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1. Introduction

Yang-Baxter (YB) operators, i.e. solutions of the Yang-Baxter equation (YBE), have been first introduced
and studied in Statistical Mechanics [5], due to their connection to scattering and integrable systems. They
have also played a central role in low-dimensional topology, where they are used to construct link and
3-manifold quantum invariants [9,10], via representations of quantum groups and certain kinds of ribbon
categories. Also, the study of set-theoretic YB operators has lead to introducing cocycle invariants of links
from algebraic structures such as quandles [2].

Subsequently, homology theories for the Yang-Baxter operator have been developed and studied in rela-
tion to deformation theories [3], and with applications to knot invariants generalizing the notion of quandle
cocycle invariants [1]. In particular, in [1] a (co)homology theory for set-theoretic Yang-Baxter equation was
developed. More specifically, a Yang-Baxter set is a pair (X, R), where X isasetand R: X x X —» X x X
is an invertible map satisfying the equation

(Rx1)(1xR)(Rx1)=(1xR)(Rx1)(1xR),
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with 1 : X — X denoting the identity map. Given a Yang-Baxter set (X, R), in [1] a (co)chain complex
associated to R has been introduced, whose 2-cocycles were used to produce invariants of classical and
virtual knots. In [4,6], this homology theory was generalized to the YB operators (R-matrix) on tensor
products of vector spaces (or modules): R: V@V — V ® V satisfying

(R1D(1I®R)(R®1)=(1®R)(R®1)(1® R),

where 1 : V — V is the identity map. They also provided an alternative diagrammatic of the chain maps
that unifies the set-theoretic and tensor YBEs. In [7,11] it was shown that for set-theoretic case, the two
homology theories are equivalent.

Also in [7], a family of YB operators corresponding to the Jones and HOMFLYPT polynomials was
considered. The original matrices were normalized in order to define chain complexes. Computer based
results and a conjecture related to the R-matrix corresponding to Jones polynomial were presented. In
[8], the second homology group for the matrices corresponding to the HOMFLYPT polynomial has been
computed.

The main purpose of this paper is to develop techniques to compute (co)homology groups of the YB
operator corresponding to Jones polynomial. We do so by simplifying the differentials d,, defining its YB
homology. More specifically (Theorem 4.1) we decompose d,, in terms of sums of simpler maps gx, g}, hx and
hj. (see Fig. 11 for a diagrammatic interpretation), by using the skein relation satisfied by the normalized
matrix R. As an application we explicitly give the corresponding decompositions of the differentials d,, for
n = 2, 3,4 and compute the corresponding matrices and their Smith normal forms, using preliminary results
on g, g, i and hj.. It might be of interest, as suggested by the referee, to investigate whether the approach
of this paper is related to Khovanov homology, which is a categorification of the Jones polynomial.

This article is organized as follows. In Section 2, we recall the definitions of Yang-Baxter differentials
and related homology, normalized Kauffman bracket R-matrix and a conjecture of Przytycki and Wang. In
Section 3 we show that R satisfies the skein relation R = 1 + fa, where « is a pairing diagrammatically
represented by a cup, and (3 is a copairing represented by a cap. We set up a diagrammatic formalism that
will be used in the rest of the paper to simplify proofs and computations. In particular, we apply it to show
that the normalized matrix R satisfies the YBE. Section 4 is the central part of the article. Here we show
that the differentials corresponding to R, defining YB homology, can be decomposed as tensor products of
certain generating maps, that are represented by horizontal concatenations of corresponding diagrams. We
therefore proceed, in Section 5, to apply the skein theoretic decomposition of the differentials to compute
the homology of R in low dimensions, confirming the case n = 3 of Przytycki-Wang conjecture. In Section 6
we dualize our methodology to compute low dimensional cohomology groups of R. Finally, in Section 7
we study the torsion of the homology groups in higher dimensions. Precisely, for X = (V, R) where R is
the normalized matrix in [7] on a rank 2 module V, we show that for every odd n, there exists a rank 2
submodule of H, (X) that is annihilated by multiplication by y* — 1. For every even n, we show that there
exists a rank one submodule K; of Z,(X) that is in the boundary group B, (X), and a rank one submodule
K, that is annihilated by multiplication by 32 — 1. Some of the proofs are deferred to the appendices.

2. Preliminary
2.1. Yang-Baxter operators and their normalization

Let V be a k-module over a unital ring k. We say that M is a right (resp. left) V-module if there is a
k-morphism (action) pe: M @ V. — M (resp. pr : V@ M — M), this unusual choice of conventions comes

from the fact that the right action appears in the left differential of YB homology, while the left action
appears in the right differential. Below when we focus on the right action, we drop the subscript and use
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Fig. 1. The left wall condition.

p = pe. In this paper we exclusively consider the ground ring k = Q[y,y '] and M = k with trivial actions
pla®@z)=a=p(x®a)forallae M,z V.

An invertible morphism R: V ® V — V ® V is called Yang-Baazter (YB) operator, or an R-matriz, if it
satisfies

(R®1)(1®R)(R®1)=(1®R)(R1)(1L® R).

An R-matrix R is said to satisfy the left wall condition if it satisfies

pe(pe ® Ly ) (I ® R) = pue(pe @ Ly),

and the right wall condition is defined similarly. An R-matrix satisfies the wall condition if it satisfies both
left and right wall conditions. The left wall condition is depicted in Fig. 1. In the figure, the V-module M is
represented by the shaded vertical line, and thin lines represent V. The crossing at the left figure represents
the map R, and the map Ay : M ® V — M is represented by merging two (shaded and thin) lines.

Let R be an R-matrix over V@ V. It is observed in [7] that for the trivial action pu(1®e) =1 = p,(e®1)
for every basis vector e to satisfy the wall condition is that the matrix is column unital, i.e., the sum of
entries of each column is 1. We call the procedure of making a matrix column unital the normalization.

