18], [19] which used the method of multipliers.
In [20] the formulation leveraged ADMM for distributed
optimization but the main disadvantage of such formulation
is that it does not guarantee convergence. On the other hand,
the distributed formulation of the convexified OPF problem
ensures convergence especially ADMM based convex methods
combines the benefits of the dual decomposition [21].

In this paper, an approach has been proposed where a radial
system is divided into multiple regions. This division can be
based on different criteria such as geographical location, the
position of the SVR, placement of the transformer, or switches.
In this approach, two main aspects are significant which
are intra-regional optimization and inter-regional coordination.
The intra-regional optimization model has been formulated by
utilizing the SDP relaxed branch flow model and the inter-
regional coordination is implemented with the help of ADMM.
The main contributions of this paper are as follows. This
approach provides a simplified architecture to implement the
distributed formulation of the OPF problem for the radial
distribution network. It identifies the consensus region for
the split network and implements ADMM to solve the OPF
problem in a fully distributed approach. All the regional OPF
problems are parallelizable and computationally cheaper when
compared to other distributed OPF counterparts.

The rest of the paper is organized in the following order.
Section II describes the mathematical preliminaries regarding
the ADMM and OPF problem formulation. Section III de-
scribes the proposed distributed OPF formulation based on
ADMM, system description, and numerical case studies are
discussed in section IV. Finally, section V concludes the paper
and briefly discusses the future extension of this work.
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II. MATHEMATICAL PRELIMINARIES

ADMM is an algorithm that leverages the better conver-
gence properties of method of multipliers to solve constrained
optimization problems. Assume a problem in following form,

Min f(z)+g(y) (1
st. Az + By =c
Here, z € and y € are the variables and A and B are parameter

matrices. The augmented Lagrangian equation of this problem
can be written as:

Ly(z,2,8) = f(z) +9(y) + B (Az + By —c)  (2)
+2Jl4z + By - clf3

ADMM solves the problem in three updation steps. First,
is updated with fixed y, then y is solved with updated = from
previous step and in the final step S is updated from fixed
values of z and y. These steps are as follows.

2F = argmin{f(z) + (8%)7 (Az + By* — ¢) 3)

+ LAz + Byt — |3}
y*t = argmin{g(y) + (8°)"(Az" + By —¢) 4
Y

P
+ 5114z + By — o |3}

B = B 4 p(AztH 4 Byt — ) 5)
Here p > 0 is the penalty factor and [ is the vector
of lagrangian multipliers. The convergence of the ADMM
depends on the following criterion,

(Az* T 4 Byt —¢) =0

lim
k—o00

A. Consensus Optimization via ADMM

If the objective function of the ADMM problem consists of
N terms, then the problem takes new form which is known
as consensus ADMM. This form of objective function may
represent to minimize the loss function of an individual area
of the distribution system, or to minimize the line losses of
a region of a large distribution network. The problem can be
written as

N

Min Y f(x) (6)
=1

stx;—y=0

Here, z; are the local variable and y is the global variable,
where the objective is to converge all the local variables
to the global value. In our application, the objective is to
minimize the line power loss in the network. The variables of
the branch flow model formulation are bus voltage magnitude,
line current, active and reactive line power flow. Thus in the
consensus formulation, the constraint would be to converge
the bus voltage and line power flow of certain buses and lines
between the regions observing from each region. Definition
of these local and global variables are discussed in section
IIT where the ADMM based OPF problem is formulated.

The augmented Lagrangian function for this scenario can be
written as,
al P
Ly(x.y, 8) = > (f(a:) + 87 (@i —y) + g llwi = wll3)
i=1
The local variables z; and the global variable y are updated
using the following steps,

- P
z; = argmin{f(z;) + (8%)" (z; — v*) + gllzi = y* |15}

(7
1 N

== (@) ®)
=1

ﬁk—l-l = ﬁk +P(«Tf§+1 _ yk—i-l) (9)

We propose a consensus ADMM approach to solve the OPF
problem of a large distributed network where all the regions
solve their OPF problem for a constraint set and a global
variable z. This iterative updating process continues till the
error reduces below the threshold value.

