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Abstract

Learning to understand grounded language, which connects
natural language to percepts, is a critical research area. Prior
work in grounded language acquisition has focused primarily
on textual inputs. In this work, we demonstrate the feasibility
of performing grounded language acquisition on paired vi-
sual percepts and raw speech inputs. This will allow interac-
tions in which language about novel tasks and environments
is learned from end-users, reducing dependence on textual
inputs and potentially mitigating the effects of demographic
bias found in widely available speech recognition systems.
We leverage recent work in self-supervised speech represen-
tation models and show that learned representations of speech
can make language grounding systems more inclusive to-
wards specific groups while maintaining or even increasing
general performance.

Introduction

Learning to understand grounded language—learning the
semantics of language that occurs in the context of, and
refers to, the broader world—is a rich area of work that has
engaged researchers from robotics (Tellex et al. 2020), natu-
ral language processing (Liu et al. 2016), vision (Deng et al.
2018), and cognitive science (Salvucci 2021), among others.
In robotics, grounded language refers primarily to grounding
human utterances in the perceived physical world of objects,
actions, and the environment. Learning from grounded lan-
guage is an intuitive choice for interacting with agents in a
physical environment.

While language learning offers a clearly defined way for
embodied agents to learn about changing environments and
goals directly from a specific end user, with some excep-
tions, the majority of current work in this area still operates
primarily on textual data. This approach significantly limits
our ability to deploy agents in realistic human environments,
where spoken inputs can be expected. Existing work on us-
ing speech directly typically relies on off-the-shelf speech-
to-text systems. These systems are rarely developed in tan-
dem with the robotics community, and so do not take the
unique challenges of robotic sensing into account (Marge
et al. 2022). In addition, current ASR systems work in-
consistently across demographics (Tatman 2017; Hinsvark

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2021), which represents a problem in inclusive design.
They are also “black box™ systems that cannot improve their
speech recognition from their environment or other percep-
tual clues. Since the grounding system does not have access
to the information used by these models, it can only rely on
their sometimes erroneous output.

In this work, we bridge the gap between learning
grounded language about the perceived world via text-based
language, and directly learning to recognize speech with-
out access to the physical context in which it occurs. We
contribute a detailed analysis of natural language grounding
from raw speech to robotic sensor data of everyday objects
using state-of-the-art speech representation models. We then
conduct an analysis of audio and speech qualities of indi-
vidual participants, in which we demonstrate that learning
directly from raw speech mitigates the performance differ-
ence between linguistic groups on a well-known grounded
language learning problem.

The primary contributions of this paper are twofold. First,
we demonstrate the feasibility of acquiring grounded lan-
guage directly from end-user speech using a relatively small
number of data points, without relying on intermediate tex-
tual representations. Second, we show that such learning im-
proves performance on users with accented speech as com-
pared to relying on automatic transcriptions.

The remainder of this paper is organized as follows. Af-
ter a discussion of related work, we describe our approach,
including the dataset (Kebe et al. 2021), learning method,
and different speech-based features tested, as well as the
object selection task we use to determine whether lan-
guage groundings have been learned successfully. We com-
pare the experimental results of learning from percepts and
raw speech directly, vs. the traditional transcription-first ap-
proach, and provide an analysis of both approaches when
learning from spoken language from different demograph-
ics present in the dataset.

Related Work

Grounded Language Acquisition from Text. In robotics, lan-
guage is grounded in real-world actions and percepts, whose
applications include following task instructions (Vanzo et al.
2020; Bastianelli et al. 2016; Shridhar, Mittal, and Hsu
2020), navigation instruction following, (Shah et al. 2018;
Zang et al. 2018), and learning groundings from human-



robot dialog (Thu et al. 2017; Thomason et al. 2020), among
others. While some of these approaches use text derived
from ASR, none use speech directly. The focus of this paper
is on learning language groundings directly from speech; we
demonstrate this work on the common grounding problem of
object retrieval (Nguyen et al. 2020; Hu et al. 2016).

In vision, grounded language typically refers to how lan-
guage refers to existing images. From image and video cap-
tioning (Kinghorn, Zhang, and Shao 2019; Wang et al. 2018;
Chen et al. 2019) to large-scale pre-training (Lu et al. 2019),
learning from vision-language pairs is an active field of re-
search. In this work, we use the manifold alignment ap-
proach of Nguyen et al. (2021), in which language and vi-
sion representations are projected into a shared manifold,
which is used to retrieve relevant objects given a natural
language description. The novelty of our work is not in the
triplet loss learning method for multi-modal alignment but
in the comparison of transcription-based versus raw speech
methods, and analysis of performance for end-users.