2.2. Yang-Baxter differentials
Let the maps
dt . di, € Hom(M @ V" @ M,M ® VE"~1) @ M)

be defined by
&, = (1e® 1" 0 (RO 1" 2)o ..
.0 (ﬂi—B ® R ® ]ln—i-‘rl) ° (ﬂi—Q ® R ® ]ln—i)
0= (1" ®p)o (1" 2@ R)o -

... 0 (ln—i-‘rl ® R® ]]_7;—3) o (IL’IL—i ® R® 1i—2).

We also use the notations df =3, d; ,, for s =[,r. These maps are diagrammatically represented in Fig. 2.
The differentials of the Yang-Baxter homology are defined by

i=1

In [4,7], it was proved that d? = 0, so that d defines a chain complex called Yang-Baxter (YB) homology.
The proof of this fact can be observed by diagrammatic means, and is illustrated in Fig. 3.
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Fig. 2. Left and right curtain maps.

2.3. Kauffman bracket (Jones) R-matriz

For the R-matrix R’ that produces the Jones polynomial, the normalization making R’ column unital
has been performed in [7], where it is shown that the normalized matrix takes the from

1 0 0 0
0 1—¢y%2 1 0
R= J
0 vy 0 0
0 0 0 1

For the rest of the paper we focus on this specific R-matrix.

Let e1, ez be the basis elements of the rank 2 free k-module V' with respect to which the map R is the
above matrix. Specifically, the rows and columns of R are for the basis elements e; ® e1, e1 ® €2, €2 ® e,
€2 ® es in this order. For this specific R-matrix, a conjecture on YB homology groups is stated in [7] as
follows, where X = (V, R).

Conjecture 2.1. H,(X) = k> (k/(1 — y2))* @ (k/(1 — y*))*»~2 where s, = Y11 fi is the partial sum of
Fibonacci sequence with f1 = fo =1 and a, is given by a1 =0 and 2" =2+ ap—1 + Sp—3 + ap + Sn—2-

We note that sg is defined to be 1, though this may not be explicit in [7].
3. Skein for the normalized Kauffman bracket R-matrix

In this section we establish a skein relation for the normalized R-matrix defined above, and define dia-
grammatic representations. It is not a priori the case that a normalized matrix R of a YB solution R’ is a
YB solution, but this fact is proved in [7]. We use the skein relation to provide a diagrammatic proof of this
fact. We also provide lemmas on maps that appear in the skein that will be used in later sections.

Lemma 3.1. We have R = I + J where I denotes the identity matriz and J = Ba, where a: VRV — k and
B:k—=V®V are defined by



M. Elhamdadi et al. / Topology and its Applications 302 (2021) 107836 5

U M p mj

N-p -

Fig. 4. Cup, cap and zig-zag maps.

ale; ®er) =alea®ez) = 0,
ale; ®ez) =
alez®er) =y,
B(1) = (61 Rex—ex@eq).
0 0 O
0 —y*> 1 0 . .
Proof. Let J = 0 5 Lol Then we have R = I + J. Furthermore J is written as J =
y _
0 O 0 O

0,9, —y,0)T - (0, —y,y~*,0) where T denotes the transpose. This means that J is the composition of a

pairing @ : V ® V. — k represented by (0, —y,y~1,0) and the copairing 8 : k — V ® V represented by
(0,9, —y,0)T, and the result follows. O

Let £,¢ : V — V be defined by &(e;) = y2er, &(ea) = ea, ((e1) = e1, ((e2) = y?e2. Then we have the
following remark and lemma by straightforward calculations.

Remark 3.2. The maps «, £ and ¢ can be written as follows:

ale; ®ej) = (—1) (1—5z’j)yj7i7
C(el) = y 261‘,
5(61) = y 2i6i7

where ¢ = 1,2 and 6;; denotes the Kronecker’s delta.

Lemma 3.3. We have

(See Fig. 4.)

Straightforward computations also show the following lemma, with diagrams found in Fig. 5

Lemma 3.4. We have the following:

(1) O‘B = 7(y2 + 1);
(2) &C=¢E=y1,
(3) a(Ae® 1) = pug.

Theorem 3.5. The normalized R-matriz R satisfies the YBE.
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Fig. 5. A few identities.

AR R

Fig. 6. The normalized R-matrix satisfies the YBE.

RIS

n-yX1m+yn

Fig. 7. The normalized R-matrix satisfies the YBE (continued, n = 8 ® 1).

Proof. Applying the skein relation to the Reidemeister move I1I as in Fig. 6 shows that it is enough to prove
that the second summand on the RHS of the first equality is the same as the second summand on the RHS
of the second equality. Let us denote these maps V®3 — V®3 by ©; and O, respectively. We can further
simplify ©; as the products

0, = ‘1>1(Oz X ]l),
92 = (1 ®ﬁ)¢’2a

where ®; : V — V&3 is depicted in the left side of Fig. 7, and a similar definition is given for ®, : V&3 —
V. Applying again the skein relation to the diagrammatic definitions of ®;, i = 1,2 and the definitions of
cup/cap and zig-zag maps as in Fig. 7 (where Lemma 3.4 (2) was used) we see that

q)1:<®ﬁ7
(I)2:a®C7

and we obtain

O1=201(a®1)=((@p)(ael)=(1®p)(ax()=(1® )P =0,
which concludes the proof. 0O

Remark 3.6. The modified bracket skein relation R = I + J and Theorem 3.5 imply that this R-matrix
defines a braid group representation that factors through a skew Temperley-Lieb algebra STL,, defined as
follows.

