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Abstract. Simulation provides vast benefits for the field of robotics and
Human-Robot Interaction (HRI). This study investigates how sensor ef-
fects seen in the real domain can be modeled in simulation and what role
they play in effective Sim2Real domain transfer for learned perception
models. The study considers introducing naive noise approaches such
as additive Gaussian and salt and pepper noise as well as data-driven
sensor effects models into simulation for representing Microsoft Kinect
sensor capabilities and phenomena seen on real world systems. This study
quantifies the benefit of multiple approaches to modeling sensor effects
in simulation for Sim2Real domain transfer by their object classification
improvements in the real domain. User studies are conducted to address
hypotheses by training grounded language models in each of the sensor
effects modeling cases and evaluated on the robot’s interaction capabil-
ities in the real domain. In addition to grounded language performance
metrics, user study evaluation includes surveys on the human partici-
pant’s assessment of the robot’s capabilities in the real domain. Results
from this pilot study show benefits to modeling sensor noise in simula-
tion for Sim2Real domain transfer. This study also begins to explore the
effects that such models have on human-robot interactions.
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1 Introduction

The field of robotics continues to benefit from advances in machine learning
to better understand the world they operate in. These data-driven approaches
are showing promising results for developing effective robot control policies as
well as machine perception. However, machine learning approaches require large
amounts of data to train generalized models that represent their operational en-
vironment. The best-performing machine learning models benefit from massive
databases of well-curated data. These resources are typically not widely avail-
able and protected by corporate intellectual property or licensing agreements.
Representative datasets in the robotics domain are especially difficult to come
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by. Due to demanding cost, time, operator expertise, and the number of mov-
ing parts required to conduct a robotics experiment, most datasets are sparse,
limiting machine learning approaches. This becomes increasingly difficult for the
field of Human-Robot Interaction (HRI).

Introducing humans into experiments requires additional overhead time and
can be difficult to find schedule and coordinate. To address these challenges,
many researchers use simulation to train their robots. In simulation, experi-
ments are less expensive, require less setup and tear-down, can be run faster
than real time, do not experience mechanical failures, and can be bound to iso-
lated experiments for improved reproducibility. Simulation experiments are more
accessible and carry less risk of robot failure which may lead to the destruction of
property and persons. It provides significant benefits for the field of robotics and
Human-Robot Interaction (HRI). With the ultimate goal of learning perception
models from the simulation that can successfully be deployed on real robots,
the Sim2Real domain transfer problem takes advantage of these benefits. The
simulation also provides a more efficient process for data collection. Experiments
can be run in parallel, faster than real-time, and require less effort to assemble
and disassemble. Some human populations are less at risk of interacting with
research robots in simulation compared to the real world. This became espe-
cially true during the COVID-19 pandemic stay-at-home orders that prevented
subjects from physically entering research labs.

Even when working in simulation, robotics researchers are pursuing the end
goal of enabling robots to successfully perform tasks in the real world. How-
ever, there are significant drawbacks to simulation as well, and directly applying
trained models in simulation to embodied robots performing in the real world
is showing less than desired results. The Sim2Real domain transfer problem is
driven by simulation missing detailed complexities of the real world. This chal-
lenge of domain adaptation has led many researchers to leverage advances in
computer graphics to make simulated scenes more photo-realistic. Researchers
have also improved domain transfer by simulating realistic sensor effects ex-
perienced in the physical world. Some approaches investigate signal noise and
well-characterized physics models of sensor effects, while others resort to data-
driven approaches that collect large amounts of measurements from real-world
sensors and generate learned sensor models for mapping clean simulation data
to data that represents learned characteristics in real measurements.

The simulation environment being used for our work is Robot Interaction in
Virtual Reality (RIVR) with a Clearpath Robotics Husky UGV using a Microsoft
Kinect as the primary sensor [5]. Each method is applied in simulation and com-
pared using them as training data for an object classifier, along with two baseline
cases. The first baseline case is trained in the real domain as an expected upper
bound best case and the second is trained in simulation without sensor effects
being modeled as an expected lower bound worst case. The expectation is that by
modeling these sensor effects in simulation, object classification performance in
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the real domain will improve compared to the lower bound. This paper presents
a comparison of evaluation metrics across three differing approaches for model-
ing sensor effects for improved Sim2Real domain transfer. The three approaches
considered are 1) statistical signal noise approaches, 2) physics-informed sensor
effects models specific to each modality, and 3) data-driven models for adding
sensor effects that are learned from real-world measurements. Evaluation metrics
are compared for performance on a grounded-language task using the Grounded
Language Dataset (GoLD) [6]. GoLD contains measurements of common house-
hold objects using a Kinect sensor that measures three optical modalities: RGB
image, depth image, and raw point clouds. GoLD also includes object-associated
descriptions in multiple formats: text, speech (audio), and speech transcriptions.
The Kinect sensor is used to generate this data and measurements are collected
in a laboratory setting. Since GOLD contains only real-world measurements of
objects and their associated language descriptions, this work will also collect
simulated sensor data for each implemented sensor effects method applied to
a virtual Kinect sensor and conduct human trials for language descriptions of
simulated objects.

