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Abstract

Models that capture spatial and temporal dynamics
are applicable in many scientific fields. Non-separable
spatio-temporal models were introduced in the litera-
ture to capture these dynamics. However, these models
are generally complicated in construction and inter-
pretation. We introduce a class of non-separable trans-
formed multivariate Gaussian Markov random fields
(TMGMRF) in which the dependence structure is
flexible and facilitates simple interpretations concern-
ing spatial, temporal and spatio-temporal parameters.
Moreover, TMGMRF models have the advantage of
allowing specialists to define any desired marginal dis-
tribution in model construction without suffering from
spatio-temporal confounding. Consequently, the use of
spatio-temporal models under the TMGMRF frame-
work leads to a new class of general models, such
as spatio-temporal Gamma random fields, that can be
directly used to model Poisson intensity for space-time
data. The proposed model was applied to identify impor-
tant environmental characteristics that affect variation
in the abundance of Nenia tridens, a dominant species
of gastropod in a well-studied tropical ecosystem, and to
characterize its spatial and temporal trends, which are
particularly critical during the Anthropocene, an epoch
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of time characterized by human-induced environmental

change associated with climate and land use.
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1 | INTRODUCTION

In many fields of science, spatio-temporal models are useful to better understand and more real-
istically represent the dynamics of systems. This is particularly true for ecological systems during
the Anthropocene (Steffen et al., 2007; Zalasiewicz et al., 2010), a time of rapid, human-induced
environmental change linked to climate and land use. Ecological systems (suites of species that
co-occur in time and space, and that interact with each other, as well as with matter and energy,
to form systems) are complex, involving dynamics associated with abiotic (e.g. temperature, pre-
cipitation) and biotic (e.g. land use composition and configuration) characteristics. Because the
Anthropocene is characterized by unprecedented rates of change, it is important to understand
and predict spatio-temporal dynamics of populations that can inform management and pol-
icy with the ultimate goal of reducing the likelihood of species extinction and consequent loss
of ecosystem services that are essential for human well-being. The urgency of the situation is
reflected in recent suggestions that the planet is now entering its sixth major extinction period
as well as in the controversy surrounding the announcement of biological Armageddon (Lister &
Garcia, 2018; Schowalter et al., 2019; Willig et al., 2019).

Generalized linear mixed models (GLMMs; Breslow & Clayton, 1993) represent a flexible class
of models that are capable of accommodating random effects in a simple manner. In this class of
models, it is customary to choose an appropriate link function to model the conditional mean with
covariates and random effects. Transformed Gaussian Markov random fields (TGMRF; Prates
et al., 2015) appear as an effective tool for modelling spatial data. In TGMRFs, it is possible to
directly choose the distribution of the conditional mean, including covariates, and to define the
desired spatial structure. Unlike the traditional structure of spatial GLMMs that typically defines
an appropriate link function and then model sources of outcome variation via the link func-
tion, which in some models can make interpretation difficult, TGMRFs allow direct inclusion of
different sources of variation directly into the mean, rather than a function of it.

Spatial confounding (Reich et al., 2006) has gained attention because it can bias or inflate the
variance of fixed effects estimates, making a significant factor appear to be non-significant or to
reverse the conclusion about the covariate effect (Azevedo, Prates, et al., 2020). Recently, solutions
to spatial confounding have appeared from multiple perspectives. The most common solution
is to alleviate spatial confounding by model reparametrization (Azevedo, Bandyopadhyay, et al.,
2020a; Azevedo, et al., 2021; Hanks et al., 2015; Hughes & Haran, 2013; Prates et al., 2019; Thaden
& Kneib, 2018). Another venue to remove spatial confounding, which is relatively unexplored,
involves separation of marginal distributions and dependencies (Hughes, 2015; Prates et al., 2015).
More recently, Azevedo, Prates, et al. (2020) studied and proposed a solution for spatial confound-
ing in misaligned models, where the spatial structure of the random effects are not the same as
the spatial structure of the covariates.

A simple way to include spatial dependence in statistical models is to use spatially
structured random effects. For areal data, the most common spatial structure is the conditional
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autoregressive model (CAR; Besag, 1974). Although CAR models are useful for fitting spatial data,
their structure is not directly applied to multivariate problems. Multivariate conditional autore-
gressive models (MCARs; Carlin & Banerjee, 2003; Gelfand & Vounatsou, 2003; Jin et al., 2005,
2007) were proposed to extend CAR models when multiple variables are observed in the same
space. The idea is to control for the correlation structure between variables. Sain et al. (2011),
Rodrigues (2012) and MacNab (2018) have presented alternatives to define the cross-correlation
between regions and variables.