For a positive integer n, STL,, is a k-algebra (k = Q[y,y~!]) generated by h;, i = 1,...,n — 1 and
relations

hihiz—(yQ—f—l)hi i=1,...,n—1,
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Fig. 10. Definition of A, which is the negative of A,.

hihivihi = y*hip i=1,...,n—2,
hihi_1h; = y*hi1 i=2,...,n—1,
hlhj:h]}h |Z*]|>1, Z,j+1,n71
Diagrammatic representation of h; is to place a pair of cup and cap at the i*® and (i 4+ 1)** positions
as for the Temperley-Lieb algebra (Fig. 8 (A)). The first relation follows from Lemma 3.4 (1). The second
relation is depicted in Fig. 8 (B) which follows from Lemma 3.4 (2). These diagrammatic correspondence
and computations imply that the assignment h; — 1°7! ® (8a) ® 1"*~! induces a homomorphism STL,, —

Aut(V®™) where V is a rank 2 k-module. The skein R = I + J where J = Sa implies that the braid group
representation induced from R, B, — Aut(V®") is defined by o; — 1' ! @ R@ 177~ 1.

The left and right curtain maps Ag, A : & — V are defined as in Figs. 9 and 10, respectively, and computed
as

Ae(1) =ylez —e1) resp. An(1) =yler —e2).

In particular, as depicted in Fig. 10, we obtain that A\, = —A,.
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Fig. 11. Left generators.

4. Skein theoretic decomposition of Yang-Baxter differentials

In this section we compute a general decomposition of the differentials d,,, when the Yang-Baxter operator
R satisfies the skein relation R =1 + J.

We introduce the maps {g;}, {g}} corresponding to the diagrams depicted in Fig. 11. Similar definitions
and considerations hold for {hy} and {h}}, right differential generators. Our main objective is to show that
the Yang-Baxter differentials corresponding to R = I 4+ J can be written as described in Theorem 4.1.

Theorem 4.1. The left differential is written as

k(1 k(h
de = Z [ ggogil( ). 'gih( )g%k ]
S(n)

where
S(n) = {(io,- .. in; k(1), ..., k() | in £ 1, io+ it o 4iFW L op =},
The nt" Yang-Baater differential decomposes as
dn == [ ghgtV gt Mg 1+ ST RFEREM g Dhy
if n is odd, and
dn = [ ghygi? gt Mgt 1+ ST RS g D
if n is even, where all sums are over S(n).

The proof is given in Appendix A. We note that the exponents of the identity maps g1 (= h1) are even.
Therefore it is not the case that all possible horizontal concatenations of generating maps appear in the
decompositions.

Specializing to the case in which R is the normalized R-matrix corresponding to Jones polynomial, as in
Section 3, we compute the generators g; and g/.

Lemma 4.2. On basis vectors, the left generators gi and g, with k > 2, satisfy

k—2
(e, @+ @ei) = 0(in, ..., ix)(e1 @ e2 — 2 @ e1) Q) e,

t=1
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k—2
g;{(eil Q- ® eik) = a(ila s 7ik)(62 - 61)®6it7
t=1

where 0(iy, ..., ix) == (—=1)%1(1 — 5ik_1ik)yik—ik*1y4(’“—2)_2ij by,

Proof. The lemma is a direct computation using the definition of g; and gj,, along with Remark 3.2. We
leave this verification to the reader. O

Similarly, we compute the right generators h; and h; with coefficients 7 (i1, ..., ix).

Lemma 4.3. On basis vectors, the right generators hy and hj, with | > 2, satisfy
l
hl(ez‘l QR eil) = T(il, o ,il) ®€Z‘j ® (61 Rex—ex® 61),
j=3
l
h;(eil R ® eil) = T(il, Ce ,il) ®€i]. & (61 — 62),
j=3

where T(ilv s 7il) = (_1)i1 (1 - 5i1,i2)yi27i1y2 21:3 ityQ(l72)y.
5. Low-dimensional differentials and homology groups

In this section we utilize the skein theoretic procedure described in Section 3, that is similar to the Kauff-
man bracket, to simplify the differentials and compute Yang-Baxter homology groups in low dimensions, for
the normalized Yang-Baxter matrix R. We apply diagrammatic arguments in addition to appealing directly
to Theorem 4.1 in order to better illustrate the procedure. Let X = (V| R) be as in Subsection 2.3.

5.1. The first differential

By definition the first differentialis dy : V(= k@V =V k) = k, d1 = —(e — 1) = 0. Hence Ho(X) =0
and Z1(X)=V.

5.2. The second differential

Since left and right coactions have opposite signs, it follows that the second differential is identically null,
as the following lemma shows.

Lemma 5.1. We have dy = 0.

Proof. Diagrammatic computations are depicted in Fig. 12 where the relation A, = —\, depicted in Fig. 10
is used at the last step. Alternatively, using Theorem 4.1 and Lemma 4.2 we have that dy = g, +h5 =0. O

It follows that Hy(X) =V from Z;(X) =V as noted in the preceding subsection.

5.8. The third differential

We now proceed to computing the third differential. Again, we provide a direct diagrammatic interpre-
tation although the next lemma easily follows from Theorem 4.1.
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1L

Fig. 14. Third differential.

Lemma 5.2. The left and right third differentials are given in terms of generators by

ds = —g197 — 9192 — 95,
dy = h3h] + hoh! + hj.

Proof. Diagrammatic computations in Fig. 13 give the left differential, where the left walls are abbreviated.
The right differential is similar. Together we obtain d3 as depicted in Fig. 14. O

Lemma 5.3. The third differential is given on basis vectors by

di(e1®@er ®ex) = (1—yher @er + (y* — Der @ ez + y*(y° — Dea @ e,
di(e1®ea®@er) = (1—y?er ®ex + 2 (1 —yPea @ er + (y* — D)ez @ ea,

and ds(e; @ e; ® e) = 0 otherwise.
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Proof. On basis vectors e; ® e; ® ey, with 7,5,k = 1,2, from Lemma 4.2 and Lemma 5.2 we have

dB(ei ® €j X ek) = *6]' X el + (*1)j+1(1 — 5jk)yk7j+1(61 X ey —ea® 61)
H(=D)A = G5)y" TP (e — 1) @i+ e @ ey
H()(1 = 0)y T e @ e —e2 ®@en)
H(=D)'(1 = b))y’ T e @ (e — ea).
When i = j =k, since 1 — §;; =1 — §;; =0, we have
ds(e;®e; ®er) =—€e; Qe +e;@e; =0,
Let us consider the case i = k # j. Since i+j = 3, we have 3! ~I+1 = 2=2 =1 = 93=20 and (—1)* = (—1)7+!
so that
ds(ei®e; ®e;) = —ej ®@e;+ (—1)'y* *(e1 ®ea —ea ®eq)
+(-D)'y (2 ®e; —e1 ®€;) +e; ® e;
+(=1)'y* " (e1 ® ex —ea ®eq)
+(=1)'y*(e; ®e1 — €; ® e2).

