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Abstract

Following an idea of Hopkins, we construct a model of the determinant sphere S(det) in the
category of K (n)-local spectra. To do this, we build a spectrum which we call the Tate sphere
S(1). This is a p-complete sphere with a natural continuous action of Z . The Tate sphere
inherits an action of G,, via the determinant and smashing Morava E-theory with S(1) has the
effect of twisting the action of G,,. A large part of this paper consists of analyzing continuous
Gy, -actions and their homotopy fixed points in the setup of Devinatz and Hopkins.

1 Introduction

Let p be a prime and n > 0 an integer; these will be fixed throughout and we will always
suppress p and mostly suppress n from the notation. Let E = E,, denote the Lubin-Tate
spectrum associated to the Honda formal group law of height n over IFn, and let K = K (n)
be the corresponding Morava K -theory at height n at the prime p. As is the usual convention,
given any spectrum X, we write
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E.X = 7. Lx(E A X)

where Lk denotes K-localization.

We are interested in the K-local category and, in particular, one very interesting spec-
trum therein which arises from comparing two dualities. The first of these duality functors
is Spanier—Whitehead duality, sending X to D, X = F(X, LgS%). If X is a dualizable
spectrum—for example if X is a finite spectrum— then E, D, X = E™*X and can be com-
puted by a universal coefficient spectral sequence. The second is Gross—Hopkins duality,
sending X to I, X = F(M,X, Ig,z), the Brown—Comenetz dual of its monochromatic layer.
Specifically, M, X is the fiber of L, X — L,_1X and Ig,z is the spectrum representing the
cohomology theory 1(5 /Z (X) = Homgz(7. X, Q/Z). 1t is a consequence of the work of Gross

and Hopkins that the dual I, of the sphere Lg S is invertible in the K-local category and,
hence, we have for any spectrum X a natural equivalence

1,X ~ Lk (DX A L).

At this point, information about the homotopy type of I,, becomes vital, and one gets a
handle on it using that the spectrum E has an action by the Morava stabilizer group G = G,,.
Consequently, the graded E..-module E, X has a continuous action by G, giving it the structure
of a Morava module (see Definition 5.3.20 [1]).

The key to the invertibility of I, is the calculation of the Morava module E, I,,. The group
G is a semidirect product S x Gal(F ,» /IF ,), where S = S, is the automorphism group of the
formal group law of K. The group S can be identified with a subgroup of the general linear
group Gl, (W), where W denotes the Witt vectors on the finite field IF,». The group S has
enough symmetry that the determinant Gl, (W) — W* restricts to a homomorphism

det: S — Z;,
which can be extended to G as the composite

det: G =S x Gal(F ,n /F ) detxid 7% x Gal(Fpn /F ) 22 7.
This gives a G-action on Z,, and we write the corresponding representation as Z, (det). If
M is a Morava module, we can define a new Morava module by M (det) = M ®z, Zp{det)
with the diagonal G-action. Then we have by [9,17] an isomorphism of Morava modules

E. I, = E. (5" ") (det).

If the prime is large (2p > max{n? + 1, 2n + 2}) this determines the homotopy type of I,,.
If the prime is not large, then we would like a fixed model S(det) of an invertible spectrum
in the K-local category equipped with an isomorphism

E.S(det) = E, (det).
Then we have a K-local equivalence
I, ~ S A S(det) A Py,

where P, is an invertible K-local spectrum with E. P, = E, SO as Morava modules, and
attention turns to identifying P,. In the known cases this comes down to calculating the
homotopy groups of 7, X for X a particularly nice type n complex. See [8] for analysis of P,
atn =2 = p — 1l;thecasen = 1 = p — 1 was done by [10] and also appears in [8,13].
The point of this note is to give a construction of a model of S(det) valid at all primes
p and all n > 0. We actually give two constructions of S(det), one using homotopy fixed
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points, following an idea of Mike Hopkins, and another, more naive and direct one, following
ideas from [8,18], fixing the typos therein and extending the construction to the prime 2. A
different construction of S(det), valid at primes large with respect to the given height and
choice-free, was given by Peterson in [14, Cor. 3]. Since the Morava module determines an
invertible K-local object at large primes, the two constructions give equivalent spectra in this
situation.

The first model will evidently have the property that Lg (E"® A S(det)) = E¥ for
all closed subgroups K in the kernel of the determinant. The key to this construction is to
introduce a spectrum S(1) with a continuous G-action, non-equivariantly equivalent to the p-
complete sphere spectrum S0 = Sg, and such that smashing with it naturally twists G-actions
by the determinant representation. Then we define

S(det) = (E A S(1)"C,
the action on the right-hand side being diagonal. The following is our main result.

Theorem 1.1 There is a canonical G-equivariant equivalence f: E A S{det) — E A S(1),
where the action of G on the source is via the action on E, while on the target it is diagonal.
This induces an isomorphism of Morava modules E, S (det) = E, (det).

If K is a closed subgroup of G in the kernel of the determinant, taking K-homotopy fixed
points in this equivalence gives the desired result (Corollary 3.11)

E" A S(det) ~ (E A (1)K ~ EK,

This project gives a chance to revisit and give an encomium on the amazing paper of
Devinatz and Hopkins on fixed point spectra in the K-local category [4]. Distilled down we
have the following question: let X be a spectrum with a continuous action of the Morava
stabilizer group G. We can then form the G-spectrum Z = E A X with diagonal G-action
and discuss the homotopy type of Z"® = (E A X)"©. Note that E,Z = m,Lk(E A Z) has
two G-actions: the Morava module action on E and the action on Z. A consequence of our
results is that if X is dualizable in the K-local category, then

E.(Z'"®) = EL,(EA X)"®C = E, X (1.1)
and the Morava module action on E,(E A X )hG corresponds to the diagonal action on
E.X =7, Lg(E A X).