In this paper, we propose a non-separable, flexible and interpretable spatio-temporal depen-
dence structure and an extension of TGMRFs to multivariate problems. This new formula-
tion facilitates a clear and direct interpretation of the contributions of spatial, temporal and
spatio-temporal components. In addition, the proposed model prevents spatio-temporal con-
founding via a copula structure that guarantees by construction, the separation of fixed and
random effects. This is an advantage because, to the best of our knowledge, little is known about
the extent to which spatio-temporal random effects might confound fixed effects estimates (Adin
et al., 2021).

We leverage a long-term (17 years) ecological study (Bloch & Willig, 2006; Willig et al., 1998,
2007, 2014) to illustrate the utility of our multivariate TGMRF approach. More specifically, we
construct and interpret spatio-temporal models for counts of Nenia tridens, an abundant species,
that dominates the gastropod fauna in forests of Puerto Rico. This is particularly relevant because
these ecosystems are disturbance-mediated: the mapping of environmental characteristics onto
geographic space changes over time in response to climatic events (e.g. cyclonic storms and
droughts) and subsequent secondary succession, with consequences to the abundance and dis-
tribution of resident species (Willig et al., 2021). Fortunately, spatially explicit data are available
for counts of species as well as for habitat characteristics that are known to influence abundance
over time.

Section 2 highlights the ecological relevance and importance of the data. Section 3 summa-
rizes several multivariate dependence structures in the literature. The TMGMREF formulation for
spatio-temporal settings and how inference is performed are presented in Section 4. A detailed
simulation study about the proposed method appears in Section 5. Section 6 revisits the ecolog-
ical application showing the empirical and modelled results. A final conclusion and discussion
are presented in Section 7.

2 | ECOLOGICAL CHARACTERISTICS

Gastropods (snails and slugs) are the second most species-rich group of animals in the world
(Prié, 2019). They are ubiquitous heterotrophs (decomposers) and provide essential ecosys-
tem functions associated with energy flow and nutrient cycling (Prather et al., 2013). Previ-
ous research has documented their habitat associations and responses to disturbances such
as tree-fall gaps (Alvarez & Willig, 1993), hurricanes (Prates et al., 2011; Willig & Camilo,
1991), and previous land-use history (Willig et al., 1998) in the Luquillo Experimental Forest
of Puerto Rico. Thus, gastropods in the Luquillo Experimental Forest represent an ideal system
to explore as an illustrative case for modelling spatio-temporal demographics within a dynamic
environmental context. Moreover, Nenia tridens is one of the most numerically dominant
gastropods in tabonuco forest on the Luquillo Forest Dynamics Plot (LFDP), and has a
heterogeneous spatial distribution, making it of particular ecological importance (Bloch & Willig,
2006; Willig et al., 1998).
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FIGURE 1 Graphic representation of the spatial distribution of counts of Nenia tridens and on the
sampling lattice for each of 5 illustrative years. Circles represent counts and grey lines represent the
neighbourhood structure adopted.

Between 2000 and 2017, data on counts (minimum known alive) of Nenia tridens were quanti-
fied on the LFDP (Figure 1). The LFDP is a 16-ha rectilinear grid that comprises an 8 x 5 lattice of
40 points (circles of 3 m radius), with 60 m spacing between adjacent points (Willig et al., 1998). A
suite of covariates characterized each of the 40 points and represent habitat characteristics. Some
varied in space but not time: Elevation (metres above sea level) and slope (inclination of land in
degrees). As a consequence of disturbance and succession, others varied in space and time: den-
sity of vegetation or FolDenAll (foliar intercepts by plant, regardless of species identity, in the
understorey), density of Sierra Palm or FolDenPa (foliar intercepts by Prestoea acuminata in the
understorey), litter cover (ordinal representation of amount of litter on the forest floor, from 0 to
2) and canopy openness (estimate of penetration of light to forest understorey). To avoid computa-
tional problems, all covariates were centred and scaled so that interpretations involve deviations
from the mean. In Section 6, our methodology is applied to this data set and the space-time
parameters are interpreted from an environmental perspective.

3 | DEPENDENCE STRUCTURE

For areal data, when observations represent a well-defined region, the most traditional model
used to capture spatial dependence is the CAR model. In a multivariate or spatio-temporal con-
text, there are a variety of ways to formulating models; however, the approaches of Mardia (1988)
and Sain et al. (2011) are the most natural extensions of the univariate CARs (see MacNab, 2018,
for a recent review).

3.1 | Multivariate conditional autoregressive

A direct extension of the CAR model occurs when more than one dependent variable is observed
over the same region. This family of multivariate models is known as MCAR (Gelfand &
Vounatsou, 2003).
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Let n be the number of regions of interest and p the number of variables observed. Define
Y7 and @, a vector of observations and spatial random effects, respectively, ordered by region,
then

Yl = (Yll’Y129 e 9Y1p3Y217 oo ,Y2p9 cee 9Yn1 cee 9an)3
O = (011,012, ... ,01p, 001, ... ,02p, ... Opp).