Distinguishing the two cases i = 1 and i = 2 we easily see that either way ds(e; ® e; ® e;) = 0. Finally, we

5—3i+k 8—41i k—i+1 4—27

consider i = j # k and i # j = k. In the first case, since y =y and y =y we have

dg(ei (%9 €; (29 ek) = —€; X €L + (*1)i+1y4_2i(61 (24 €2 — €2 (024 61)
+(-D)P a0 e —er ®e) + e Qe
which is readily seen to be zero when i = 2 and equal to (1 —y*)e; ®e; + (¥ —1)e1 @ ea + 3% (y?> — 1ea @ ey
when i = 1. Similarly, i # j = k gives zero when k = 1 and (1—3?%)e; ® ez +y?(1 —y?)ea®@e1 + (y* — 1)ea ®eq
when k = 2. This concludes the proof of the lemma. 0O
We now compute the second homology group.

Theorem 5.4. We have Hy(X) = k> @ k/(y?> — 1) @ k/(y* — 1).

Proof. From Lemma 5.3, in matrix form with columns for e; ® e; ® e5 and e; ® ea ® €5, and rows for e; R ey,
e1 ® eq, 62 ®eq, s ® e in these orders, the matrix below.

Then changes of bases are performed as follows.

1—y*t 19 11—yt 0 0 0
y? -1 0 |y?—1 0 |y?—1 0
yt — g2 0 0 0 0 0

0 y*—1 0 y*—1 0 y*—1

The right-most matrix represents the group as stated. 0O
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Fig. 15. The fourth differential.

5.4. The fourth differential
Next we compute the fourth differential. As before we have the following.

Lemma 5.5. The left and right fourth differentials are given in terms of generators by

dy = g19192 + 9195 + ghgt + ghg +
dy = hoh1h! + hsh) + hihh + hohly + hi.

The diagrammatic representation of dy is found in Fig. 15.

Lemma 5.6. The matriz form of dy, with respect to the bases of V=3 and V®* in lexicographic order with
respect to the indices, is given by

0 0 0 0 0
Yo —y? y? =yt yt—q°

1—yt y?—1 yt—y?
0 0
0 0
yt—y? v -yt oyt—y -yt
1—y? v =yt 0 yt—1
v -yt oyt =yt -2
0 0
y4_1 1_y2 y2_y4
0 0

For exposition the matrix is transposed, so that the eight columns correspond to e; ® e; ® e; and the
rows correspond to e; ® e; ® e}, ® e¢. For example, the second row represents that

di(e1 ®e1 Qe ®eg)
=S -y e @er + (¥ —yter®ea@er + (¥ — y¥)er @ er ®ey.

Blank entries represent zeros, though some zeros are given to clarify the positions of entries.
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BRI R R
@ 3 @

Fig. 16. Sample computations of the fourth differential.

Proof. Either by direct diagrammatic manipulation using the skein relation, or using Theorem 4.1, it follows
that dy is represented diagrammatically as in Fig. 15. Using Lemma 4.2 we compute d4 on basis vectors
e; ®e; e ®e with 4,5, k,1 =1,2. We have

di(e;®@e; ®er®e) =0(k,l)e; ®(e1Q@ex —ea®@er) +0(4,k,1)(e1 ®es —ea@er) Qej
+0(i,5)(e2 —e1) ®ep @ ey
7Ok, D)(e2 — 1) ® (e1 @ ez — €2 ® €1)
gk D)(e2 —e1) ®e;@e;
Jle1®ex —ex ®@er) @ ey

DTk, D(e1 ®ea —ea®@e1) @ (€1 — e2)

+0(,
+ 6(1,
+7(i,
+7(2,4,k)er @ (e1 @ex —ea ®@er) +7(k,l)e; ®e; @ (e1 — e2)
+7(i,
+7(i, 7, k, Dex @ e; @ (e1 — ea).

The differential can be computed directly from this formula.

We illustrate alternative computations aided by diagrams. For computing the coefficient of ¢; ® e; ® e,
we observe that the only contributions are given by four maps whose diagrams are depicted in Fig. 16. For
example, the term (2) in Fig. 16 represents the map ;- £ - € - v, and it is seen from the diagram that the
only terms that give non-zero coeflicients for e; ® e; ® €1 are 1 ® e;1 ® e1 R eo and e; ® e; ® e ® e1. The
value for the former is computed as (A\;-&-£-a)(e; ®e1 ®e; @es) = (—y)-y? - y* - (—y). All the other terms
are computed similarly using diagrams. O

We can now compute the third homology group of the Yang-Baxter operator R.
Theorem 5.7. Setting k := Qly,y~!] we have
Hy(X) = kP2 @ k/(1-y*)* @ k/(1 - y")®2

Proof. Applying a sequence of elementary column and row operations to the matrix d4 given in Lemma 5.6,
we obtain the Smith normal form

where, for simplicity, we omit the zero columns on the right of the nontrivial diagonal. Since by Lemma 5.3
the kernel of dj is six-dimensional, the assertion follows. O
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N-Fel-ky
o T

Fig. 17. The pairing « is a 2-cocycle.