Spoken grounded language learning. While the major-
ity of existing grounded language learning is performed
over text sources (either typed or transcribed), there are
exceptions that demonstrate the importance of learning di-
rectly from speech. In early work, Roy (2003) presented
a grounded speech learner that segments words from con-
tinuous speech. Our problem is more complex, in that we
aim to ground full descriptions rather than words. The work
most closely related to our research explores using audio-
visual neural networks to learn semantic similarity between
single images and raw spoken utterances (Harwath et al.
2018). By contrast, we focus on multi-frame RGB-D per-
cepts gathered from a sensor, aiming to identify individual
objects rather than entire images. Our work is most similar
to that of Chrupata et al. (Chrupata 2019; Chrupata, Gelder-
loos, and Alishahi 2017) and Zhang et al. (2020). However,
the speech corpora in those works are collected by asking
speakers to read captions of images aloud. This may remove
grammatical constructs, disfluencies, and speech repair, ef-
fectively gating the complexities of speech through written
language. The dataset used in our work consists purely of
people describing objects.

We are not aware of previous work comparing grounding
from raw speech to the widely used transcription-first ap-
proach. Additionally, we show how to create a speech-based
grounding system based on complex perceptual data using
a comparatively small number of data points, which is con-
sistent with the requirements and available resources for im-
plementing on robotic systems. Compared to previous work,
we leverage depth information and pretrained speech rep-
resentation models to ground naturalistic spoken language
in a model which converges with fewer data pairs; Har-
wath et al. (2018) used 402,385 image-caption pairs and
Chrupata, Gelderloos, and Alishahi (2017) specifically men-
tion that the Flickr8K dataset of 40,000 image-caption pairs
is small for the speech task. Finally, we avoid the compu-
tational overhead of fine-tuning the model for specific do-
mains, which may change as the robot experiences new en-
vironments.

Language and Speech in Robotics. The role of language

in robotics is wide-ranging (Tellex et al. 2020), and the
role of speech, in particular, is starting to receive significant
attention (Marge et al. 2022). Natural language is widely
used in HRI tasks, for example, in dialogue with assistive
robots (Kulyukin 2006) or to facilitate human learning (Lee
et al. 2011; Pazylbekov et al. 2019; Scassellati et al. 2018;
Kose et al. 2015; Ramachandran et al. 2018). Speech-based
HRI, in particular, has been applied to a wide variety of
problems, such as emotion recognition (Fischer et al. 2019;
Williams et al. 2019), social robotics (Mollaret et al. 2016;
Al Moubayed et al. 2014), and speech recognition. Mead
and Matari¢ (2016) determine how a robot should position
itself for optimal speech and gesture recognition, comple-
menting work on how people expect a robot to react when
given instructions (Moolchandani, Hayes, and Marge 2018).
Speech is also an important source of insight into how differ-
ent groups interact with robots, for example, in assessing the
communications of dementia patients through speech fea-
tures such as pitch (Yamanaka, Takase, and Nakano 2016).

Speech Processing Bias. While much previous work re-
lies on ASR systems, these systems have known biases in
their ability to recognize speech without errors. For now,
most widely available ASR approaches depend on large-
scale data (Zhang and Glass 2009). These large datasets
are usually derived from fairly heterogeneous groups (Koe-
necke et al. 2020). Given this, we see gender (Alsharhan and
Ramsay 2020; Tatman 2017), race (Blodgett and O’ Connor
2017), disability status (Fok et al. 2018), and native lan-
guage/dialect (Hinsvark et al. 2021) disparities in suc-
cessful ASR, reducing technology accessibility for under-
represented groups. Contemporaneous work (Liu et al.
2021) introduced a dataset to measure ASR performance
across age, gender and skin type. Technical remediation
approaches remain scarce (Meyer et al. 2020; Tan et al.
2020), although there has been some work on multilingual
grounded language (Kery et al. 2019). To our knowledge, no
previous work in grounded language acquisition has exam-
ined the impact of these factors in speech.