2 Related Works

Since the Microsoft Kinect is a popular commercial-off-the-shelf sensor used by
robotics researchers, many investigations have been conducted to understand
real-world sensor effects experienced by this specific device. Khoshelham et al.
investigate Kinect sensor quality, discussing the calibration process and analyz-
ing sensor resolution and quality [7]. They construct a mathematical model of
depth measurements and present a theoretical error analysis to provide insight
into how sensor accuracy is influenced by the effects it is exposed to. Since in-
ternal operations of the sensor are protected by the manufacturer, these studies
provide deeper insight into sensor design. Researchers have also completed an in-
vestigation toward understanding the Kinect’s internal workings by conducting
error analysis and building a representative model from those observations. A few
major works also consider physical phenomena in sensor modeling in a different
environment. Farrell et al. develop MATLAB sensor models that specify sensor
properties and successfully predict sensor performance in natural scenes with
high dynamic range or low light levels, capturing spectral sensitivity and elec-
trical properties including dark current, read noise, dark signal non-uniformity,
and photoreceptor non-uniformity estimated from a set of calibration measure-
ments [4]. However, Konnik et al. investigate training data augmentation for
CCD and CMOS sensors by closely modeling physical phenomena experienced
by these sensors including voltage-to-voltage, voltage-to-electrons, and analog-
to-digital converter non-linearities [8].

Our variant of the Husky robot uses the Kinect as its primary sensor. Re-
search to understand the Kinect specifically greatly benefits the development
of the RIVR simulation models of this sensor package [5]. Few studies high-
light interesting insights for building geometric models of sensor performance.
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Smisek et al. investigate Kinect performance errors, diving deeper into Time
Of Flight (3D-TOF) [13]. They studied sensor performance, highlighting what
sort of degradation can be applied for a more realistic representation in sim-
ulation. Clouet et al. propose a novel geometric representation of sensor noise
propagation from raw acquisition through spectral reconstruction and color cor-
rection [3]. They focus on characterizing the existing noise of RGB and multi-
spectral images to effectively mitigate sensor noise and develop more accurate
sensor noise models. Nguyen et al. build on the previously quantified Kinect ax-
ial noise distributions as a function of distance to the observed surface [11]. They
expand this work by quantifying a novel Kinect noise model having both axial
and lateral components. The new model is a statistical, data-driven approach
that derives parametric models as a function of both distance and angle to the
observed surface.

Learning from effects seen specifically in our operating environment will likely
lead to improved Sim2Real domain transfer. Many previous studies conducted
have shown value in Sim2Real domain transfer, as well as tracking, filtering,
and estimation. Sweeney et al. investigate a data-driven approach leveraging
a convolutional neural network (CNN) to predict which pixels of a simulated
noise-free depth image will be no-depth-return pixels [14]. They use noise-free
simulated depth images and noisy real-world depth image pairs as labeled ex-
amples to train the network for adding no-depth-return pixels to simulated im-
ages. They focus on no-depth-return pixels because they believe that this is the
most disruptive sensor effect experienced in the depth modality. Some have in-
vestigated data-driven approaches to generate realistic simulated sensor models.
Other approaches considered implementing both commonly assumed image noise
filters and high-fidelity physics models of sensor phenomena. Liu et al. develop
a method for inferring an image noise level function from an image [10]. Image
noise is not simply additive, but a function of lighting conditions, object colors,
and object textures. Their noise level function is built from piece-wise smooth
priors, likelihood models, and Bayesian MAP inference. This work will help in-
form possible methods for more realistic simulated images calibrated with a real
image as a low overhead one-shot method.