I1II. ADMM BASED OPF FORMULATION

Master ¢

Network
i=1,....,5

Sub Net 2
=902

N9

Fig. 1: A distribution system divided into three regions

In the distributed approach to solving the OPF of a power
network, consider the network is divided into multiple areas.
Among them, one is considered as the master network and
others are as the sub-networks. There are communication links
established between master and sub-networks to exchange
information. As shown in Figure 1, let us assume the whole
network is divided into 3 regions, where nodes 1, ....5 belongs
to the master network, nodes 6, ....., 8 belongs to sub-network
1, and nodes 9,....12 belongs to sub-network 2. Also, the
branches between 4 — 6 shared by both master network
and sub-network 1 and 5 — 9 shared by master network
and sub-network 2. Basically the area covered by branches
4 — 6 and 5 — 9 is the consensus area and the variables
Py 6,Ps5_9,Q4-6,Q5-9,Vs, V5, Vs, Vo represents the global
variable Z. Each area will solve the OPF problem of its region
in parallel and assign the values. Next, the global variable
will be updated based on values calculated by each local
iteration. Then consensus will be achieved considering the
preset threshold value.

A. BFM-SDP OPF

In this paper we are mostly focusing on the formulation of
OPF problem for the distribution systems. Hence the Branch
Flow Model of the system is adopted to formulate the OPF
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problem. Let us assume a graph G = (N, E) represents a
radial distribution network where, N is the set of all vertices
and F is the set of all branches. Branch flow model comprises
of the branch variables such as branch current, branch active
and reactive power flow. Let, V; is the voltage of node ¢, S;;
and I;; is the complex power and current flown through branch
i — j, then branch flow model can be stated as follows

Vi — VJ = Zijfij,V(Z',j) cFk (10)
Z Sir — Z (Sij — zij|Li5]?) +y;|Vj|2 =s; (12)

k:j—k
Here, z;; is the branch impedance and s; is the injected
complex power at node j. The relaxed branch flow model
is adopted from this equations by ignoring the angles of the
variables. By substituting the expression of current I;; from
(11) into (10) yields V; — V; = z”Sl*j/Vz* Then taking
the square of the magnitudes of this expression derives the
equation (14) as shown below. In the relaxed model the
squared terms of the node voltage and branch current replaces
the previous variables as v; = |V;|? and l;; = |I;;|*. The
relaxed BFM model is

si= D Sik— D (S —zli) +yvy, Vi € E - (13)

g

k:j—k i1i—7]
Vj =V — 2(2’:}513 + ZZJS:J) + zijlijzfj,V(i,j) cFE (14)
Sil?
lij = @,w,j) €E (15)

The non-linear equation (15) can be expressed in terms of a

positive semidefinte matrix as follows:
U; SZ 1
* =0
[Sij Aw‘]
v S| _
rank [Sfj )\ij] =1
The aforementioned equations still hold the non-convexity
due to the rank-1 constraint of the PSD matrix. Relaxing the

equation by adopting the semidefinite relaxation (SDR), the
BFM-SDP OPF problem is formulated:

Min Z Zijfij
ii—j

85 = Dokjosk Sik = Yoivis; (Si5 — 2ij|lij|?) + yjv;
Vj = U; — (SZJZ:} + Z”Sl*j) + ziinjzfj

(3 Sl
s.t. S:; >\ij
Uref = ‘/ref‘/r*ef

,UmlTL S IU1 S ,Umacx

Smin S Sz S gmaz

(16)

>0

B. Implementing Consensus ADMM Based BFM-SDP-OPF

Based on the consensus ADMM and the BFM-SDP OPF
formulation, the distributed problem can be formulated for
each region. Before that, the global variable z can be defined
as, y,:[Pm"Qm"P“Q“VmVl]. Now, the augmented OPF prob-
lem for each region can be formulated as follows. For the
master network all the nodes as shown in Fig. 1 along with

the consensus region nodes are considered to formulate the
augmented OPF problem for master network.