Data and Embedding Representations

In this work, we discuss grounding language using vision
and depth percepts paired with either ASR-transcribed lan-
guage, or with raw speech inputs. In this section, we describe
the dataset and speech featurizations we consider.

Dataset

We use the GoLLD dataset (Kebe et al. 2021), which includes
207 unique objects from 47 object classes. Each object in the
dataset has on average 4 instances of RGB-D (image plus
depth) data from different angles. Color aligned with depth
images offer greater information on the objects properties
that are critical for downstream manipulation tasks com-
monly performed within robotics. Due to the lower resource
environment robots are deployed in, performing sensor fu-
sion enables rich multimodal object representations with less
data. The GoLD dataset contains a total of 16,500 raw sound
files (with transcriptions) from 552 distinct speakers. We
manually annotated speakers with seven different traits de-



scribing speaker and sound file characteristics (see the User
Trait-based Analysis section).

Perceptual Representations

In order to learn language from perceptual inputs, all modal-
ities (RGB-D, transcribed text, and speech) must be fea-
turized appropriately. In particular, because handling raw
speech as perceptual input for grounding is a novel task, we
experiment with multiple speech representation models. To
avoid overfitting on this relatively small dataset, we did not
fine-tune hyperparameters for feature extractions.

Visual Representations Visual features are extracted us-
ing ResNet152 pre-trained on ImageNet (He et al. 2016),
which achieves very strong results in image classification
and object detection tasks (as a result, our system depends
indirectly on labeled data by way of this pre-training). The
last fully connected layer is removed to obtain the 2048-
dimensional features used for classification. Both RGB and
depth are processed through this network, the latter by
colorizing depth images (Richards, Darvish, and Matuszek
2020). This yields two 2048-dimensional vectors, which are
concatenated to create a multimodal object representation.

Transcribed Text Representation Language features for
transcribed text are obtained using BERT, a self-supervised
bidirectional language model that achieves state-of-the-art
performance in multiple NLP tasks (Devlin et al. 2018).
BERT’s embeddings and linguistic performance make it use-
ful for clustering (Jawahar, Sagot, and Seddah 2019), mak-
ing BERT more appropriate for sentence-based language
grounding than the commonly used words-as-classifiers ap-
proaches (Schlangen, Zarriel3, and Kennington 2016). For
a given natural language description, we obtain a 3,072 di-
mensional vector by extracting the average representation
across the last four layers. We consider transcriptions ob-
tained from wav2vec 2.0 (Baevski et al. 2020) as it has been
shown to achieve near state-of-the-art performance (Panay-
otov et al. 2015). These transcriptions are also directly com-
parable with our speech-based methods.

Speech Representation We consider three different self-
supervised speech models, which have recently shown suc-
cess in phoneme and speech recognition (Ling et al. 2020;
Baevski, Schneider, and Auli 2020; Baevski et al. 2020).
The speech representations extracted from these models are
intended to encode semantic information directly captured
from raw speech; this is precisely the informational core
that language acquisition seeks to capture. We argue that
the process of mapping raw speech representations to dis-
crete transcriptions leads to a loss of information that may
be detrimental to the performance of the grounding model.
Therefore, we expect learning directly from the represen-
tations extracted from these models to reduce the effect of
speech recognition errors on human-robot communication.
We consider a state-of-the-art model speech model, wav2vec
2.0 (Baevski et al. 2020), and two other near state-of-the-art
models in vg-wav2vec (Baevski, Schneider, and Auli 2020)
and DeCoAR (Ling et al. 2020). We expect the performance
of these three models will provide insights into the progress

made and the overall direction of the field of acoustic repre-
sentation learning.

Baseline: Mel-frequency cepstral coefficients
(MFCCs) (Davis and Mermelstein 1980) are a naive
baseline, which are widely used and easy to implement.
MFCCs are inspired by the human auditory system and
are extracted via a Discrete Fourier Transform analysis.
They are frequently used in speech recognition systems,
providing an effective comparison to using such systems
directly. We use this baseline to evaluate how the highly
pre-trained speech representation models compare to a
simple speech feature extractor.