6. Yang-Baxter cohomology

Let A be an abelian group. Then by dualizing the chain complex in Subsection 2.2, we obtain a
cohomology theory, called Yang-Baxter cohomology, with coefficients in A, and differentials written as
§ntl . O (X;A) — C"H(X; A). We denote the cohomology groups by H™(X; A). We observe that the
universal coeflicient theorem determines cohomology groups as follows.

Proposition 6.1. Let k = Q[y,y~!]. Then we have

H*(X; k) = k%2,
HY(X;k) = kP ok/(1-y*) o k/(1—y").

Proof. The universal coefficient theorem reads
00— Extl(Hn(X; A),B) — H*(X;B) — Hom(H,_;(X,A),B) — 0.

We take A = B = k. Since Hy(X;k) = k, and by Theorem 5.4, we obtain Hz(X;k) as stated. We have
Ext'(k/fk, k) = k/fk for a Laurent polynomial f(y) in k, hence Theorem 5.4 and Theorem 5.7 determine
H}(X;k) as stated. O

Remark 6.2. A common argument to show that a n-dimensional cohomology group is nontrivial is to exhibit
a non-trivial n-cocycle 6 that evaluates an n-cycle x non-trivially, 8(z) # 0. We present a diagrammatic
method to do this for H?, even though it is already proved, with a hope that a similar technique might
prove productive in higher dimensions.

Specifically, we show that « is a non-trivial 2-cocycle. Fig. 17 shows that the left differential applied to
« gives zero. A similar procedure is used for the right differential. By Theorem 5.4 the class represented by
e1 ® eq is non-trivial, and we observe that a(e; ® e2) # 0. Hence « is nontrivial.

Indeed to show that « is a 2-cocycle, one could also explicitly compute

(1—yHaler @ e1) + (y* — Da(er @ ea) +y*(y* — Da(er @ e1)
=0+ (> - 1)(-y) +y* (> - Dy ' =0,

(1 —=y?)aler @ ea) +y*(1 —y?)a(e2 @ e1) + (y* — ez @ ea)
=(1-y*)(~y) +y*1-y)y ' +0=0

as desired.

7. Further computations in higher dimensions

In this section we exhibit some diagrammatic computations in higher dimensions and observe annihila-
tions by specific polynomials.
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Fori=1,...,n,lete],=e1®---®e1 ®ea ®e1 ®--- ey where there are n factors and e is at the ith
position, and similarly e ; = e2 ®---®ea ®e; @ ez @ -+ - ® ea. By convention define €7 =¢; ® - @ e; for
7 =1,2. When understood we suppress the superscript n.

Lemma 7.1. For all positive integer n, we have dn(e;‘l,o) =0 forj=1,2.

Proof. If any of the terms g, g}, hi, b}, say gi for some k, that appear in Theorem 4.1 contains «, then
gr(ej0) = 0, since ae; ® e;) = 0 for j = 1,2. Hence if n is odd, the only non-zero terms in d,, when
evaluated by e; o are

(9197 ") (ej0) = ej0 = (A1 "hY)(e50)

and they cancel with opposite signs in d,,. If n is even, then there is no term without «, hence the image
vanishes. 0O

Proposition 7.2. For all positive integersn > 3 andi=1,...,n, we have the following. If n is odd, then the
coefficient of e?’al and 6721’61, respectively, is non-zero for the following:

W(e11) = (y%)er o, dn(e1,2i-1) = (1 — y**)eq o,
=W 2—yHero, dnlern)=(1- yQ("fl))ell,o,

eg1) = (¥ 2 —Deao,  dnlez2iy1) = (y* —y>"472)
= ( —di

) - 1)62707

€2.0

and zero otherwise. If n is even, then the following terms have non-zero coefficients for 6?61 and 6;61, and
zero otherwise:

4=2 _y2y0) o dn(e1,2:) = (1 — y* = D)ey ,
2(n72i+3))62707 dn(ez,zi) _ (y2(n72i+2) _ 1)6270.

dn(el,zi—l) =(y
dn(€2,2i—1) = (y2 -y

Proof. Since the image of § has zero coeflicients for e; g for j = 1,2, the only non-zero terms with e; ¢ in the
image are the maps described below. For odd n, the maps are g{g7 ™", gh; 197 > " fori=1,...,(n—1)/2
(gl is the case i = (n —1)/2), h?'h! (R!, is the case i = 0), h?"'h}. For even n, the maps are gh, g7~

n—2%

for i =1,...,n/2 (g, is the case i = n/2), h?'h!

n—21

diagrams in Fig. 18 (1)—(4) in this order. Note that the requirement in Theorem 4.1 that the exponent of

(h!, is the case i = 0). These maps are represented by

g1 be even leads to the conditions on the parity.
The actual values can also be computed from diagrams, counting the contributions of £ and ¢ to the
powers of y.

For even n and for e; g, and for i = 1,...,n/2, we have
(9297 N er2i1) = (=9)(y Ny** Ve = —y* e
(9297 2l)(€1,2z):( y)(— y)y2(21_2)6170 = y4i_261,o
(hi'hy_s)(e12i11) = y(y Dero = lewg
(W' h—oi)(e12i42) = y(=y)ero = —y’ero.
n—2i

For example, the first tensor factor of (g4,;97 ~*)(e1,2;) comes from A;(1) = y(ea — e1), and we look at

-1

the coefficient of ey, so that this map contributes (—y). Then gh;(ef’;) contributes a(e; ® e2) = y~' and

£(e1)? 2 = y2>2=2) Other terms are computed similarly with the aid of Fig. 18. From these we compute
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(M @) ) C))

Fig. 18. Maps with image e; ® -+ - @ e1.

dn(e12i-1) = (—ghigi "> + hT'7°h), g 0)(e12im1) = (—y" "+ Derp.
dn(e1,2i) = (—ghigt 2" — My ol _5i0)(er2) = ("2 —y)ero.