An analogue of this result for arbitrary spectra X with frivial G-action was proven by Davis
and Torii [6]. The equivalence (1.1) is not hard to prove once we have come to terms with
the notion of a continuous G-action. Since we are making a homology calculation we need
cosimplicial techniques, and this is exactly what Devinatz and Hopkins supply.

We close with a remark on our choice of the formal group we use to specify Morava
K -theory and E-theory. At the beginning of this introduction, we specified the Honda formal
group over Fn. This was simply because [4] is written for the Honda formal group. Pre-
sumably, the work of Devinatz and Hopkins goes through without change for any height n
formal group over any finite extension [F, of the prime field IF,. If this is the case, we could
choose any F so that the map det: Aut(F/F,) — Z; is surjective.
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2 Continuous G actions and their homotopy fixed points

As is perhaps apparent from the introduction, we will assume our readership has access to
the standard framework of K-local homotopy theory. The usual source for an in-depth study
of the technicalities is Hovey and Strickland [12] and basic introductions can be found in
almost any paper on chromatic homotopy theory. We were especially thorough in [3, §2].

Less familiar is the analysis of point-set properties of the action of Morava stabilizer group
G on the spectrum E. We will need to use an explicit construction of the homotopy fixed
points. For our purposes the original definition by Devinatz and Hopkins [4] will do. The
reader interested in extensions and variations of the original notion may want to consult work
such as Behrens—Davis [2], Davis—Quick [5] and Quick [15].

We will also not access the full power and structure of equivariant stable homotopy theory.
Our G-spectra will simply be G-objects in some suitable category of spectra; when G is
profinite, we will also use a simple notion of continuity (see Definition 2.5).

We start with some algebra. Recall that E, = W[uy, ..., u,— 1]][uil] where the power
series ring is in degree zero and the degree of u is —2. Let m C Eq be the maximal ideal.

Remark 2.1 Before we proceed further, we need to establish some more notation. Using the
periodicity results of Hopkins and Smith [11], Hovey and Strickland produce a sequence of
ideals J (i) € m C Eg and finite type n spectra M (;) with the following properties:

(h) Ji+1) S J@)and (), J(@) =0;

(2) Eo/J (i) is finite;

(3) Eo(My;)) = Eo/J (i) and there are spectrum maps g : My;+1) — My realizing the
quotient Eo/J (i + 1) — Eo/J (i);

(4) There are maps n = n;: SO > M J() inducing the quotient map Eg — Eo/J (i) and
gnit1 =ni: SO > My@;

(5) If X is a finite type n spectrum, then the map X — holim; (X A M,(;)) induced by the
maps 7 is an equivalence;

(6) If X isany L,-local spectrum thenby [12] we have Lx X =~ holim; X AM, ;). In particular
we have E > holim; E A M.

Most of this is proved in [12, § 4], and (6) is proved in [12, Prop. 7.10]. Hovey and Strickland
also prove that items (1)—(5) characterize the tower {M;;)} up to equivalence in the pro-
category of towers under S°. See Proposition 4.22 of [12]. Note that the sequence {J (i)} of
ideals defines the same topology on Eq as the m-adic topology and that G acts on Eq/J (i)
through a finite quotient.

For profinite sets I = lim; 7; and A = lim; A;, recall that the set of continuous maps
from T to A is defined as

Map®(T, A) = lim;colim; Map(7}, A;).

Let M be a Morava module and always assume M is m-complete. An important example of
the previous construction is the Morava module of continuous maps
Map® (G, M) = lim; Map (G, M /m’) = lim; colim; Map(G/U;, M/m')
where U; 1 € U; C G is a nested sequence of open normal subgroups so that N U; = {e};
then G = limj G/Uj.
‘We now begin to make these constructions topological by giving a definition of a spectrum
of continuous maps in the K-local category.
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Definition 2.2 Suppose T = lim; 7} is a profinite set, and A > holim; A AM ;) is a K-local
spectrum. Define

FC(T_;,_, A) = hOlimihOCOIiij(Tj+, AN M](,’)).

In applications 7 will be G or G/K x G* with s > 0 and K C G a closed subgroup, or
G=1;.

We now calculate 7. F.(T4, A), at least for some A. For later applications, we will
need a slightly more general result about 7, F(Z, F.(T+, A)) with Z arbitrary. If Z is any
spectrum we may write Z =~ hocolimy Z% for some filtered collection of finite spectra. If
A =~ holimj]A A My is a K-local spectrum, then we have a topology on
m:F(Z,A) = A™'(Z) defined by the open system of neighborhoods of zero given by the
kernels of the map

T F(Z, A) — 1, F(Z%, A AMy@).

This is the natural topology of [12, Section 11]. The groups 7, F'(Z, A) are complete in this
topology if

T F(Z, A) Zlim 7, F(Z%, A AMy@).
o,

In applying the following result our main example will be A = E A X with X dualizable in
the K-local category.