Model I: DeCoAR (Ling et al. 2020) is inspired by the
vector-based word representation ELMo (Peters et al. 2018).
In ELMo, word vectors are learned from a contextualized
bidirectional language model that is pre-trained on a large
text corpus to predict the next word given a context. Unlike
unidirectional language models, ELMo considers context
from both directions. DeCoAR is an LSTM-based model
that takes inspiration from ELMo’s bidirectionality to learn
deep contextualized acoustic representations, applying the
same idea to speech by predicting a given slice of sound
using past and future context through a backward and a for-
ward LSTM. The sound is represented as sequential filter-
bank features. Combining these features, DeCoAR attempts
to predict a given slice of sound by considering context
from K steps ahead and behind. We use existing pre-trained
weights for DeCoAR.!

Model 2: vg-wav2vec (Baevski, Schneider, and Auli
2020) is based on wav2vec, a word2vec (Mikolov et al.
2013) inspired convolutional network, pre-trained on a
context-prediction task to learn representations of audio
data. The model outputs a series of 512-dimensional vec-
tors representing 30ms of sound data with a stride of 10ms.
The vg-wav2vec approach uses a two-step process: first,
wav2vec is remodeled through quantization to output dis-
crete units of speech, which are then fed through a BERT
model pre-trained on speech signals to output final speech
representations. This process results in two pre-trained mod-
els (vg-wav2vec and BERT). We use the authors’ pre-trained
weights for both models.?

Model 3: wav2vec 2.0 (Baevski et al. 2020) builds upon
vg-wav2vec (Baevski, Schneider, and Auli 2020) in two key
ways. First, the output of a wav2vec-like feature encoder
is fed into a transformer. Second, quantization is used to
discretize the feature extractor’s output. However, the con-
tinuous representation produced by the feature extractor is
fed into the transformer and the quantized representation is
only used as target output during pre-training. Accordingly,
the transformer learns over continuous representations rather
than the discrete ones used in vg-wav2vec. The objective
function is similar to BERT’s (Devlin et al. 2018) masked
language modeling. Similarly to vg-wav2vec, we use pre-
trained weights.? The pre-trained model was also fine-tuned
for speech recognition using Connectionist Temporal Clas-
sification (CTC) (Graves et al. 2006). The same process is
used to extract the transcriptions mentioned earlier in the

! github.com/awslabs/speech-representations
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Figure 1: Our learning approach is to use manifold alignment in an attempt to capture a manifold between speech and visual
perception. This approach is applied to grounded language acquisition by projecting visual and language representations into
a shared latent space, where projections from both domains are closer to other projections of the same class. For example, the
projection of the language utterance “I am seeing a white mug” should be close to the projection of the visual percepts of a

white mug.

transcribed text representation section.

Approach

We approach the problem of learning groundings from un-
constrained speech in an unconstrained environment. Our
primary visual percepts are RGB-D point clouds obtained
from a mounted Kinect 3. We encode RGB and depth using a
sensor fusion convolution neural network for both RGB and
depth (Eitel et al. 2015; Richards, Darvish, and Matuszek
2020) and experiment with learning from various pre-trained
speech representation models, as well as from transcriptions.
Our learning approach is to use manifold alignment with
triplet loss (Nguyen et al. 2021) in an attempt to capture a
manifold between speech and visual perception. This man-
ifold represents the grounding between query language and
objects in a selection task.

Learning

We use the manifold alignment approach of Nguyen et al.
(2021). Given two heterogeneous representations, the goal
is to learn mappings to a shared latent space. This ap-
proach is applied to grounded language acquisition by pro-
jecting visual and language representations into a shared
high-dimensional latent space, in which the projection of
a language utterance that describes an object o of class ¢
should be ‘close’ to the projections of other language utter-
ances and visual percepts belonging to o, and to a broader
degree other objects of class c, as seen in Fig. 1.

Triplet Loss 1is a popular geometric approach that has
shown success in learning metric embeddings (Schroff,
Kalenichenko, and Philbin 2015; Hermans, Beyer, and Leibe
2017; Dong and Shen 2018). Learning uses triplets of the

2 github.com/pytorch/fairseq/tree/master/examples/wav2vec

form (a, p,n), where a is an ‘anchor’ point, p is a positive
instance of the same class as the anchor (e.g., mug), and n
is a negative instance from a different class (e.g., apple). For
each triplet, the embedding function f is learned so that the
distance between a and n is maximized while the distance
between a and p is minimized. This is achieved via the fol-
lowing loss function:

L= max(d(f(a, ma)a f(p7 mp)) - d(f(a’ ma)’
f(n,mn)) +a,0)

where d is a distance metric, m,, is the modality of point z,
and « is a margin imposed between positive and negative
instances. This approach lends itself well to a human learn-
ing scenario, in which a person could provide positive and
negative examples of a given description or object.