Other cases are found in Appendix B. O

Corollary 7.3. For every odd n, there exists a rank 2 submodule of H,(X) that is annihilated by multiplication
by y* — 1.

For every even n, there exists a rank 1 submodule Ky of Z,(X) that is in the boundary group B, (X),
and a rank 1 submodule Ky that is annihilated by multiplication by y? — 1.

Proof. Let n be odd. Let K be the rank 2 submodule of C,,(X) generated by e; ® --- ® e;, j = 1,2. By
Lemma 7.1, K is in Z,(X). Since n + 1 is even, Proposition 7.2 implies that Im(d,+1) in the submodule
generated by e; o in Z,(X) is spanned by GCD{(y*(~Y —1):i =2,... (n+1)/2}e1,0, and GCD{(y*~1) —
1):i=2,...,(n+1)/2} = y* — 1. Similarly, Im(d,,11) in the submodule generated by es o in Z,(X) is
spanned by GCD{(y?"=2=2) — 1) :i=2,...,(n+1)/2}es, and GCD{(y>"~2=2) —1):i=2,...,(n+
1)/2} = y* — 1. Hence the rank 2 submodule of Z,(X) generated by e;o for j = 1,2 is annihilated by
(y* = 1).

Let n be even. Then n + 1 is odd. Let K be the rank 1 submodule of Z,(X) generated by e; o for
j = 1,2, respectively. Since d,,11(e1,1) = (y*)e1,0 from Proposition 7.2 and y? is a unit, K7 is in Im(dy41).
The submodule K5 is annihilated by the GCD of y2(®*D=% _ 1 for i = 1,...,n/2, which is 4> — 1. Thus
the statement follows. O

The statement of the preceding corollary supports Przytycki-Wang’s conjecture.
Acknowledgement

We are grateful to Jozef Przytycki and Xiao Wang for valuable conversations. Mohamed Elhamdadi was
partially supported by Simons Foundation collaboration grant 712462. Masahico Saito was supported in
part by NSF DMS 1800443. We thank the referee for raising the question on whether the approach pursued
in this article is related to Khovanov homology, as mentioned in the Introduction. Although this is an
intriguing question, we are not able to propose a potential answer at this time.

Appendix A. Proof of Theorem 4.1
In this section we use p and X instead of puy and Ay, respectively, for brevity. We need a few preliminary
maps and results before proving the main theorem. First we introduce a class of operators V&7 —; y@n+l

whose diagrammatic interpretation is similar to the curtain differentials. Namely we set

U, =p®1® - @1)o(R1®--®@1)o--0(l® - 1®R®1)o(1®---11®f),
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n
—

|
¥,

Fig. 19. Diagram representing W¥,,.

Fig. 20. Skein using ¥,,.

where p indicates the action p: k ® V. — k. We set Wy = A, where A is the coaction k — k ® V. See
Fig. 19 for a diagram representing ¥,,. We similarly define ¥/ | by symmetry, where we replace overpassing
crossings with underpassing and the left action with the right action.

In the notation below, the dot - represents the horizontal concatenation of diagrams, that represents
tensor product of maps. For example, if f:V — Visamapon V and 1:V — V denotes the identity map,
then f-1 denotes f ® 1 on V ® V, and 1* denotes the identity map on V®*. The dot may be abbreviated.

Remark A.1. Lemmas A.2, A.4, and A.5 below are easily adapted, by symmetry, to the case of the right
differentials upon exchanging VU,,, &, u and X\ with ¥/, ¢, p, and A, respectively.

Lemma A.2. The left differentials d’, . can be decomposed in terms of Wy for alln € N as follows:

n,n

dfm = Z Uy - 172 4 1771

m=2

i

Proof. The proof is by induction on n, the number of strings in the curtain representing d,, ,,, i.e. the number

of copies of V in the domain of dfhn. The base of the induction is easily verified by direct inspection. For
n = 1 the statement is in fact vacuously true, while for n = 2 it is a consequence of the skein relation.
Suppose the equation holds true for all 3 < n < k and set n = k 4 1. Making use of the skein relation we
can write

Ay ppr = Vo1 - @+ djy - L.
See Fig. 20 for diagrams. Applying the inductive hypothesis to dﬁ)k we obtain
Q1 = Vo1 a+ Vo o T4 4+ T al” 2 T4 p- 1811,
which concludes the proof. O
We now define the sets T(""+2) and A("™) of diagrams representing maps that will be used to decompose

the operators U,,. In general the double superscripts M (™™ indicate that the set includes maps V&™ —
Ven. We set (see Fig. 21):

rO» ={gy, 109 ={18p6¢}, ATY={e}, AP ={5a, &)

and inductively define
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() Unat) 1) 510

o2 a3 ALD AR

Fig. 21. T's and As.

Fig. 22. Skein for ¥,,.

n—2

F(n,n+2) — F(n—l,n+1) 5 U U F(n,—m,n—m+2) . Oé]lm_Q,B U {ﬂnﬁ}, (1)
m=2
n—2

A(n,n) _ A(nfl,nfl) . f U U A(nfm,nfm) . Oé]lmiQﬂ U {a1n72ﬁ}. (2)

m=2

Remark A.3. It can be seen that the unions defining T'""*2) and A(™™ are in fact disjoint.