Lemma 2.3 Suppose Z is any spectrum, T = 1lim;T; is a profinite set, and

A > holim; A A My

is a K-local spectrum. Further suppose 7;(A A My ;)) is finite for all i and t. We then have
an isomorphism

7 F(Z, F.(Ty, A)) = Map“(T, A"*Z)
where A™*Z is equipped with the natural topology.

Proof Let Z =~ hocolim, Z* be some cellular filtration on Z by finite spectra. Our finiteness
hypothesis on A implies

AT*Z =m,F(Z,A) = limﬂ*F(Za, AAMj@y).
a,i

Now we have that

F(Z, F.(T4, A)) = holimyholim; F(Z*, hocolim; F (T, , A A My )

1
is equivalent to
holimgholim; hocolim;; F(Z%, F(T;,, A A M),
since Z is dualizable. The homotopy groups of
F(z“, F(Tj , AAMw) = F(T; ., F(Z% A AMj@i))
are Map(T;, m, F'(Z%, A AM ;) and the claim follows using the Milnor sequence and our

finiteness hypotheses for the vanishing of the lim! term. O
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Remark 2.4 For a K-local spectrum X = holim; X AM;), we can give
F((G/Uj)+, X AMyq))

aleft G = lim; G/U; action by operating on the right on the source. (Note that the subgroups
U are normal.) This assembles into an action on F.(G, X). If the homotopy groups 7, (X A
M i)) are finite, Lemma 2.3 gives an isomorphism of continuous G-modules

7 Fe(G, X) = Map® (G, 7, X) @.1)

where again G acts on the source.
Writing G° = 1im(G/U;)*® we define F.(G%, X) for s > 1 as in Remark 2.2. We have
that

F(G', F.(G'y, X)) ~ F.(G, X).

The equation FC(G‘;H, X) >~ F.(G4, F.(G*_, X)) defines an action of G on FL.(Gfl, X)
using the right action on the first factor of G*+1.

Evaluation defines amap G A F((G/U;)+, X AMy)) — X AM, ;). Here G is simply
regarded as a set, with no topology. These fit together to give a map

G+ VAN FC(G+, X) — X.

We now come to the Devinatz—Hopkins notion of a continuous G-action on a K-local
spectrum. To prepare, we spend a few paragraphs examining the standard bar construction
in equivariant homotopy theory.

Let G be a discrete group and X a G-space. Then we can form the augmented cosimplicial
space

X — Map(G**!, X) (2.2)

with coface maps defined by

800 (g1, ..+, &), i=0;

(d $)(80, 81.---. &) = _
’ &80, -+, 8i8i+1,8s), > 1.

The codegeneracy Maps’ insert the unit in the ith slot and the augmentation n: X —
Map(G, X) is adjoint to the action map G x X — X. Notice that s* for all i, and d'
for all i > 1 depend only on G, and not on the action of G on X. However, for all s, d° is
given by the composition
M s Map(G”, 1) s = s+1
ap(G*, X) —— = Map(G’, Map(G, X)) —— Map(G°™', X),
where we have used the adjoint isomorphism Map(Y, Map(G, X)) = Map(G x Y, X).

We could turn these observations around and define a G-action on X as a Map n: X —
Map(G, X) so that the diagram (2.2) determined by these formulas is an augmented cosim-
plicial space; that is, the various compositions satisfy the cosimplicial identities. We find that
this is equivalent to the usual definition.

There is nothing special about spaces in this discussion: for example, an action of G on a
spectrum X defines and is defined by an augmented cosimplicial spectrum

1
X — F(GY X).
In our definition of a continuous G-spectrum, which again is essentially due to Devinatz—

Hopkins [4], we replace the functors F (Gfl, —) by the functors FL.(Gfl, -).
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Definition 2.5 (Continuous G-actions) Let X be a K-local spectrum. A continuous G-action
on X consists of a map

n=nx:X = F(Gy, X)
so that the diagram
X — F.(GT X) (2.3)

determined by 7 and G is an augmented cosimplicial spectrum.
A map of continuous G-spectra consists of a map of the respective augmented cosimplicial
diagrams.

Remark 2.6 1f X has a G-action, then the composition

X —'~ F.(G4, X) —= F(Gy, X) (2.4)

defines an action (in the usual sense) of G on X. Conversely, given an action of G on X, we
say that action refines to a continuous action, or simply that the action is continuous, if there
is a factoring as in (2.4) that gives X the structure of a continuous G-spectrum.

This is what Devinatz—Hopkins [4] accomplish, where the discrete G-action on E was
already given by the Goerss—Hopkins—Miller theorem. We discuss this example further in
Remark 2.13 below.

Example 2.7 A more tautological example is the following: For any K-local spectrum X, the
trivial action of G on X is continuous. Here we start with : X — F.(G, X) adjoint to the
projection map G4 A X — X.

Definition 2.8 (Homotopy fixed points) If X is a continuous G-spectrum and K € G is a
closed subgroup, we define F.(G, X)X = F.(G/K,, X) and

X" = holimp F.(GY, X)X
=~ holima F.(G/K4+ A G%, X). 2.5)

Remark 2.9 Suppose further that K € G is a closed subgroup and that X ~ holim; X AM ;)
is a K-local spectrum such that 7z, (X A M) is finite for all i and ¢. Using Lemma 2.3,
one sees that these definitions are designed so that the Bousfield-Kan spectral sequence
associated to (2.5) is the homotopy fixed point spectral sequence

Ey' = H) (K, 1 X) = 7 X"
with E>-term given by the continuous group cohomology.

Remark 2.10 There is an obvious generalization of this definition to other settings, for exam-
ple the group may be any profinite group. Likewise, the spectrum X may live in another
category where analogues of the generalized Moore spectra M ;) play a similar role. For
example X may be a p-complete spectrum, so X =~ holim; X A S/ p’. While we will in effect
construct a continuous p-complete Z spectrum in this sense in Section 3, we refrain from
setting up a general theory.