Due to the heterogeneous nature of our problem, the em-
bedding function f is the encoder that projects instances of
a given modality into the shared manifold. We implement
a different encoder for each modality as the input size and
type are different. Each member of the triplet (a,p,n) can
be selected from the vision or language domain. The domain
is randomly selected. We use cosine distance as the distance
metric and a margin o = 0.4.

Training. We split our 16,500 pairs of RGB-D data and
descriptions into training, validation and testing sets of re-
spectively 13,040; 1,620; and 1,840 instances. We train
alignment models with five different language representa-
tions: BERT embeddings for wav2vec 2.0 transcriptions in
addition to MFCCs, vg-wav2vec, wav2vec 2.0 and DeCoAR
embeddings for raw speech. All five are aligned with the vi-
sual features. All pre-trained feature extraction models are
fixed during training. Only alignment models are optimized.
The default architecture of our alignment model is com-
prised of language and vision sub-networks that both con-
sist of an input layer, two hidden layers with rectified linear
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units (ReLu) as activation functions and an output layer to
obtain a final 1024 dimensional projection into the shared
manifold. We use this architecture for the BERT, wav2vec
2.0, vg-wav2vec and DeCoAR embeddings.

Because of the low-dimensional nature of MFCCs, we
also consider an LSTM-based language network. Instead of
mean pooling, we input sequential MFCCs into an LSTM
with 64 dimensional hidden states and concatenate the last
32 hidden states together resulting in a 2048 dimensional
vector, which is input to a fully connected layer to obtain
the final projection. All five methods are trained for a total
of 300 epochs using Adam (Kingma and Ba 2015) with a
learning rate of 0.001 that we reduce by a factor of 10 after
each hundred epochs.

User Trait-based Analysis

One of the goals of speech-based and other machine learning
technologies is that they should be accessible, fair, and unbi-
ased towards various demographics of users. In the follow-
ing section, we outline how we analyze differences in out-
comes between transcription-based text versus raw speech
approaches for a variety of speaker traits.

Individual User Analysis For embodied learning sys-
tems to be deployed effectively, they must be able to learn
from individual users with a variety of speaker characteris-
tics. To analyze the ability of the system to learn from indi-
viduals with a variety of speaker traits, we label speakers in
the GoLD dataset based on qualities in which speaker vari-
ance is known to affect the success of speech recognition
models, e.g., accented vs. unaccented speech. We then com-
pare the results obtained when using wav2vec 2.0 speech
representations and wav2vec 2.0 transcriptions.

In the dataset, we are able to analyze individual users in
the context of providing spoken learning examples. We de-
fine a user as a unique participant in the Amazon Mechani-
cal Turk (AMT) task. For testing the effectiveness of learn-
ing from individuals, we restrict this first evaluation to users
who provide sufficient exemplars (described in the Speaker
Traits Study section). Each user contributed a variety of ex-
amples, each with idiosyncrasies and unique perceptions of
the description task. This offers a diverse set of user inter-
actions. We examine the qualities of the vocal samples by
randomly sampling five speech events per user and anno-
tating speakers based on perceived gender (man, woman,
or undetermined),’ the presence of a non-American-English
accent, creak (a raspy vocal sound), hoarseness (a strained
vocal sound), muffled-ness (obstruction in vocal event), vol-
ume (a range from 1-4, with 2 being average volume), and
level of background noise (1-4, with 1 being average and
4 being high). Some of these traits may vary for the same
user from one example to the next. With that in mind, the
annotations for those traits were done to reflect the majority
case and may not apply to all examples provided by the user.
We then evaluate by splitting each individual user’s data into

*Gender and sex are complex constructs. We asked annotators to
choose the category that seemed to ‘best describe’ the speaker,
but acknowledge the limitations of this approach.

training and test splits and testing the learning system’s abil-
ity to learn successfully from individual speakers.