Lemma A.4. For all n € N the following equation holds:

U= > pept Y Ao

Pel(n—1,n+1) PpEN(nn)

Proof. Recall that we use abbreviation puy, = p and Ay = A. The proof utilizes induction and Lemma A.2. A
direct inspection shows that the equation holds for n = 1, 2. Indeed by using the skein relation we have

\Ill = Mﬁ + Agv
Uy = plf + pf + Aaf + ALK,

and it follows that the statement holds true for n = 1, 2. Let us now assume that ¥,, is of the form given in
the statement for all 2 < n < k and let n = k£ + 1. Applying the skein relation once to ¥y ; we obtain

U1 =dpyq s B+ Tk

See Fig. 22 for the diagrams.
Using Lemma A.2 we can rewrite the previous equation as

Uy =0 £+ U1 -af+Vg-alf+ -+ To-al* 1+ X175

We now apply the inductive hypothesis to obtain

U= Y pevbt > Ageé

PEl(k—1,k+1) PpEN(KF)

+ Z et al™2B8 4 Z b al™ 28

wer(kfmfl.k—vn«i»l) ¢€A(k7m,k7m)
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+X-alkf g 4 108

Using the inductive definition of T'™"*2) and A(™™) we conclude that

V= Y, wdt+ Y A4

e (R k+2) HEA(R+1,k+1)

which completes the proof of the lemma. 0O

Lemma A.5. The left differential d° can be written in terms of U; as follows:

; Zf:l ooy -a- 1720 for n =2k
dt =

n

—plnt — Z?q Woj_1-a- 1772 for n=2k+1.

Proof. Suppose first that n is even and let n = 2k for some k. By definition we have

n

=S vl

i=1

Since n is even, we can group the terms df’i -1™* in pairs of consecutive summands 2¢ and 2i + 1 for i =
0,...,k. Applying the skein relation to the (2i)" term, we obtain that, for all i, dj; ,; = d%;_; 5,1 +V2_a-0v.
Here we recall that ¥g = A. Putting all terms of the left-hand side of —déi71,2i71 —&—dgi’% = Wy, 5 together
and using the fact that consecutive terms appear with opposite signs, we complete the proof for the case
n even. If n = 2k + 1 is odd, we proceed similarly by grouping in pairs the terms dgmj and d§j+1,2j+1 for
j=1,...,k. O

Proof of Theorem 4.1. We first consider the case n = 2s for some s. Since in Lemma 5.1 below we show
that dg = 0, we assume that s > 2. From Lemma A.5 we have

dfz = Z \112(1'—1) Qe I]_n—2i.
i=1

Using Lemma A.4 we can rewrite it as

S

dhy=>" S ww+ D) Ao alm

i=2 \ el (2i-3,2i-1) HEN(2i—2,2i-2)
To complete the proof of the first assertion with even n, it would suffice to show that for each i = 2,...,s
k(1 k(h
> mwat 3 Agra=3 g
wer(zi—S,Zi—l) ¢EA(2i—2,2i—2) S’(n)

where, noting that 2k = n = 2i,
S'(n) = {(i0, i1, .. in; k(1), ... k(R)) | in # 1, ig + i) 4o 4 if ") = 24},

Since n —2i = 2s — 2i is even for all i = 2,..., s, g; = p by definition and g contains a factor of A for each
19 > 2, the last equality is a consequence of the two set-theoretic equalities:
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D2 o = {gh Wb g £ 1, i iy =0y 2}

AN o= fghgf g Ly £ 1, i £ L g+ i =04 2)
=: 85(0),
RQ) | k(R

for all n, where g; " -+~ g;.

equality by induction. First observe that by definition, for £ = 1, we have

can be empty in the second last line. We therefore proceed to prove the first

3 = {18, g},

from which

3. o = {18a, B¢a}.

It is easy to see by direct inspection that

{gr g™ Ly £ 1, W 4 i) = 3) = {g1 - g2, 95} = {180, Bear.

So the basis of induction holds true. Let us now assume the equality holds for all ¢ smaller than or equal to
r, and suppose £ = r 4+ 1. We want to show the inclusion

ro+Lrd) o c 8 (r 4+ 1).
Let ¢ € T("+17+3) From the Equality (1), we distinguish three cases

F(T,T+2) f
d) c L]:n_=12 F(r+17m,r+3fm) . Oéjlm72ﬁ
{]lr+1ﬁ}.

In the last case it is clear that ¥ = 1""!8a € Si(r + 1). In the second case, 1 is equal to ¥’ - 1™ 23,
for ¢/ € Tr+l=mr4+3=m) for some m = 2,...,7 — 1. Then ¢ - a = ¢’ - - 1™ 2Ba € S;(r + 1) since
1m=28a € Sj(m), ¢ - a € Si(r —m + 1) by inductive hypothesis and Sj(n) - Sj(m) C S;(n + m) for all
n,m.

Lastly, if 1 € T2 . € we can write ¢ - a = p; - € - a for some p; € T2 We again distinguish
three subcases depending on which of the three cases p; belongs to. As before, we see that if p; is not in
Lr=1r+1) . ¢ we easily have that -« € S} (r +1). Otherwise we can write ¥ - o = py - £€ - av. So proceeding,
at each step we have that either 1 -a € S{(r + 1), or we decompose 1 - @ as a product of type py - £¥a, with
pr € TW3) = 118, 3¢}, Either way ¢ - a € S (r + 1) and we have proved that

PrHbrds) o c Si(r+1).

k(1)

We now show the opposite inclusion. Let g = g, -+~ gfh(h) € S1(r+1) with i, # 1. We can therefore write

g= gfl(l) = ogf}ffl_l)ﬂfih’Qa - B€I 20, where iy, — 2 can be possibly zero, and 3¢% ~2q appears k(h) times.
We also abbreviate center dots for brevity, such as Sa for - a, with the understanding that these sequences
denote the horizontal concatenations instead of compositions of maps. If i; =1 forall j =1,...,h -1, we

have that
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g = 1FDF+k(=1) g cin=2g0cin=280 ... Bagin=2 . o € TU+HLr+3) o
since it is easily seen that
PR+ +h(=1) |5 cin=2g0cin=280 ... Bagin—2 ¢ DIr+1r+3)
Otherwise let j be the largest index for which 4; # 1. Then we have

g= gfl(l) . gi(Jfl) . Bgij—2a . ﬁfij_QOé B R i R Bgih_za.