Of the sensor modalities used by our Husky robot, depth is particularly
subject to effects disrupting information provided by the sensor. This makes
work focusing on depth especially important to our work. Landau et al. focus
on the contribution of IR sensor noise in estimating depth [9]. They propose
a high-fidelity Kinect IR and depth image predictor and their work develops a
simulator that models the physics of the transmitter/receiver system, unique IR
dot pattern, disparity/depth processing technology, random intensity speckle,
and IR noise in the detectors. Carlson et al. propose an automated data aug-
mentation pipeline to vary chromatic aberration, blur, exposure, noise, and color
temperature sensor effects for RGB images [1]. They showed that training on
synthetic data generalizes to improved performance in the real domain for ob-
ject detection and segmentation tasks [2]. We will be leveraging each of these
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advances to benefit Sim2Real domain transfer as we implement our variations
of these methods into the RIVR simulation and use prior work as a baseline for
our results [5].

3 Approach

To investigate each of the three approaches and compare their performance for
Sim2Real domain transfer, a simulated dataset with associated sensor effects, a
real-world dataset, and a learning task are developed. The Human-Robot Inter-
action in Virtual Reality (RIVR) Simulation will be used to simulate realistic
environments that the robot can learn in [5]. A sensor effects ROS package was
developed to manage multiple implementations of sensor effects models in sim-
ulation. An extension of GoLD will be used as the real-world dataset [6]. The
learning task will be a grounded language task in which robots learn to asso-
ciate human language descriptions of objects in the simulated scene with per-
ceived measurements from the Kinect sensor. Lastly, performance metrics, such
as Mean Reciprocal Rank (MRR) and the accuracy of each model trained using
the three different sensor effects methods in the simulation are evaluated on the
real-world dataset to characterize how much each approach improves Sim2Real
domain transfer.

3.1 Simulator

The RIVR simulation is a 3-D environment built in the Unity game development
engine that is compatible with virtual reality headsets. Intending to provide
robots with a diverse set of virtual environments in which they can interact,
RIVR currently provides three different scenes: an apartment, a hospital room,
and a maker space. The Unity simulation is built with the ROS URDF plugin for
adding models of physical robots to the scene. This simulation is used to simulate
realistic environments in which the robot and a human participant using

Fig. 1: RIVR Simulation Apartment Scene
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a VR headset can interact. ROS bag files are used to collect all sensor data from
an HRI training session, as described in the following user studies section. An
example of the apartment scene is shown in Fig. 1.

3.2 Sensor Effects Modeling

A ROS sensor effects node is built into the simulation system that reads the
raw simulation sensor measurements, absent of realistic sensor effects, and filters
them through the sensor effects node as shown in Fig. 2. The output is published
on a new topic that introduces realistic sensor effects into the measurements. The
robot subscribes to these new topics for realistic perception in simulation. This
approach reduces the effort required to introduce new sensor effects to the real-
time raw measurements during an experiment or apply them to recorded data
post-experiment.

Fig. 2: Sensor Effects Node Dataflow

Naive Noise Models We investigate three primary naive noise model approaches.
The first is additive Gaussian noise. This approach adds Gaussian noise to the
image-based user-defined mean and variance parameters. Further work should
consider a formal approach to selecting the best mean and variance in this ap-
proach. For this experiment, we chose a zero mean and variance of 10. The second
naive noise approach is random salt and pepper noise. This approach randomly
adds white and black pixels to the image for a user-defined percentage of pixels
and a ratio of white and black pixels, salt-to-pepper ratio. Further work should
consider a formal approach to selecting pixel percentage and salt to pepper ratio
in this approach. For this experiment, we chose 10 percent of pixels and a uni-
form salt-to-pepper ratio of 0.5. The last naive noise approach is random pixel
dropout. This approach is the same as the salt and pepper noise approach with a
salt vs pepper ratio of zero adding only pepper noise to the image. A comparison
of each approach can be seen in Fig. 3 and Fig. 4 applied to color and depth
respectively.
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(a) Original (b) Additive Gaus-
sian Noise