User-Group Analysis To better understand the extent that
user-specific traits affect the performance of the learned
model, in our second evaluation, we train over groups of
multiple users with shared characteristics. In this analysis,
we split based on perceived gender, accent, muffled-ness,
background noise, and volume. The accessibility hurdles
faced by members of minority populations in learning sys-
tems are well documented (Hinsvark et al. 2021; Tatman
2017; Koenecke et al. 2020; Alsharhan and Ramsay 2020).
These hurdles can be attributed in part to lack of representa-
tion of minority groups in large datasets, but other factors
also come into play, especially with smaller datasets and
feature-engineered methods. For each trait, we split the data
such that each split has the same amount of training and test-
ing data.

Experimental Results and Discussion

To evaluate our trained models, we simulate object retrieval
tasks with objects found in a sensed environment. The sys-
tem is given a description and is responsible for selecting the
correct objects from a subset of objects in GoLD. In a real-
world setting, descriptions will often match multiple objects
in an environment; in the dataset, natural language utter-
ances describe the image they are associated with, but they
are also likely to describe other images of the same object or
different objects of the same class. One of the main advan-
tages of our manifold alignment approach is the possibility
of retrieving multiple visual embeddings that are within a
threshold of a language embedding in the shared manifold.
While the model should be able to select the target object
given a description, it should also be able to separate neg-
ative and positive instances using this threshold. In order
to evaluate the model against these two goals, we consider
Mean Reciprocal Rank (MRR)-based and threshold-based
evaluation tasks.

Learning Directly from Speech Improves
Performance

Downstream Object Retrieval We simulate a robotic ob-
ject retrieval task in which the goal is to retrieve the correct
target vision instance 7 for a given language utterance. The
system has [V chances to pick an object given a description.
The metric Mean Reciprocal Rank (MRR) measures how
many tries are necessary for the correct object to be selected.
We evaluate on the average of the reciprocal rank i across

all testing instances - S| ++-- The reciprocal rank is the

inverse of the rank at which the target object was retrieved.
The first retrieval setting is inspired by the triplets used
for training. The MRR is calculated from a set of 3 objects:
the target object, an object from the same class (but different
instance) and an object from a different class. A real world
example of this would be a robot picking between a green
apple, a red apple, and an orange when a description of a
green apple is given. We will refer to the MRR performance
from this setting as Triplet MRR. A limitation of this metric



Triplet MRR _ Subset MRR FI
wav2vec 2.0 Speech  0.85 (£0.002)  0.86 (0.002) 0.83 (£0.003)
wav2vec 2.0 Trans.  0.83 (£0.002) 0.83 (£0.002)  0.79 (0.003)

vg-wavdvec  0.82(F0.004) T 0.78(£0.004) 076 (£0.004)
DeCoAR 0.80 (£0.003)  0.72 (£0.004)  0.71 (+0.003)
MFCC 0.69 (£0.004)  0.49 (£0.01)  0.67 (£0)

"Random Baseline 0.6 046 T —

Table 1: MRR & F1 Results (higher is better) with standard deviation over 5 runs. In addition to the queried object, the triplet
setting includes an object from the same class and an object from a different class. The subset setting includes 4 objects from
other classes. Our wav2vec 2.0 Speech approach achieves the strongest performance.
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Figure 2: We compare the ROC curves of each model on the
validation set. The gray area around each curve represents
the standard deviation of the model’s performance over 5
runs. Higher AUC and closeness of the ROC curve to the
top left corner mean that the model is better at discriminat-
ing between positive and negative examples of a given lan-
guage description. The performance of the MFCC approach
approximates that of a model with no skill.

is that in cases of multiple positive examples (e.g., two green
apples), the system is over-penalized. To counter the effects
of this limitation, we consider a second setting that involves
5 objects: the target and 4 randomly selected objects from
different classes. The MRR performance from this setting is
referred to as Subset MRR.

We evaluate all 5 methods on these two object retrieval
tasks and report the results in Table 1. In these results,
wave2vec 2.0 represents the state-of-the-art in speech fea-
turizations and outperforms other approaches. As expected,
learning a grounded language model from wav2vec 2.0
speech approach outperforms text transcriptions using the
same featurizations. This confirms the hypothesis that the
information lost in the transcription process negatively af-
fects the performance of the grounding model. We note
that adding another model for transcriptions to embeddings
causes more latency between speech act and robot response.

We find our baseline featurization, an MFCC, performs no
better than chance; DeCoAR and the vg-wav2vec meth-
ods both achieve reliable results but are outperformed by
wav2vec 2.0.