The following is an easy but useful property, which we record as a lemma for convenient
future reference.

Lemma 2.11 Let X be a continuous G-spectrum. If X"© is given the trivial G-action, the
“inclusion of fixed points” map X hG 5 X is G-equivariant.
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262 T. Barthel et al.

Proof The map in question is holima of the cosimplicial map
Fo(GY, X) = F(GY, X)® — F(GYH, X,
given by the inclusion of fixed points, which by construction has the required properties. O

One way to summarize the results of Devinatz and Hopkins [4] is as follows. The phrase
“essentially unique” means the space of choices is contractible.

Theorem 2.12 The G-spectrum E has an essentially unique structure as a continuous G-
spectrum with the property that if K C G is closed, then the map of Morava modules
E.E"® — E.E is naturally isomorphic to the inclusion

Map®(G/K, E,) —> Map®(G, E,).

The Morava modules E,E"8 and E.E are discussed in more details immediately after
Remark 2.13.

Remark 2.13 The statement of Theorem 2.12 at once disguises quite a bit of difficult work
and obscures the logic of the Devinatz—Hopkins argument; thus, it is surely worth going into
a bit of detail.

Suppose for a moment that we knew that Theorem 2.12 was true. As above, choose a
nested sequence of open normal subgroups U;; € U; € G with N U; = {e}. Then we
would have a sequence of spectra

. —> EWi 5 EMin 5 .S E (2.6)
with the following properties

(1) E"iisaG /U spectrum and all the maps of (2.6) are G-equivariant;
(2) the map E,E"Y/ —s E.E of Morava modules is isomorphic to the inclusion

Map“(G/U;, Ey) — Map“(G, E,);
(3) the induced map hocolim; E"Ui — E is a K-local equivalence.

Let us give some detail on Part (3). By Remark 2.1, Part (6) we have that if X is L,-local
then Lg X = holimX A M ;). The spectra E""Yi are K-local and, hence L,-local. Since L,
is smashing the homotopy colimit is L,-local, so Part (3) is equivalent to the statement that

hocoliijth AMja) — EAMyg)

is an equivalence for all 7. This follows from (2) and the fact that N U; = {e}.

Next observe that since G/U; is finite, E.E"Ui is finitely generated as an E,-module,
hence E"Ui is dualizable in the K-local category, by [12, Thm. 8.6]. Putting all this together
and still assuming we know Theorem 2.12—we would have the following diagram of
cosimplicial spectra, with the vertical maps being K-local equivalences

hocolim ; E"Yj —— hocolim; F (G/U;)%, EMVi) 2.7)
E F.(GY,E).

Devinatz and Hopkins prove Theorem 2.12 by reversing the logical order of this discus-
sion: recall that the Goerss—Hopkins—Miller theorem provides E with an essentially unique
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structure as an Eo-ring spectrum, the space mapy_ (E, E) has contractible components, and
momapg_ (E, E) = G. This gives E an essentially unique structure as G-spectrum, with the
action through E.-ring maps.

Using the Goerss—Hopkins—Miller Theorem, Devinatz and Hopkins define a sequence of
spectra which they call E*UJ and maps as in (2.6) satisfying Parts (1)—(3) above. They then
define the continuous G-structure on E using the diagram of (2.7). Then they must justify the
notation E"UJ; that is, they must show the spectra defined this way agree, up to equivalence,
with the fixed points as defined in (2.5). Finally, they must calculate E,E"®. For this they
use the remarkable Proposition 2.16 below.

We further unpack the statement of Theorem 2.12 and generalize it (Proposition 2.17 and
Corollary 2.18). For any X,

E.EAX)=m.Lk(EAE A X)

is a Morava module, using the action of G on the left factor E. Now, suppose X itself has a
G-action so that the diagonal action on E A X is continuous. If 2 € G and x € E, X, then
we write & x4 x for this action. The adjoint of the diagonal action of G on E A X gives rise
to a map

n: E4(EA X) — Map“(G, E, X). (2.8)

Explicitly, if x: S — EAE A X and g € G, then 1, (g) is the composite

X 1IAgAg AL
S —EAEAX —SEAEAX ——EALX,

where p is multiplication and we have suppressed the K-localizations.

If X is SO with the trivial action, then n gives the identification of E, E with Map® (G, E..)
which appeared in Theorem 2.12. The following result covers every case that arises in this
note.

Lemma 2.14 Suppose X = Y A Z where K..Y is zero in odd degrees and Z is a K-locally
dualizable spectrum. Then the map n in (2.8) is an isomorphism.

Proof As in the proof of [7, Prop. 2.4], it suffices to show that the natural map
E.(EAX) — limE.(EAM;; A X)
l
occurring in the Milnor sequence associated to holim; E AE A X A M, ;) is an isomorphism;

i.e., that lim} E.(E AMji A X) = 0. The assumption on Y implies that E4(Y) is a flat
E..-module, so there is an isomorphism

E.(E AMyq) A X) = E.E ®, E.(Y) ®8, E.(Myq) A 2).

Since Z is dualizable, M ;) A Z is K-locally compact, hence E. (M) A Z) is finite. This
shows that the tower (E4« (M ;) A Z)); is Mittag-Leffler, which implies that the required lim!
vanishes. ]

Remark 2.15 We now have (at least) two actions to keep straight.

(1) Forthe Morava module structure on E,. (EA X) the isomorphism 1 becomes G-equivariant
if we give the module of functions the conjugation action

(he)(g) = h*a p(h™ " g).
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264 T. Barthel et al.