Now define Y, an observation vector and @, a spatial random effect sorted by variable,
thus

Y=Y, Yo1, oo, Y, Yoo, oo, Yo, o, Yap oY),
92 = (01199217 oo 99}’1159129 (XN ’91125 oo el’lp)'

A p-variate CAR can be defined by conditional distributions for 6; as

(6516—i) ~ Nup <Zby,k19kl, Ty>

ijj~kl

where 6_; represents the vector € without the ij entry and ij ~ kl are defined as the neighbours
of a variable j in region i with a variable ! in region k. Applying Brook’s Lemma, it is possible to
calculate the joint distribution of @, whereas @ is either @, or @,, as

I1(O) x exp{—%@)’Q@}, 1)

=biu
Tij
to guarantee that Q is symmetric and positive definite. Different choices of the coefficients b;;
and z; determine the methodologies that are available from the literature.
Given the general representation of Equation (1), an alternative way of inter-
preting and understanding the multivariate distribution is considering its conditional
mean

where Q is a precision matrix and g = . Therefore, as in the univariate case, it is necessary

E(0;10_) = Zbij,kjekj + Zbij,iloil + Z byj a6, @)
k#i I#j (kD#(i)
—_—— —— ——
A B C

and conditional variance

Var(0;]0_y) = T;, 3)

This representation allows for a direct interpretation of the sums A, B, and C in Equation (2):
A measures spatial dependence within the same variable, B measures the dependence between
variables in the same region, and C measures the spatial dependence between different
variables.

Next, we revisit the key MCAR proposals in the literature, each represents a specific
parametrization of Equation (1) and its dependence interpretation represented by the conditional
mean structure in Equation (2).
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3.1.1 | Gelfand and Vounatsou (2003) and Carlin and Banerjee (2003)

Ordering the data by region, Y7, the authors parametrize the n-site and p-variable MCAR precision
matrix Q, denoted by Q,, as:

Q1 =Dy —pW) R A,

where A is a p X p inverse covariance matrix with elements A;;, W' is the CAR connectivity matrix
with elements w; = 0, wy, = 1 if i ~ k or wy = 0 otherwise, D,, is a diagonal matrix with values
wi with wi, = Y, wy from matrix W, and p is a spatial parameter.

The MCAR precision matrix Q; is a Kronecker product of a CAR (spatial) precision
matrix and a (non-spatial) precision matrix of a p-variate Gaussian distribution. This struc-
ture is named separable MCAR, because its covariance matrix can be written as a product of
a spatial and a non-spatial covariance matrix. A MCAR is said to be non-separable MCAR
if its precision matrix cannot be expressed as a product of spatial and non-spatial precision
matrix.

With this parametrization, the bj;j; and z;; in Equations (2) and (3) are given by:

p=k if j=1 and i#k,

Wiy
bju=1{ =% if j#I and i=k and
JI
p“f)_k% if j#1 and i#k,

. 1
j = :
Wit Ay

When the data are ordered by variable, Y, we have the Q, equivalent of Q; as Q, = A ® (D, —
pwW).

The above-mentioned parameterization for b;; i leads to the following conditional mean

. A 2 At
E(O510-5) = Y pity = Y Lo+ X oLy, @
W g N gy Wi

The first summation represents within-variable spatial dependence, where p is a common spatial
dependence parameter for each of the p variables. The second summation represents non-spatial
dependence between variables at the same locations, while the third summation represents
cross-spatial dependence between variables at different neighbouring locations. Notice that the
previously seen spatial parameter p also appears in the third summation, where it serves as a com-
mon cross-spatial dependence parameter for any two of the p-variables. As noted and illustrated
in MacNab (2018), this parametrization may not lead to intuitively appealing cross-spatial depen-
dence interpretation. The negative sign in the second summation implies that the cross-spatial
dependence between variables at different neighbouring locations, represented by the third sum-
mation, may be inconsistent with the non-spatial dependence between variables at the same
locations. For example, let variables j and [ be correlated positively. This leads to a negative Ay
in the precision matrix A, and pA; < 0 in Equation (4) when p > 0, which suggests a positive
spatial dependency of each variable, positive non-spatial dependency between variables j and [ at
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the same locations, but negative cross-spatial dependency between the two variables at different
neighbouring locations.