Classification by threshold The most intuitive way to de-
ploy our alignment models is to define a fixed threshold ¢
such that any object within radius ¢ of a language utterance
in the learned manifold is predicted to be described by that
utterance. This can be defined as a binary classification task
where an object falling within a radius ¢ of a language ut-
terance is a positive prediction. We use our held-out data to
simulate this task by considering every visual percept of the
same class as a language description to be a positive instance
and randomly sampling the same number of percepts from
other classes to be negative instances. The F1 measure of
this task is reported, as we value both the model’s precision
and its recall.

A key aspect of this problem is to determine the value
of t. We tune the threshold ¢ for every model on the vali-
dation set. We divide the cosine distance by 2 to normalize
the values between 0 and 1. We find that a threshold of 0.4
achieves peak performance for the wav2vec 2.0 approaches.
A threshold of 0.45 achieves peak performance for the vg-
wav2vec and DeCoAR approaches. The MFCC approach
achieves peak performance at a threshold of 1, which re-
sults in the model only making true predictions, since every
instance—positive or negative—will be within a radius of 1
of the description. This indicates that the MFCC approach
performs poorly regardless of threshold. The ROC curves in
Fig. 2 confirm this assessment and show that all approaches
except the MFCC approach learn to discriminate between
positive and negative examples of language descriptions.

We apply the obtained thresholds to the testing set and
report the results in table 1. Figure 3 shows the evolu-
tion of the F1 scores of the 5 models on the validation
set over the course of training. Again, our wav2vec 2.0
Speech approach performed better than transcriptions, and
the DeCoAR and vg-wav2vec methods achieve reasonable
F1 scores of 0.71 and 0.76. These results further support
the conclusions reached in the object retrieval task, confirm-
ing that grounded language acquisition from raw speech can
lead to tangible results that surpass those of the traditional
“transcription-first” method.
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Figure 3: We compare the convergence of F1 performance
on the validation set as a function of training time (measured
by training epochs). Each model’s performance is averaged
over 5 runs. Notice that the wav2vec 2.0 speech approach
resulted in the best performance, followed by the transcrip-
tions from wav2vec 2.0, while DeCoAR converges slightly
faster than vg-wav2vec. The slight bumps at epoch 100 and
200 are due to a decrease in learning rate. MFCCs consis-
tently underperformed.

Speaker Traits Study

Preprocessing For each user, we train both a language
alignment model and a vision alignment model with the
manifold alignment learning objective described above. We
exclude users from our dataset who did not provide at least 2
examples for at least 5 object classes. We further exclude the
remaining users’ examples from the object classes for which
they have provided less than 2 examples. These constraints
both guarantee that we include users who have provided
sufficient examples for meaningful evaluation, and ensure
there are 5 object classes for the subset MRR evaluation.
This leaves us with 87 users sub-selected from the complete
dataset. These speakers provide an average count of 61.5 ex-
amples each, with a median of 35.

On average, we trained on 40.7 examples. Even though
we are taking advantage of domain encoding for speech, lan-
guage, and vision, this small amount of training data per
user is still a challenge. On average, we had 20.8 testing
examples per user. We take this into account when analyz-
ing the end performance of the model. Of the 87 speakers,
50.5% had accents. For gender, 39.1% were annotated as
men, 57.4% as women, and 3.5% as undetermined. 24.1% of
the users had creak, 4.6% had hoarseness, 11.5% had high
levels of muffled-ness. 2.3% of users had low volume, 82.8%
had medium volume, and 14.9% had high volume. 90.8%
of users had low background noise and 9.2% of users had
high background noise. We heard multiple kinds of back-
ground noise in the samples, including alarms, children, and
fans. These noises contribute to real-world situation repre-
sentation in the data. Due to the low amount of users with

1 T

I Speech
I I . .
05 L Transcription |
0 T ™ - -y n
—0.5 8
\ \ \ \ \ \ \

Ae® ] B xS
,6\? (\\ é@\ NS A (‘\e $0
o e e

Figure 4: We compare the correlation between Subset MRR
performance and different user qualities for the wav2vec2.0
speech and transcription methods. Accent is negatively cor-
related with performance in both, but the correlation is
stronger when using transcriptions. The difference in per-
formance is less pronounced for other speaker traits.

hoarse voices, we exclude hoarseness from the individual
user study.