By the induction hypothesis we can write
g=p-a- gfij—Za]lij+1+~-+ih,1 _6£ih—2a’
for p € T(m™+2) for some m < r. Since
p-a- BET2qllitt i | gein=2 ¢ pOrLrdd)

we conclude that g € T("T17+3).q. Therefore T(“¢+2).qp = S} (¢) for all even n. To prove that A9 .a = S5(¢),
we again proceed by induction. The proof is similar to the case of I'™"*2) The base of induction holds
true since we have

S5(1) = {X¢a},

and

A = {g}.

Let us now suppose that the equality A“9.q = S%(€) holds for all 2 < ¢ < r. We want to show AL+ g =
S4(r 4 1). Consider again three different cases

AT) g
o€ L]:n:2 A(r—m,r—m) 'Oé]lmiQﬁ
{al1""1p5}.

In the first case, ¢ = ¢ - £ for some ¢ € A™" and we can proceed backward as for the analogous proof for
[(r+1r+3) g6 that at each step we either have ¢ € Si(r 4+ 1) or we can rewrite ¢ = ¢ - £---&, where the
product of ¢ is 7 times and ¢ € AL, Tt follows that in the first case Apa € Sh(r + 1). In the second case we
have ¢ = ¢ - al”~™f3, for some g € AT~""=™) Since q - € Sh(t) for some t by induction, and 17" af is
of type g{ - g, this case follows as well. In the third case, Aa1" '8 - a = Aal""'aB € S4(r + 1). It follows
that de decomposes as in the statement of the theorem, when n is even. The case n odd is similar. Let
n = 2s + 1 for some s, then using Lemma A.5, odd case, it holds

2
14 2s § 25—27
d28+1 = —,u]l - \Ifgj_la]l J,
j=1

Applying Lemma A.4 we obtain
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S

dgs+1 = _Ml% _Z Z e+ Z A N e

j=1 \yer@i-2.25n SEA(2i—1.2j-1)

Since I'(27-2:27) has even exponents for all j’s, using the recursive definition of I'’s it follows that there is no
term of type - 1¢ in the sum Zwepm,g,m -1, So it is enough to show that for each j =1,...,s we have

k(1 k(h
)DL EEDY o= 30 g,
PYEr(23—2,25) ¢€A(2j71=2j71) SY(n)

where the sum runs over all tuples in
SY(n) = {(ioyi1, .- in; k(1), ... k(h) | g+ iF™ 4. 4 iF ) =95 11y

Since n — 2j = 25 + 1 — 2j is odd for all j and g; contains a factor of A for all 49 > 2 it follows that it is
enough to prove the set theoretic equalities

I\(d,d+2) — Si (d)
A-AD o = S (d).
These have already been proved above and the proof for n = 2s + 1 is complete as well.
It is easy to see that mirroring Lemmas A.2, A.4, A.5 with respect to the y-axis, we obtain a decomposition
of d” with right (co)action on k replacing the left (co)action on k, and ¢ instead of ¢&. So the formula for d’,

just proved can be easily adapted for d;,. Putting the two equations together and distinguishing the cases
n odd and even, we conclude the proof of the theorem. O

Appendix B. Proof of Proposition 7.2 continued

In this section, we provide proofs of the other cases. For odd n, the following terms result in the non-zero

coefficient of eq o in the image, for i =1,...,(n —1)/2:
(9’19? 1)(61,0) =leipo
(9197 M (er1) = leig
(ghi19r 2 Mler20) = () HY*E Very = —y*2erg
(ghip19t > N(erinr) = (=) ()y** Very = yYero
(hY 2R, givo)(e12i1) = (y yero = leio
(h%Z_Qh/n—Qi+2)(el,21) = (—y)yero = *3/261,0
(hY~'hi)(e10) = Le1o
(h?~'hY)(ern) = levo.
From these we compute
dn(e10) = (—gigi t + AT 'R (e10) = (“1+1)erg = 0
do(er1) = (—g1g7 't = ghgt 2+ h)(ern) = (1+¢*+Dero = y2eo

du(er2i-1) = (—ghi 197 2T+ BT 72H, g 0)(e12im1) = (—y T+ Dewo
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dn(e1,2i) = (g1 g0 2+ 2h), g o)(er2) = (P —yPero
do(ern) = (—gh + T 'R (e1n) = (42" Y + Dergo.

For the coefficient of e3¢, we compute

(919? 1)(62 0) = lez
(9197 M) (ea,1) = lea
(95511972 D(e22i) = W) (—y)ezn = —y ez
(9911972 Neair1) = W)y Ne2o = lezg
(h21 th 0 2)(62 21_1) :( ) 2(n72i)620 — _y2n74i+26270
+
(WY h),_gi0)(e220) = (4 )y - y* " Heag = y*" ey
(R ~'h7)(e2,0) = lez
(R ) (ea.n) = leg
From these we compute
dn(e2,0) = (—gigi  + R R (e20) = (=1+1)ez0 = 0
dn(e21) = (—g1 9” P nshT T (e21) = (1457 e
dn(e2.2i11) = (—ghip1gr >+ BTR, g 1) (e22i01) = (P =y Peap
dn(e2,2i) = (— 921+19? AR Ty o) (e22i) = (1Y M)en
(62 n) = ( hn 1h/ )(627n) = (—1 + 1)6270 = 0.
For even n and for ez o, we have
(997 N ea2i—1) = (—y)(y Mezo = —leag
(9097 ) (e2,2) = (=y)(—y)e20 = y’e2o
(h2zhn 22)(61,2i+1) y( 1) 2(n—2i)e20. _ _ 2(n—2i+1)e20
(h%zh;l )(61 2z+2) _ y( ) 2(n— 21+2)62)0- — 2(n 21)6 2.0-
From these we compute
dne22i-1) = (—ghig? > + B3 2R g 0)(e10im1) = (1 — > "2 )eq
dn(ez2,2:) = (= 9219? % hzi—zhn—2i+2)(€1,2i) = (—14'3/2("72“2))62,0-

This completes the proof.
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