3.1.2 | Jinetal. (2007)

The representation of Jin et al. (2007) has a restriction in order and can be sorted only by variable,
thus the authors define the matrix Q, as

Dy —yutW)A1 ... Dw—rpW)Ay
QZ = E . E 5 (5)
(Dw — 71va)A1p cer Dy = }’pva)App

where T = (yj) = AY?pAY?, AY*(AYH)T = A = (Ap), p = (pj) is a p by p symmetric (or a diago-
nal) matrix of spatial dependence parameters (MacNab, 2018).
With this structure, we can find b;;;; and z;; as

yfjw_i’ if j=1 and i#k,
bjm=4 —=» if j#l and i=k,

mw,-+/\,-,’ if j#1 and i#k,

1
wis Ajj-

Tij=

Like the previous formulation, this representation may also lead to inconsistent cross-spatial and
non-spatial dependence (see MacNab, 2018, for illustrative examples). From Q, in Equation (5)
we have

w 1 w
E(9y|9—y)—z}’y Xo '—2 . O + z jt—lk—ﬁkh

i 7 A Kzt Wir A

which, when p = pl,;, leads to the Gelfand and Vounatsou (2003) and Carlin and Banerjee (2003)
MCAR, also known as the separable MCAR. The Jin et al. (2007) parametrization is more flexible
since it allows a symmetric (or diagonal) matrix of spatial dependence parameters instead of a
unique spatial parameter p. Except when considering a single spatial parameter, the Jin et al.
(2007) MCAR is a non-separable MCAR, because its precision matrix cannot be expressed as a
product of a spatial and non-spatial precision matrix (MacNab, 2018).

3.1.3 | Sain et al. (2011)

Sain et al. (2011) proposed an alternative framework for MCAR formulation where three types
of neighbourhoods were considered in characterizing the dependence structure of a model: (1)
spatial neighbours of region i (Figure 2a), (2) neighbours of the same region i between variables
(Figure 2b), (3) spatial neighbours of region i across different variables (Figure 2c).
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FIGURE 2 Types of neighbourhood. (a) Spatial neighbourhood within the variable. (b) Neighbourhood
between the same region and different variables. (c) Neighbourhood between a particular region and its spatial
neighbour regions across different variables. [Colour figure can be viewed at wileyonlinelibrary.com]

Let C = C' be a symmetric matrix of spatial dependence parameters, the Q; matrix of the Sain
et al. MCAR is defined as

1 1
Q=0LIAN )T, QA-WRO)T, QA ™2), (6)
where
A% 0 1 —pip C11 ClP
A = E 2 A = : 9 C = 2
0 A; e 1 et - Cpp

where A = A" is a partial correlation matrix, p;l, Vj, l are non-spatial partial correlation param-
eters. Notice that the diagonal element c;; in C controls the within-variable spatial dependence
for the variable j and the off-diagonal elements c;; regulates cross-spatial dependence between
variables j and I.

For this parametrization, the b; iy and z; are defined by

cjwi, if j=1 and i#k,

J
Wikcjl%» if j#£1 and i#k,

byu=1 % if j#1 and i=k,

and 7;; = Aj2 are variable-specific scale parameters. The equation for the conditional mean is now

A A
E(6;10-y) = chjwikaj + ZP;ZXJ&'I + Z CszikKJ@d- (7
le#i I# ! k£ !

This representation has four salient differences compared to the previous two parametriza-
tions: (a) the contribution of the second summation is positive; (b) each variable is character-
ized by different spatial parameters (c;) in the first summation; (c) different parameters (p]‘:’l)
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accommodate the dependence between variables at the same locations in the second summation;
and (d) the spatial parameters (c;) in the third summation control for cross-spatial dependence
between variables.

Although the model seems flexible, its interpretation is not trivial because the conditional
mean depends on the (scale) parameters A;, Vj. Moreover, the summations in Equation (7) are not
weighted, and as a consequence, the resulting precision matrix has complex positivity require-
ment on both the spatial and non-spatial dependence parameters (see MacNab, 2018, 2020, for
details). Again, with the exception of having a single spatial parameter, the Sain et al. (2011)
MCARSs are non-separable MCARs (MacNab, 2018).

3.1.4 | MacNab (2018)

MacNab (2018) extends the Sain et al. (2011) MCAR by allowing a set of scaling factors, denoted
D,, = diag(my, my, ... ,m,), to be introduced to Qy:

Q=LA HIL, ®A-WRC)I, ®A™3), 8)

which leads to the following MCAR conditional mean

Wik Aj Wik Aj
E@0410_y) = Y cj— 0+ ). p5——0u+ ) Gi— 0. (9)
el 1% S Aim KiZij Ay

and 7; = ml-Af, where W = D;f/ 2 WD,_nl/ %, Notice that the Q; in Equation (8) is the Q in
Equation (6) with the spatial connectivity matrix W being replaced by a spatial weight matrix W.

When m; is the total number of terms in Equation (9), which is also the total numbers of
neighbours for site i of the variable j, the MCAR Equation (8) is named a p-fold CAR, and it is the
generalization of the twofold CAR proposed in Kim et al. (2001). Unlike the MCAR (7), which is
the MCAR (8) with D,, = I,,, sufficient positivity constraints are more readily available for MCAR
(8) when m; > 2,Vi(see MacNab, 2018, for details). Furthermore, notice that when A; = A, Vj, the

conditional mean of the MCAR (8) is simplified to

Wik 1 Wik
E(6510-5) = Y cj— 0 + D00+ D, i b, (10)
ki mi I mi k,I#ij m

where Expression (10) defines the multidimensional (spatial and non-spatial) dependence struc-
ture of the MCAR.