(c) Salt and Pepper
Noise

(d) Dropout Noise

Fig. 3: Naive Noise on Color Images

(a) Original (b) Additive Gaus-
sian Noise

(c) Salt and Pepper
Noise

(d) Dropout Noise

Fig. 4: Naive Noise on Depth Images

Data Driven Models Data-driven models for sensor effects are a way to use the
real dataset for training a model to accurately replicate the desired real images
in simulation. This paper compares two data-driven approaches presented in re-
cent publications. The first approach addresses accurately modeling monochrome
depth images. In this data-driven approach Sweeney et al. leverage a convolu-
tional neural network (CNN) to predict which pixels of a simulated noise-free
depth image will be no-depth-return pixels [14]. They use noise-free simulated
depth images and noisy real-world depth image pairs as labeled examples to
train the network for adding no-depth-return pixels to the simulated images.
They focus on no-depth-return pixels because they believe that this is the most
disruptive sensor effect experienced in the depth modality. The second approach
addresses accurately modeling sensor effects in color images. Carlson et al. ad-
dress this problem from a desire to develop more realistic data augmentation for
training autonomous cars in video games that are capable of transferring what
they learned to the real world [1]. They propose an automated data augmen-
tation pipeline to vary chromatic aberration, blur, exposure, noise, and color
temperature sensor effects for RGB images. Such sensor effects are well-known
characteristics of operational sensors. This work learns to tune these features for
an accurate representation of the target sensor operating in the real world. Carl-
son et al. also develop a process that uses a generative augmentation network to
learn a transfer function for sensor effects observed in real domain images trans-
ferred to synthetic domain images. They show that training on synthetic data
generalizes to improved performance in the real domain for object detection and
segmentation tasks [2]. Each of these approaches is implemented for comparison.
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Trained models provided by the authors are fine-tuned on GoLD data with a
portion of data held out for testing.

3.3 Dataset

A training dataset is constructed from simulated measurements of Unity assets
that represent household objects in GoLD. Each of the previously described
sensor effects modeling approaches is also added to the simulation dataset. An
extended version of GoLD is also used as a training dataset. This dataset consists
of five perception modalities for grounded language learning on a variety of
household objects: RGB image, depth image, typed text descriptions, spoken
descriptions, and Google ASR. Since this dataset was collected with a different
sensor than is modeled in RIVR, GoLD is extended by adding RGB and depth
images for a subset of the same household objects as captured on the Husky
Kinect sensor in the real world. A subset of the real dataset will be held out for
testing learned models.

3.4 Grounded Language Learning

One element of learning physically embodied, or grounded, language is associat-
ing natural language words with perceptual inputs, such as imagery. A grounded
language learning task is used to evaluate transfer learning performance afforded
by each sensor effects implementation. Each of the visual perception modalities in
the training set: real, raw simulation, and simulation with sensor effects models,
are used in conjunction with language descriptions of household objects to train
a grounded language model. This grounded language model is then deployed
on the Husky robot in the real world. Users interact with the robot by asking
it to hand them objects that they see on the table. The models’ performance
will be evaluated during this interaction using Mean Reciprocal Rank (MRR)
and accuracy. This process is visualized in Fig. 5. RIVR takes the raw Unity
rendering for both color and depth and adds the desired sensor effects models
with the sensor effects ROS node, which publishes simulation data augmented
with sensor effects. This data is then used to train the grounded language model
by Richards et al. [12]. GoLD is used for testing the learned model during the
training process. The learned model is then deployed on the Husky robot for a
live HRI study where the user speaks to the robot, that speech is transcribed to
text, and the three modalities of speech transcription, RGB image, and depth
image are all provided to the grounded language model. The robot will finally
display a cropped image of the object that it has selected to be the most aligned
with the spoken language. The separation in performance across sensor effects
implementations provides insight into understanding the extent to which certain
sensor effects modeling improves Sim2Real domain transfer.
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Fig. 5: Grounded Language Learning with Sensor Effects

3.5 User Studies

The participants for this user study were 15 computer science and engineering
students. Each of the participants was asked to sign a self-declaration form for
any COVID-19 symptoms, including their travel during the last 14 days, or if
they were in contact with a COVID-19 positive patient. The participants also
directly interacted with the Husky Robot, which is equipped with a Kinect
camera and one Kinova Jaco arm. The robot was operating with two different
models, one trained on raw simulation data and another model trained with
sensor effects. Before starting the experiment, each participant was asked to fill
out a pre-questionnaire.

Two models were deployed: a model with raw simulated data categorized
as Model A, and a model with sensor effects as Model B. The order in which
the models were introduced to participants was different for each participant,
and instructors reminded each participant to note the sequence of models they
encountered. The participants were instructed with two sets of similar tasks, to
be performed with 5 objects from GoLD placed on a table, while interacting with
both models. The task was to ask the robot to pick up an item of their choice
from the table and wait for 10 seconds for the robot to respond. The robot was
expected to choose the object from the table that most aligned with the user’s
spoken request.