(2) The diagonal action on E A X gives an action of G on E,.(E A X); this involves the right
factor of E. With respect to this action n becomes G-equivariant if we give the module
of functions the action

(hx¢)(g) = ¢(gh).

Note that the two actions commute.

At this point, we need the following remarkable result due to Devinatz and Hopkins.

Proposition 2.16 Let W*® be a cosimplicial spectrum. Suppose there exists an integer N and
a finite type O spectrum Y so that for all spectra Z the Bousfield—Kan spectral sequence

78m, F(Z,Y AW®) = m,_F(Z,holima (Y A W*))

has a horizontal vanishing line of intercept s = N at the E-page. Then for any spectra A
and F and maps v: XA — A, there is an equivalence

v 'L (A Aholima W*) = holima (V'L (A A W*)).

Proof This is all contained in [4, §5], even if it is not explicitly stated this way. More specif-
ically, we combine the material before their Lemma 5.11, Lemma 5.12, and the argument
given in the proof of their Theorem 5.3, substituting our Y for their spectrum X. O

Proposition 2.17 Let X be a G-spectrum, which is (K-locally) dualizable, and such that the
diagonal action of G on E A X is continuous. Then for a closed subgroup K of G and any
spectrum A, there is a K-local equivalence

AAEAX)E~(AANEAX)K,
where on the right-hand side, K is acting trivially on the first factor.
Proof We will prove this by applying Proposition 2.16 (with F = K, and v = id) to the

cosimplicial spectrum which computes the homotopy fixed points (E A X)"¥. Specifically,
(E A X)"® ~ holima W*, with

W' = F.(GT EA X)X = F.(G/Ky AG'LE A X).

We need to check that the conditions of Proposition 2.16 are satisfied; then the result follows.
The argument we give exactly mirrors that of [4, Theorem 5.3].

We choose Y to be a finite type O spectrum so that E¢Y is free as a C-module for every
cyclic subgroup C € G of order p and so that E;Y = 0. Moreover, E.Y is free as an
E.-module. Such a spectrum Y is constructed by Jeff Smith; see [16, §6.4, 8.3, 8.4].

Since both X and Y are dualizable, Lemma 2.3 gives us that, for any spectrum Z, there is
an isomorphism

T F(Z, Y AW*) ZMap“ (G, 1, F(Z,E A X AY)K.

Using again that X and Y are dualizable as well as that E..Y is in even degrees and free over
E*s

mF(Z,EAXAY)ZE(ZADX) ®g, Eo(Y).

Now E((Y) is free as a C-module for every cyclic subgroup C € G of order p, so the same
is true for m; F(Z, E A X A Y), and that fact implies that

T F(Z,Y AW®) = H (K,E™(Z A DX) ®g, Eo(Y))
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Constructing the determinant sphere... 265

is zero for s > n? [16, Lemma 8.3.5].! In particular, this gives a horizontal vanishing line at
the E>-page, and Proposition 2.16 applies to give the claim. O

Corollary 2.18 If X and K are as in Proposition 2.17, then there is an isomorphism of Morava
modules

E.((E A X)"®) = Map®(G/K. E.X)
where the Morava module structure on the right-hand side is the conjugation action described

in Remark 2.15.

Proof Proposition 2.17 implies that E,((E A X))y = 7 (E A E A X)"E. We will use the
homotopy fixed point spectral sequence computing 74 (E A E A X)"E. As was discussed in
Remark 2.15, there is a K- equivariant isomorphism

E.(E A X) = Map®(G, E.X)

with the K-action on EL(E A X) = 7,.(E A E A X), the diagonal action on the right two
factors, and the K-action on Map®(G, E, X) is right multiplication on the source. It follows
that the E»-term of the homotopy fixed point spectral sequence is

H*K, m.(EAE A X)) = H*(K, Map® (G, E,X)).
Furthermore,
Map®(G/K, E.X), s=0;
0, s #0

since Map® (G, E. X) is induced as G-module, and hence as K-module. Thus, the homotopy
fixed point spectral sequence collapses and the edge homomorphism gives an isomorphism
of Morava modules

H* (K, Map“(G, E. X)) = {

E.((E A X)) 5 (E.(E A X)X = Map® (G/K, E.X). O

3 The Tate sphere and the determinant sphere

In order to define the determinant sphere, we need a spectrum-level construction which
twists actions. This is accomplished by a sphere spectrum we suggestively denote by S(1),
to be indicative of a Tate twist. Namely, S(1) is the p-completed sphere spectrum S° with a
continuous action of Z; coming from its action as automorphisms on 7o 0, to be constructed
below.

We can also consider S(1) as a spectrum with a G-action, where G acts through the
determinant homomorphism

det: G — Z;,

defined as in [7, Section 1.3]. The determinant is a surjection and we let SG denote its kernel,
so that there is an exact sequence

1—>SG—>G—>Z;—>1.

! The quoted results only claims the vanishing for s > N where N depends only on n and p. To get N = n?
would require reworking the proof and using that G has virtual Poincaré duality of dimension n?.
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We will then define S(det) as the homotopy fixed points of a particular G-spectrum in the
K-local category.

We now begin the construction of S(1); we will start by constructing a discrete action of
a dense subgroup of Z;. If p > 2, we have a decomposition

(1+ pZy) x p = L

where © = IF; is the cyclic group of order p — 1 given by the Teichmiiller lifts. Let C C
1 + pZ, be the infinite cyclic subgroup generated by T =1+ p € 1 + pZ,.
If p = 2, we have a slightly different decomposition

(14 4Z5) x u = 75

where now p = {£1}. Let C be generatedby t = 1+4+4 =5 € 1 + 47Z,.