After defining the dependence structures for the multivariate case, it is clear that a
spatio-temporal setup can be seen as an equivalent case where instead of having p variables in a
map, we have one variable observed over the whole map in a discrete period of T times.

4 | SPATIO-TEMPORAL MODELLING USING TMGMRFS

In the spatial setup, the TGMRF (Prates et al., 2015) was proposed as a flexible alternative to
GMRF (Rue & Held, 2005). In this class, the marginal distribution is chosen according to each
application, providing flexibility in being capable of accommodating asymmetry, heavy tails or
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other characteristics, thereby maintaining many desirable properties of the GMRF (Prates, 2011).
For example, in a Poisson regression, using a gamma prior for modelling the marginal distri-
butions of the relative risks is more flexible in comparison to use of the Gaussian prior (CARs
or MCARSs) for log relative risks. The shape parameter of the gamma prior facilitates modelling
different degrees of skewness, whereas the Gaussian prior is limited in its capacity to model skew-
ness. Furthermore, the TGMRF uses a copula approach to separate the marginal structure of the
model from the dependent one. This is also of interest because, by construction, it modulates
these two aspects of modelling. Consequently, TGMRFs do not suffer from confounding between
fixed and random effects.

A TGMREF is obtained by transforming the marginal distribution of the GMRFs to a desired
one. Let € = (ey, ... ,€,) be a multivariate normal vector with mean 0 and sparse correlation
matrix =, € ~ N,(0, £), consequently € is a GMRF. Let Z = (Z3, ... ,Z,) and Z; = Fl.‘l{db(ei)},
i=1, ..., n,where F;(x) is the cumulative distribution function (cdf) of an absolutely continuous
function with respect to the support of x and ® is the cdf of the N(0, 1). So, each Z; has marginal
distribution f; (probability density distribution [pdf] of F;) and jointly a TGMRF with marginals
F and correlation structure =, denoted by Z ~ TGMRF,(F, E). The Q = Z~! brings a more intu-
itive interpretation of the conditionals distribution of Z, and we parametrize the TGMRF by its
precision matrix Q and denoted by Z ~ TGMRF,,(F, Q).

TGMRFs can be used to directly model Poisson intensities or Bernoulli rates, taking into
account a marginal distribution of interest and spatial dependence (Prates et al., 2015). For
example, let u,,,, be vector of the mean parameters in a Poisson regression, the TGMRF is defined
as a joint distribution for u as

u ~ TGMRF,(F, Q),

where F = (F, ... ,Fy), F; is a desired and adequate cdf for the marginal distribution of y; with
pdf f; and precision matrix Q.

From a spatio-temporal perspective let Y = (Y7, Y5, ... , Y7)’ be a random vector observed at
T times and n regions with Y; = (Y, Yz, ... , ) fort =1, ..., T. The nT X q covariate matrix is
defined as X = (X1, X5, ... ,. X)) withX; = (X131, ... , X, X12, ... . Xpp) forj=1, ... gand random
effects € = (¢, €), ... ,€}) with €, = (e1;, €, ... , ) following a Ny, (0, Q).

If the distribution of the random variables Y;; belongs to the exponential family with mean
uir = E(Yy|X, €ir), then the joint distribution of u can be modeled by a transformed multivariate
GMRF (TMGMREF) as

u ~ TMGMRF,(F, Q),

where F = (F11, ... ,Fi7,Fa1, ..., Fur), Fi is the cdf related to the marginal distribution of u;; and
Q is the precision matrix of u.

Let & = (B,p,v), where p = (ps, ps, psr) are the spatial, temporal and spatio-temporal
dependence parameters, respectively, and v are hyperparameters of the distribution F. A
spatio-temporal hierarchical TMGMRF model can be defined as:

Yielpie ~ zQlpi),i=1, ... ,m;t=1, ... T,
u ~ TMGMRF,(Fs x, Q,),
B~ =(B),

v~ a(v),
p ~ x(p), (11)
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where Fg x may depend on the covariates X, regression coefficient vector B, dispersion param-
eter(s) v and spatial, temporal and spatio-temporal parameters ps, p; and py, respectively. The
precision matrix Q, will depend on only the dependence parameters p.