Individual User-based Model Performance For each
user, we train two models using the transcriptions and
speech embeddings from the wav2vec 2.0 model. We look
at the Pearson correlation coefficient (PCC) between each
of the qualities we labeled and MRR scores. This analysis
allows us to see which factors cause variation in both meth-
ods and which groups are most affected by the loss of in-
formation that occurs during transcription. The correlation
results for the subset MRR are shown in Fig. 4. The results
are mostly similar across both MRR metrics.

As expected, we find that for both methods, performance
is negatively correlated with accent, creak, and background
noise and positively correlated with volume and the num-
ber of examples provided by the user. Background noise has
a slight decreased correlation with the speech method com-
pared to the correlation with the transcription method. This
may be a benefit of not strictly mapping to a language token
but rather a discretized high-dimensional value.

A key takeaway from the experiment is the significant
gap between the correlation of the two models’ performance
with accented language, in which language models learned
directly from accented speech are less negatively affected
than those learned from transcriptions of that speech. In
terms of the overall effects, the difference in subset MRR be-
tween the accented speakers and the non-accented ones for
the transcription-first approach is triple the difference of the
raw speech approach (approximately 6% vs 2%). This gap
suggests that accented users are the most affected by the in-
formation loss of the transcription process. We expected that
the more noisy nature of the speech representations provided
by the raw speech method would help the learner in alleviat-
ing bias. The less negative correlation with accent supports
this claim.



Transcriptions Speech
Size  Subset Triplet Subset Triplet
non-accent 8191 0.82 0.85 0.84 0.85

accent 8191 0.92 0.89 0.93 0.90
non-creak 4932 0.83 0.85 0.85 0.85
creak 4932 0.85 0.86 0.87 0.87

low volume 350 0.62 0.75 0.55 0.73
med. volume 350 0.64 0.77 0.57 0.72
high volume 350 0.66 0.78 0.58 0.74

men 7897 0.84 0.85 0.85 0.86
women 7897 0.89 0.87 0.91 0.89

low backg. 1352 0.74 0.81 0.68 0.79
high backg. 1352 0.73 0.81 0.68 0.79

low muffl. 1610 0.74 0.81 0.72 0.80
high muffl. 1610 0.73 0.80 0.70 0.79

Table 2: MRR scores for User Group-splits with wav2vec
2.0 transcriptions and speech methods. Higher is better. For
both models, performance increases as volume goes from
low to high at each tier. However, there is no decrease in
performance for accented users.

Group-based Model Performance Finally, we split
based on groups of users. We include workers who were ex-
cluded from the individual-user study in these experiments,
as aggregating the user data allows for proper training and
test splits. Data is split between accented and unaccented
users, users with creak and without creak, perceived men
and women, low (1), medium (2,3), and high volume (4),
low (1,2) and high (3,4) background noise, and low (1,2) and
high (3) muffled-ness. For each trait, we control for train-
ing and testing examples by splitting the data into equally
sized groups with the same number of training and testing
examples. As with the individual-user study, we ensure that,
for each group, the model is tested on object classes seen in
training.

We trained and tested the wav2vec 2.0 speech and tran-
scriptions methods on these splits. We report results in ta-
ble 2. For the volume splits, we saw a steady increase from
low to high at each tier. For both models, the decrease in per-
formance for accented users noticed in the individual-user
study is absent. We capture the performance through statis-
tics that utilize linear relationships to explain causes within
our individual-user study. We see that each participant has
unique combinations of analyzed and non-analyzed charac-
teristics play a factor on each axis but when grouping, the
variance is addressed. We see this analysis as a critical step
for further investigations into analysis and technical meth-
ods to support the study of bias within individual user un-
derstanding.

Conclusion

We have shown that it is both possible and effective to di-
rectly learn natural language groundings from raw speech
data to visual percepts, without having to rely on the inter-
mediate textual representations of prior work. Our results

demonstrate that direct grounding of speech to vision can
minimize information loss and enable more reliable human-
agent communication. Our investigation into direct ground-
ing of speech includes a user study that identifies speak-
er/audio traits that historically affect speech recognition. We
show that accented users are most affected by this informa-
tion loss; direct grounding to raw speech has the potential
benefit of reducing systems performance bias toward these
and potentially other populations of users. While identifying
and assigning these traits is preliminary, these initial results
are relevant to bias and effectiveness in deployed, real-world
systems. In future work, we intend to resume demonstrating
our results on a physical platform, when that once again be-
comes feasible.
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