With this setup, we write G = C x u for all primes. Note that G is a dense subgroup
of Zy, and 7 is a generator of the torsion-free subgroup C = Z. If p > 2 the inclusion
C — 1+ pZ, completes to an isomorphism Z, = 1 + pZ,. At p = 2 we get a similar
isomorphism Z; = 1 + 47Z,.

Proposition 3.1 The inclusion G — Z; = 711 Bhaut(8°) can be canonically realized by a
map

BG —> Bhaut(5?).

Proof Since Bhaut(S°) is an infinite loop space we need only realize separately the maps
C — Z; and © — Z; as maps BC — Bhaut(S°) and By — Bhaut(S°). The map we
want will then be the composite

BG ~ BC x B —> Bhaut(5%) x Bhaut(5%) —> Bhaut(S°)

where the second map is the loop space multiplication.

At all primes BC ~ BZ ~ S' and the choice of 7 defines the required map §' —
Bhaut(SY).

If p =2, then Bu >~ B7Z/2 >~ BO(1) and the map we need is defined by the composition

BO(1) —> BO —> Bhaut(S").

Suppose p > 2 and let A be some 2-skeleton of Bu. The inclusion u < Z; defines a map

A — Bhaut(S%) by extending a generator of © C 1y Bhaut(S°) to A. Since 7r; Bhaut(S%) =
m;i_18° is p-complete for i > 2 and p has order prime to p, the map out of A extends
uniquely to a map By — Bhaut(S°). O

Let k > 1 and let G; < G be the kernel of the composition
G =175 — (Z/p")".
If p > 2, then G| = C and G, is infinite cyclic generated by TN [ p=2,then G, =C
and for k > 1 the group Gy is infinite cyclic generated by 77"? . We have that the intersection
NGy is trivial, and limg G/Gy = Z; thus, the subgroups Gy define the usual topology on

Ly.
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Proposition 3.2 Let L/S’_(\ﬁ be the p-complete sphere spectrum with the discrete action of G
constructed above. If p is odd letk > 1 and if p = 2 let k > 1. Then there is an equivalence

S/p* ~ EGy Ag, S(I)

and the residual action of GGy = (Z]p*)* realizes the standard action of (Z/p*)* on
Z/p* = moS/ p*.

Proof The homotopy orbit spectrum EG 1 Ag, gﬁj is a connected spectrum and we have a
homotopy orbit spectral sequence for H.(—) = H.(—, Z):

E} 4 = Hp(Gr, HyS(1) = Hpig(EG 4 NG, S(D).

Let p > 2. The group Gy is infinite cyclic generated by 7" where t = 1 + p. Since
o= + p* modulo p**! we have Elz,’q = 0 unless (p,g) = (0,0) and there is a

surjection of G-modules

Zp = Ho(S(1)) —> Ho(Gy. Ho(S(1))) = 7/ pF.

It follows that EG - Ag, 3_(\1/) must be a Moore spectrum for Z/ p* with the standard action
of Z/ p* on mS/ p*. The proof at the prime 2 is completely analogous. O

Recall that continuous actions were discussed in Sect. 2. See in particular Definition 2.5
and Remark 2.10.

Proposition 3.3 The G-action on S(1) extends to a continuous action of the profinite group
Z;, in the sense that we have an augmented cosimplicial spectrum

1) — F(@HT, S,
so that the augmentation refines the Z; -action.
Proof Write S/pk(1) for EG Ag, S(1) with its G/Gy = (Z/pk)*-action. Then the aug-
mented cosimplicial spectra
S/p* (D) — FUG/GY, s/p" (1)
assemble to give a map
S(T) ~ holimy S/ p* (1) —>holimghocolim; F((G/G )T+, §/p* (1))
= F.(Z)%H.s(D)
as needed. O

Definition 3.4 We will write S(1) for the p-complete sphere S° with the continuous Ly-
action of Proposition 3.3. The same construction gives S(1) as a continuous p-complete
G-spectrum, where G acts through the determinant surjection det: G — Z.

We refer to this equivariant sphere as the Tate sphere.

Now we take the Morava E-theory spectrum E and give E A S(1) the diagonal G-action.
The next result indicates that this is an interesting construction.

Proposition 3.5 There is an isomorphism of Morava modules

E.(det) = 7, (E A S(1)) = E,S(1).
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Proof The edge map of the Tor spectral sequence
E.(det) = Ey ® 50 0 S(1) —> m.(E A S(1))
is an isomorphism, and respects the G-action by the naturality of the spectral sequence. O
The following technical result is the key to our calculations.

Proposition 3.6 The G-spectrum E A S(1) has the structure of a K-local continuous G-
spectrum.

Proof As in (2.3) we need to construct an augmented cosimplicial G-spectrum
EAS(1) — F.(GT EAS(1)

so that the augmentation refines the G-action on E A S(1).

As above, we continue writing S/pk(1) for EG4 Ag, S(1) with its G/Gy = (Z/p*)*
action. Let us also write S/p* for the Moore spectrum when we do not need to refer to the
action.