As previously emphasized, this formulation will not suffer from spatio-temporal confounding
because it separates the marginal effects of the dependence structure. Moreover, it facilitates a
flexible representation of marginals distributions. To avoid over parametrization and to construct
a precision matrix capable of carrying the flexibility of model (11) combined with an intuitive
parameter interpretation, we propose a simplification of the p-fold CAR, by incorporating MCAR
(10) ¢ = ps, p]?l = p; and ¢ = py. With this parameterization, we have the conditional mean and
variance defined as

Wik Vit WikVji
E(0;10-y5) = Zﬂs—lﬂkj + Z/’r—ﬂiz + Z Pst—— 6k,
k#i m; I#j m; K l#ij t
T

Var(0U|0_y) = —, (12)
m;
where p; accommodate the spatial dependence between regions, p; represent the temporal depen-
dence between time t and its previous (¢ — 1) and its next (¢ + 1), mimicking an autoregressive
model in time with order 1 and pg; model the dependence between area i in time ¢ and its spatial
neighbours in time t — 1 and ¢ + 1.

Notice that the conditional mean in Expression (12) defines the precision matrix Q, in
Expression (11), where

Qp = In ® A(pt) - W@ C(ﬂs’ pSt)° (13)

This MCAR proposal is non-separable because its precision matrix has two spatial dependence
parameters (ps and pg;) and cannot be expressed as product of a spatial and a temporal precision
matrix.

4.1 | Marginal models and inference

When a traditional GLMM is used to fit a Poisson model, it is common to use the log-link func-
tion. It is easy to prove that under this link function the marginal distribution for the conditional
mean is log-normal. Under TMGMRFs models, we can set the family, mean and variance of these
distributions, to obtain the parametrization presented in Table 1.

An equivalent approach to the usual GLMM under log-link function is the log-normal (LN)
model. Other distributions provide flexibility to the model. As can be seen, the gamma indepen-
dent (GI), gamma scale (GSC) and gamma shape (GSH) models have different marginal variance
functions. Depending on the type of the application, one function might be more plausible than
the others. Additionally, with gamma priors on the areal-specific means, the regression part can
be modelled on the areal-specific scale parameters (the GSC model), the areal-specific shape
parameters (the GSH model) or as an areal mixture of the shape and scale parameters (the GI
model). As a consequence, it is clear that the TMGMREF easily offers a variety of alternative
models.

Although the traditional log-normal model (i.e. the model with Poisson likelihood, and MCAR
prior on log means) has elements of the dependence structure in its marginal (last row of Table 1),
it has a quadratic dependence in the variance with respect to the mean regressor, as in the
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case of the GSC model, making them comparable. However, the flexibility of the GSH model to
incorporate the skewness of the mean distribution represents a unique novelty arising from the
association of the mean regressors with the shape parameter. Importantly, the v parameter does
not have an equivalent role in these models and we do not expect the same estimated value for
this parameter under model misspecification.

Assume we have Yj;|u; ~ Poisson(u;), Vi=1, ...,nandj=1, ..., t. Let Q, be the structure
matrix of the spatio-temporal MCAR defined by Equation (12) and let 8 be a coefficient vector
of dimension q. We used a Gibbs Sampling algorithm with Metropolis—Hastings step for each
parameter in the modelling. Priors distributions were set to be flat on their domain even for the
dependence parameters.

To compare methods, we used the widely applicable information criterion (WAIC; Watan-
abe, 2010), the logarithm of the pseudo marginal likelihood (LPML; Dey et al., 1997; Geisser &
Eddy, 1979) and the deviance information criterion (DIC; Spiegelhalter et al., 2002). A broader
discussion of these criteria can be found in Gelman et al. (2014).

To allow reproducibility and provide access for a wider range of practitioners, an
R package has been created that can be installed following the instructions in the
TGMRF: Transformed Gaussian Markov Random Fields repository https://github.
com/douglasmesquita/TGMREF.

5 | SIMULATION STUDY

To evaluate our method, we performed a simulation study. The global sample size is always fixed at
300 but the spatio-temporal design varies across scenarios. The MCMC setup was calibrated after
empirical tests that showed that a chain with 1000 samples thinned by 10 to reduce autocorrela-
tion after 5000 iterations of burn-in (15,000 iterations in total) is sufficient to achieve convergence
and estimate parameters.

As our method is applied in a spatio-temporal setting, we divided our study into three parts.
First, we investigated the ability of our method to recover parameters under a situation in which
we have temporal but not spatial independence. Second, we explored a scenario where there is
spatial but not temporal independence. Finally, we considered a more realistic scenario in which
spatial, temporal and spatio-temporal dependence is present.

For all scenarios, data were generated from one of the models (Table 1). A total of 100 data
sets was generated for each proposed model. Nonetheless, we fitted the data set using the model
introduced in Equation (11) with all marginals from Table 1 and precision matrix, Q,, defined
by Equation (13). For all simulated scenarios, the data were generated in a 6 x 5 grid with 10
sampling times per point, also, the fixed effects g were set as (1, —0.1). The dependence param-
eters p = (ps, pr, pst) Vary according to a tripartite generating scheme: (1) spatial dependence,
p =(2.18, 0, 0); (2) temporal dependence, p = (0, 3.88, 0); and (3) spatio-temporal dependence,
p =(0.97,1.71, 0.77).