: P
Min Y zijlij + ()" (@1 — i) + G ller — o113
Qi
85 = Dokjosk Sik = Doivies; (Si5 — 2ij|li?) +yjv;
Vj = V; — (SZJZ:; + Z”S:;) + Ziinjzfj

(%3 Sl j
st 1Sh i
Uref = Vief Vi
v < vy S oM
gmin < §; < gma
where y; =y

Similarly for sub-network 1 the augmented OPF problem

can be formulated with updated z as follows

T
Y2 = [Pmny an; Vm]
The augmented Lagrangian objective function for sub-network
1 is as follows:

Min > 2l + (85)" (w2 — y5) + §||x2 —y5ll3 (18)
ii—j
Further for sub-network 2 the augmented OPF problem can
be formulated with updated z as follows,

T
Ys = [Bt; Qlt; ‘/l]
With the objective function as
Min " 2l + (B5)" (w3 — y8) + Sllws — 5115 (19)
ii—j
Once all the regions done solving for the variable x then, the
global variable z is updated using Eq. (8) as,

y(17375) =0.5x% [y1(17 37 5) + y?]
y(2,4,6) = 0.5 * [y1(2,4, 6) + ys]

The primal and dual residual of the formulation are denoted
as follows,

7)

>0

(20)

r* = ||z* — ¥l @21

" = plly" — "2
After that, the dual variable is updated using Eq. (9). Finally
the error is being calculated as,
k 2

r
k=1 (22)

error® =

The threshold cut-off value for error is considered as 10e — 4.
If the error value becomes less than the threshold then a global
consensus is achieved.

IV. REAL-LIFE IMPLEMENTATION

To test the scalability of the proposed approach a large
distribution network such as a modified IEEE 123 bus system
is utilized. The actual network is three-phase and unbalanced.
For this approach, the single-phase version is used, which
is the positive sequence equivalent of the actual network.
The system operates at 4.16KV. The total load connected
to the system is 1163.3KW and 640KVAR. Some further
modifications were also done. Some distributed generation
(DG) plants are introduced in the system. The capacity of
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Algorithm 1 Proposed Distributed OPF

Step: 1 Initialize network data and boundary values for each
region.

Step: 2 Initialize p and y for ADMM formulation.

Step: 3 Initialize threshold values for primal and dual resid-
ual.

while error® < 10~* do

Update x, for region 1 using (17)

Update x2 for region 2 using (18)

Update x3 for region 3 using (19)

Update y using (20)

Update S for each region using (9)

Calculate primal and dual residual to get the error Cal-

culate primal and dual residual to get the error

the DG generation is 10% of the total connected load. The
maximum active power generation capacity of the DG plants
is considered to be equal to the active power demand of the
respective bus. And, the KVA rating of the DG plants is
considered to be 120% of the active power rating. That’s how
the upper and lower bound for the reactive power generation
capacity is calculated for the plants.

O Voltage Regulator

103 104

Master
Network

197 Sub-
Network 2

100 450
11 14 o—{]—o—o—9 9%—LLO—.

70 7
l—o0—$—o—o—o—o

4 7
ne—o—o—8

150 149 1 7 8] 13 /J 12 52

Fig. 2: Modified IEEE 123 bus system with 10% DG penetra-
tion

Then the whole network is divided into three regions. There
are switches between nodes 20-118 and 15-117. The partitions
are made on the location of those two switches. The area
containing substation node 1 is considered the master network.
This area is marked with a blue line in the figure. Next, the
area enclosed by the red line is considered sub-network 1.
This is connected to the master network through the switch
between 20-118. Finally, the rest of the network is considered
as sub-network 2 which is connected to the master network
through the switch at 15-117 and marked by a green line in
the figure. A single line diagram of the network along with
the DG plant’s location in all three regions is shown in Fig.
2.

In this case study, different scenarios were run for dif-
ferent values of penalty factor p. It is known that primal
and dual residual values, as well as the convergence speed,
depend greatly on the value of the penalty factor. A higher-
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Fig. 3: Comparison of substation active and reactive power,
line power through connecting lines and active power loss for
different scenarios.