Since M ;) and S/ p¥ are finite spectra we have

F.(G',,E A S(1)) = holim;hocolim; F ((G/U;)’, , E A S(1) AMyq))
= holimkholimihocolimjF((G/Uj)j_, EA S/pk(l) AMyi));

indeed, both sides of the last equivalence are p-complete and the natural map between them
is an equivalence after smashing with §/p. For all j so that U; is in the kernel of

G~ 7% — (Z/pM*,

the diagonal action of G/U; on E"Ui A S/pF (1) AM J(i) defines an augmented cosimplicial
G-spectrum

EMI A S/ pE() AMy6) — FU(G/UHNTT EMT A S/p*(1) A My ).
Since hocolim thUJ' ~ E, these assemble into the cosimplicial spectrum we need. O
We can now make our central definition.
Definition 3.7 The determinant sphere is the spectrum
S(det) = (E A S(1))"® = holima F. (G, E A S(1)°.
Remark 3.8 If K C G is closed we defined (Definition 2.5)
(E A S(1)"™ = holima F(GT, E A S(1)%.

Therefore, using Proposition 3.5 and Remark 2.9, we have a homotopy fixed point spectral
sequence

HS (K, E(det) = 7, (E A S(1)",

‘We now must show that there is an isomorphism of Morava modules E, S (det) = E, (det).
But this follows directly from Proposition 3.5 and Corollary 2.18.

Proposition 3.9 There is an isomorphism of Morava modules

E.S(det) = E,(det).
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We now extend this map to an equivalence of spectra. Let
1z S(det) = (E A S(1)"® - E A S(1)

be the inclusion of the fixed points from Lemma 2.11, and let u: E A E — E be the
multiplication. Define

f:EA S(det) — E A S(1)
to be the composition

1A

1
EAS(det) 2> EAEA S 25 E A S(1). (3.1)

This map is G-equivariant if we use the action on E on the source and the diagonal action on
the target.

Theorem 3.10 The map f: E A S{det) — E A S(1) of (3.1) is a G-equivariant equivalence
and induces the isomorphism of Morava modules

E.S(det) = E, (det).
of Proposition 3.9.

Proof To check that f is an equivalence we need only check that it induces the indicated
map on Morava modules. Applying m,.(—) to (3.1) gives

nAl
E.S(det) —— > E.(E A S(1)) ——=E,S(1) (3.2)

|- l; lz

Map® (G, E4S(1))® — Map®(G, E.S(1)) — E,S(1).

The first vertical isomorphism is from Corollary 2.18, whereas the second is the isomorphism
of Lemma 2.14. In the bottom row, the first map is the inclusion of fixed points and the second
map is evaluation at the unite € G. The fixed points on the bottom left are exactly the constant
functions, so the composite is an isomorphism as claimed. O

This yields the following practical invariance result.

Corollary 3.11 If K is a closed subgroup of G which is in the kernel of the determinant, then
E"E A S(det) >~ EME,

Proof We use Theorem 3.10. When we restrict the G-action on the Tate sphere S(1) to K,
we get that K acts trivially, so S(1) is K-equivariantly equivalent to S°. We have
EM" A S(det) ~ (E A S(det)™ ~ (E A S(1))" ~ EK,

where the first equivalence follows since S(det) is a K-locally dualizable spectrum with
trivial K-action. O

Remark 3.12 The specifics of the determinant homomorphism are not relevant for this
construction and its immediate properties. Indeed, for any continuous homomorphism
¢: G — Z7, we may define a K-local ¢-twisted sphere by the formula

p’

S(¢) = (E A SA)'C,
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where on the right hand side G acts diagonally, and through ¢ on S(1). The proof of Propo-
sition 3.9 generalizes to compute the corresponding Morava module as

E.S(¢) = Ei(9).

where the right hand side denotes the action on E, obtained by twisting the standard action
with ¢. This construction amounts to giving the dashed lift as indicated in the following
diagram involving the group Picg of K-local spectra X with E, X = E, and the algebraic
Picard group (Pic,,)glg of invertible G-Eg-modules:

H} (G, Zy) — (Pic,)g, = H. (G, E).
The bottom horizontal map is induced by the inclusion Z} — E;.

We note that the determinant homomorphism topologically generates most of the image
of the depicted horizontal arrow, so we are not losing much information by restricting our
attention to its study. In particular, Westerland’s version of the determinant [18] and ours
have the same image in the algebraic Picard group. Indeed, they agree on S € G and the map
from HC1 (G, Z;) to (Picn)g1g factors through

HN G, W) = HI(S, W),

4 Deconstructing the determinant sphere

Let SG < G be the kernel of the determinant. Then we can form the fixed point spectrum
E"SC_ This will have a residual action of G/SG = Z,, . (See the paragraph before Theorem
4 in [4].) Furthermore,

(E A S(1))5C ~ EMSC A 5(1),

where the right hand side has a diagonal Z -action.
At odd primes we get a simple description of S(det) directly from Devinatz—Hopkins fixed
point theory.

Proposition4.1 Let p > 2 and let ¢ € G be any element so that det(¢p) topologically
generates Z;. Then there is a fiber sequence

S(det) —> EISC D97 pisG.

Proof By construction, the actionof g € G on S(1) is given, up to homotopy, by multiplication
by det(g) € Z;j. Thus, the diagonal action of ¢ on E"SC A S(1) is, up to homotopy, given
by

® Adet(g): ESC A S(1) — E"SC A 5(1).
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Using that S(1) is non-equivariantly the sphere S°, we have a homotopy commutative diagram

d —1
EISC A 5(1) 2O gise  g(1)
EhSG det(¢)¢—1 ESG

Let F be fiber of the bottom map. The composition

Pndet(p)—1
_—

S{det) = (E A S(1))"C —= ENSC A 5(1) E"SG A §(1)

is null-homotopic, so we get a map f: S(det) — F. Using the fact that
E.E"S® = Map®(G/SG, E,) = Map®(Z*, Es)
we compute that f induces an isomorphism of Morava modules. O

We can refine the fiber sequence of Proposition 4.1. We still have p > 2 and we have a
splitting

pcx(l—i—pr)%Z;.