To demonstrate the accuracy of the method, we present the results of Scenario 3 in Table 2.
Results are summarized as modes, standard deviations and mean squared errors (MSEs). The
different choices for v were such that the mean marginal variance V(y;) of each model was set
at ~10 (Table 2). The point estimates of the parameters are well recovered for the true generating
mode with a low MSE. Even under model misspecification #; and p are nicely recovered in all
models. Because of the copula separation of the TMGMRF the dependence parameters in p are
not predicated on the choice of the marginal link. The traditional LN model does not have the
same marginal mean as that of the other proposals, for this reason, f for the LN model is not
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comparable with the Gamma proposals. The same consideration can be made for v, since this
parameter is not comparable along with the different marginals, thus its estimated values are
unrelated.

Similar observations are made for scenarios 1 and 2 (see Tables S.1 and S.2 in the Sup-
plementary Material S.1). Overall, the regression coefficient estimates (f;) and dependence
parameters in p are stable across the proposed marginals. Furthermore, the TMGMRF cor-
rectly detects the type of the data dependence according to with the generating scenario.
Specifically, in scenario 1, only p; is significantly different from 0; in scenario 2, only p; is
significantly different from 0; and in scenario 3, ps;, p; and ps are each significantly differ-
ent from 0. Therefore, we conclude that our method can accurately recover spatial, temporal
and spatio-temporal characteristics as well as fixed effects coefficients, and scale or variability
parameters.

6 | ABUNDANCE OF NENIA TRIDENS

Our research integrates several fundamental principles of ecology (Scheiner & Willig, 2008)
by exploring the bases of the heterogeneous distribution of organisms in space and time,
and by linking such dynamics to the heterogeneous distribution of abiotic and biotic fac-
tors that represent local habitat characteristics, many of which are affected by disturbance
and subsequent secondary succession. Indeed, this integration is a paramount challenge
in ecology and biodiversity science and has critical ramifications for wildlife management
and conservation action. Nonetheless, most ecological research considers spatio-temporal
dynamics over relatively short periods of 3-6 years, thereby missing opportunities to eval-
uate long-term dynamics associated with long-term environmental variability. In contrast,
we have taken advantage of long-term population data (Bloch & Willig, 2006; Willig et al.,
1998, 2007) in a well-studied tropical ecosystem (Brokaw et al., 2012) that is subject
to climate-induced disturbances (i.e. cyclonic storms and droughts) to illustrate the util-
ity of our new statistical model and to evaluate the insights it provides for ecological
understanding.

We investigated spatial, temporal and spatio-temporal trends in the abundance of N. tri-
dens as well as in the environmental characteristics that may affect such variability. For
this, we fitted model (11) with Q, and marginals discussed at Section 4, and consider
two possible fits. In one, we include the effects of covariates that are constant over time,
whereas in another, we additionally allow regression coefficients to vary in time by set-
ting B = (P11s --- » P> Po1s --- ,Pa,)7 with independent normal priors. The second approach
was proposed to ascertain if any patterns arise when fitting temporal fixed effects for the
covariates.

As can be seen in Figure 3 the evolution of the coefficients over time does not suggest any
pattern. Consequently, we believe that the constant fixed effect model is more parsimonious and
should provide equivalent insight to those of the other models.

The spatial and the temporal parameters for the model with constant fixed effects (Table 3)
were significantly greater than 0, whereas the spatio- temporal dependence was signifi-
cantly smaller than 0. To study the strength of the results obtained for ps, p; and pg, we
compared the posterior estimates with the marginal limits, based on the diagonal domi-
nance criterion, calculated for p; when p, = py =0 and analogously for p, and pg. These
limits are pi"™™* =2.25, pf"™ =4.00 and py* =1.75. This implies that j;/p"* ~ 0.76 and
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FIGURE 3 Time-varying regression coefficients for Canopy openness, FolDelAll and FolDenPa with their
respective 95% credible intervals.

P/ P = 0.85, evidencing a strong association, while 5/pg™ ~ —0.15, indicating a mild nega-
tive cross-dependence.