Each experiment took roughly 30 minutes, including consent forms, instruc-
tions, and post-task questionnaires, as well as interacting with the robot as it
was deployed with each grounded language model. The order of models was ran-
domized in order to prevent any bias in the perceived performance of the robot
between the grounded language models used.
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This user study addresses three primary hypotheses:

Hypothesis 1 Sensor effects in simulation during grounded language learning will
improve the robot’s understanding of real-time human requests when evaluated
in the physical world.

Hypothesis 2 Participants will subjectively rate their perception of the robot’s
performance to be better when using the grounded language model that was
trained in simulation using sensor effects modeling compared to the grounded
language model trained in simulation without using sensor effects modeling.

Hypothesis 3 Participants will prefer to work with a robot using the grounded
language model that was trained in simulation using sensor effects modeling
compared to the grounded language model trained in simulation without using
sensor effects modeling.

At the beginning of the experiment, participants were given detailed instruc-
tions about what they will experience during the study. Each of the participants
was provided a short description of the task with a sample interaction of a moder-
ator instructing the robot, followed by the robot’s response being demonstrated.
They were instructed to describe each item once for each model. The experiment
started with the robot asking the participant which item they would like to pick
up, and then participants describe an item they see on the table through spoken
language. The participants were asked to wait for the robot to complete the
required task for at least 10 seconds. After the robot has detected and selected
an item, the complete process is reiterated after 15 seconds.

Example: Robot: “Which item would you like me to pick?” Participant:
“Where is the apple?” The participant will wait while the robot processes and
then moves its arm to indicate the object described. The robot will continue to
ask 5 more such commands.

After 5 such commands, the experimenter asks: “That’s five instructions.
Would you be willing to do five more? Any answer is fine.” Participant: “I think
I’ll stop now.”

The participants continued with the experiment and were given a short break
of 1-2 minutes before continuing the experiment by interacting with the second
grounded language model. All participants were asked to describe the items in
their own words as before.

Post-experiment, every participant was asked to submit a survey based on
their encounter with the robot. The survey consists of 5-point Likert scale
agree/disagree questions comparing the results of the two models they inter-
acted with. They were also asked about suggested feedback for the robot, and
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if they were able to detect any dissimilarity between the two models they in-
teracted with. The experimenter tracked what the participant asked for, how
often the robot crashed for each user, and noted the robot’s predicted item. The
instructor remained in the room and made sure not to engage with the experi-
ment except to restart the robot in case of crashes, tracking of correct/incorrect
indications made by the robot, and keeping notes if the user asks to stop af-
ter 5 trials. Based on the participant’s survey and the robot’s performance, the
participant’s perception of the robot’s performance, level of comfort, and level
of willingness to use the robot are evaluated. All measurements were collected
both using the grounded language model that was trained in simulation using
sensor effects modeling and the grounded language model trained in simulation
without using sensor effects modeling.

4 Results

Two sets of results are presented. First, results are presented on the performance
of the language grounding model itself. This compares a variety of sensor effects
modeling approaches and their performance on both GoLD and during the live
user studies. Second, results are presented on the data collected from the users
in both the pre-study and post-study questionnaires. The user study results
analysis will also cover some observations collected by the experimenters.

4.1 Model Performance

Results for the model performance are presented in two ways. First, accuracy and
mean reciprocal rate (MRR) are presented for each combination of sensor effects
models in Table 1. The MRR metric measures how high the correct response is
in a ranked list of alternatives. The average of the reciprocal rank 1

ni
across all

instances is evaluated, where the reciprocal rank is the inverse of the rank at
which the specific value was found.

  MRR = \frac {1}{M}\sum _{i=1}^M \frac {1}{n_i} 










(1)

The hypothesis is that by adding realistic sensor effects models, the grounded
language model would learn a better model for associating the transcripts of spo-
ken language to the objects perceived in the scene. This hypothesis is supported.
In this study, it was shown that using simple Gaussian noise for color and NDP
for depth provides the best performance on GoLD. Given this information, the
same sensor effects model combination was used for the user studies.
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Sensor Effects Model
Test Data