The group o = I} is cyclic of order p — 1 and (1 4 pZp) is isomorphic to Zj, itself.

Leta € W* C G be a primitive (p” — 1)st root of unity; then det(«) € u is a generator.
The group u € Z,, acts on E"SCG and, since this group is abstractly isomorphic to C =1
the spectrum ESC splits as a wedge of the eigenspectra for this action. Let Eﬁ’(SG be the
summand defined by the equations

JT*EZSG = { X € n*EhSG | ayx = det(a)_lx } .

Note that the spectrum Eﬁ’(SG corresponds to (E"SCG A S(1))* Indeed, forgetting the p-action
and remembering that the underlying spectrum of S(1) is the p-complete sphere, the map
which sends x € T (E"%) to x A1 € 7, (E'SC A S(1)) is a non-equivariant isomorphism.
Now note that if @, (x) = det(a) " 'x in 7, E"SC then e (x A1) = ag(x) Adet(a) = x A
in 7. (E"SC A §(1)) so that

x Al e (e (EMSC A S(H)H* = 7, (EMSE A S(1))H.

Proposition4.2 Let p > 2 and let v € G be any element so that det(y) topologically
generates 1 + pZ, < Z,. Then there is a fiber sequence

det —1
S(det) —> EISC VL pisG,

The proof is very similar to that of Proposition 4.1. This fiber sequence appears in [8,
Rem. 2.5] although there is a typo there: the factor of det(y”*!) should be replaced by
det(y)~P*D in Eq. (2.6).

At the prime 2 we have ZZX = ux (1+4Z) for u = {£1} and the decomposition is more
subtle. In particular, E"SC does not decompose as a wedge of p-eigenspectra, where p acts
on E"SC through Z5 = G/SG. Thus we need a replacement. The following construction
expands on ideas of Hans-Werner Henn.
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It follows from its construction in Proposition 3.1 that, as a u-spectrum, S(1) is $7 !
where o is the one-dimensional real sign representation of 1. We have a fiber sequence of

-spectra
$77 5 SO Apuy —> 8°
where S has the trivial action. This is a fiber sequence of 7 -spectra by restriction along
the quotient map Z5 — 1 with kernel 1 + 4Z,.
We smash this sequence with and use the diagonal action to obtain a fiber sequence
of Z3 -spectra

EhSG

EhSG A Sa’—l — EhSG A M+ N EhSG
Now take p-homotopy fixed points to get a fiber sequence of Zy = ZJ /u-spectra. We give
a special name to the fiber, i.e., we denote by ESC the spectrum
EhSG — (EhSG A Sd—l)h,u
where p acts diagonally on the right-hand side. Thus, we have the fiber sequence
4.1

t
E}LSG EhSG _r) (EhSG)hM’

where tr is the transfer.
Now let ¥ € G is any element so that det(yr) topologically generates 1 +47Zj;. Since (4.1)
is a cofiber sequence of ZJ /i-spectra there is an extension of the map 1 : ESG . EISG

to a commutative diagram
EhSG EhSG

v l llﬂ
EhSG EhSG'
Proposition 4.3 Let p = 2. Then there is a fiber sequence

S{det) — EASG VL prse

Proof The argument is essentially the same as in Proposition 4.1. Here is more detail. By
construction
S(det) = (E A S(1))"€ ~ (ESC A s(1))"%2

Using the decomposition Z; = (1 +4Z5) x w we obtain a fiber sequence
h
(Y Adet(yr)— D" (EhSG A S(l))h“

S{det) —— (E"SG A §(1))
Here we are again using that, up to homotopy, g € G acts on S(1) = S° by multiplication by
det(g). Since E'SC A S(1) >~ EMSCG A 5971 as JL-spectra, we have a commutative diagram

det(y)—D)h*
(BISE A 1yt —EOTIT (@SS A (1))t

~

E/SG det(¢)p—1 E/'SC.
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The result follows. m]

Example 4.4 At height 1, the determinant map G — Z; is the identity. We can also choose
E = K, the p-completion on complex theory. We have that

K.S? = K. (det)

so the K-localization of S is a valid model for the determinant sphere. If p > 2, this must
be the same as ours, but at p = 2 there is a possibility that S(det) ~ S> A P, where P = DQ
is the dual of the ‘question mark complex’. By [10], P is the unique element in the K-local
Picard group so that K, P = K, S as Z -modules but KO A P ~ 4K O. This possibility
turns out to be the case.

To see this, we observe that K O = K. We can use Theorem 3.10 to deduce that ZZX-
equivariantly, and therefore p-equivariantly, we have an equivalence K A S(det) >~ K A S(1),
where the action on the right hand side is diagonal. As mentioned above, p-equivariantly
S(1) is the representation sphere S° !, so we conclude that

(K A S(deth)™ ~ (K A ST,

By Proposition 2.17, we get that the left-hand side is K O A S({det). For the right-hand side,
we can use the y-equivariant Bott periodicity equivalence K A S+ ~ K to conclude,
altogether, that

KO A S{det) >~ (K AS™HM" ~ 372K 0.

Thus S(det) ~ S A P.
Note that in this case we have shown that E"SC¢ = £=2K 0, and the fiber sequence of
Proposition 4.3 is a shifted version of that given for P in [8, Ex. 5.1].
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