Spatial dependence of abundance of a particular site with regard to abundances at neighbour-
ing sites is likely due to the effect of immigration and emigration among those sites. These lead
to the greater similarity among sites in abundance than expected by chance. Temporal depen-
dence of abundance between consecutive time periods arises from the demographic process
such as site-specific birth rates and death rates. In ecological terms, the correspondence between
site-specific abundance of N. tridens at one time on abundances of N. tridens at neighbouring sites
at a subsequent time are not independent. Rather, low abundance at a site at one time is asso-
ciated with high abundance at neighbouring sites at a future time. Conversely, high abundance
at a site at one time is associated with low abundances at neighbouring sites at a future time. As
long as the fundamental niche of a species does not change over the time of the study (i.e. we are
examining ecological rather than evolutionary dynamics), individuals should be responding to
the same suite of environmental characteristics. Indeed, previous research on N. tridens (Secrest
et al., 1996) has shown that abundance is related to the same characteristics of the environment
in two areas of tabonuco forest that differ from each other in the intensity of disturbance from
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Hurricane Hugo. More specifically, the mean and variance of population abundances differed
greatly between the two areas, as did the mean values for environmental characteristics, nonethe-
less the habitat characteristics that predict abundance did not differ significantly.

Critically, the mapping of environmental characteristics in space depends on time as a con-
sequence of habitat changes induced by disturbance and subsequent secondary succession. The
idiosyncratic appearance of small scale disturbances (e.g. tree fall gaps) between survey periods
could give rise to a negative cross spatio-temporal patterns. For example, gap formation at a pre-
viously productive site can reduce abundance of N. tridens to zero, but not affect abundances at
surrounding sites that continue to be high. The relatively small magnitude of this general effect
likely arises because the number of sites affected by such small scales disturbances is relatively
small at any particular time interval. Alternatively, if sites within the forest are at different stages
of ecological succession as a consequence of disturbances (i.e. patch dynamics; Pickett & Rogers,
1997; Pickett & White, 2013; Willig et al., 2007) at any point in time, and if the rate of change in
abundance is non-linear during succession, then abundance of any site in predicting future abun-
dance at surrounding sites will be time-specific as well as site-specific, contributing to negative
cross spatio-temporal association.

Based on the model selection criteria presented in Table 3 and introduced in Section 4.1, the
GSH model was preferable because it has the best performance in two (DIC and WAIC) of the
three model selection criteria (GSC is preferable according to the LPML criterion). Thus, the con-
ventional log-normal approach does not provide the best fit. The FolDenAll represents the foliar
density of all plants in the understorey of the forest, whereas litter cover estimates the volume of
leaf litter on the forest floor. Gastropods in general, and N. tridens in particular, use such live veg-
etation for the substrate on which to persist, or for food (the leaves themselves or algae, diatoms,
or fungi that grow on them). Leaf litter enhances humidity and decreases temperature on the for-
est floor. Gastropods are very sensitive to desiccation, especially during periods of activity. High
humidity in the litter can mitigate microclimatic characteristics of the understorey (e.g. during
droughts or in tree fall gaps induced by cyclonic storms) that allow gastropods to persist and be
active. Moreover, leaf litter is a substrate on which micro-organisms grow that represent food
sources for gastropods such as N. tridens. Thus, the importance of these two characteristics is
explicable in terms of the natural history of N. tridens, and corroborates the results of previous
research (Secrest et al., 1996).

7 | FINAL REMARKS

Herein an overview of many multivariate areal spatial models was considered and re-interpreted.
Using the conditional mean and variance we show that parameter interpretation between most
of the different proposals is not intuitive. With that in mind, we adapted the p-fold MCAR such
that parameters have an intuitive ecological interpretation.

Such reparametrization of the multivariate structure is formulated in a spatio-temporal con-
text and combined with the TGMRF approach. The TMGMRF provides flexibility in the marginal
distribution of the mean response and separates the mean structure from the dependence struc-
ture, thereby avoiding spatio-temporal confounding. As a by-product of this research, we provide
the analysed data and an R package (Section 4.1) for this family of models, called TGMREF, for use
by empiricists.

Spatio-temporal variation in counts of N. tridens is quite complex because of the environ-
mental dynamics associated with disturbance and subsequent secondary succession in this
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tropical forest. Nonetheless, a strong positive spatial and temporal association is present in
contrast with a weak, but significant, negative spatio-temporal dependence. The occurrence of
small scale disturbances between survey periods is a possible explanation for this negative cross
spatio-temporal patterns (for more details about this discussion see Section 6). After controlling
for spatio-temporal dynamics, two environmental characteristics, the density of vegetation in the
understorey and litter cover, accounted for significant variation in mean abundance at each site.

Finally, as the model can be applied with regard to any hierarchical model in future studies,
likelihoods other than the Poisson, included in the R package, as are other distribution families for
the marginal, thereby providing flexibility and enhancing the utility of the software and its under-
lying statistical approach. Models that can effectively ascertain the effects of space, time, and their
interactions, all in the context of dynamically changing environmental characteristics, are critical
tools for ecologists in the Anthropocene. Because the proposed approach and statistical tools are
provided in R, these approaches should become widely adopted in a variety of ecological contexts
and for any species of organism. Finally, multivariate application for jointly modelling different
species living in tabonuco forest can provide different insights about the complex dynamics of the
ecological system.
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