Evaluation Metrics
Color Depth Accuracy MRR

None None GoLD 0.1997 0.4551

None Dropout GoLD 0.1976 0.4525

None SNP GoLD 0.2050 0.4602

None Gaussian GoLD 0.1988 0.4547

None NDP GoLD 0.1953 0.4504

Gaussian None GoLD 0.1945 0.4531

Gaussian Dropout GoLD 0.2062 0.4639

Gaussian SNP GoLD 0.2050 0.4605

Gaussian Gaussian GoLD 0.2085 0.4635

Gaussian NDP GoLD 0.2134 0.4665

All All GoLD 0.2092 0.4658

Table 1: Sensor Effects Models Performance on GoLD

In the user study, participants interact with both models: Model A, which
is trained on simulation data without sensor effects modeled, and Model B,
which is trained on the best previously performing combination of sensor effects
models. Measurements were collected from these interactions and evaluated for
quantitative performance on real-world data. Fig. 6 presents the performance
metrics for model A. Overall accuracy is 0.2192 and the macro average f1-score
is 0.1378. This performance is better than random given that there are 5 classes
to choose from. Model A does seem to be slightly biased toward predicting
“cabbage” and “cup.” Fig. 7 presents the performance metrics for model B.
Overall accuracy is 0.2761 and the macro average F1-score is 0.2576. Model B
seems to have a slight bias toward “tomato.” The main takeaway is that Model
B, which incorporates sensor effects models, performs nearly twice as well in the
real-world user studies as Model A which does not have sensor effects modeled
in the simulation training data. As for the biases, it is hard to tell with such
a small sample of user study test cases how biased these models really are. A
larger study should be conducted to ensure these trends are maintained.
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Fig. 6: Confusion Matrix for Model
A (No Sensor Effects)

Fig. 7: Confusion Matrix for Model
B (Sensor Effects using Gaussian for
Color and NDP for Depth)

4.2 User Study

The experiment started with a set of a pre-task questionnaires in which partici-
pants were shown a video of the RIVR simulation; they responded positively that
the RIVR simulation seems realistic. This trend held in the post-task question-
naire, but was less significant since a couple of participants changed their opin-
ions after working with the real robot. Post-task questionnaire results showed
that participants preferred working with Model B and found it to be more suc-
cessful model.

One observation from the pre-task questionnaire form was regarding partic-
ipants’ experience with robots and machine learning. During experiments, the
robot sometimes crashed due to audio failure or the arm took longer to oper-
ate than expected. Interestingly, the participants with minimal background in
robotics and machine learning were frustrated by the response time of the robot
and its failure modes. The other group with sufficient background in these fields
patiently waited for the robot to respond even after a few failed attempts.

Bias in the model is another intriguing observation of this user study. The
instructor made no comments on the user’s response when the robot did not
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detect the correct object. However, some participants observed this behavior
from the robot and commented on model A being biased towards “cabbage”
and model B being biased towards “tomato,” which was later verified with the
confusion matrix. Note that the item “apple” was never recognized by model A,
while model B gave a more accurate prediction.

5 Conclusion

This work serves as a promising pilot study with intriguing results. This pilot
study looked at results from a small group of participants that were a population
of convenience. Both quantitative evaluation metrics and qualitative observations
suggest all three hypotheses were valid. Additional studies that improve available
data and participant’s data collection will provide more statistically relevant
results. During user studies on the live robot, challenges were presented with
data rate processing that stressed the robot’s computational capabilities. More
work can be done on the robot to make it more effective and robust during
user studies. This will help get more participants through the study. Overall,
results suggest improvements and the need for a larger study to provide more
statistically significant results.

6 Future Work

Future work will further develop this method and address some concerns with
the approach presented in this paper. The study will also expand the number
of trials to provide more statistically significant results. The current approach
models the Kinect 2 sensor in simulation and runs the Kinect 2 on the live robot
for the user study. However, GoLD, which was used for the testing portion of the
grounded language model, was collected with the updated Azure Kinect sensor.
Future work will be updating the robot to be equipped with the Azure Kinect
and the simulation will also model the Azure Kinect and its related sensor noise.
This is expected to have an impact on results. In future work we will also be
padding the cropped image in the real user studies with white pixels to maintain
proper aspect ratios. Currently, all images are being resized to the same aspect
ratio, which can warp information in the image and should be avoided in future
work. A larger domain randomization study is also of interest. Combining all
approaches to model sensor noise in the training data will provide more instances
to train over and may increase robustness in a variety of real-world scenarios.
Bias was also shown to be a potential issue in this experiment. There has been
much research on this topic that could be leveraged to negate any issues of
bias from impacting this experiment. A larger study could be an opportunity
to better understand what biases are present and how to negate them. Lastly,
an approach to one-shot calibration of the various method using a single datum
collected from the initial scene the robot is presented with may help improve
autonomy and performance.
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