valued penalty factor increases dual variables, on the other
hand, primal residual increases for smaller penalty factors.
Here we ran the simulation for different values of p such
as, p = 0.7,1.0,10,50,100. The change in the number of
iterations for convergence with the change of penalty factor
is observed. We can see in Fig. 6 that, as the penalty factor
value increases the value of dual residual increases. Though
with a higher value of penalty parameter, the gap between
primal and dual residual decreases faster yet the solution for
the lower value of p is more optimal. That statement can be
proved by the numerical results showcased in Table 1. The
performance of the proposed approach is also compared with
another distributed OPF method proposed in [22] which is
noted as "Distributed (Non-ADMM) in the table and figures.
To compare the solution of the proposed approach with
the centralized OPF solution, the active and reactive power
generation from the substation, the total active power loss
in the system, and the node voltage profile are compared in
Fig. 3. It can be seen from Table I that, with the decrease
of the value of p, the number of iterations increases, albeit
the resultant voltage profile is closer to the centralized OPF
solution’s profile. The comparison of the voltage profiles is
shown in Fig. 5. It is also evident the significance of choosing
an appropriate penalty parameter. Since, for a lower value as
p = 0.1, the formulation fails to converge. The percentage
optimality of the solution from different values of the penalty
factor can also be realized using the % error with respect to
the solution from the centralized approach. The % error in
substation active and reactive power is shown in Fig. 7.
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TABLE I: OPF solution comparison

Centralized  Distributed Dl?gliu)ted
BFM-SDP  Non-ADMM 0.7 T 10 50
P_sub (KW) 921.0474 921.5347 921.4553 9215349 1006.326  1152.632
Q_sub (KVAR) 251.0378 299.4837 287.1654  288.0038  477.5972  760.4315
P_loss (KW) 16.0574 16.5447 16.4653 16.5449 101.3359  247.6421
Poo_118(KW) 182.0654 182.1052 182.0667  182.0667  182.0837  182.0843
Q20-118(KV AR) 111.0626 126.2216 111.1589 111.149 111.6502  111.1006
Pis_117(KW) 502.3250 502.3033 502.3359  502.4029  502.6494  502.6225
Qi5_117(KVAR) 10.61 129596 164653 114644  11.3007  1L.1947
Time (s) 0.31 0.35 0.32 0.34 0.31 0.30
A. Update in formulation approach 16d
) = Centralized
In the current formulation, the consensus regions are con- Losk - 'gétffzﬂzzgzn-f‘]":)ﬂ“)
sidered overlapped. Which means, the boundary buses belongs = -+ Distributed (ADMM approach 2)
to both adjacent regions and all the power flow constraints s N
are satisfied for all the buses of the subsystems. The issue it Z103- N‘\‘\/\/\/\\\Nt
raises is that, in some cases the active or reactive power flow g .l O T W
through the tie-line struggle to converge. Similar case seen 2 N
for IEEE 123 bus system if subsystem 2 is splitted in another S 1
subsystem the across the line between node 60 and 160. To 1 ]
resolve the issue, few changes are considered in formulation.

Now, the subsystems are considered to be fully isolated and
no overlapping region. Albeit, the information of the boundary
bus of a leading subsystem will be know to the adjacent
subsystem and that node will not be considered while solving
the bus power balance constraint. In this way, the mismatch
in the global variables was being able to rectified.

106 = Centralized

= =Distributed (Non-ADMM)
Distributed (Rho = 0.7) =
----- Distributed (Rho = 1)
===Distributed (Rho = 10)
Distributed (Rho = 50) ~
===Distributed (Rho = 100)

1.05

Voltage Magnitude (pu)

099 ‘ ‘ ‘ ‘ ‘ ‘
100 120
Fig. 4: Voltage profile comparison among centralized OPF so-
lution and proposed distributed approach for different penalty

factor values.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a fully distributed approach has been formu-
lated to solve the convexified OPF problem for a radial power
system. The scalability of the formulation has been tested on
a modified IEEE 123 bus system with 10% DG penetration.
This formulation can also apply to larger networks. The
significance of choosing a proper penalty factor is shown
by simulating different case scenarios. This formulation can
improve the time of convergence for realistic large networks by
splitting the system into small regions and solve the problem in
parallel while ensuring inter-regional coordination. The future
extension of this work includes the finding of the optimal value

0.99 ! ! ! ! ! !

120

Fig. 5: Voltage profile comparison among centralized OPF so-
Iution and proposed distributed approach for different penalty
factor values.
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Fig. 6: Primal and Dual residual values for different magnitude
of penalty parameter.

for the penalty parameter since this has a significant impact
on the final solution for the problem.
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